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Abstract

This thesis consists of three essays that shed light on different aspects of the relationship be-

tween the environment, economic and politics. In the first chapter we consider the deployment

of large hydropower dams in Vietnam, an effective infrastructure that converts water resources

into clean and inexpensive electricity for the economy, and protects downstream people from

floods. The cascade design is shown to make the system more resilient against adverse impacts

of climate change. The second chapter estimates the impact of power outages in Vietnam on

firm performance using an instrumental variable based on work in chapter 1 that captures the

sensitivity of power reliability to weather-induced variability in river flow given that hydropower

plays the key role in the economy. Progressive power policies are required as businesses, which

become more dependent on electricity, are shown to be more vulnerable to power disruptions.

The third chapter provides evidence that senatorial voting pattern for environmental issues in

the US is responsive to natural disasters although the reactions tend to be slow, short-lived and

not unidirectional. The preference for environmental stringency increases after human losses

but falls after economic damages.
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Introduction

One feature that makes human beings so special and distinctive from any other living creatures

on the Earth is that their interactions with the environment are so comprehensive and compli-

cated. Yet similar to other animals, humans receive from the environment essential elements for

their survivals such as habitat, air, water, and food. Moreover, their superiority to others means

that they are the only one on the planet able to organise economic activities to exploit and al-

ter the environment at a larger and larger scale and increasingly advanced ways to satisfy their

seemingly endless needs which have been growing over time in both variety and sophistication.

Indeed, it is hardly possible to imagine any activity of our modern economy that does not

have consequences for the environment. All economic activity means the consumption of lim-

ited natural resources, intervention in the ecosystem or the release of pollutants to the land,

water bodies or the air. The development of our increasingly populated society is also linked

to the degradation of the environment such as deforestation, natural resources exhaustion, loss

of biodiversity, and climate change. Fortunately, humans are also gifted with other important

distinctive competencies, the ability to be self-conscious, to foresee the consequences of our

activities and to prevent ourselves from causing bad outcomes. Yet, there have been always

numerous opportunities for our society to contribute to the sustainability of the planet by saving

natural resources, minimising the pollutants and their impacts, and restoring ecosystems. How-

ever, on many occasions, they are not translated into actions because of competition from other

short-sighted interests and the lack of political determination.

1



The missed opportunities could be costly as the deterioration of the environment, poses

many serious challenges to our society. As human activities, since the rise of the Anthro-

pocene era, have driven the environment to move beyond the boundaries of its stasis, the Earth

is likely to become less favourable for humanity than it has been for the past 10,000 years of

the Holocene (Rockström et al., 2009a,b).1 Most evidently, climate change is proving to be a

serious threat to the global economy in particular and development in general, and could be de-

terred by collective actions only (Stern, 2006; IPCC, 2014). One consequence of the changing

climate is that extreme weather or climate events and the related disasters tend to be more fre-

quent and damaging (IPCC, 2012). This carries important implications for economic activities

and political decision making.

This thesis is dedicated to the investigation of aspects of the interrelationships between so-

cial processes and their interactions with natural processes. More specifically, it is comprised of

three essays presented in three chapters that examine contemporary interdisciplinary issues and

shed light on the relationship between environment, economics and politics. The two first es-

says look at the energy sector in Vietnam, a fast growing developing economy that is vulnerable

to the changing climate. The sector engages in the use of natural resources on a massive scale

to produce the fuel for the whole economy. In addition, as the sector is capital intensive and

critical to national security, it requires huge investment and political involvement. Under such

a setup, energy policies need to be considered carefully as they have important implications for

both the economy and the environment. Yet it is challenging to meet the urgent need for energy

to cope with rapid growth while maintaining a sustainability development path. The third essay

studies the environmental legislation in a developed country (the US), and the role played by

natural disasters. The chapter explores the political response to the signal given by a perception

of a deteriorating environment when it is up against economic interests. A version of the first

1The authors propose the concept of planetary boundaries, the interlinked biophysical thresholds that should
not be crossed so that the Earth system remains safe for the operation of humanity. Out of nine boundaries, three
are estimated to be already transgressed, namely climate change, rate of biodiversity loss and nitrogen cycle. Other
boundaries are phosphorus cycle (part of a boundary with the nitrogen cycle), stratospheric ozone depletion, ocean
acidification, global freshwater use, change in land use, atmospheric aerosol loading (not determined yet), chemical
pollution (not determined yet)
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chapter is published in the Journal of Hydrology (Nguyen-Tien et al., 2018) while the others

two chapters are being prepared for submission to established journals.

The interdisciplinary nature of these three chapters means that this thesis uses a variety of

data such as topography, hydrography, land cover, soil, weather, electric generation (chapter

1), firm performance, power distribution and transmission (chapter 2), legislation, demogra-

phy, macro-economy, and natural disasters (chapter 3). In terms of methodology, econometrics

(Ordinary Least Squares [OLS], Two-Stage Least Squares [2SLS], Fixed effects [FE], and Gen-

eralized method of moments [GMM] estimation) plays a dominant role throughout the thesis

in order to identify the correlations, and where possible, the causality between the variables of

interest. At the same time, methods and toolsets of different science branches are also incorpo-

rated into this thesis such as rainfall-runoff model (chapter 1), weather data interpolation and

transformation (chapter 2), extreme value theory [EVT] (chapter 3) and the extensive applica-

tions of geographic information system [GIS] (throughout the thesis).

In detail, chapter 1 studies the sensitivity to weather factors, the flood control benefit and

the relevance of the location of large hydropower dams across Vietnam, which provides an

excellent example for a developing country reforming its socio-economy, and energy system.2

The country is evaluated as “one of the best-performing economies in the world over the past

decade” (WB, 2011) with per capita GDP growth since 1990 “among the fastest in the world,

surpassed only by China” (WB and MPI, 2016). It also achieved remarkable progress in poverty

alleviation with poverty rate rapidly falling from 58% in 1993 to 15.9% in 2006 (Carew-Reid

et al., 2010) while the proportion of households with access to electricity has risen substantially

from under 2.5 percent in 1975 to 96 percent by 2009, comparable to higher average income

countries like China or Thailand (Min and Gaba, 2014). ADB (2011) gives several reasons for

Vietnam’s success in electrification, as follows:

‘It has been stated that the challenge of energy access is not a matter of technical know-

2A socio-economic reform called ‘Doi moi’ (renovation) started in 1986. A reform in power sector begun later,
in 1995.
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how, but one of making access a priority in both the political and developmental agendas.[...]

Specifically, the establishment of a strong national policy on rural electrification, coupled with

an empowered national institution to head the electrification drive allowed Viet Nam to take

advantage of its natural hydropower resources and create the infrastructure that allowed this

source of electricity to flow, first to its base of farmers and industry, and then into every com-

munity.‘

Indeed, behind such a story of success, there is a role for hydropower dams. For many years,

the construction of large dams in Vietnam since 1954, which typically requires huge amount of

labour over many years with considerable financial and technical aid from international friends,

was seen as a political achievement, and an icon of human’s willingness to conquer nature to

support the industrialisation, modernisation, and globalisation (Le and Dao, 2016). As Viet-

nam is abundant in water resources and has a diversity of terrain and climatic conditions, it is

vulnerable to extreme weather events such as floods and droughts, and hence these dams are

an important infrastructure that delivers multiple socio-economic benefits (Chairman of VNA,

2013). First, they provide a means to produce electricity on a large scale at a low price and

with relatively less emissions into the environment. Therefore, hydropower represents a strate-

gic component of the national energy mix to foster growth and combat poverty. Second, large

reservoirs attached to dams are an important tool to manage water resources, protect the down-

stream people from flooding, and provide water for irrigation in times of drought, supporting

agriculture among other economic activities. Yet hydropower in Vietnam is subject to criticism

for local socio-environmental problems such as flooding downstream, deforestation, resettle-

ment challenges and involuntary displacement (Dao, 2011; Bui and Schreinemachers, 2011;

Singer et al., 2014). However, if Vietnam had not built such an extensive hydropower scheme,

it would arguably have not been so successful in universal electrification, poverty alleviation

and economic development.

Given the importance of hydropower dams, it is worth appraising the robustness of the sys-

tem and the appropriateness of their location and operational coordination. In this chapter, we
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extend the framework by Cole et al. (2014), which integrates a rainfall runoff model (GeoSFM)

and regression analysis, to assess the performance of large hydropower dams, capturing their

sensitivity to weather factors, their multiple purposes and their interconnectivity. The contri-

bution is twofold. First, we use a more advanced rainfall runoff model (SWAT) coupled with

datasets of higher resolution such as HydroSHEDS/HydroBASINS.3 Second, improved data

and modelling enables us to conduct a more detailed analysis, including the investigation of the

cascade design (i.e., how well upstream dams support the operation of downstream dams). The

contribution of the chapter is to bridge two strands of literature: regression-based hydropower

system assessment (Gebretsadik et al., 2012; Cole et al., 2014) and SWAT application in mod-

elling Vietnamese watershed (Rossi et al., 2009; Phan et al., 2011; Vu et al., 2012; Wang and

Ishidaira, 2012; Ho et al., 2013; T.Piman et al., 2013; Giang et al., 2014; Wild and Loucks,

2014; Tram et al., 2014; Quyen et al., 2014; Khoi and Suetsugi, 2014; Le and Sharif, 2015; Vu

et al., 2015; Ngo et al., 2015; Shrestha et al., 2016).

The main results of the chapter can be summarised as follows. First, river flows simulated

from a trans-boundary watershed of 977,964 km2, which is delineated to 7,887 sub-basins and

53,024 Hydrological Response Units (HRUs), are shown to be a good proxy for inflows into

40 large hydropower dams between 1995-mid 2014. The use of such a proxy in energy re-

gression models is able to explain up to 87.7% of the variation in monthly power generation.

The multiple functions of large dams are captured by the estimate that they sacrifice on average

18.2% of their contemporaneous production for the purpose of flood control. This evidence

may support the argument that large dams in Vietnam do not solely pursue economic interests

but are also well regulated to protect those downstream. In addition, our assessment highlights

the synergies created by the cascade setup such that each MWh/day increase in upstream gen-

eration adds 0.146 MWh/day to downstream generation. This evidence may suggest an overall

efficient location and coordination of the dam system, which is designed to be adaptive to ex-

3The Geospatial Stream Flow Model (GeoSFM) and Soil and Water Assessment Tool (SWAT) are a semi
distributed, physically based catchment scale hydrological models funded and supported by various agencies of
the US governments (see Chapter 1 for more details). The latter is more well- developed and becomes ‘one of the
most widely used water quality watershed and river basin–scale models and is applied extensively to a broad range
of hydrologic and/or environmental problems’ (Gassman et al., 2014, p. 1).
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treme weather under the increasingly unfavorable conditions caused by climate change. More

specifically, upstream dams store water during floods and release water during droughts, which

in both cases improves the efficiency of downstream plants. However, more detailed analysis

identifies several basins where the harmonisation could be improved.

While chapter 1 highlights Vietnam’s success in exploiting hydropower potential to provide

inexpensive electricity for its entire population among other benefits, chapter 2 raises a concern

about power reliability. Indeed, power quality is still an area for improvement as Vietnam is

currently ranked 113/144 countries by the Global Competitiveness Index 2012-14 (Cattelaens

et al., 2015). This chapter aims to quantify the impacts of power outages on firm performance

and as a such, it contributes to a strand of literature that examines firms’ responses to power pro-

vision (Reinikka and Svensson, 2002; Adenikinju, 2003; Alby and Dethier, 2013; Dang et al.,

2013; Alam, 2013; Fisher-Vanden et al., 2015; Allcott et al., 2016; Mensah, 2016; Grainger

and Zhang, 2017) and a broader one that studies the relationship between infrastructure and

development (Lee et al., 1999; Davis et al., 2001; Esfahani and Ramırez, 2003; Holl, 2004;

Calderón and Servén, 2004; Canning and Pedroni, 2008; Baisa et al., 2010; Iimi, 2011; McRae,

2015). As indicated in the literature, endogeneity concerns could be serious when attempting to

quantify the losses in firm performance caused by power unreliability due to measurement er-

rors, potential reverse causality (i.e., better- performing firms are given priority in power supply

when blackout occurs) and the existence of underlying factors that may determine both power

provision and firm performance (such as local economic growth or institutional quality).

The solution used in the chapter is to employ a hydro-instrumental strategy similar to All-

cott et al. (2016); Mensah (2016); Cole et al. (2018). Intuitively, when an economy is highly

dependent in hydropower, its power supply is unavoidably sensitive to the variability in weather

factors such as rainfalls and temperature, which determine water availability in hydropower

reservoirs. Under such circumstances, the weather-induced variations in river flows into large

dams may well predict power provision while there is little reason for them to correlate with

firm performance via other channels. Therefore, they fit to serve as an instrument for a 2SLS es-
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timate, which is arguably more consistent than a naive OLS estimate. The approach is relevant

to Vietnam as hydropower plays the leading role in the national power mix (account for 37.6%

to 40.2% installed capacity), however some modifications to the methods used in the existing

literature are needed. Existing studies are based on multiple grids (i.e., different countries or

different states in a large country use different grids), in which the hydro-instrument is calcu-

lated for each power grid then matched with firms to explain the variation in power provision.

In the case of Vietnam, we need to deal with a single grid case (i.e., all firms are connected to a

same centrally-managed grid) with limited information on the power distribution.

Such a difficulty motivates our methodological contribution. First, we utilise the SWAT

model to simulate river flows and the hydropower generation regression in chapter 1 to predict

the power generation and the hydro-plant factors (i.e., the percentage of the designed capacity

that dams may operate given the flows determined by weather conditions) for each dam. Then

the predicted plant factors are weighted to compute a hydro-index showing that water availabil-

ity at a nearer and larger dam has a greater impact on the power provision at a given economic

centre (province). The uncertainty in the transmission and distribution rule is captured by a

distance penalty parameter calibrated by the‘reduced-form equation’ of the 2SLS estimation.

Finally, the index serves as a single instrument for power outages measured in multiple dimen-

sions (frequency, intensity and volume) in the ‘structural equation’ to resolve the endogeneity

concerns.

Our instrumental estimation for the cross-sectional data from two waves of the World Bank

Enterprises Surveys (WBES) suggests that the negative impact of power unreliability is small

and insignificant in the 2005 Survey but is considerable and significant in the 2015 Survey. One

explanation is that electricity has become increasingly essential for businesses. For the later,

it is estimated that a small reduction in power interruption of 22.8 minutes per year would in-

crease the revenues of Vietnam’s firms by 4.66 billion USD. Compared with their counterparts,

firms supplied with less reliable power are found to have lower productivity, and to use less

flexible input factors, which are not offset by more use of costly backup electricity generators.
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In addition, frequent blackouts are found to cause larger damages than long-lasting blackouts.

Though our econometric model in this chapter confirms the link between weather variabil-

ity and power outages via the reliance on hydropower (the ‘reduced form equation’), and their

consequences on firm performance (the ‘structural equation’), it does not imply that Vietnam

should not continue to see clean power as a source of economic growth. The chapter rather

suggests that policy makers may need to seriously take into account the changes in the sensitiv-

ity of the economy to power quality. There are several approaches to enhance the reliability of

the system. The first is the installation of new power sources with a focus on the sources with

high reliability to fill in the gap between demand and supply. Given the fast growth of power

demand, this approach, however, requires substantial investment, which could be beyond the

ability of the government if the market liberalisation is not properly adopted.4 In addition, this

approach may encourage the emissions of greenhouse gas and lead to more consequences on

the environment (Ha-Duong et al., 2016). The second approach is to regulate the demand and

enhance the efficiency of power usage. This approach is backed by the fact that power tariff in

Vietnam is low in comparison with other regional countries and its electricity-GDP intensity is

too high.5 6 While a review of the power tariff may be desirable to discourage the inefficient use

of power and generate resources for the upgrade and extension of the system, care should be

taken not to squeeze the vulnerable residents and reverse the poverty reduction achievements.

The promotion of power-saving technology could be an effective win-win solution for both the

economy and the environment. Danish Energy Agency (2017) estimates that by 2030 Vietnam

potentially could save 17% electricity if appropriate energy efficiency polices are introduced.

4Maweni and Bisbey (2016) estimate that there is a need for annual investment by 7.5 billion USD to match
the expected double energy demand between 2014- 2020, which is far beyond the historical level, for example 2.6
billion USD in 2012. Consequently, the dominant role of the state in power investment is no longer valid given
that its financial capability is limited, especially amid a high debt ratio.

5A comparison by ADB (2015) shows that among ASEAN countries, Vietnam’s electricity tariff for industry
in 2011 was 5.31 US cent, the second cheapest only after the outlier Brunei (1.91 US cent) and much lower than
the others: Myanmar (6.17 cent), Laos (6.785 cent), Indonesia (7.76 cent), Thailand (9.05 cent), Malaysia (9.355
cent), Cambodia (13.17 cent) and Singapore (14.5 cent).

6During 1990-2010, Vietnam’s electricity-GDP intensity is about 1.9, while the average of the world is about
1.0. For more comparisons, the elasticity of Thailand over the same period is about 1.5 and the one of Great Britain
is roughly 0.4 (Maweni and Bisbey, 2016).

8



In the third chapter we look at politics in a the US. In the literature, it is still unsettled

whether elected politicians under an established democracy act in line with the interests of

their electorate (Anderson and Mizak, 2006; Tanger et al., 2011; Chupp, 2011; Canes-Wrone

et al., 2011; Miler, 2016; Vandeweerdt et al., 2016) or are just loyal to their own ideologies

(Poole and Rosenthal, 1985; Arnold, 1990; Lee et al., 2004; Ringquist and Dasse, 2004; Clinton,

2006; Poole and Rosenthal, 2007). We contribute to the literature of electoral accountability by

investigating the interaction between environmental legislation and natural disasters.

Despite the high development level that the US has achieved, it is still vulnerable to nat-

ural disasters. Over the period 1960-2015, natural hazards each year cost the US on average

15.2 billion dollars (at 2015 price), kill 778, and injure 4,338 people (Hazards & Vulnerability

Research Institute, 2015a).7 As extreme events seemingly become more common and intense

possibly as a result of climate change, their costs and impact will be more significant (Walsh

et al., 2014). The Office of Management and Budget and the Council of Economic Advisers

estimate that climate change will raise the recurring cost of four federal programs, including

wildland fire suppression, crop insurance, air quality-health care, and coastal disaster relief, by

$12 billion to $35 billion per year by mid-century and by $34 billion to $112 billion per year

by late-century (US Government Accountability Office, 2017).

The unanticipated and devastating damages that natural disasters may cause mean that these

events have an important influence on politics. For example, the occurrences of these adverse

events could lead to incumbent politicians punished by voters (Abney and Hill, 1966; Achen and

Bartels, 2004; Malhotra and Kuo, 2008; Healy and Malhotra, 2009; Gasper and Reeves, 2011;

Bechtel and Hainmueller, 2011). For law making, natural disasters could attract media coverage

and public attention and thus alter the balance of competing advocate groups and affect the deci-

sion made by elected legislators (Kahn, 2007; Birkland, 2016). Environmental legislation could

be particularly sensitive for several reasons. First, since natural disasters could trigger environ-

7Hurricane, flooding and severe weather are the most economically damaging, incurring a cost of 267, 169, and
137 billion dollars (at 2015 price) respectively over the whole period. Meanwhile the 5 most deadly hazards are
severe weather, drought & heat, winter weather, tornado, and flooding, which jointly account for 88% of fatalities.
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mental disasters such as ecosystem destruction, oil spills, contaminant mobilisation, amongst

many other aspects (Labadie, 2006; Atkin, 2017; Dart et al., 2018; Natter and Calkins, 2018)

and environmental degradation increases the vulnerability of communities to natural disasters

(UNEP, 2007; Gupta and Nair, 2012; Wouter Botzen and Van Den Bergh, 2012; Estrada et al.,

2015), environmental regulations should be expected to be tightened if there is an increase in

natural disasters. Alternatively, if economic recovery and redevelopment are put at the centre of

political agenda after a natural disaster, elected legislators may dislike stringent environmental

policies if think they could further squeeze businesses and negatively affect employments. The

competition of these two channels means that how environmental legislation responds to natu-

ral disasters is an interesting empirical question, but to the best of our knowledge, is still left

under-explored.

Our third chapter attempts to fill in the gap by combining roll call vote data at the Senate

(Scorecard by League of Conservation Voters (2018)) and natural disasters at the state level

(SHELDUS by Hazards & Vulnerability Research Institute (2015b)). A prominent contribution

in term of methodology is our use of extreme value theory (EVT) and peak over thresholds

(POT) model to take into account the ‘fat tail’ distribution of economic and human damages by

natural disasters and homogenize their rarity across time and state. Our panel estimation over 44

years suggests that senators show significant responses to natural disasters at their constituency

after two years of their occurrence. More specifically, their preference for stringent environ-

mental regulation is improved after extreme human losses but reduced if economic damages are

substantial and such an effect lasts for one year on average. These competing effects may help

explain why attitude toward environment of politicians on some cases seems to be unresponsive

to simultaneous enormous damages in both human and monetary terms of natural disasters and

sticks to their ideology. A leading example is the position of President Trump on climate change

reported unchanged after Hurricanes Irma and Harvey (Abramson, 2017), which is consistent

with the continuation of policies less friendly to environment adopted by his Administration.
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Chapter abstract

Vietnam is a country with diverse terrain and climatic conditions and a dependency on hy-
dropower for a significant proportion of its power needs and as such, is particularly vulnerable
to changes in climate. In this paper we apply SWAT (Soil and Water Assessment Tool) derived
discharge simulation results coupled with regression analysis to estimate the performance of
hydropower plants for Vietnam between 1995 to mid-2014 when both power supply and de-
mand increased rapidly. Our approach is to examine the watershed formed from three large
inter-boundary basins: The Red River, the Vietnam Coast and the Lower Mekong River, which
have a total area of 977,964 km2. We then divide this area into 7,887 sub-basins with an average
area of 131.6km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hy-
drological Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower
plants across Vietnam. Our validation process demonstrates that the simulated flows are signif-
icantly correlated with the gauged inflows into these dams and are able to serve as a good proxy
for the inflows into hydropower dams in our baseline energy regression, which captures 87.7%
of the variation in monthly power generation In other results we estimate that large dams sac-
rifice on average around 18.2% of their contemporaneous production for the purpose of flood
control. When we assess Vietnam’s current alignment of dams we find that the current cas-
cades of large hydropower dams appear to be reasonably efficient: each MWh/day increase in
upstream generation adds 0.146 MWh/day to downstream generation. The study provides evi-
dence for the multiple benefits of a national system of large hydropower dams using a cascade
design. Such a system may help overcome future adverse impacts from changes in climate con-
ditions. However, our results show that there is still room for improvement in the harmonization
of cascades in some basins. Finally, possible adverse hydro-ecological impacts due to the pro-
liferation of large upstream dams, including those located beyond Vietnam’s border, need to be
carefully considered.
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“We must turn hydrological enemies into hydrological friends. The ultimate
goal is to conquer the river to benefit all people. ”

Talked by President Ho Chi Minh in his boat trip on Da River (1960),
where Hoa Binh (Peace), one of the largest dams in Vietnam (1,920 MW) was

built later (1979-1994)

1.1 Introduction

Hydropower, which utilizes running or falling water as the chief input into electricity genera-

tion, is the leading renewable source for electricity generation globally, supplying 71% of all

renewable electricity. Reaching 1,064 GW of installed capacity in 2016, it generated 16.4%

of the world’s electricity from all sources (World Energy Council, 2017). Although attractive

as a cheap, long-lasting, flexible and low-polluting renewable energy source, it is sensitive to

changes in hydrology as a result of variation in weather conditions particularly rainfall and tem-

perature (Kumar et al., 2011; IFC, 2015). To assess the state of a hydropower system requires

an evaluation of water availability. However, the absence of a consistent data at the country

level means such an evaluation can be challenging. In many cases, measures of the inflow

into a hydropower dam is not available or accessible. Modelling hydropower production is fur-

ther complicated by hydrpower dams being increasingly spatially connected so that they form

cascades.1

There is a small but growing literature that incorporates rainfall-runoff models and re-

gression analysis to estimate the energy generation from a hydropower system conditional on

weather-induced variations in river flow. Rainfall-runoff models, in conjunction with remote-

sensing datasets, are one of the solutions employed to overcome the lack of consistent data on a

large scale. Meanwhile, regression analysis enables the researcher to establish the relationship

between water availability and power generation. Notable papers include Cole et al. (2014) who

use the GeoSFM model and regression techniques to assess the potential risks to energy supply

1In addition to power production, hydropower dams typically serve multiple purposes including, but not limited
to, flood control, irrigation, and navigation

25



in hydro-dependent African countries under different IPPC climate change scenarios.2 Studies

for Vietnam include Gebretsadik et al. (2012) who employ the CLIRUN-II model to simulate

river flow for Vietnam in an integrated study while (Arndt et al., 2015) evaluate the impact of

climate change on multiple water-dependent sectors including energy in Vietnam.3 However,

these studies do not take into account the multiple purpose use of hydropower dams and the

interactions between them. Indeed, a recent paper by de Faria et al. (2017) looking at the local

socio-economic impact of large dams highlights the lack of (1) quantitative studies looking at

impacts over an extended period and (2) a lack of studies that consider multiple projects in the

context of a developing country.

The purpose of this paper is fill this gap in the literature and to estimate the performance of

the hydropower system across the whole of Vietnam using new data and advanced regression

modelling techniques. More specifically, our main contribution is to estimate the impact of

water availability, flood control and the interconnected cascades of dams on hydropower pro-

duction for the period 1995 to 2014. With floods being the most common natural disaster in

the country and with climate change predicted to lead to more extreme weather patterns it is

important that we gain a better understanding of the role of hydropower dams in both the miti-

gation of floods and droughts as well as providing a reliable and clean source of energy.4 Our

methodological approach allows us to answer a number of questions relevant for water resource

management and Vietnam future energy strategy: (1) How is national hydropower generation

affected by variations in weather and is it robust to extreme hydrological changes? (2) What

is the trade-off between power generation and flood control? and (3) Is the location of large

hydropower dams appropriate to enable coordination among dams through the use of dam cas-

2The GeoSFM model is a semi distributed, physically based catchment scale hydrological model originally
developed by the National Centre for Earth Observation and Science (EROS) to support the Famine Early Warning
System Network (FEWSNET) through river flow monitoring. See Cole et al. (2014) for more details.

3CLIRUN-II is the latest in a family of hydrologic models developed specifically for the analysis of the impact
of climate change on river-runoff. See Gebretsadik et al. (2012) for details.

4Flooding is the most common weather-related disaster and is estimated to affect 2.3 billion people
(mainly in the Asia) (CRED, 2015). In Vietnam, floods rank second among natural disasters. Accord-
ing to national statistics, natural disasters in Vietnam are responsible for 750 deaths annually and eco-
nomic losses equivalent to 1.5% of GDP (IFAD, 2010). In October 2017 floods killed 72 people and dam-
aged 22,000 hectares of rice with deforestation being blamed for the floods being more severe than usual
(https://www.nytimes.com/reuters/2017/10/16/world/asia/16reuters-asia-storm-vietnam.html).
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cades and how do cascades affect production? A second contribution is that our methodology

will allow future researchers to identify how variations in weather may impact those economic

activities that are dependent on electricity via variation in power supply. This source of exoge-

nous variation is useful as it allows researchers to address a number of endogeneity concerns

in studies of the relationship between firm performance and electricity provision (Allcott et al.,

2016; Fisher-Vanden et al., 2015; Alam, 2013) or household welfare and electrification (Gro-

gan, 2016; Khandker et al., 2009; Walle et al., 2013).

To model river flow we use the HydroSHEDS/HydroBASINS dataset (Lehner, 2014; Lehner

et al., 2008), which is derived from the detailed SRTM DEM at three arc-seconds.5 Conse-

quently, the river network and nested basin system created by HydroSHEDS/HydroBASINS

has a higher resolution than the popular Hydro1K dataset.6 As a result we are able to undertake

our analysis at a more disaggregated spatial level which we believe is necessary if one is to

accurately model dam interactions. To the best of our knowledge, we are also the first to apply

the SWAT model for Vietnam at the national scale.

To model river-flow we use the SWAT (Soil and Water Assessment Tool) river-runoff model.

SWAT is “one of the most widely used water quality watershed and river basin–scale models and

is applied extensively to a broad range of hydrologic and/or environmental problems” (Gassman

et al., 2014, p. 1). SWAT is chosen for this study because it is computationally efficient and

uses readily available inputs (Arnold and Fohrer, 2005) that are relevant for modelling large-

scale watersheds as required in this study. Specifically, SWAT has been applied to large-scale

5A digital elevation model (DEM) is a digital model or 3D representation of a terrain’s surface created from
terrain elevation data. Source: https://en.wikipedia.org/wiki/Digital _ elevation _ model. DEM data is stored in a
format that utilizes three, five, or 30 arc-seconds of longitude and latitude to register cell values. The geographic
reference system treats the globe as if it were a sphere divided into 360 equal parts called degrees. An arc-
second represents the distance of latitude or longitude traversed on the earth’s surface while travelling one second
(1/3600th of a degree). At the equator, an arc-second of longitude approximately equals an arc-second of latitude,
which is 1/60th of a nautical mile (or 101.27 feet or 30.87 meters). Arc-seconds of latitude remain nearly constant,
while arc-seconds of longitude decrease in a trigonometric cosine-based fashion as one moves toward the earth’s
poles. Source: http://www.esri.com/news/arcuser/0400/wdside.html.

6The Hydro1K dataset which is a comprehensive global geographic database at a resolution of 1 km that
includes streams, drainage basins and ancillary layers derived from the 30 arc-second digital elevation model
(DEM) of the world (GTOPO30) generated by the U.S. Geological Survey (USGS, 2015) and has been used for
large scale river flow modelling by (Cole et al., 2014; Gebretsadik et al., 2012).
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watersheds all over the world, for example China (Hao et al., 2004), West Africa (Schuol and

Abbaspour, 2006), and Europe (Abbaspour et al., 2015). For a summary of SWAT applications

for the US and EU see Arnold and Fohrer (2005).

There is also an emerging literature that applies the SWAT model to Vietnamese watersheds.

For example, it has been used to study the hydrological process and sediment transport in the

trans-boundary basin of Lower Mekong River (LMR), which is shared by Cambodia, Laos,

Thailand, Myanmar, and Vietnam (Rossi et al., 2009; Piman et al., 2013). A part of the LMR,

the Sesan, Srepok, and Sekong rivers (widely referred to as the 3S rivers) shared by Vietnam,

Laos and Cambodia is particularly attractive to researchers because of the recent boom in hy-

dropower (Wild and Loucks, 2014; T.Piman et al., 2013; Shrestha et al., 2016). There are also

a series of studies that apply SWAT to separate basins in different parts of Vietnam: the North

(Wang and Ishidaira, 2012; Phan et al., 2011; Ngo et al., 2015), the Central Coast (Giang et al.,

2014; Le and Sharif, 2015), the Central Highland (Vu et al., 2012; Tram et al., 2014; Vu et al.,

2015; Quyen et al., 2014), and the South (Ho et al., 2013; Khoi and Suetsugi, 2014). Although

a frequent application of SWAT is to assess the impact of climate change on hydrological pro-

cesses (Phan et al., 2011; Giang et al., 2014; Le and Sharif, 2015; Vu et al., 2015) they have also

been used to evaluate the impact of human activities that take into account deforestation (Khoi

and Suetsugi, 2014), forest planting, soil protection, crop conversion (Ngo et al., 2015; Quyen

et al., 2014), and hydropower construction and operation (Wang and Ishidaira, 2012; Le et al.,

2014). Although the application of these models varies they all attempt to inform policy makers

on various aspects of water management, agricultural land use, and energy supply. However,

none of these papers examine Vietnam at a national scale.

The remainder of this paper is organised as follows. Section 2 describes the evolution of

hydropower in Vietnam. Section 3 describes our methodology and data including the materials

needed for our hydrological simulation, the SWAT model, the consolidation and transformation

of hydropower and the regression techniques used in the paper. We present our results in Section

4. The final section concludes.
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1.2 Hydropower in Vietnam

Understanding the hydrology of Vietnam is important for the reasons highlighted in the intro-

duction. Located in the south-east of the Indochinese peninsula, Vietnam’s terrain is dominated

by tropical hills and densely forested highlands. This means that Vietnam’s lowlands, which

are suitable for agricultural cultivation, cover less than 25% of its area with production con-

centrated in the Red River Delta (in the North) and the Cuu Long River Delta (in the South).

The majority of water resources (63.9% of total flows) are concentrated in these basins while

other parts of the country, that occupy more than 75% of the total area of Vietnam, receive just

over 35% of the national total river-runoff. Yet Vietnam is abundant in water resources with

2,360 rivers above 10 km in length and 16 river basins above 2,500 km2 in area. The annual

run-off volume is around 847 km3. However a population of nearly 100 million means that the

total water volume per capita is still only around 9,560m3 per year compared to an average of

global value of 10,000m3 according to the International Water Resources Association (IWRA)

(MONRE, 2012).

In the future, a rapidly growing economy and continued urbanization is expected to increase

pressure on water resources. In addition, Vietnam’s river network is connected to neighbouring

countries with 72% of its largest combined basin of about 1.167 million km2 located beyond its

border (MONRE, 2012). This means Vietnam’s water availability could be severely affected if

upstream countries were to change their demand or decide to divert or manipulate the river flow.

Finally, although the monsoon tropical climate brings about a high average of annual rainfall of

around 1940mm, the mountainous and hilly terrain causes a high degree of inter-annual rainfall

variability. As a result, Vietnam’s water availability can change dramatically throughout the

year. This means that foods and prolonged droughts can occur within the same year and region.

As a rule, the dry season lasts around 6 – 9 months (with exact times varying across the country)

and accounts for only 20-30% of annual run-off. At the same time, half of the 15 major basins

experience a shortage of water (MONRE, 2012).
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Under such challenging circumstances, dams, reservoirs, and their associated irrigation sys-

tems play an important role in the water management of Vietnam. The combined total storage

capacity of reservoirs across the country is about 37 billion m3, which is equivalent to 4.5% of

Vietnam’s average annual run-off. The network of over 7,000 dams means that Vietnam is one

of the most dammed in the world alongside the US and China (Pham and Pham, 2014).

Our study covers the period 1995-2014 which is a time when Vietnam experienced rapid

growth in the demand for electricity. Between 1995-2005, demand for electricity grew on

average by 15% per annum as a result of an economic growth rate of around 7.5% per year

(Huu, 2015). At current growth rates, projections are that Vietnam’s energy supply will need

to triple by 2020 with additional supply coming chiefly from petroleum, coal, natural gas, and

hydropower (ADB, 2015b). As a result, per capita energy consumption is projected to increase

to 5,400 kilowatt-hours by 2030 from 985 kilowatt-hours in 2010 (ADB, 2013). As an inexpen-

sive and available source of power, hydropower is a key component of the national energy mix.

The ten major rivers suitable for hydropower construction have an approximate total potential

capacity of 21,000-24,000 MW (UNIDO and ICSHP, 2013).7 In the last two decades, Vietnam

has increased construction of hydropower plants to the extent that it has exploited nearly 70%

of its theoretical hydropower potential (Huu, 2015).8 Hydropower currently contributes 44%

of Vietnam’s installed power capacity (ADB, 2015a). As part of its development plan looking

ahead to 2035 (PDP7 revised) (Prime Minister, 2016), Vietnam continues to prioritise the devel-

opment of hydropower, especially multi-purpose projects that combine flood control, irrigation,

and electricity generation. The total capacity of hydropower plants is planned to increase from

approximately 17,000 MW (2016) to 21,600 MW (2020)9. In addition, the pumped storage

electricity plants are scheduled to have a total capacity of 1,200 MW in 2025 and 2,400 MW in

2030.10

7For comparison, the total power installed capacity of Vietnam in 2015 is 38,642 MW. Hence, if hydropower’s
potential was to be fully exploited it could account for 54% - 62 % of the total power installed capacity in 2015.

8Compared to a global average rate of 35%
9However, the share of hydropower in national electricity production is predicted to fall to 29.5% by 2020 and

15.5% by 2030 (due to faster growth of other components of the energy sector).
10Vietnam is predicted to be among the countries likely to be most affected by climate change (WB & MPI,

2016). This vulnerability has come to the attention of the government and international organizations (ADB, 2013;
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1.3 Material and Methods

1.3.1 Material for Hydrological Simulation

To develop the SWAT model for Vietnam we use data generated through remote sensing. For

the administrative boundary maps, we use the Global Administrative unit layers (GAUL) (ver-

sion 2015), which provides “the most reliable spatial information on administrative units for all

countries in the world” (FAO, 2015). Our hydrographic data comes from HydroSHEDS (Hydro-

logical data and maps based on SHuttle Elevation Derivatives at multiple Scales) (Lehner et al.,

2008) and its subset HydroBASINS (Lehner and Grill, 2013). HydroSHEDS is a derivative of

the digital elevation model (DEM) at a 3 arc-second resolution of the Shuttle Radar Topography

Mission (SRTM). The elevation data was void-filled, hydrologically processed, and corrected to

produce a consistent and comprehensive suite of geo-referenced data that enables the analysis of

upstream and downstream connectivity of watersheds. Among the subsets of the HydroSHEDS

database, the polygon layers that depict watershed boundaries and sub-basin delineations at a

global scale critical for hydrological analysis are termed HydroBASINS. HydroBASINS de-

lineates and codes sub-basins purely based on topographic and hydrographic bases without

any local information (for example the name of rivers/ basins). To mitigate this, we utilize

the basin and river layers of the dataset named “Rivers in South and East Asia” derived from

HydroSHEDS by FAO (2014) which provides a river and basins network that simplifies Hy-

droBASINS to include annotated attributes, such as the name of each large river and basin and

the tentative classification of perennial and intermittent streams.

For our analysis we require a large amount of consistently collected weather data. Although

Vietnam has an intensive network of meteorological stations, access to the data to such a large

number of stations over a long time period is prohibitively costly. Even if access were possible,

FAO, 2011; IFAD, 2010, 2014; IMHEN, 2010; IPCC, 2007; ISPONRE, 2009; MONRE, 2003, 2009, 2010, 2011;
WB, 2010, 2011; WB and MPI, 2016) with the main threats being increasing temperature, altered rainfall patterns,
and rising sea levels. For hydropower, higher temperatures are thought to lead to an increase in demand for energy
(MONRE, 2010) whilst also affecting stream flows into hydropower plants (WB, 2011).
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inconsistencies in data availability (especially the missing data in weather series) prevents us

using this data for watershed analysis on a large scale. In addition, since Vietnam shares river

basins with Laos, Cambodia and China, the weather data outside of Vietnam would also be

needed since variations in rainfall and temperature in the neighbouring countries could affect

the discharge of downstream rivers in Vietnam. Our solution is to use a high quality gridded

weather database that supports SWAT applications from the Climate Forecast System Reanal-

ysis (CFSR) by the US’s National Centers for Environmental Prediction (NCEP) (Saha et al.,

2010, 2014). To obtain information on soil profile, we use the Digital Soil Map of the World

(DSMW) version 3.6 (FAO, 2007). The (physical and chemical) characteristics of each soil

unit are tabulated by Schuol et al. (2008). For land cover information, we use the University

of Maryland Department of Geography (UMD) Land Cover classification collection at the 1km

pixel resolution (Hansen et al., 1998, 2000). The resolution of materials for the simulation are

summarised in Table 1.1.

[Table 1.1 about here]

1.3.2 The SWAT Hydrological Simulator

SWAT (Arnold et al., 1998) is a continuation of thirty years of non-point source modelling by

the US Department of Agriculture (USDA), the Agricultural Research Service (ARS), and Texas

A&M University.11 The model is a physically based, continuous, semi-distributed model that

was initially developed to project the impact of land management practices on water, sediment

and agricultural chemical yields in large complex catchment areas under various soil conditions,

land use and management over a long time period (Neitsch et al., 2009). More recently it

has been incorporated into a variety of GIS interfaces such as SWAT/ GRASS (Srinivasan and

Arnold, 1994), ArcView-SWAT (AVSWAT) (Di Luzio et al., 2004) and ArcSWAT (Olivera

11Other federal agencies also contributed to the model, including the US Environmental Protection Agency,
the Natural Resources Conservation Service, the National Oceanic and the Atmospheric Administration and the
Bureau of Indian Affairs.
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et al., 2006).

SWAT enables the simulation of numerous physical and chemical processes: discharge,

erosion, nutrients, pesticides and management (rotations and water use) (Neitsch et al., 2009).

It divides a given watershed into a number of sub-basins mainly based on topography char-

acteristics given a chosen number or size of sub-basin. This process is typically referred to

as watersheds delineation. However, each sub-basin is not treated as a lump but instead each

sub-basis in broken down into different hydrologic response units (HRU) each considered as a

homogenous unit with their own unique set of land cover, soil and management features. The

hydrological cycle of a watershed is simulated based on two processes. First, the land phase

controls the amount of water flowing to the main channel of each sub- basin and second, the

routing phase controls the movement of water through the channel (river) network to an outlet

of the watershed.

The land phase The land phase of the hydrological cycle is based on the water balance equa-

tion:

S Wt = S W0 +

t∑
i=1

(
Rday − Qsur f − Ea − wseep − Qgw

)
(mm H2O) (1.1)

where the final soil water content (S Wt) is made up of the sum of initial soil water content

(S W0) and a daily-time-step summation of the difference between the amount of precipitation(
Rday

)
, and the sum of the amount of surface runoff

(
Qsur f

)
, evapotranspiration (Ea) , percolation

and bypass flow exiting the soil profile bottom
(
wseep

)
, and return flow

(
Qgw

)
.

Equation (1) captures potential pathways of water movement simulated by SWAT. Once

precipitation descends, it is either intercepted or held in the vegetation canopy or falls to the

soil surface. Water on the soil surface infiltrates into the soil profile or flows overland as runoff.

Runoff moves relatively quickly toward a stream channel and contributes to a short-term stream

response. Infiltrated water is either held in the soil and later evapotranspried or slowly makes its
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way to the surface water system via underground paths. Different crops and soils appear with

varying evapotranspiration. Runoff is projected individually for each HRU then combined to

obtain a total runoff for the watershed. Details about each phase can be found in Arnold et al.

(1998); Neitsch et al. (2009).

Routing phase The lump of runoff in each sub-basin is calculated and then routed to the

main channel through the stream network using either the variable storage coefficient method

by Jimmy (1969) or the Muskingum routing method. The underlying principle is that water

discharges downstream except for that part that is lost due to evaporation and transmission

through the bed of the channel and the removal for agricultural and human use.

1.3.3 Hydrological Simulation

In this paper we simulate river flow for Vietnam using the ArcSWAT 10.2 interface (SWAT

model incorporated in ArcGIS 10.2).

The first step is to delineate the watershed. The watershed we study is a combination of

three large basins as defined by the “FAO Rivers in South and East Asia”: Red River (165,007

km2), Vietnam Coast (186,187 km2), and a part of Mekong River (similar to Lower Mekong

River with an area of 626,771 km2). The total area of the watershed is 977,964 km2.

Figure 1.1 shows the transboundary watershed shared by Vietnam, China, Myanmar, Lao

PDR, Thailand and Cambodia. The area within Vietnam accounts for 32.22% the total area

of the watershed and covers 96.15% (315,122 km2/327,727 km2) of Vietnam’s mainland area.

The remainder belongs to the Bang Giang – Ky Cung river basin, which makes no meaningful

contribution to Vietnam’s overall hydropower production. ArcSWAT offers two options for

breaking the watersheds into smaller sub-basins: burning a river network from a DEM input or

using layers that predefine sub-basins and the river network. We chose the second option to take

advantage of the HydroBASINS dataset. Hence, the watershed is divided into 7,887 sub-basins
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at level 12 of HydroBASINS.

[Figure 1.1 about here]

Table 1.2 summarises the sub-basin data and shows that their areas vary from 0.2 km2 to

368.6 km2, with a mean of 131.6 km2. The use of HydroBASINS has two advantages over

using DEM. First, HydroBASINS was derived from HydroSHEDS, which already hydrograph-

ically conditioned DEM. DEM like SRTM has some characteristics, artefacts, and anomalies

unfavourable for hydrologic application (Lehner, 2013).12 Second, HydroBASINS provides

two nested coding systems (Pfafstetter codes and HydroSHEDS ID). These codes are a useful

for our spatial analysis as they help us to determine systematically the upstream- downstream

relationship between dams. Despite using predefined basins, a DEM is still required to calculate

the topography characteristics of each basin and hence we used the HydroSHEDS void-filled

DEM for this purpose.

[Table 1.2 about here]

ArcSWAT divides each sub-basin into HRUs using a combination of soil, land use and slope

layers. The soil and land use layers are listed in subsection 1.3.1. The slope layer was created

by ArcSWAT using the HydroSHEDS void-filled DEM. We determined three classes of slope

in line with the soil slope classification of DSMW: 0-8% (class 1), 8-30% (class 2) and above

30% (class 3), which respectively contribute 64.12%, 31.51%, and 4.37% to the area of the

watershed. Based on the above layers, ArcSWAT assigned multiple HRUs to each watershed

given our sensitivity thresholds (5% for land use and soil and 20% for slope). In our final data

set the watershed is divided into 7,887 sub-basins and 53,024 HRUs. Daily data for each sub-

basin on the maximum and minimum temperature, precipitation, wind speed, relative humidity,

and solar radiation were supplied from 2,755 weather gridded-stations from the CFSR/NCEP

dataset.

12HydroSHEDS reduces errors by deepening open water surfaces, weeding coastal zones, burning stream, fil-
tering, moulding valley courses, filling sinks and carving through barriers.

35



We simulated monthly river flow for the whole watershed for the period January 1995 to

July 2014. The simulation period was chosen to best fit the available performance data of

hydropower plants, subject to the availability of weather data. The model was also run for

5 years prior to this period for warming up purposes, which helps to establish the equalized

initial condition of soil water before simulation. The simulation used the method integrated

in ArcSWAT (Arnold et al., 1998; Neitsch et al., 2009) that modify the SCS curve number

procedure (SCS, 1972) to take into account the varying conditions of land uses and soil types to

estimate surface runoff and use the Penman-Monteith method (Allen, 1986; Allen et al., 1989;

Monteith, 1981) to estimate evapotranspiration.

1.3.4 Hydropower Data Consolidation and Transformation

Our analysis focuses on river flow to the 40 largest hydropower plants in Vietnam, which belong

to the 12 basins shown in Figure 1.2 and listed in Table 1.3. The location of these hydropower

dams is mapped using a GIS software (ArcGIS) based on information from various sources in-

cluding the Vietnam Energy Map of Japan External Trade Organization (JETRO), WB (2014),

United Nations Framework Convention on Climate Change - Clean Development Mechanism

(UNFCCC-CDM) database, hydropower companies’ websites, and local news websites. Fi-

nally, we validated and refined the dataset using observations from Google Earth.

[Figure 1.2 about here]

[Table 1.3 about here]

Our hydropower operation data at the plant level is from Electricity of Vietnam (EVN,

2015). The report provides information on total capacity, monthly gauged river flow data of

each plant, and electricity generation of 40 of the largest hydropower plants of Vietnam between

1995-2014. Vietnam classifies hydropower plants into two categories: small (under 30 MW and

managed by local governments) and large (above 30MW and managed by central government).

36



WB (2014) further divides the latter group into medium (from 30MW to under 100MW) and

large hydropower plants (above 100 MW). The majority of plants on our list of 40 are defined

as large and all of them are managed by the central government. Figure 1.3 shows that the

combined installed capacity of these plants accounts for 75-85% of all hydropower sources

which in turn accounts for 35% -53% of all energy sources across Vietnam.

[Figure 1.3 about here]

As part of the data cleaning process we transformed the data in a number of ways. The orig-

inal power generation data was monthly and measured in million kWh. However, the number

of days within a month varies between 28 to 31. Our solution is to divide the monthly elec-

tricity generation by the number of days per month and re-scale it into MWh. Initially we had

a simple measure of the installed capacity of plants after full installation. However, as there

were no additional developments to existing hydropower plants during our period of analysis,

this variable is time-invariant and would be absorbed by the fixed effects in our regressions. In

other words, under such circumstances, we would n2ed to exclude the capacity variable as there

would be perfect multicollinearity between it and the dam fixed effects, which already capture

any time-invariant dam-specific characteristics. To mitigate this, we take advantage of the fact

that each plant is comprised of several generators that are typically commissioned at different

times. More precisely, it can take a plant months or even years to be fully operational after

the commissioning of its first generator. Hence, in reality the installed capacity of each plant

is time varying during the installation phase and time-invariant from that point onwards. We

gather information on the operation date of each generator from the website of plants or local

online newspapers, and then adjust the installed capacity of each plant to reflect the real opera-

tion of each generator. Fortunately, the first run of each generator in a large hydropower plant is

an important event to investors and local residents and hence this information is fully recorded.

As a result, the installed capacity variable, after transformation, became time-varying and can

be included in a regression with fixed effects. All plants in our sample are of the storage type

and many have large government regulated reservoirs. The total capacity of reservoirs ranges
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from 30.4 million m3 to 9.8 billion m3 and the mean size is 1.1 billion m3. 13

To enable us to investigate the interaction between dams on the same river system, we

need to determine the upstream-downstream relationship between dams. To do this we use

the HydroSHEDS identifiers from the HydroBASINS dataset at the most disaggregated level.

HydroBASINS provides two systems of basin coding: HydroSHEDS identifiers and Pfafstetter

code (Verdin and Verdin, 1999). We use the former as the HydroSHEDS identifiers is more

consistent and each sub-basin is assigned one unique identifier and routed to (only) one imme-

diate downstream sub-basin or the sea/itself (if it is an outlet) or an outlet (if it is an endorheic

sink).14 Table 1.4 shows that, after tracing all routes, that there are 13 hydropower cascades

detected in 9 of the 12 basins studied comprised of 36 upstream-downstream pairs. We then

consolidated with local information (websites of hydropower plants, local newspapers and so

on). The distance between each upstream plant and its downstream counterparts in Table 1.4 is

measured by the number of HydroSHEDS sub-basins shared between them. The exception is

Ham Thuan and Da Mi where the zero-distance reflects the fact that the dams are located in the

same sub-basin.

[Table 1.4 about here]

We create two proxies for the operation of an upstream dam: the combined installed ca-

pacity of upstream dams and the combined production of upstream dams. Some dams have

many upper dams that are operated at different times and we need to fill in all missing values

before aggregating. The installed capacity and production of plants before they begin their op-

eration are assigned zero values. Any missing values from upstream dams are filled in using

the predicted values of a double log regression of non-missing production values on its installed

13Information about these reservoirs is from the 11 most recent PM decisions on inter-reservoir management
procedures in 11 basins: Ba (1077/QD-TTg -2014), Sesan (1182/QD-TTg 2014), Srepok (1201/QD-TTg 2014),
Ca (2125/QD-TTg 2015), Huong (2482/QD-TTg 2015), Kon Ha Thanh (1841/QD-TTg 2015), Ma (1911/QD-TTg
2015), Tra Khuc (1840/QD-TTg - 2015), Red River (1622/QD-TTg -2015), Vu Gia Thu Bon (1537/QD-TTg 2015),
Dong Nai (471/QD-TTg -2016). For smaller reservoirs, data were collected from internet sources. The smallest
plant among those studied has a full installed capacity of 44 MW. The largest one is more than 50 times greater
(2,400 MW) and the average one is about 300 MW.

14Because of the challenges in the latter in determining the downstream plants; for example, the difference in
routing between inter-basins and basins and the skip of coding due to endorheic sinks and islands.
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capacity and simulated discharge.15 The double-log regression has lower predictability than the

double-level regression; however, it ensures that the predicted values are positive. The variable

coefficients then measure the average impact of upstream dams nationwide.

Table 1.5 provides summary statistics for our key variables of interest. We model monthly

hydropower generation using data on installed capacity and simulated discharge. We consider

the period from January 1995 to July 2014 and since the majority of Vietnam’s hydropower

plants were commissioned after 1995, the panel is unbalanced. Our final sample includes 2,984

observations with a mean generation of 4.39 MWh per day. The highest production record is

46.8 MWh (Son La on August 2014). Recall that the installed capacity, disaggregated at the

generator level, is time variant and ranges from 22MW to 2,400 MW with a mean of 376.3

MW. The simulated flows in the sample vary from 0.12 – 9,105 cubic metres per second and

the combined installed capacity of upstream dams varies from 0 to 2,820 MW. The combined

production of upstream dams varies from 0 to 45,781 MWh/day.

[Table 1.5 about here]

1.3.5 Simulation Validation

To evaluate the performance of the river flow model in general and the SWAT application in

particular, a common approach is to compare the gauged flow with the simulated flow based

on statistics established and documented prior to the modelling. There are numerous statistics

that can be used for this purpose that are usually put into 3 different categories: standard re-

gression, dimensionless, and error index (Moriasi et al., 2007). In this study, since river flows

are simulated to serve as as an explanatory variable in subsequent regression analyses, we are

interested in the variation in discharge rather than the level. Hence, for validation we intend to

use two standard regression statistics: Pearson’s correlation coefficient r and the coefficient of

determination R2. The gauged data for validation are monthly average inflows to dams from the

15The model for each plant (i) is ln(Gent) = β0 + β1ln(CAPt) + β2ln(Flowt) + εt.
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same source as hydopower generation data. The data are only available for dams during their

operation time hence the length of gauged series vary across dams. It should also be noted that

there are many missing values hence gauged series are shorter than the generation series. Vali-

dation is applied for dams with gauged series long enough (at least 30 observations) to provide

statistically reliable results.

Pearson’s correlation coefficient r measures the degree of the linear relationship between

two types of data, ranging from -1 (perfect negative correlation) to 1 (perfect positive correla-

tion) (Krause et al., 2005; Moriasi et al., 2007). To have confidence in our simulated data we

expect a sensible river flow model to have a positive r with a magnitude close to one. As we do

not have any guide on specific threshold to classify the fit of the model based on r, we report

the significance at conventional levels (i.e., whether two variables are significantly correlated or

not).

r =

∑n
i=1

(
Yobs

i − Ȳobs
) (

Y sim
i − Ȳ sim

)
√∑n

i=1

(
Yobs

i − Ȳobs
)2
√∑n

i=1

(
Y sim

i − Ȳ sim
)2

(1.2)

The coefficient of determination R-squared measures the percentage of the change in ob-

served data explained by a best-fit regression line using simulated data as an explanatory vari-

able. The value is bounded between 0 and 1, and the higher it is, the better the match between

observed data and simulated data. A value above 0.5 is considered acceptable (Santhi et al.,

2001; Van Liew et al., 2007).

1.3.6 Regression Method

To estimate hydropower generation using simulated flows, we rely on the linear panel data

model and the pooled ordinary least squares (POLS) estimator. See Appendix 1.A for more

details. For inference purposes, we make minimal assumptions about the error term and rely

on standard errors that are robust to heteroscedasticity and contemporaneous and lagged spatial
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correlation computed by statistical package STATA and command xtscc (Hoechle, 2007). They

are derived from the non-parametric covariance matrix estimator by Driscoll and Kraay (1998)

adjusted for an unbalanced panel . Driscoll and Kraay (1998) standard errors are used because

the normal i.i.d assumptions are not appropriate as the variances in the errors are likely to

be larger for the larger plants. In addition, power generation from different plants, especially

those within the same basin, are likely to be correlated with each other. Finally, the electricity

generation from any given plant at a particular time is not independent of its lagged values. To

assess the goodness-of-fit of our models, we consider the adjusted R-squared (R̄2) that measures

the percentage of variation in the dependent variable explained by a model with a penalty for

excessive regressors. We employ a number of specifications to model hydropower generation

as follows:

Baseline regression In the first stage we examine the degree to which simulated river flow ex-

plains the production of electricity from hydropower plants. Our baseline specification follows

Cole et al. (2014) and assumes that the main determinants of hydropower generation (Gen) are

a quadratic function of river flow (Flow) and dam capacity (CAP):

Genit = β0 + β1Flowit + β2Flow2
it + β3CAPit + λt + µi + εit (1.3)

where subscripts i and t refer to a hydropower plant and our unit of time, respectively.

λt is included to capture all time-specific factors (monthly) that have a uniform effect on all

hydropower plants. µi is the unobservable time-invariant hydropower plant fixed effect and εit

is an idiosyncratic error term. One should note that our specification differs from Cole et al.

(2014) in that they studied hydropower generation on a continental scale for Africa at yearly

intervals, while our study is on a national scale for Vietnam using monthly data.

The calculation of electricity production from a hydropower plant is given by:
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P = η × ρ × g × Q × H (1.4)

where P is the power produced at the transformer (million MW), η is the overall efficiency

of the power plant, ρ is the density of water (1000 kg/m3), g is the acceleration due to gravity

(9.81 m/s2), Q is the volume flow rate passing through the turbine (m3/s), and H is the net head

(m). By assigning a typical overall efficiency of 87% (IFC, 2015) it reduces the formula to:

P(kW) = 8.5 × Q × H (1.5)

The installed capacity is one of the most prominent features of a hydro plant, which can

be calculated by equation (4) using design discharge, net head, and the overall efficiency for a

given design discharge. If the river flow rate passing through a turbine is equal to its design

discharge, the production of electricity is proportionate to the installed capacity. If the flow rate

is higher or lower than the design discharge, there will be more or less electricity generated. The

gap between the flow rate and the design discharge can be sensibly proxied by the variation in

the river flow into a hydropower plant. We expect positive signs for both explanatory variables

in a linear specification (β1, β3 > 0). The linear function of the inflow’s impact on hydropower

electricity generation is based on the assumption of constant overall efficiency. In practice,

efficiency is a non-linear function of the deviation between the turbine discharge and the optimal

value, the outcome of which is subject to the type of turbine. Figure 1.4 presents a stylized

version of the efficiency profiles of different turbine types and shows that plant efficiency is

low when the discharge is far below the optimal value, and then increases. This suggests that

a quadratic function of discharge with a negative coefficient for the squared term (β2 < 0) is a

more appropriate functional form to model hydropower production.

[Figure 1.4 about here]

Besides the key determinants, our baseline model includes two-way fixed effects (λt+µi+εit).
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Dam fixed effects µi are included to account for the unobserved features that are unchanged

overtime. As our SWAT model has not been calibrated, the parameters in the rainfall-runoff

model can not be considered optimal. Hence, the relationship between simulated and actual

inflows into a dam depends in part on the heterogeneous characteristics of each sub-basin (for

example soil composition, land cover distribution and topographic features) and are partially

absorbed by dam fixed effects. Dam fixed effects also capture variations in turbine efficiency

across dams. We include time fixed effects to control for common trends over time. For exam-

ple, the performance of satellite data on which our SWAT model relied may varying across the

months of a year and across years. Likewise, time fixed effects will control for any time-varying

fluctuations in the demand for electricity that is common across the country. Finally, besides

measurement error, the idiosyncratic error term (εit) captures any unobserved factors that vary

across either time or dams, for example, production adjustments due to regional changes in de-

mand, deviations from overall turbine efficiency, the storage and releasing of water from dam

reservoirs, and any hydropower plant interactions.

Flood control regression A key feature of hydropower plants is they important role they play

in flood control. In Vietnam, 3 basins have reservoirs with a flood control capability namely

Hong–Thai Binh River, Ma River and Huong River (MONRE, 2012).16 Even hydropower plants

without a specific flood control function are able to store flood water as a means to smooth

electricity production across time.

To quantify the degree to which the flood control function of dams affects production of

hydropower we extend the baseline specification to include proxies for floods. We estimate

three alternative specifications: (1) a dummy variable Floodit (defined as flows that exceed the

mean flow at each hydropower plant by at least one standard error), and (2) the flood dummy

and its interaction terms with inflows into hydropower plants. The final specification is given

16Lo–Gam–Chay River and Da River are parts of larger Hong–Thai Binh River.
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by:

Genit = β0 +β1Flowit +β2Flow2
it +β3CAPit +γ0Floodit +γ1Flowit×Floodit +λt +µi +εit (1.6)

where the assumption is that utilizing a dam’s flood control role is at the expense of a reduc-

tion in hydropower generation even though this shortfall in power generation may be considered

socially and economically desirable. We expect the estimated coefficients on our flood variables

to be negative (γ0, γ1 < 0).

Dam interactions Finally, a little understood issue is how hydropower plants interact with

each other. Hydropower generation in many basins requires coordination between plants that

share a common water resource. Knowledge of how these interactions work could facilitate

improvements in the allocation of existing water resources.

There are a number of reasons why an upstream plant may potentially influence the power

generation of downstream plants that can be related to either their construction or operation.

For example, the building of a hydropower plant is typically associated with a degree of defor-

estation and hence an increase in river-runoff. As a result, downstream discharge and electricity

generation may increase.17 Alternatively, some hydropower plants construct weirs that diverts

water to an ‘off-site’ facility that enables it to create a higher head for electricity generation

(Hecht and Lacombe, 2014) but at the cost of a reduction in river flow into downstream rivers

which in turn lowers the production of hydropower plants in those down stream locations. In

terms of operation, upstream plants with large storage facilities and no water diversion normally

adjust outflows in a way that favours downstream electricity generation. By reducing extreme

inflows into downstream plants it means that the turbines can operate at higher efficiency levels

leading to higher levels of electricity production.

17A report from the National Assembly reveals that 160 hydropower projects in 29 cities and provinces over the
period 2006-2012 converted an area of 19,792ha of forest land into land suitable for the location of hydropower
plants (Le and Tran, 2016).
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The actual effect of dam interactions is therefore an empirical question. To capture the

cascade effect our solution is to include a proxy for the operation of upstream dams into our

baseline specification. As part of our robustness checks we include the combined upstream

capacity and combined upstream production variables (as described in Subsection 1.3.4). We

further decompose the impact of cascades by adding interaction terms between upstream opera-

tion variables and categorical variables of hydrological conditions (flood, normal and drought).

Finally, we investigate the heterogeneity in dam interaction across basins. According to PanNa-

ture (2011), basin-based water management was adopted in Vietnam fairly early.18 As basins

have historically been managed by different organizations, dam interaction could vary across

basin. We explore this heterogeneity by adding the interaction terms between the proxies for

upstream operation and dummies for each basin.

1.4 Results and Discussions

1.4.1 Simulated Discharge Validation

The validation is made for simulated inflows to 24/40 studied hydropower dams (belonging to

11/12 studied basins) that have at least 30 gauged observations for comparison.19 The assess-

ment results are shown in Table 1.6. Overall, all simulated flows are positively correlated with

the gauged flows. The magnitude of the Pearson correlation coefficients (r) ranges from 0.33

(An Khe - Kanak) to 0.90 (Thac Mo). The mean and median of these coefficients are 0.70 and

18Water Resources Law issued in 1998 sketched river basin plan regulation and the role of the River Basin
Planning Management Commissions. The commissions then established the management of water resources in
Cuu Long (Mekong) River (2001), Dong Nai River (2001), Hong–Thai Binh River (2001), Vu Gia–Thu Bon
(2005) by MARD. Similarly, River Basin Councils with the participation of local governments and the involvement
of communities were created to manage the Srepok River (2006) and Ca River. Subsequently, the water resource
management function was passed from MARD to the newly set-up MONRE with the establishment of a number
of River Basin Environment Protection Commissions in Cau River (2007), Dong Nai River (2008), and Nhue-Day
River (2009). The ineffectiveness of various basin management organizations mentioned above was addressed
by the Decree 120/2008/ND-CP on River Basin management, which sought to establish consistent basin-based
water resources management and proposed the establishment of the River Basin Commissions to coordinate and
supervise the activities of ministries, and local governments related to water resources planning and management.

19The only basin that has no dam validated is the Huong River Basin.
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0.72 respectively. Almost every correlation is significant at 1%. The exceptions are An Khe -

Kanak and Quang Tri, which are significant at 10% and 5% respectively. The coefficients of de-

termination (R2) vary between 0.11 and 0.8. Based on the threshold of 0.5 for the this statistic,

our rainfall-runoff model could be labelled as ‘acceptable’ for inflows to 13/24 dams. Both the

mean and median of these R2 are 0.52 and exceed the threshold.

[Table 1.6 about here]

There are a number of reasons why the simulated data does not perfectly match the ob-

served data. Firstly, the model may inherit errors in the data, especially when we need to rely

on remote-sensing data for our large scale study. For example, the HydroSHEDS dataset is

known to be exposed to error in coastal areas (Lehner, 2013) due to SRTM satellite operation

characteristics (Farr et al., 2007). The problem is amplified as Vietnam is a coastal country and

stretches along the sea. Our model perform better for basins in the North and the South rather

than those in the Central part of the country. It is indeed difficult to accurately model discharge

in small, narrow coastal basins like Huong River, or Thach Han River due to the strong influence

of the tide. In addition, we simulated the model with assumptions of no change in topography,

soil profile and land cover. We acknowledge that this is a reasonably strong assumption over a

long period of time.

As our time period covers a time when Vietnam experienced rapid economic development,

the change in land cover could be considerable (for example deforestation and urbanization). A

boom of hydropower in Vietnam and countries upstream may also have a considerable impact

on river flow regimes and sediment patterns. Finally, as our SWAT model was not calibrated, the

default parameters that we rely on may not be optimal for Vietnam. An appropriate adjustment

of the parameters ET, lateral flow, surface runoff, return flow and tile flow processes (Arnold,

Moriasi, et al., 2012) may improve the performance of the model. However, we were not able

to execute such an approach in this study due to a shortage of longer observed flows that would

be necessary for calibration.
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Nevertheless, by exploiting information on the variation of discharge data rather than its

level, the simulated flows appears to be useful given the significant and relatively high corre-

lation with gauged flows. The introduction of fixed effects and dam interconnection modelling

in regressions are expected to help mitigate some of the problems mentioned above. The above

assessment also indicates that there are substantial similarities in SWAT model performance for

dams in the same basin. This is a signal of potential spatial correlation besides possible se-

rial correlation and motivates our decision to adjust the standard errors following Driscoll and

Kraay (1998). See subsection 1.3.6 for details.

1.4.2 Regression Results

1.4.2.1 Hydropower Generation (Baseline Model)

First, to arrive at the baseline specification we add each regressor sequentially which enables

us to consider the contribution of each explanatory variable to the operation of hydro-plants.

The results from Columns (1) to (5) in Table 1.7 show that all the regressors in the baseline

specification appear with the expected signs and significance at the conventional levels. Column

(1) shows that discharge is the main explanatory variable for hydropower electricity production

with its variation alone explaining 64.4% of the variation in electricity generation. The non-

linear specification in Column (2) provides additional explanatory power and adds 1.5% to

the goodness-of-fit. A negative and significant quadratic term suggests that higher discharge

increases production but at a decreasing rate before it reaches a turning point. Our finding is

similar to that for African hydropower production shown in (Cole et al., 2014). The reason for

the inverted U is due to the variation in efficiency of turbines discussed in Subsection 1.3.6.20

In Column (3) we include installed capacity which is found to be positive and significant and

increases the adjusted R-squared by a further 19.3-percentage points to 0.853 and reduces the

coefficients on both discharge and its squared term by roughly a half. The inclusion in Columns

20The average turning point is estimated to be approximately 9,820 (m3/s), which is out of range of the discharge
sample.
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(4) and (5) of plant and time fixed effects respectively only marginally increases the goodness of

fit. Our final baseline specification in Column (5) explains 87.7% of the variation in hydropower

electricity generation.

[Table 1.7 about here]

1.4.2.2 Flood Control

Column (6) of Table 1.7 includes a dummy for a flood and indicates that, on average, a plant

during those months of flooding produces 795.5 MWh per day less than during normal operation

conditions (which is equivalent to 18.2% of the mean production of the sample). When we

add both a dummy for a flood and its interaction term with discharge in Column (7), only the

coefficient of the latter is statistically different from zero and the estimate of the coefficient is

just below -1 (m3/s). It should be noted that as we do not model dynamics, the sacrifice of

electricity generation for flood control purposes should be interpreted as a contemporaneous

response rather than a permanent trade-off.21 Dams can use water stored during periods of

flooding to generate electricity at a later date. The large and significant coefficients estimated

here provide evidence of the substantial benefits of large dams to mitigate the adverse impact

of extreme weather events.

1.4.2.3 Hydropower Plant Cascade Interactions

In Table 1.8 we present our estimates for the impact of hydropower cascades on hydropower

production. In addition to our proxy for the operation of upstream dams we also include year

and dam fixed effects. Our upstream dam proxies in Columns (1) and (3) are the sum of hy-

dropower capacity installed upstream and the sum of hydropower generated upstream. The

results show that upstream plant have a positive and significant impact on hydropower pro-

duction although capacity is only significant at the 10 percent level. The interpretation of the

21We thank an anonymous referee for raising this point.
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coefficients is straightforward. Each additional MW of hydropower capacity installed upstream

increases the daily production of a downstream plant by 1.332 MWh (Column 1). This is equiv-

alent to 0.03% the mean production of the sample. Column (3) shows that an increase by 1

MWh in the production of upstream plants adds 0.146 MWh to downstream production.

[Table 1.8 about here]

In Columns (2) and (4) we include interaction terms to evaluate the synergies under differ-

ent hydrological conditions. Column (2) suggests that for downstream electricity generation,

on average each extra MW upstream adds 1.28 MWh in normal conditions, 2.721 MWh under

extremely dry conditions and reduces production by 0.167 MWh under extremely wet condi-

tions. Column (4) indicates that a 1 MWh increase in upstream production induces a rise in

downstream production by 0.161 MWh under normal discharge conditions, by 0.0634 MWh

under flood conditions and 0.341 MWh in a drought. The differences between the coefficients

under extremely dry conditions and normal conditions is significant at the 1% level.

Our results highlight that hydropower cascades can be successfully used to improve the reli-

ability of power supply and as an adaptation measure against future extreme weather conditions.

During period of drought an upstream plant can roughly double the production of downstream

plants but has a negligible effect during extreme wet conditions. The logic is simple. Upstream

plants store water during floods and release water during droughts, which in both cases improves

the efficiency of downstream plants.

To investigate the cascade effect further, in Table 1.9 we include hydropower dam inter-

actions at the basin scale. Since there are no cascades among the plants in the basins of the

Thach Han River, Kon-Ha Thanh River and Vu Gia–Thu Bon River, the results in Table 1.9 es-

timate the spillover effects for 9 basins only.22 Our results now suggest that the spillover effect

of upstream plants is not always positive. While synergies are found for the Da River, Sesan

River, and Srepok River, we find a negative spillover effect for the Dong Nai River, Ba River,

22The estimates for Ca River, Huong River and Srepok River using interaction terms for upstream dams installed
capacity were dropped due to the perfect multicollinearity with dam fixed effects.
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Ca River, Huong River, and Ma River. Although all of the positive synergies are significant, the

only negative and significant impact is for the Dong Nai River and the Ca River.

[Table 1.9 about here]

An important question is whether these synergies were anticipated before the construction

of new upstream plants. If this is the case, if well coordinated, the construction of an upstream

plant can be equivalent to extending downstream storage such that downstream plants can store

and release stored water to maximize power generation. An example of coordinated construc-

tion comes from Srepok where the construction of the Buon Tua Srah dam (86 MW) was pre-

dicted to enhance the generation of the Buon Kuop and Srepok 3 dams by 77 million kWh and

34.8 million kWh, respectively (VINACONEX, 2017). In the Da River basin, the installation

of Son La dam (2400 MW), the largest hydropower dam of Vietnam (and in Southeast Asia),

was expected to increase the annual production of Hoa Binh dam by 1.26 billion kWh (Vietnam

National Committe on Large Dams and Water Resources Development, 2006). Similarly, the

operation of Ban Chat dam (220MW), upstream of Son La dam since 2013, was expected to add

nearly 0.4 billion kWh per year to two downstream dams (Vietnam National Committe on Large

Dams and Water Resources Development, 2015). Finally, in the Sesan river, the most upstream

hydropower plant (Plei Krong 1 – 100 MW) was supposed to increase the installed capacity of

downstream plants (Yaly, Sesan 3 and Seasan 4) by 157.3 MW and to increase production by

217.1 million kWh/year (Ialy Hydropower Company, 2017)

The negative spillovers are most likely the result of the deliberate diversion of water by up-

stream dams. Given the multi-purpose nature of dams, this negative impact may be intentional.

The claim is that the Dai Ninh dam and Dong Nai 3 dam in the Dong Nai River were con-

structed to help prevent flooding in downstream districts of Lam Dong province and to reduce

the flooding pressure on the most downstream hydropower dams in this basin (Tri An dam)

(Pham, 2014). At other times, droughts caused by hydropower dams is unintended and unde-

sirable. One of the most frequently criticised is the case of An Khe–Kanak dam (173 MW)

which, after starting operation, began to store water from the Ba River but to discharges water
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into the Kon River to create a higher head and to improve its own production (MONRE, 2012).

The result was that a downstream segment of Ba River became dry and adversely affected the

welfare of nearby residents.

Although our results are robust to different specifications, it is worth noting that while we

control for dam heterogeneity and time heterogeneity, there may still be some omitted variable

bias if there are unobserved factors that vary both spatially and temporally. One example might

be variations in weather conditions such as temperature and rainfall which are correlated with

discharge and therefore could simultaneously affect hydropower supply through changes in de-

mand for electricity. In this case, hot weather induces higher demand for cooling. However,

over our time period, power transmission and distribution in Vietnam was centrally managed

which should mean that these factors have a uniform impact on plants and hence be absorbed by

time fixed effects. In addition, as hydropower was the cheapest form of electricity generation,

it is used to cover the base load and hence should be less sensitive to demand fluctuations than

other energy sources. A second concern is that physical processes like land cover changes, soil

degradation and sediment transportation that were excluded from our SWAT model, could bring

about a degree of measurement error. For simplicity, we assume that this source of error is ex-

ogenous. Finally, Vietnam is located downstream of a large number of international rivers, such

that upstream changes could affect the discharge into Vietnam’s basins. Although our SWAT

model already accounts for variations in weather in upstream sub-basins outside Vietnam, the

construction and operation of neighbouring countries’ hydropower plants is beyond the scope of

this study. For example, the construction of new hydropower plants in China has been blamed

for worsening the drought that hit Southeast Asia (The Diplomat, 2016). Vietnam and Laos are

also predicted to be the most badly affected from the proliferation of new hydropower plants

along the Mekong River (The Economist, 2012, 2016).
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1.5 Conclusions

In this paper we apply the SWAT river flow model combined with regression analysis to explain

the operation of hydropower plants on a national scale in a hydro-dependent country with a

diversity of terrain and climate conditions. Although Vietnam has experienced a period of

rapidly-growing demand for energy (12-15% per year), it also faces the challenge of potentially

adverse impacts of climate change.

As far as we are aware, this is the first study to build a river flow model using SWAT for

Vietnam as a whole. To take into account the high level of inter-connectivity between Vietnam’s

rivers and upstream sources beyond its border, the extent of our river flow model covers a large

part outside Vietnam. It includes three inter-boundary basins: Red River, Vietnam Coast, and

Lower Mekong River, in which Vietnam shares water resources with China, Laos, Cambodia,

Myanmar and Thailand. The watershed of 977,964 km2 is divided into 7,887 sub-basins with

a mean area of 131.6km2 and 53,024 HRUs. Such a detailed analysis is possible thanks to a

variety of high-resolution datasets, especially HydroSHEDS/HydroBASINS, which is finer than

Hyro1K and a topographic and hydrographic dataset widely used in previous economic studies

using river flow models. River-flow was simulated for the period from 1995 to mid-2014,

coinciding with a period when both power supply and power demand of Vietnam increased

dramatically. Since it is mainly dependent on global datasets derived from satellite data, the

method described within this study could be easily replicated for other countries and regions.

Our regression analysis uses panel data fixed effects regression models to explain the oper-

ation of large hydropower plants across Vietnam. Simulated discharge is shown to be a good

proxy for inflows into hydropower plants. Our results are similar to those of Cole et al. (2014)

and show that installed capacity and a quadratic function of discharge are the key determinants

of hydropower generation. Furthermore, our model shows evidence of a flood control benefit

of large hydropower plants across Vietnam.

To summarise, our research addresses a number of concerns mentioned in the introduction.
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First, the national hydropower generations are shown to be sensitive to weather variations and

badly affected by extreme hydrological regimes. Second, the multiple purposes of hydropower

imply a trade-off relationship such that large dams actively cut down on average around 18.2%

of their contemporaneous production in order to lower the damages of floods to downstream

regions. Third, the current location of large hydro dams across Vietnam seems to be reasonable

to create synergies between dams though in several basins the cascade effect is found to be

negative because of either intentional design of flood reduction or weaknesses in management

and coordination between dams.

In future research it would be interesting to also consider more carefully changes in power

demand, land cover, soil degradation, and sediment transportation. In addition, more detailed

calibration could improve the accuracy of the river flow model. However, due to current data

limitations we leave this for future research. Nevertheless, using simulated discharge still man-

ages to explain up to 87.7% of the monthly variation in hydropower generation (using the two-

way fixed effect regressor including installed capacity, discharge and its squared term). This

suggests that river flow simulated from a SWAT model, even without calibration, serves as a

good predictor for hydropower electricity generation. We acknowledge that our flood mea-

sure is relatively coarse and is not able to capture all aspects of floods in a monsoon context

(to be able to differentiate the impacts of beneficial vs disaster floods) and our static model of

flood control benefit is not appropriate to model the long run impact. Improvements in either

flooding data or dynamic modelling techniques would be useful for future research. Another

potential benefit of dynamic modelling techniques that have not been included in this study is

to better explore the storage operation of reservoirs and examine how past flows affect the gen-

eration of hydropower dams. Finally, our study concentrates on large dams and excludes the

impact of medium and small plants, which grew dramatically after 2010 and may impact the

hydropower plant cascade effect. Compared to large hydropower plants, the lack of supervision,

coordination and regulation with regards to the construction and operation of small and medium

hydropower in Vietnam is problematic (PanNature, 2010). Hence, one should not generalize the

results in this paper for hydropower dams of all sizes.
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Our study has a number of policy implications. First, we provide evidence to that an hy-

dropower operation with large reservoirs and cascades of hydropower plants can strengthen

the resilience of the national power supply system against the adverse impact of future climate

change. However, harmonizing the operation of plants that share common water resources is

not simple, as evidenced by the finding of significant and negative spillovers for some basins.

Finally, although we only quantify the impact of hydropower plants on downstream electric-

ity generation, it is implicitly made clear that upstream plants can have an important impact

on downstream flow regime (seasonality, water availability and so on). This implies potentially

large impacts on downstream ecosystems and other economic activity using water resources (i.e.

agriculture), as well as the welfare of downstream inhabitants. Given the numerous intercon-

nections between Vietnam’s rivers and those of its neighbours, our findings also raise concerns

about possible hydro-ecological consequences associated with the proliferation of large upper

dam projects on the Mekong River. The challenges associated with inter-basin dam operation

management are likely to be even harder when cross-border coordination is required.
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Figure 1.1: Watershed delineation

Source: Authors compiled from HydroSHEDS/HydroBASINS (Lehner et al., 2008; Lehner and Grill, 2013) and
‘Rivers in South and East Asia’ (FAO, 2014). Note: The resolution of HydroSHEDS void-filled DEM is 3 arc-
seconds. The resolution of HydroBASINS river network is 15 arc-seconds.
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Figure 1.2: Studied basins and hydropower plants

Source: Basins are derived from “FAO Rivers in South and East Asia” and MONRE (2012).
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Figure 1.3: Total installed capacity of studied hydropower plants, as percentage of
national energy capacity

Source: Authors calculated from EVN (2015).

Figure 1.4: Typical efficiency curves for different types of hydropower turbines

Source: (Kumar et al., 2011, p. 453)
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Tables

Table 1.1: Data description and sources for SWAT simulation

Data types Sources Resolution

Predefined basins HydroBASINS
http://www.hydrosheds.org/page/hydrobasins

15 arc-seconds

and river networks Rivers in South and East Asia
http : / / ref . data . fao . org / map ? entryId =

dc2a5121-0b32-482b-bd9b-64f7a414fa0d

30 arc-seconds

Digital Elevation Model
(DEM)

HydroSHEDS void-filled DEM
http://www.hydrosheds.org/

3 arc-seconds

Soil Digital Soil Map of the World version 3.6
http://www.fao.org/geonetwork/srv/en/metadata.show?
id=14116

5 arc minutes

Land cover UMD Land Cover classification collection
http://glcf.umd.edu/data/landcover/

1km pixels

Weather CFSR-NCEP
https://globalweather.tamu.edu/

19 arc-seconds

Note: See text for more details

Table 1.2: Summary statistics of subbasins

(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

All sub-basins within the watershed

Area of the sub-basin 7,887 131.6 56.52 0.2 368.6

Total upstream area 7,887 15,443 77,756 0.4 774,282

Distance to the next downstream sink 7,887 951.4 754.4 0 3,628

Distance to the most downstream sink 7,887 957 751.3 0 3,628

Sub-basins within Vietnam

Area of the sub-basin 2,617 131.9 58.4 0.2 368.6

Total upstream area 2,617 7,812 59,053 0.4 774,282

Distance to the next downstream sink 2,617 341.4 417.2 0 2,506

Distance to the most downstream sink 2,617 343.6 416.4 0 2,506

Source: Authors compiled from HydroBASINS dataset (level 12).

Note: N=Number of observations. sd= standard deviation
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Table 1.3: Studied hydropower plants

Basin Dams

Lo - Gam - Chay Thac Ba (120 MW), Tuyen Quang (342 MW), Bac Ha (90
MW)

Da Hoa Binh (1920 MW), Son La (2400 MW), Nam Chien
(200 MW), Ban Chat (220 MW)

Ma Hua Na (180 MW), Cua Dat (97 MW)

Ca Khe Bo (100 MW), Ban Ve (320 MW)

Thach Han Quang Tri (64 MW)

Huong A Luoi (170 MW), Binh Dien (44 MW), Huong Dien (71
MW)

Vu Gia – Thu Bon Song Tranh 2 (190 MW), Dak Mi 4 (190 MW), A Vuong
(210 MW), Song Con (63 (MW)

Kon – Ha Thanh Vinh Son (66 MW)

Sesan Sesan 4 (360 MW), Sesan 3 (260 MW), Yaly (720 MW),
Plei Krong 1 (100 MW)

Ba Song Hinh (70 MW), Song Ba Ha (220 MW), An Khe-
Knak (173 MW)

Srepok Buon Tua Srah (86 MW), Buon Kuop (280 MW), Srepok 3
(220 MW)

Dong Nai Tri An (400 MW), Da Mi (175 MW), Ham Thuan (300
MW), Dai Ninh (300 MW), Da Nhim (160 MW), Thac Mo
(150 MW), Dong Nai 3 (180 MW), Dong Nai 4 (340 MW),
Dak R’Tih (144 MW), Can Don (78 MW)
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Table 1.5: Summary statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

Dam statistics
Year of Operation 40 2005 10.5 1964 2013
Total storage capacity (million m3) 40 1,164 2,098 30.4 9,862
Full installed capacity (MW) 40 294 455 44 2,400

Production statistics (Jan 1995 – Jul 2014)
Average production (MWh/day) 2,984 4,393 6,754 0 46,833
Installed capacity (MW) 2,984 376.3 521.4 22 2,400
Flow to dam (m3/s); SWAT simulation 2,984 465.5 979.5 0.120 9,105
Upstream capacity (MW) 2,984 141.9 360.9 0 2,820
Upstream production (MWh/day) 2,984 1,615 4,161 0 45,781

Note: N=Number of observations. sd= standard deviation
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Table 1.6: Simulated discharge validation

Dam Basin Capacity (MW) N r R2

Thac Ba Lo - Gam - Chay 120 235 .82*** .67*

Tuyen Quang Lo - Gam - Chay 342 70 .8*** .64*

Hoa Binh Da 1920 235 .88*** .78*

Son La Da 2400 43 .81*** .65*

Cua Dat Ma 97 31 .75*** .56*

Ban Ve Ca 320 31 .68*** .47

Quang Tri Thach Han 64 31 .41** .17

A Vuong Vu Gia - Thu Bon 210 31 .6*** .36

Vinh Son Kon - Ha Thanh 66 209 .7*** .49

Sesan 3 Sesan 260 31 .54*** .29

Yaly Sesan 720 171 .73*** .53*

Plei Krong 1 Sesan 100 31 .82*** .68*

Song Hinh Ba 70 171 .86*** .73*

Song Ba Ha Ba 220 31 .69*** .48

An Khe - Kanak Ba 173 31 .33* .11

Buon Kuop Srepok 280 31 .71*** .5*

Tri An Dong Nai 400 235 .82*** .67*

Da Mi Dong Nai 175 122 .42*** .17

Ham Thuan Dong Nai 300 160 .53*** .28

Dai Ninh Dong Nai 300 70 .68*** .46

Da Nhim Dong Nai 160 235 .65*** .42

Thac Mo Dong Nai 150 223 .9*** .8*

Dong Nai 3 Dong Nai 180 31 .85*** .73*

Can Don Dong Nai 78 31 .86*** .74*

Note: Capacity indicates full installed capacity. N indicates number of observa-
tions. Significance level for Pearson correlation coefficient (r): *** p<0.01, **
p<0.05, * p<0.1. For the coefficient of determination (R2) to indicate acceptable
model (Santhi et al., 2001; Van Liew et al., 2007): * (R2 ≥ 0.5).
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Table
1.7:Production

regression
using

sim
ulated

discharge

(1)
(2)

(3)
(4)

(5)
(6)

(7)

VA
R

IA
B

L
E

S
A

verage
production

(M
W

h
/day)

Intercept
1,818***

1,382***
76.50

1,645***
901.4***

899.6***
826.9***

(155.3)
(121.4)

(106.5)
(217.7)

(229.7)
(232.8)

(236.1)

Flow
to

dam
(m

3/s);SW
A

T
sim

ulation
5.533***

7.459***
3.108***

4.198***
4.478***

4.627***
4.647***

(0.339)
(0.487)

(0.370)
(0.464)

(0.554)
(0.574)

(0.594)

Flow
to

dam
(m

3/s);SW
A

T
sim

ulation
squared

-0.000392***
-7.39e-05

-0.000212**
-0.000228**

-0.000233**
-0.000105

(0.000105)
(8.71e-05)

(8.64e-05)
(9.24e-05)

(9.25e-05)
(0.000118)

Installed
capacity

(M
W

)
7.858***

6.319***
5.856***

5.904***
5.996***

(0.375)
(1.118)

(1.186)
(1.185)

(1.190)

Flood
-795.5***

-48.06

(266.1)
(286.5)

Inflow
*Flood

-0.981**

(0.454)

O
bservation

num
ber

2,984
2,984

2,984
2,984

2,984
2,984

2,984

R
-squared

0.644
0.660

0.854
0.875

0.889
0.890

0.892

A
djusted

R
-squared

.644
.659

.853
.873

.877
.879

.881

D
am

dum
m

ies
Y

Y
Y

Y

Tim
e

dum
m

ies
Y

Y
Y

D
riscoll-K

raay
standard

errors
in

parentheses.
***

p
<

0.01,**
p
<

0.05,*
p
<

0.1.
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Table 1.8: The synergies of hydropower cascades

(1) (2) (3) (4)
VARIABLES Average production (MWh/day)

Variables for dam operation

Installed capacity (MW) 5.876*** 5.880*** 5.859*** 5.834***
(1.182) (1.176) (1.190) (1.184)

Flow to dam (m3/s); SWAT simulation 4.476*** 4.984*** 4.359*** 4.865***
(0.544) (0.554) (0.559) (0.568)

Flow to dam (m3/s); SWAT simulation squared -0.000225** -0.000275*** -0.000216** -0.000267***
(9.19e-05) (9.17e-05) (9.14e-05) (9.11e-05)

Variables for upstream dam operation

Upstream capacity (MW) 1.332* 1.280
(0.705) (0.853)

Upstream capacity (MW)*Flood -1.447**
(0.689)

Upstream capacity (MW)*Drought 1.441**
(0.574)

Upstream production (MWh) 0.146** 0.161**
(0.0598) (0.0695)

Upstream production (MWh)*Flood -0.0976*
(0.0541)

Upstream production (MWh)*Drought 0.180***
(0.0446)

Intercept -429.8 -553.0 -430.3 -523.5
(464.2) (456.5) (468.7) (464.6)

Observation number 2,984 2,984 2,984 2,984
R2 .891 .893 .892 .895
Adjusted R2 .88 .88 .88 .88

*** p<0.01, ** p<0.05, * p<0.1.
Dam fixed effects and time fixed effects are included. Driscoll-Kraay standard errors are in parentheses.
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Table 1.9: The synergies of hydropower cascades by basin

(1) (2)
VARIABLES Average production (MWh/day)

Installed capacity (MW) 5.724*** (1.165) 5.716*** (1.164)
Flow to dam (m3/s); SWAT simulation 4.719*** (0.533) 4.625*** (0.545)
Flow to dam (m3/s); SWAT simulation squared -0.000247*** (8.69e-05) -0.000246*** (8.54e-05)
Interaction: Updams operation*Ba -3.818 (2.699) -0.170 (0.247)
Interaction: Updams operation*Ca -0.697* (0.402)
Interaction: Updams operation*Da 2.157*** (0.783) 0.220*** (0.0685)
Interaction: Updams operation*Dong Nai -2.136*** (0.501) -0.135*** (0.0428)
Interaction: Updams operation*Huong -0.618 (0.711)
Interaction: Updams operation*Lo - Gam - Chay 1.289 (3.862) -0.307 (0.555)
Interaction: Updams operation*Ma -1.495 (2.252) -0.166 (0.222)
Interaction: Updams operation*Sesan 2.314 (9.777) 0.215*** (0.0427)
Interaction: Updams operation*Srepok 0.577*** (0.0639)

Observation number 2,984 2,984
R2 .896 .897
Adjusted R2 .885 .886
Upstream operation Installed capacity Production

*** p<0.01, ** p<0.05, * p<0.1.
Dam fixed effects and time fixed effects are included. Driscoll-Kraay standard errors are in parentheses. Upstream
operation indicates which variable is used to proxy for operation of upstream dams: (combined upstream) installed
capacity (MW) or (combined upstream) production (MWh/day)
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1.A Appendix A: Regression Estimators

Our method is based on the linear panel data model:

yit = x′itβ + εit; i = 1, 2, ...,N; t = 1, 2, ...,T

where i and t are respectively indices for dam and time, scalar y is the dependent variable, x is a

K × 1 vector of independent variables, which may contain an intercept, dummies and non linear

variable (interaction and/or quadratic terms). β is a K×1 vector of unknown coefficients, which

are restricted to be common across time and dam. However, change in parameters across dam

or time are permitted by the inclusion of appropriate regressors in x (for example time dummies

or dam dummies).

Our coefficients are estimated using a pooled ordinary least squares (POLS) estimator:

β̂ =
( N∑

i=1

T∑
t=1

x′itxit

)−1( N∑
i=1

T∑
t=1

x′ityit

)
(A1)

The estimator is shown to be consistent (Wooldridge, 2010, pg. 192) as long as E(x′tεt) =

0, for t = 1, 2, ...,T (exogeneity condition) and rank
[ T∑

t=1

E(x′txt)
]

= K (no perfect collinearity

condition).

The goodness-of-fit of regressions are computed as:

R2 =

∑
(ŷit − ȳ)2∑
(yit − ȳ)2 (A2)

R̄2 = 1 −
n − 1
n − K

(1 − R2) (A3)

where ŷit and ȳ are respectively the predicted values and the mean of the observed values of the
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dependent variable. n is the number of observations. R2 is bounded by 0 and 1. R̄2 never exceeds

R2 and can be negative if a poorly-performing model includes too many redundant regressors.

In general, a model with higher R2 or R̄2 fits the observed data better.

The two next appendices present some works excluded from the main text to reduce the

lengthiness and improve the readability. They provide an in-depth analysis on some character-

istics of the simulated flows (Appendix. 1.B) and a detailed comparison between the simulated

flows and observed flows (Appendix 1.C).

1.B Appendix B: Seasonality, Trend and Stationary of Simu-

lated Flows

In this section, we examine some important properties of the discharge series simulated from

the SWAT model. Salas (1993) stated that a hydrological series can have various attributes and

be decomposed into many components as trends, shifts (or jumps), seasonality, autocorrelation

and non-normality. Without any particular trends, shifts, or periodicity, a hydrological process

has a constant mean and variance, or other words, it is stationary. However, climatic variation

on a large scale, natural disruptions, human activities and the annual cycle in minor step series

typically induce non-stationarity into the hydrological process.

A thorough examination of discharge properties benefit this study in numerous ways. First, a

strong seasonal pattern of discharge to hydro plants is the main driver of the cycle in hydropower

production and causes power supply fluctuations. The electricity outage problem of Vietnam

is mainly a result of the dry seasons when the discharge is low and the demand for electricity

rises steadily due to hot weather and air conditioner use. Thus, examining the causes of this

cycle is desirable. Second, the flows were simulated under the assumption that there was no

change in the land cover. This implicitly excludes the impact of human activities including but

not limited to deforestation, crop expansion and conversion, urbanization, dam construction and
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operation on hydrology. Hence, any trend (either deterministic or stochastic) detected in these

series is, perhaps partially falsely, attributed with confidence to the change in climatic factors

under the assumedly constant topographic and soil conditions. This allows us to investigate

the link between global climate change and the local hydrological process without the concern

over human influences and probably provides some future implications on the nature-induced

variations in the chief input for hydropower. Finally, we may want to know whether the trends

associated with the hydrographic series studied are deterministic or stochastic. In the former

case, hydrological series tend to revert to the trend frequently as (weather) shocks gradually

die out and forecast intervals have constant width. In the latter case, trend reversion is rare as

(weather) shock have persistent effects and forecast intervals increase over time.

We start this section by fitting the simulated flows to a simple linear econometric model to

detect the seasonality and deterministic trends. Then a seasonal non-parametric test is adopted

to investigate the trend with the accompanying relaxed assumptions. Finally, we perform some

unit root tests to learn about the stochastic trend (if any) associated with the series.

1.B.1 Seasonality and Time Trend

We analysed the seasonality of all simulated series of discharge to 40 large hydro-dams in

Vietnam. As we did not have the full series for 2014 due to the unavailability of the weather

data input, we only investigated the period from 1995 to 2013.

For each basin, we used a POLS model regressing the demeaned series on a full set of month

dummy variables (Dm ) and a time trend (t) and excluding constant term. This helps us avoid

perfect collinearity and allows us to interpret the coefficients more easily. The regression can

be explicitly expressed as follows:

Qit − Qi =

12∑
m=1

βmDm + γt (A4)
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where Qit is the simulated flow to dam i at time t and Qi is the mean of simulated flows to

dam i across the studied period.

The coefficient of each month (βm) indicates the gap between the average flow in that month

and the average level of the whole year. Based on this, we roughly classified months with dis-

charge above the annual mean (wet season with positive coefficients) and months with discharge

below the annual mean (dry season with negative coefficients).

In Table 1.B.1, we present the results for the 12 basins that we study. The basins were

sorted based on their location from the North to the South. The dashed lines separate the dry

season and the wet season in each basin. As can be seen from the table, the wet season begins

early (around May) across the northern basins (up to Ca River). Basins in the South and the

Central Highlands (from Sesan River to Dong Nai River) have a later wet season (around July

and August). Basins in the Central Coast (from Thach Han River to Kon -Ha Thanh River)

have a very late and short wet season starting around August and September and lasting for

just 3-4 months, which reflects the extreme weather conditions there. All series exhibit one

peak per year in September or August (bold in the table) except for Huong River and Kon-Ha

Thanh River whose peak times arrive later, in October and November, respectively. The lowest

discharges across all basins are recorded between February and March. A serious shortage of

water for hydropower dams spreads from February to April throughout the country. Although

May is the start of the wet seasons in four northern basins, the discharge records in these basins

are modest and the water shortage tension is still severe in other eight basins up to June/July.

[Table 1.B.1 about here]

Apart from the dummies for months, we added a linear time trend to the regression. All

basins show a significant temporal trend after controlling for seasonality. This suggests an

impact of climate change on Vietnam’s river system. The highest downward trend is recorded

in Da River basin, at 3.4 m3/s per month and the Sesan basin experiences the highest upward

trend, at 0.78m3/s. Moreover, there is an obvious contrast in the patterns: while the basins in
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the norther part (up to Ca River) tend to be drier over time, there is an increasing trend in the

discharge of basins in the remainder. This finding is in line with Gebretsadik et al. (2012) but

opposite to IMHEN (2010).

To analyse the timing of extreme events, we roughly defined floods and droughts as simu-

lated flows respectively higher and lower than the mean calculated for each dam by at least one

standard deviation. If discharge strictly followed normal distribution, the probability of each

extreme event would be about 15.9% . However, a skew normal distribution seems to be more

relevant and the probability of drought and flood within our sample are unequal, at 14% and

17.2% respectively.

Based on this classification, we calculated the average occurrences of floods by basin and

by month in Table 1.B.2. A similar calculation for droughts is illustrated in Table 1.B.3. Floods

in the North and the South concentrate in August and September. The peak time for flood in

the Central Coast is later, between September and November. Droughts are frequent in March

and April across the country. This classification of extreme events will be used later in our

econometric analysis to distinguish the operation of dams against different situations of water

availability.

[Table 1.B.2 about here]

[Table 1.B.3 about here]

1.B.2 Seasonal Mann-Kendall Test

For a more robust analysis on the discharge trend, we performed a rank-based non-parametric

trend test. More specifically, we deployed the Mann-Kendall’s (MK) test, which statistically

detects a monotonic upward or downward trend of a variable of interest over time. Compared

with parametric tests (as performed in the previous Section 1.B.1), this test has two advantages.

First, it is less susceptible to outliers and extreme values. Second, it only requires a minimal
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assumption of specification and tolerates both linear and non-linear trend. We will apply the

MK test on the yearly series first then a seasonal Kendall (SK) test (which is a modification of

MK test account for seasonality) on the monthly series.

1.B.2.1 Mann-Kendall Test

The test was named by Kendall (1938) and Mann (1945), who respectively proposed a statistics

tau to measure rank correlation and presented a nonparametric test for randomness against time

using the tau statistics. The test is based on the null hypothesis H0: a series {x1, x2, . . . , xn }

comes from a population, where the random variable follows an independent and identical dis-

tribution against an alternative hypothesis H1 about a monotonic trend over time (Hipel and

McLeod, 2005).

The Mann-Kendall test statistics under the null hypothesis is constructed as follows:

S =

n−1∑
k=1

n∑
j=k+1

sgn(x j − xk); where



+1 if x > 0

0 if x = 0

−1 if x < 0

(A5)

Kendall (1975) illustrated that S is asymptotically normally distributed with zero mean and

the variance adjusted for ties in the x values:

σ2
S =

n (n − 1) (2n + 5) −
∑p

j=1 t j

(
t j − 1

) (
2t j + 5

)
18

(A6)

Where p is the number of tied groups in the data set and t j is the number of data points in

the jth tied group. As shown by Mann (1945) and Kendall (1975), a z-score constructed as

follows has an approximate normal distribution even for a small value of n = 10:
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z =



S − 1
σS

if S > 0

0 if S = 0

S + 1
σS

if S > 0

(A7)

The order matters on the calculation of S as it counts the number of times x j exceeds xk

for j > k. The maximum possible value of S occurs when x1 < x2 < . . . < xn, which can be

calculated by:

D =

1
2

n (n − 1) −
1
2

p∑
j=1

t j

(
t j − 1

)
0.5 [

1
2

n (n − 1)
]0.5

(A8)

The Kendall’s tau adjusts S by dividing it by D

τ =
S
D

(A9)

More specifically, if the ties are absent (p = 0), the tau statistics collapses to

τ =
2S

n (n − 1)
(A10)

The positive value of S (or similarly τ ) indicates an upward trend and the negative sign

indicate a downward trend. The zero mean of S suggests that we should test whether S is

statistically different from zero (the null hypothesis of MK test), which is equivalent to no trend

existing. The hypothesis can be tested based on the normal distribution of z.

We deployed the MK test on the yearly maximum, minimum and mean of discharge for

each dam. As the mean series exhibit strong serial correlation, the assumption of independent

and identical distribution is violated. This typically inflates the variance of S statistics, and
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hence increasing the chance of mistakenly rejecting the null hypothesis (von Storch, 1995).

To mitigate this, we followed the common practice to prewhiten all mean series by an AR(1)

model before applying the test. The prewhitening procedure was not applied for the minimum

and maximum series.

1.B.2.2 Seasonal Kendall Test

To analyse the discharge data at a smaller time scale (monthly data), we apply a multivariate

extension of the MK statistics for seasonal data with serial dependence as described by Hirsch

et al. (1982) and Hirsch and Slack (1984). They consider a matrix X comprised of a complete

record (with some extensions allowing ties and missing values) over n year with m seasons each

and the associated rank matrix R.

X =



x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m


; R =



R1,1 R1,2 · · · R1,m

R2,1 R2,2 · · · R2,m

...
...

. . .
...

Rm,1 Rm,2 · · · Rn,m


(A11)

The null hypothesis is that for each of the m seasons, the n observations are independently

and identically distributed against the alternative hypothesis of a monotonic trend.

The rank of x jg (the jth data points of the season gth) in the case of no missing data is

R jg =

[
n + 1 +

∑n
j=i+1 sgn

(
x jg − xig

)]
2

(A12)

The SK test computes the overall statistics S ′ by combining each individual MK test statis-

tics S g for each seasons. As we have 12 months, then:
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S
′

=

12∑
g=1

S g (A13)

The statistics S ′ is shown to be asymptotically normally distributed with zero mean and the

variance is:

σ2
S ′ =

12∑
g=1

σ2
g +

g,h∑
g,h

σgh (A14)

σ2
g is computed by:

σ2
g = [n (n − 1) (2n + 5)] /18 (A15)

In our case, we used an estimate for σgh allowing serial correlation across monthly series

but no missing values:

σgh =

[
Kgh + 4

∑n
j=1 R jgR jh − n (n + 1)2

]
3

(A16)

where Kgh =

n−1∑
i=1

n∑
j=1

sgn
[(

x jg − xig

) (
x jh − xih

)]
(A17)

Once the variance and the mean of S ′ is estimated, a z-score is computed and shown to

approximately follow the standard normal distribution even for a small sample with n=2. This

known distribution allow us to test the hypothesis as stated at the beginning.

z′ =



S ′ − 1
σS ′

if S ′ < 0

0 if S ′ = 0

S ′ + 1
σS ′

if S ′ > 0

(A18)
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The tau statistics for month g is calculated as:

τg =
2S g

n (n − 1)
(A19)

The overall tau is the weighted average of all monthly τ:

τ =

∑12
g=1 ngτg∑12

g=1 ng
(A20)

Given that we have an equal number of observations for each month and there are no missing

data, the overall tau collapses to:

τ =
S

6n (n − 1)
(A21)

Finally, even if the test failed to reject the null hypothesis of no overall trend, this does not

necessarily mean that there is no trend at a monthly step if each month series exhibits a different

(and possibly opposite) trend. To address this problem, we perform a test for a homogeneity of

trend across the year against the alternative hypothesis of heterogeneous trends as suggested by

Hamilton (1994).

The test is based on a statistics computed as follows:

Het =

12∑
g=1

z2
g − 12z2 (A22)

zg =
S g − E

(
S g

)
√

Var
(
S g

) ; z =
1

12

12∑
g=1

zg (A23)

Under the null hypothesis of no trend in any season, the statistics Het approximately follows
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as a chi-squared distribution with 11 degrees of freedom.

1.B.2.3 Results and Discussions

Table 1.B.4 illustrates the results of the MK test on the annual processes. A negative sign of the

tau or z-statistic indicates a decrease in discharge while a positive sign implies an increase.

[Table 1.B.4 about here]

Similar to the results in Section 1.B.1, all the dams in the northern basins including Lo - Gam

- Chay River, Da River, Ma River and Ca River show a downward trend. Most of the dams in

other basins show an upward trend. However, only a few trends are significant. The exceptions

are Nam Chien (negative, at 1% significant level), Ban Ve (negative, at 5% significant level) and

Da Mi –Ham Thuan (positive, at 10% significant level).

The signs of the maximum series follow the same pattern as the mean series. In addition,

there are more significant trends recorded, especially in Da River, Sesan River and Dong Nai

River.

It is noted that all the minimum series of seven hydro-dams in Lo - Gam - Chay River and

Da River tends to significantly decrease over time. This would create a greater pressure on

power supply in Vietnam amid the dry season given that the largest hydro-dams located in Da

River (Son La – 2400MW, Hoa Binh 1920 MW). Several dams in Dong Nai River basin show

a significant upward trend: Tri An (400MW), Da Mi (175MW), Ham Thuan (175 MW).

The results of the SK tests on the monthly series as presented in Table 1.B.5 almost agree

on the signs of trend when compared with the MK tests on the yearly series. Controlling for

seasonality, the dams in Lo - Gam - Chay River and Da River again show a significantly drying

trend. The significant and positive trends are found in many dams in Vu Gia - Thu Bon basin

and Dong Nai River basin. While the SK tests fail to reject the hypothesis of no overall trend

exists in dams located in Ma River, and Ca River, the Het p-values suggested heterogeneous
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trends across months. Other dams tend to follow a homogenous trend or no trend.

[Table 1.B.5 about here]

1.B.3 Stationary Test

The SK test results above suggest that many river flows to large hydropower dams in Vietnam

follow a significant trend, which is either positive (dams in the south) or negative (dams in the

north). We would like to discover further whether these trends include any stochastic com-

ponents. In other words, can we obtain a (covariance) stationary series (those with constant

mean, constant variance and covariance just depends on the temporal distance between two

observations) after eliminating all the deterministic trends. Hence, the demand for some unit

root tests emerge. Among them, we perform a pair of test with contradictory null hypothesises,

namely Dicky-Fuller test with GLS detrending (DF-GLS) (Elliott et al., 1996) and the KPSS

tests (Kwiatkowski et al., 1992).

1.B.3.1 Logarithmization and Seasonal Standardization

As we deployed some parametric tests for stationary, which rely on linear regressions, loga-

rithmization as guided by Hamilton (1994) was executed to better fit the normality assumption

and convert any potential exponential trend to a linear trend. Furthermore, to reduce any likely

influence of the seasonality of the monthly series, we seasonally standardized the series (Salas,

1993). Or more precisely, we removed the seasonality in the mean and variance:

x∗g =
xg − x̄g

σg
(A24)

Where x∗g is the transformed value of the original observation xg and x̄g and σg are, respec-

tively, the monthly mean and the monthly standard deviation of the month g. The series after
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logarithmization and/or seasonal standardization are shown in Figure 1.B.1 and Figure 1.B.2.

[Figure 1.B.1 about here]

[Figure 1.B.2 about here]

1.B.3.2 Dicky-Fuller Test with GLS Detrending (DF-GLS)

The Dicky-Fuller (DF) test (Dickey and Fuller, 1979) is a popular procedure to detect a unit

roots by fitting a series through an OLS estimation of a random walk model possibly including

a drift or/and a (deterministic) trend. The decision on the inclusion of a drift and a trend is an

empirical matter. For example, if both are included, the model is:

∆xt = β1 + β2t + (ρ − 1) xt−1 + εt (A25)

Where xt is the series of interest β1 is a drift and β2t is a time trend. Regardless of the

decision to include the drift and trend, the null hypothesis is ρ = 1, which implies the existence

of a unit root or equivalently a stochastic trend.

The null hypothesis can be tested by computing a tau statistic similar to a t-statistic:

τ =
ρ̂ − 1
S e (ρ̂)

(A26)

where ρ̂ is the OLS estimate of ρ and S e (ρ̂) is its standard error. Notably, τ does not

follow the t distribution hence the critical value of the standard t-test is not valid. A table

of critical value tabulated in Fuller (1976) is used instead. The null hypothesis of a unit root

(non-stationary) is rejected if the absolute value of the negative tau exceeds the critical value

corresponding to the chosen specification (whether to include a drift and a trend) and the chosen

level of significance.
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The DF test assumes that the error term εt is white noise. To accommodate the potential se-

rial correlation, the augmented Dickey-Fuller (ADF) test (Said and Dickey, 1984) is introduced,

adding some lags of the ∆xt and enabling ARMA error processes

∆xt = β1 + β2t + (ρ − 1) xt−1 +

k∑
i=1

γi∆xt−i + εt

The hypothesis is similar to the DF test. The critical value for the test is provided by Fuller

(1996). The approximate p-values using the regression surface is provided by MacKinnon

(1994). The selection of critical values becomes more complicated due to the decision of lag

length, which is typically made based on information criteria. Ng and Perron (1994) suggests

the best way to use the information criteria is to start from a high lag length then sequentially

go down.

However, the ADF test is accused of size distortions and low power (DeJong et al., 1992;

Maddala and Lahiri, 2009; Schwert, 1989). DF-GLS (Elliott et al., 1996) addresses this issue.

It is based on the ADF test; however, the data is locally de-trended before testing for a unit root.

The transformation of the data before the test depends on whether there is a deterministic trend

or not.

Under the alternative hypotheses that xt is stationary around a linear trend, the series inter-

cept and the trend is estimated by GLS (StataCorp, 2013):

x̃t = δ0yt + δ1zt + εt (A27)

where

x̃t =


x1 if t = 1

xt − α
∗xt−1 if t > 1

80



yt =


1 if t = 1

1 − α∗ if t > 1

zt =


1 if t = 1

t − α∗(t − 1) if t > 1

α∗ =
13.5

T

Then the OLS estimators δ̂0 and δ̂1 are used to remove the trend in xt

x∗t = xt −
(
δ̂0 + δ̂1t

)
(A28)

Under the second alternative hypothesis that xt is stationary around a drift only, the equation

to remove the trend is just x∗t = xt − δ0 using α∗ = 1 − 7/T .

Finally, the ADF test is applied on the de-trended series x∗t using the tabulated critical values:

∆x∗t = β1 + β2t + (ρ − 1) x∗t−1 +

k∑
i=1

γi∆xt−i + εt (A29)

In this study, we used the Ng–Perron modified Akaike information criterion (MAIC) (Ng

and Perron, 2001) to choose the optimal lag length, starting from kmax = f loo

12
[
T + 1
100

]0.25


as suggested by Schwert (1989).
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1.B.3.3 KPSS Test

The DF-GLS test sets the unit root as the null hypothesis. We used a unit root test with the null

hypothesis of stationary as a confirmative test. The test with the reverse strategy chosen is the

KPSS test (Kwiatkowski et al., 1992).

The test assumes to decompose a series into a random walk component, (αt) a deterministic

time trend (βt) and a stationary error term (εt)

xt = αt + βt + εt (A30)

where αt = αt−1 + νt ;α0 = α and εt and νt are white noise processes. The null hypothesis

is that σ2
ν = 0, which implies stationarity and the alternative hypothesis σ2

ν , 0 suggests the

existence of a unit root. Furthermore, under the null hypothesis, if β , 0, the series is trend

stationary compared with the special case if β = 0, the series is stationary around a level α0 = α.

Under the null hypothesis, the α and β in case of trend stationarity or just α in case of level

stationarity can be estimated by OLS. If we denote the residual from such a regression is et, the

KPSS statistics is calculated as follows:

KPS S =

∑T
t=1 E2

t

T 2σ̂2 ; Et =

t∑
i=1

ei; t = 1, 2, . . . ,T (A31)

where σ̂2 is a consistent estimator of the long run variance of et

σ̂ =

∑T
t=1 e2

t

T
+ 2

L∑
j=1

(
1 −

j
L + 1

)
r j and r j =

∑T
s= j+1 eses− j

T
(A32)

Under the normality of the disturbance εt, the KPSS statistics is an LM statistic. The authors

derived the statistics under a more general condition. The critical values of the test are estimated
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by simulation as tabulated in Kwiatkowski et al. (1992).

1.B.3.4 Results and Discussions

Two major features emerge from Table 1.B.6. First, the inclusions of trends in DF-GLS test

seems not to change the conclusions on the stationarity of the series. Overall, DF-GLS with

a trend tends to reject the null hypothesis of unit root at a higher level of significance. Addi-

tionally, there are many disagreements between the results reported by DF-GLS and KPSS test.

As the null hypothesis of these are opposites, ideally, we expect to see the rejection sign from

DF-GLS test and no rejection sign from the KPSS test to conclude a series is stationary. Alter-

natively, we are more confident to claim the existence of a unit root in a series if the DF-GLS test

does not reject its own null hypothesis but the KPSS test does. However, we quite often find

the joint-rejection and sometimes joint non-rejection in Table 1.B.6. When the disagreement

happens, we will favour the conclusion made by the DF-GLS test.

[Table 1.B.6 about here]

The DF-GLS test rejects the unit root hypothesis in most of series regardless whether a trend

is included. Da Nhim is the odd one out: the specification without a trend does not reject the

non-stationary hypothesis but the one with a trend does.

The Lo - Gam - Chay River and Da River basins show mixed results. For discharge to dams

located there, the null hypothesis cannot be rejected even at the lowest significance level by

the DF-GLS without a trend. However, the DF-GLS test with a trend changes the conclusion.

Flows to Thac Ba and Nam Chien (at 5% level of significance) and to Ban Chat (at 10% level of

significance) are stationary. This may suggest that the specification with a deterministic trend

is more appropriate to test their stationarity. The SK test results in Table 1.B.5 confirm the

existence of trends and furthermore those associated with Thac Ba and Nam Chien are shown

to be more significant than Ban Chat. Four dams namely Tuyen Quang, Bac Ha, Hoa Binh and

Son La cannot reject the null hypothesis of a unit root by either DF-GLS specification. There is
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a disagreement between KPSS test and DF-GLS for the case of the two largest dams, Hoa Binh

and Son La. Including a trend the KPSS test suggests the stationarity of flows to these dams.

Meanwhile there is a consensus over all models confirming the existence of a unit root in flows

to Tuyen Quang and Bac Ha.

Overall, stationarity is the characteristic of the majority of the flows are investigated. How-

ever, those in the basins with a significantly negative trend detected by the SK model give cause

for concern. The DF-GLS tests consistently suggest the unit root in flows to the two largest

hydro-dams in Vietnam (Hoa Binh and Son La). The conclusions on the unit root in the flows

to Tuyen Quang and Bac Ha is more robust, agreed upon by both the DF-GLS tests and the

KPSS tests. These evidences for unit root suggest that the stochastic trends are highly likely

contribute to the trend that we observe in the corresponding series.

1.C Appendix C: Comparing Observed Flows and Simulated

Flow

1.C.1 Comparison Based on Statistics

1.C.1.1 The Statistics

To evaluate the performance of the river flow model in general and the SWAT application in

particular, a common approach is to compare the observed flow and simulated variables based

on statistics established and documented prior to the modelling. There are numerous statistics

constructed with various purposes. A thorough survey of these statistics can be found in Moriasi

et al. (2007).

Besides graphical model evaluation techniques, the author divided quantitative statistics into

three groups: standard regression, dimensionless and error indices. Among them, those most
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commonly reported in published journals are the coefficient of determination (R-squared), Nash

Sutcliffe efficiency (NSE) and the bias percent (PBIAS) (Gassman et al., 2007, 2014).

The coefficient of determination R-squared measures the percentage of the change in ob-

served data explained by a best-fit regression line using simulated data as an explanatory vari-

able. Its value is bounded between 0 and 1, and the higher it is means the better the match

between observed data and simulated data. A value above 0.5 is considered as acceptable (San-

thi et al., 2001; Van Liew et al., 2007).

Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) is defined as the gap between a unit and

the sum of the absolute squared differences between the simulated value (Y sim
i ) and observed

values (Yobs
i ) normalized by the variance of the observed value

NS E = 1 −

∑n
i=1

(
Yobs

i − Y sim
i

)2

∑n
i=1

(
Yobs

i − Ȳobs
)2 (A33)

where n is the number of observations compared and Ȳobs is the mean of the observed

value throughout the studied period. NSE indicates how observed data and simulated data fit

a 1:1 line and ranges from −∞ to 1 (perfect fit). The value greater than 0 is considered as

acceptable in the sense that simulated data is a better predictor of the observed data than its

mean. Moriasi et al. (2007) also suggest some thresholds to a classify river flow model at a

monthly time step: satisfactory (0.5 < NS E ≤ 0.65), good (0.65 < NS E ≤ 0.75), and very

good (0.75 < NS E ≤ 1).

Per cent bias (PBIAS) (Gupta et al., 1999) measures the percentage the average tendency of

the simulated data is larger or smaller than their observed counterparts. It can be computed by

the following formula:

PBIAS =

∑n
i=1

(
Yobs

i − Y sim
i

)
× 100∑n

i=1 Yobs
i

(A34)
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The zero value is optimal. The positive and negative values, respectively, indicate model

underestimation bias and model overestimation bias. Moriasi et al. (2007) suggested some

thresholds to classify a river flow model at a monthly time step based on the absolute value

of PBIAS : satisfactory (15 ≤ |PBIAS | < 25), good (10 ≤ |PBIAS | < 15), and very good

0 ≤ |PBIAS | < 10).

In this study, since river flow will be used as explanatory variable, we are interested in

the variation in discharge rather than its level. Hence, we mainly pay attention to a standard

regression statistic, namely Pearson’s correlation coefficient r (Krause et al., 2005; Moriasi

et al., 2007)

r =

∑n
i=1

(
Yobs

i − Ȳobs
) (

Y sim
i − Ȳ sim

)
√∑n

i=1

(
Yobs

i − Ȳobs
)2
√∑n

i=1

(
Y sim

i − Ȳ sim
)2

(A35)

This statistic measures the degree of linear relationship between two types of data, rang-

ing from -1 (perfectly negative correlation) to 1 (perfectly positive correlation). Obviously, we

should expect a good river flow model to have a positive r with a magnitude near one. Unfortu-

nately, we do not have any guide on any specific threshold to classify the fit of the model based

on r. Hence, we report the significance at multiple levels instead (i.e., whether two variables

are significantly correlated or not). Similar treatment is adopted by Giovanni (2017) to assess

his GeoSFM river flow model of the Africa continent.

1.C.1.2 Results and Discussions

Table 1.B.7 shows the result of our assessment. All Pearson’s correlation coefficients are posi-

tive except for a negative sign for Song Con. The correlation between simulated flow to 32/40

dams and corresponding observed flow is highly significant (lower than 5% ) and quite large in

magnitude. A majority of them are above 0.7. Dong Nai 4 and An Khe – Kanak only show low

significance (at 10% ), while no significance is found in dams in Huong River and some in Vu
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Gia – Thu Bon River.

[Table 1.B.7 about here]

On the other hand, 22/40 dams meet the criteria of 50% for acceptable coefficients of de-

termination R-squared. All dams in Lo – Gam – Chay River, Da River, Ma River, Ca River,

Thach Han River, Srepok River and Sesan River pass the test but none in Huong River and Vu

Gia –Thu Bon River do.

Using the Nash-Sutcliffe efficiency, only simulated flow to Ban Chat could be classified

as satisfactory and those to Hoa Binh, Song Hinh, Dai Ninh and Thac Mo could be labelled

acceptable (a better predictor for observed flow than its mean).

No simulated flow could be accepted using PBIAS. This statistic shows that almost all sim-

ulated flows are overestimated (negative PBIAS). The exceptions are flows to Dak Mi 4, Song

Hinh, Da Mi and Ham Thuan, which are underestimated (positive PBIAS).

There are a number of reasons why the simulated data does not perfectly match the observed

data. Firstly, the model may inherit errors in data in spite of the fact that we employ the best

dataset with highest resolution available. As we attempted to model rainfall-runoff on a large

scale, satellite data was used in response to the shortage of consistent data. For example, the

HydroSHEDS dataset is known to be exposed to error in coastal areas (Lehner, 2013) due

to SRTM satellite operation characteristics (Farr et al., 2007). The problem is amplified as

Vietnam is a coastal country and stretches along the sea. In addition, it is particularly difficult to

accurately model discharge in small, narrow costal basins like Huong River, or Thach Han River

due to the strong influence of tide. In practice, previous studies modelling Vietnam’s river flow

on a national scale excluded these basin from analysis or did not report the assessment results

there (Gebretsadik et al., 2012; IMHEN, 2010).

In addition, we simulated the model with assumptions of no change in topography, soil pro-

file and land cover. Yet such assumptions are too strong for a long period included in this study.
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Notably, as it is the period when Vietnam experienced rapid economic development, the change

in land cover could be considerable (for example plant shift, deforestation and urbanization).

A boom of hydropower in Vietnam and countries upstream may have a considerable impact on

river flow regimes and sediment patterns. However, these factors were not considered in our

SWAT model due to the limit of data.

The fact that a comparison between observed flow and simulated flow to many dams pro-

duced unsatisfactory statistics is probably due to the short length of the series compared. While

the simulated series is long and non-missing, some observed series (of newly built dams) is

quite short (just 6 months for comparison at some dams). This could affect the performance

results of the model since the statistics are ideal for a many-year comparison.

Finally, the overestimation issue systematically reported by PBIAS for almost every dam

may suggest that the parameters in our SWAT model were not optimal for Vietnam given that

the model is un-calibrated. An appropriate adjustment of the parameters ET, lateral flow, surface

runoff, return flow and tile flow processes (Arnold, Moriasi, et al., 2012) may improve the

performance of the model. However, it was not executed in this study due to a shortage of

longer observed flows for calibration.

Nevertheless, as we attempted to exploit the information about the variation of discharge

data rather than its level, the simulated flow seem to be useful given the significantly high

correlation between the two types of data. The overestimation problem could be absorbed by

using appropriate dam fixed effects in future regressions using the simulated series. The above

assessment also indicates that there are substantial similarities in SWAT model performance for

dams in the same basin. This motivates the use of robust standard errors clustered at basin level

when using the simulated data.

Finally, as river flows in later regression analysis will be pooled in order to characterize the

power supply of the whole nation, a joint scrutiny could be more sensible than individual ones.

The following subsection will perform some regressions to assess jointly the simulated flows to
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all dams.

1.C.2 Comparison Based on Regression

First, we perform a simple POLS regression to assess the ability of using simulated flows (Qsim
it )

to explain the observed flows (Qobs
it ).

Qobs
it = α + βQsim

it + εit (A36)

Ideally, we would expect a slope (β) of one and a zero intercept (α) in the case of perfect

match between the simulation and the reality. As can be seen in the first column of Table 1.C.1,

the simulated flow is far from perfect but is a highly significant predictor of the observed flows.

The coefficient of simulated flows is 0.627, much larger than its robust standard error (0.0206).

Together with a constant term, the variations in the simulated data explain 85% the observed

data variations. A coefficient smaller than one implies that on average the simulated data tend

to report a higher flow level than is observed in reality.

[Table 1.C.1 about here]

For a complete picture about the nexus between simulated data and observed data across

different segment of the population, we employed a quantile estimator. Quantile estimator,

theoretically developed by Koenker and Bassett (1978) and then (Koenker, 2005), has several

advantages. Firstly, median regression (also called Least Deviations Regression), regression

at the quantile 0.50, is less sensitive to influential observations than OLS. Secondly, quantile

regression is more informative as it reveals the impact of explanatory variables at different points

in the conditional distribution of the explained variable. Finally, as a semiparametric approach,

it does not require assumptions about parametric distribution of error terms and hence is tolerant

to heteroskedastic data.
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A comparison across the three quartiles in Table 1.C.1 (column 2-4) reveals that higher

quartiles appear with higher coefficients and higher standard errors. The median regression (the

second quartile) has a coefficient of 0.551, a little bit lower than the mean regression and a

higher precision. Bootstrapping slightly decreases the standard error.

Figure 1.C.1 shows that both the intercepts and the coefficients of simulated flows increase

over higher quantiles. The coefficients of simulated flows range from just below 0.2 to nearly

1.0 and their confidence intervals are considerably above zero. This indicates that the simulated

flows are a significant predictor regardless the level of quantile. Furthermore, there is a better

fit between the simulation and reality in the higher quantiles.

[Figure 1.C.1 about here]

In the next stage, we include some additional variables to learn about the relationship be-

tween simulated flows and observed flows (Table 1.C.2). The baseline regression (the first col-

umn) is an OLS regression almost identical to the first column in Table 1.C.1. The only different

is that Table 1.C.1 reports standard errors robust to heteroscedasticity from the “White” covari-

ance matrix estimator (Huber, 1967; White, 1980). Meanwhile, Table 1.C.2 reports standard

errors robust to heteroscedasticity and contemporaneous and lagged spatial correlation derived

from the nonparametric covariance matrix estimator by Driscoll and Kraay (1998).23 Obvi-

ously, the latter is more appropriate to our data. Because beside heteroscedasticity issue; the

dependent variable is both spatially and serially correlated. Inflows to different dams, especially

those within a same basin is highly likely to correlate with each other and discharge to a certain

dam at a particular time is certainly not independent of its lagged values. Inferences based on

just heteroscedasticity-consistent standard errors are less reliable.

[Table 1.C.2 about here]

The standard error of observed flow increases slightly when we depart from Column 1 of

23Technically, we used STATA command regress with function vce(robust) in Table 1.C.1 and command xtscc
(Hoechle, 2007) with function pols in Table 1.C.2.
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Table 1.C.1 (0.0206) to Column 1 of Table 1.C.2 (0.0267). The change in precision; however,

does not alter the high significance of the coefficient.

Column 2 suggests the spatial consistency of our SWAT simulation performance: control-

ling for the location of each dam does not improve the ability to explain the observed data. In

fact, the coefficients on latitude and longitude are not significant even at the 10% level and the

adjusted R-squared slightly decreases when we include these redundant variables.

The operation of hydro-plants proxied by their installed capacity (column 3) or the existence

of a reservoir in terms of total storage capacity (column 4) does not improve the model. The

inclusion of both variables (column 5) triggers the significance at 10% of installed capacity. It

is likely that the facilities and construction associated with these plants stimulate the flows to

their reservoirs. However, there is no difference in the adjusted R-squared compared with the

baseline model.

There is an improvement when we add month dummies to the model as the adjusted R-

squared slightly increases by 0.4 percentage points (column 6). Time-invariant unobserved

dam-heterogeneity (for example soil profile or topography features and other basin characteris-

tics) matters. Controlling for them, the adjusted R2 rises further to 0.856. The SWAT simulation

performance seems to be consistent over time. The time trend variable added (column 8) is in-

significant and fails to raise the adjusted R-squared. Adding time fixed effects besides dam fixed

effects is a better choice (column 9). The model using simulated flows and controlling for both

time-invariant dam –specific factors and dam-invariant time-specific factors can explain 86.5%

of variations in observed flows. Then the coefficient of simulated flow marginally increases to

0.641.

It is worth discussing why the two-way fixed effect model (Column 9) is superior to the

simple OLS model (Column 1). As our SWAT model was not calibrated, the parameters in

the rainfall-runoff model were not optimal. Hence, the agreement between simulated and ob-

served data depends on the heterogeneous characteristics of each subbasin (for example soil
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composition, land cover distribution and topographic features), which determine the sensitiv-

ity of simulated flow to the error of the SWAT parameters. Some of these characteristics are

time-invariant and can be captured by dam-fixed effect. To some certain extents, the inclusion

of dam-fixed effect can be considered as a simple way to “calibrate” the simulated flow for each

subbasin where the dams locate. Meanwhile, time-fixed effect can absorb a part of the error

terms that is consistent across subbasin but varying over time. Suppose there is an unobserved

common trend in the land cover change (for example forest loss) surrounding the locations of

dams, SWAT model does not account for this but the time fixed effect does. On the other hand,

time fixed effect may absorb common trends over time in errors of data input to the rainfall-

runoff model. For instance, the performance of satellite data on which our SWAT model relied

could be varying across month of a year and across year. If it is the case, these unobserved

factors will be partially handled by time fixed effects.

In Table 1.C.3, we look closer at the monthly patterns, which supplement column 6-8 of

Table 1.C.2. The coefficients on the dummy variables indicate the difference in our model

performance over different months compared to January. The magnitude and significance of the

months depend on whether we include dam fixed effects (column 2) and a time trend (column

3). The intercepts for February to April are significantly higher than January while those of

May, June and September to December are significantly higher. The difference on other months

is insignificant. This suggests that the simulated flows proportionately report lower flows in dry

seasons (February to April) and higher during wet seasons. This could be a consequence of

monthly bias pattern in climate satellite data.

[Table 1.C.3 about here]

Overall, the above analysis proposes that the flow derived from the SWAT simulation is a

good predictor. Using simulated flows and an intercept can explain the majority of variations in

observed flows (84.9%) and such a model is both spatially and temporally consistent in the sense

that we cannot improve it by controlling for location or time trends. However, the model is not

robust to inter-annual variation (monthly seasonality). The introduction of dam heterogeneity
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and time heterogeneity improve the model a little. Nevertheless, the room for improvement

is relatively small (just 1.6 percentage points) given that simulated flows contain considerable

information on the variation in observed data.
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Figure 1.C.1: Quantile regression: observed flows vs simulated flows

Notes: Quantile regression (QR) of observed flows on simulated flows in comparison with mean regression (OLS).
Blue line and horizontal dashed lines respectively indicate coefficients in QR and OLS. Confidence intervals are in
grey areas (QR) or between dotted lines (OLS).
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Table 1.B.4: Mann-Kendall tests on annual series

Name

Installed

Basin
Annual mean Annual maximum Annual minimum

Capacity

(MW) tau z statistics p-value tau z statistics p-value tau z statistics p-value

Thac Ba 120 Lo - Gam - Chay -0.28 -1.61 0.11 -0.36 -2.1 0.04** -0.52 -3.08 0.00***

Tuyen Quang 342 Lo - Gam - Chay -0.19 -1.12 0.26 -0.26 -1.54 0.12 -0.29 -1.68 0.09*

Bac Ha 90 Lo - Gam - Chay -0.17 -0.98 0.33 -0.16 -0.91 0.36 -0.53 -3.15 0.00***

Hoa Binh 1920 Da -0.28 -1.61 0.11 -0.51 -3.01 0.00*** -0.45 -2.66 0.01***

Son La 2400 Da -0.24 -1.4 0.16 -0.47 -2.8 0.01*** -0.46 -2.73 0.01***

Nam Chien 200 Da -0.42 -2.45 0.01*** -0.36 -2.1 0.04** -0.53 -3.15 0.00***

Ban Chat 220 Da -0.1 -0.56 0.58 -0.12 -0.7 0.48 -0.5 -2.94 0.00***

Hua Na 180 Ma -0.11 -0.63 0.53 -0.16 -0.91 0.36 -0.17 -0.98 0.33

Cua Dat 97 Ma -0.13 -0.77 0.44 -0.16 -0.91 0.36 -0.17 -0.98 0.33

Khe Bo 100 Ca -0.2 -1.19 0.23 -0.25 -1.47 0.14 -0.15 -0.84 0.4

Ban Ve 320 Ca -0.36 -2.1 0.04** -0.39 -2.31 0.02** -0.25 -1.47 0.14

Quang Tri 64 Thach Han 0.04 0.21 0.83 0.28 1.61 0.11 -0.18 -1.05 0.29

A Luoi 170 Huong 0.08 0.42 0.67 0.23 1.33 0.18 0.09 0.49 0.62

Binh Dien 44 Huong 0.1 0.56 0.58 0.23 1.33 0.18 0.11 0.63 0.53

Huong Dien 71 Huong 0.04 0.21 0.83 0.15 0.84 0.4 0.12 0.7 0.48

Song Tranh 2 190 Vu Gia - Thu Bon 0.17 0.98 0.33 0.26 1.54 0.12 0.25 1.47 0.14

Dak Mi 4 190 Vu Gia - Thu Bon -0.11 -0.63 0.53 0.1 0.56 0.58 -0.11 -0.63 0.53

A Vuong 210 Vu Gia - Thu Bon 0.17 0.98 0.33 0.4 2.38 0.02** -0.12 -0.7 0.48

Song Con 63 Vu Gia - Thu Bon 0.08 0.42 0.67 0.17 0.98 0.33 0.1 0.56 0.58

Vinh Son 66 Kon - Ha Thanh 0.1 0.56 0.58 0.1 0.56 0.58 0.17 0.98 0.33

Sesan 4 360 Sesan 0.25 1.47 0.14 0.49 2.87 0.00*** 0.01 0 1

Sesan 3 260 Sesan 0.09 0.49 0.62 0.46 2.73 0.01*** -0.04 -0.21 0.83

Yaly 720 Sesan 0.08 0.42 0.67 0.46 2.73 0.01*** -0.04 -0.21 0.83

Plei Krong 1 100 Sesan 0.12 0.7 0.48 0.52 3.08 0.00*** -0.02 -0.07 0.94

Song Hinh 70 Ba -0.05 -0.28 0.78 -0.15 -0.84 0.4 0.16 0.91 0.36

Song Ba Ha 220 Ba 0.09 0.49 0.62 0.33 1.96 0.05* 0.12 0.7 0.48

An Khe - Kanak 173 Ba 0.05 0.28 0.78 0.32 1.89 0.06* -0.1 -0.56 0.58

Buon Tua Srah 86 Srepok -0.1 -0.56 0.58 -0.1 -0.56 0.58 0.11 0.63 0.53

Buon Kuop 280 Srepok -0.03 -0.14 0.89 0.04 0.21 0.83 0.16 0.95 0.34

Srepok 3 220 Srepok 0.03 0.14 0.89 0.18 1.05 0.29 0.16 0.91 0.36

Tri An 400 Dong Nai 0.23 1.33 0.18 0.47 2.8 0.01*** 0.31 1.82 0.07*

Da Mi 175 Dong Nai 0.33 1.96 0.05* 0.49 2.87 0.00*** 0.37 2.17 0.03**

Ham Thuan 300 Dong Nai 0.33 1.96 0.05* 0.49 2.87 0.00*** 0.37 2.17 0.03**

Dai Ninh 300 Dong Nai -0.04 -0.21 0.83 0.1 0.56 0.58 0.28 1.61 0.11

Da Nhim 160 Dong Nai 0.03 0.14 0.89 0.31 1.82 0.07* 0.26 1.54 0.12

Thac Mo 150 Dong Nai 0.23 1.33 0.18 0.46 2.73 0.01*** 0.32 1.89 0.06*

Dong Nai 3 180 Dong Nai 0.03 0.14 0.89 0.19 1.12 0.26 0.23 1.33 0.18

Dong Nai 4 340 Dong Nai 0.04 0.21 0.83 0.2 1.19 0.23 0.23 1.33 0.18

Dak R’Tih 144 Dong Nai 0.03 0.14 0.89 0.23 1.33 0.18 0.22 1.26 0.21

Can Don 78 Dong Nai 0.18 1.05 0.29 0.43 2.52 0.01*** 0.26 1.54 0.12

Series tested are the annual mean, maximum and minimum of the simulated flows.Mean series were pre-whitened by an AR1 model before the
test. *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.B.5: Seasonal Kendall tests for monthly series

Name Basin Installed capacity (MW) tau z statistics Trend p-value Het p- value

Thac Ba Lo - Gam - Chay 120 -0.36 -2.4 0.02** 0.3

Tuyen Quang Lo - Gam - Chay 342 -0.27 -2.15 0.03** 0.48

Bac Ha Lo - Gam - Chay 90 -0.3 -2.04 0.04** 0.71

Hoa Binh Da 1920 -0.42 -2.5 0.01*** 0.14

Son La Da 2400 -0.41 -2.63 0.01*** 0.43

Nam Chien Da 200 -0.36 -2.86 0.00*** 0.01***

Ban Chat Da 220 -0.23 -1.94 0.05* 0.51

Hua Na Ma 180 -0.11 -0.93 0.35 0.01**

Cua Dat Ma 97 -0.12 -0.94 0.35 0.01**

Khe Bo Ca 100 -0.1 -0.95 0.34 0.01***

Ban Ve Ca 320 -0.23 -1.71 0.09* 0.03**

Quang Tri Thach Han 64 -0.02 -0.54 0.59 0.96

A Luoi Huong 170 0.1 1.57 0.12 0.87

Binh Dien Huong 44 0.15 1.8 0.07* 0.73

Huong Dien Huong 71 0.07 0.98 0.33 0.58

Song Tranh 2 Vu Gia - Thu Bon 190 0.19 2.09 0.04** 0.91

Dak Mi 4 Vu Gia - Thu Bon 190 -0.05 -0.61 0.54 0.8

A Vuong Vu Gia - Thu Bon 210 0.14 2.19 0.03** 0.93

Song Con Vu Gia - Thu Bon 63 0.11 1.02 0.31 0.54

Vinh Son Kon - Ha Thanh 66 0.17 1.63 0.1 0.95

Sesan 4 Sesan 360 0.17 1.58 0.12 0.89

Sesan 3 Sesan 260 0.1 1.17 0.24 0.92

Yaly Sesan 720 0.1 1.19 0.23 0.92

Plei Krong 1 Sesan 100 0.12 1.55 0.12 0.9

Song Hinh Ba 70 0.08 1.16 0.25 0.57

Song Ba Ha Ba 220 0.17 1.33 0.18 0.57

An Khe - Kanak Ba 173 0.09 1 0.32 0.98

Buon Tua Srah Srepok 86 0.02 0.24 0.81 0.52

Buon Kuop Srepok 280 0.13 1.48 0.14 0.61

Srepok 3 Srepok 220 0.18 1.65 0.1 0.58

Tri An Dong Nai 400 0.32 1.8 0.07* 0.69

Da Mi Dong Nai 175 0.37 1.84 0.07* 0.43

Ham Thuan Dong Nai 300 0.37 1.84 0.07* 0.43

Dai Ninh Dong Nai 300 0.13 1.16 0.24 0.22

Da Nhim Dong Nai 160 0.25 2.13 0.03** 0.82

Thac Mo Dong Nai 150 0.28 1.35 0.18 0.12

Dong Nai 3 Dong Nai 180 0.19 1.75 0.08* 0.7

Dong Nai 4 Dong Nai 340 0.21 1.82 0.07* 0.7

Dak R’Tih Dong Nai 144 0.21 1.84 0.07* 0.71

Can Don Dong Nai 78 0.23 1.23 0.22 0.14

Series tested are monthly-simulated flows. *** p<0.01, ** p<0.05, * p<0.1.
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Table 1.B.6: Stationary test for discharge series

Name Basin Capacity (MW)
No trend Trend

Lag DF-GLS KPSS Lag DF-GLS KPSS

Thac Ba Lo - Gam - Chay 120 6 -1.18 1.58*** 7 -3.08** .13*

Tuyen Quang Lo - Gam - Chay 342 7 -1.14 1.22*** 13 -2.05 .25***

Bac Ha Lo - Gam - Chay 90 6 -1.32 1.26*** 12 -2.07 .19**

Hoa Binh Da 1920 13 -0.48 1.2*** 14 -2.08 0.07

Son La Da 2400 13 -0.55 1.14*** 14 -1.97 0.09

Nam Chien Da 200 6 -1.23 2*** 13 -2.93** 0.06

Ban Chat Da 220 6 -1.39 .87*** 6 -2.72* .17**

Hua Na Ma 180 7 -2.56** 0.29 5 -3.75*** .14*

Cua Dat Ma 97 7 -2.53** 0.3 4 -3.96*** .15**

Khe Bo Ca 100 7 -3.26*** 0.26 7 -3.7*** 0.09

Ban Ve Ca 320 7 -2.47** .84*** 7 -3.75*** .12*

Quang Tri Thach Han 64 1 -5.99*** 0.12 1 -6.02*** 0.1

A Luoi Huong 170 12 -2.26** 0.21 3 -4.74*** .15**

Binh Dien Huong 44 12 -2.03** 0.32 3 -4.64*** .18**

Huong Dien Huong 71 12 -2.33** 0.13 3 -4.69*** .14*

Song Tranh 2 Vu Gia - Thu Bon 190 9 -2.4** .55** 1 -5.16*** .34***

Dak Mi 4 Vu Gia - Thu Bon 190 4 -3.67*** 0.25 4 -3.68*** .17**

A Vuong Vu Gia - Thu Bon 210 9 -2.57** 0.31 1 -5.23*** .13*

Song Con Vu Gia - Thu Bon 63 11 -1.73* 0.29 11 -2.98** .13*

Vinh Son Kon - Ha Thanh 66 11 -2.34** .45* 11 -2.87** .18**

Sesan 4 Sesan 360 10 -2.15** .57** 10 -2.84* .18**

Sesan 3 Sesan 260 10 -2.66*** 0.34 10 -3.06** .14*

Yaly Sesan 720 10 -2.7*** 0.33 10 -3.06** .13*

Plei Krong 1 Sesan 100 10 -2.89*** .4* 10 -3.11** .13*

Song Hinh Ba 70 1 -5.24*** 0.2 1 -5.32*** .16**

Song Ba Ha Ba 220 12 -1.92* .45* 1 -4.88*** .55***

An Khe - Kanak Ba 173 10 -2.23** 0.23 10 -2.93** .13*

Buon Tua Srah Srepok 86 2 -4.6*** 0.16 2 -4.75*** .15**

Buon Kuop Srepok 280 2 -4.46*** .45* 2 -4.97*** .17**

Srepok 3 Srepok 220 9 -2.76*** .4* 2 -4.89*** .23***

Tri An Dong Nai 400 9 -1.82* .88*** 1 -4.9*** .34***

Da Mi Dong Nai 175 3 -2.32** 2.16*** 1 -4.35*** .59***

Ham Thuan Dong Nai 300 3 -2.32** 2.16*** 1 -4.35*** .59***

Dai Ninh Dong Nai 300 2 -3.82*** .63** 2 -4.33*** .17**

Da Nhim Dong Nai 160 13 -1.63 .57** 2 -4.82*** .14*

Thac Mo Dong Nai 150 11 -2.02** .61** 4 -4.01*** .25***

Dong Nai 3 Dong Nai 180 13 -2.05** .36* 2 -4.62*** .15**

Dong Nai 4 Dong Nai 340 13 -2.01** .4* 2 -4.66*** .15**

Dak R’Tih Dong Nai 144 13 -1.99** .42* 2 -4.67*** .16**

Can Don Dong Nai 78 11 -2.18** .49** 4 -4.04*** .22***

Series tested are monthly-simulated flows. Optimal lag is chosen by MAIC. Max lag is 14 as suggested by (Schw-
ert, 1989) formula. Null hypothesis of DF-GLS is non-stationary series. Null hypothesis of KPSS is stationary
series. *** p<0.01, ** p<0.05, * p<0.1. 102



Table 1.B.7: Performance of the un-calibrated SWAT model at different dams

Name Basin r R-squared NSE PBIAS
Thac Ba Lo - Gam - Chay .82*** .67* -1.36 -84

Tuyen Quang Lo - Gam - Chay .8*** .64* -2.93 -134
Bac Ha Lo - Gam - Chay .78** .61* -1.81 -146

Hoa Binh Da .88*** .78* .25* -58
Son La Da .81*** .65* -0.44 -65

Nam Chien Da .98*** .96* -11.54 -221
Ban Chat Da .96*** .92* .51** -59
Hua Na Ma .92*** .85* -71.59 -347
Cua Dat Ma .75*** .56* -3.04 -147
Khe Bo Ca .83** .68* -28.71 -156
Ban Ve Ca .68*** 0.47 -0.65 -57

Quang Tri Thach Han .41** 0.17 -0.67 -48
A Luoi Huong 0.4 0.16 -37.28 -193

Binh Dien Huong 0.19 0.03 -49.96 -379
Huong Dien Huong 0.25 0.06 -2.98 -63
Song Tranh 2 Vu Gia - Thu Bon 0.29 0.09 -0.05 -26

Dak Mi 4 Vu Gia - Thu Bon 0.1 0.01 -5.1 76
A Vuong Vu Gia - Thu Bon .6*** 0.36 -62.26 -664
Song Con Vu Gia - Thu Bon -0.13 0.02 -34.09 -235
Vinh Son Kon - Ha Thanh .7*** 0.49 -6.29 -292
Sesan 4 Sesan .88*** .77* -3.76 -89
Sesan 3 Sesan .54*** 0.29 -3.33 -84

Yaly Sesan .73*** .53* -0.9 -59
Plei Krong 1 Sesan .82*** .68* -0.31 -64
Song Hinh Ba .86*** .73* .5* 27

Song Ba Ha Ba .69*** 0.48 -5.82 -241
An Khe - Kanak Ba .33* 0.11 -6.66 -123
Buon Tua Srah Srepok .98*** .96* -0.4 -47

Buon Kuop Srepok .71*** .5* -8.84 -177
Srepok 3 Srepok .97*** .95* -2.69 -115
Tri An Dong Nai .82*** .67* -0.59 -81
Da Mi Dong Nai .42*** 0.17 -1.15 67

Ham Thuan Dong Nai .53*** 0.28 -0.55 75
Dai Ninh Dong Nai .68*** 0.46 .13* -47
Da Nhim Dong Nai .65*** 0.42 -10.75 -238
Thac Mo Dong Nai .9*** .8* .46* -42

Dong Nai 3 Dong Nai .85*** .73* -48.87 -383
Dong Nai 4 Dong Nai .35* 0.12 -91.82 -401
Dak R’Tih Dong Nai .98*** .96* -100.93 -948
Can Don Dong Nai .86*** .74* -3.2 -101

r: *** p<0.01, ** p<0.05, * p<0.1. R-squared: * acceptable model (Santhi et al.,
2001; Van Liew et al., 2007). NSE: ** satisfactory model, * acceptable model (Mo-
riasi et al., 2007).PBIAS: * satisfactory model (Moriasi et al., 2007).
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Table 1.C.1: Observed flows vs simulated flows –Simple regression

(1) (2) (3) (4) (5)

VARIABLES OLS QR .25 QR .50 QR .75 BQR .50

Flow to dam (m3/s), SWAT simulation 0.627*** 0.388*** 0.551*** 0.715*** 0.551***

(0.0206) (0.0128) (0.0196) (0.0204) (0.0189)

Constant -18.05*** -4.391*** 3.068** 21.83*** 3.068**

(6.286) (0.814) (1.532) (2.385) (1.512)

Observations 2,666 2,666 2,666 2,666 2,666

R-squared 0.849

*** p<0.01, ** p<0.05, * p<0.1.
Dependent variable is observed discharge. OLS indicates Ordinary Least Squares. QR indicates Quan-
tile Regression. BQR indicates Quantile Regression with bootstrap standard errors and a replication
number of 400. Otherwise, the robust standard errors were reported in parentheses.
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Table 1.C.3: Observed flows vs simulated flows - Monthly pattern

(1) (2) (3)
VARIABLES Flow to dam (m3/s) observed data

Flow to dam (m3/s), SWAT simulation 0.629*** 0.635*** 0.634***
(0.0263) (0.0344) (0.0344)

Feb dummy 21.25*** 21.72*** 21.93**
(6.409) (8.202) (9.245)

Mar dummy 41.47*** 42.75*** 43.29***
(8.352) (11.13) (12.69)

Apr dummy 42.59*** 43.40*** 44.14***
(8.974) (12.28) (14.01)

May dummy -60.32*** -61.67*** -60.74***
(15.67) (17.77) (19.77)

Jun dummy -89.14*** -92.80*** -91.46***
(25.13) (23.06) (23.43)

Jul dummy 50.83 45.59 47.39*
(34.18) (29.03) (28.06)

Aug dummy 67.49 57.63 58.14
(47.22) (43.51) (42.11)

Sep dummy -46.13* -55.34* -54.65*
(25.94) (28.79) (29.08)

Oct dummy -43.10** -50.34** -49.65**
(18.97) (21.85) (22.91)

Nov dummy -36.51* -42.30** -41.51*
(19.38) (21.01) (21.83)

Dec dummy -31.97*** -36.54*** -35.63***
(8.974) (9.914) (10.85)

Time trend -0.268
(0.19)

Constant -12.48 -18.28** 12.64
(9.121) (8.98) (26.24)

Observations 2,666 2,666 2,666
Adjusted R-squared 0.853 0.856 0.856
Dam dummies No Yes Yes
Month dummies Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1.
LSDV model controlling for simulated flow. Driscoll-Kraay standard errors
standard errors are in parentheses. This table supplements column (6) to (8) of
Table 1.C.2.
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Chapter 2

Power Outages, and Firm Performance:
The Case of Vietnam

A previous version of this chapter was submitted to and presented at the World Congress of
Environmental and Resource Economists, Gothenburg, Sweden, 2018
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Chapter abstract

We estimate the impact of power outages on firm performance in Vietnam using a framework
that integrates a SWAT (Soil and Water Assessment Tool) river flow model with a hydropower
generation model, and an electricity-grid-based distance interpolation technique. Potential en-
dogeneity between economic growth, and power outages is resolved by the generation of instru-
mental variables based on our hydrological modelling. Comparing two waves of World Bank
Enterprise Surveys (WBES) in 2005, and 2015, we find that firm performance has become more
susceptible to power outages as businesses become more energy-intensive. Our results suggest
that a small reduction in power interruption by 22.8 minutes per year in 2014 would increase
the revenues of Vietnam’s firms by 4.66 billion USD. Compared with their counterparts, firms
supplied with poorer power provision are found to have lower productivity, and use less flexible
input factors, which are not offset by more use of costly backup electricity generators.
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“Vietnam is a victim of its success. ”

Said by Richard Spencer, a World Bank energy specialist (2007)

“Planned but increasingly regular power cuts over the past month have left
factories at a standstill, plunged homes into darkness and turned off traffic
lights. ”

Reported by Agence France-Presse (2007)

“Prices need to rise sharply, but cheap power is an essential component of the
party’s social contract. ”

In "A heavy load: Electrcity in Vietnam" by The Economist (2013)

2.1 Introduction

In many developing countries access to a reliable source of power is essential if a country is

to industrialize and grow. Firms, as large users of electricity, are particularly vulnerable to any

disruption to the supply of electricity which in turn has wider welfare implications. In many

countries, access to electricity remains limited while in others, although progress in electrifica-

tion has been made, the consumption per head remains low. At the same time, poor supply relia-

bility continues to hinder firm performance which impacts on the economic growth prospects of

many developing countries. A good example is the case of Vietnam that has made great strides

in electrification driven in part by massive investment in hydropower production such that hy-

dropower account for between 37.6% to 40.2% installed capacity (ADB, 2011; EVN, 2015a,b).

As a result, Vietnam has seen electrification rates increasing from under 2.5% in 1975 to 96% in
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2009 (Min and Gaba, 2014). However, despite these considerable improvements power outages

remain an ongoing problem for Vietnam’s economy.

The purpose of this paper is to understand how power outages affect firm performance in

Vietnam and how the impact has evolved over time, and if yes, what drives such a change. Our

empirical approach is to use self-reported data for Vietnamese firms from two waves of the

World Bank Enterprises Surveys (WBES) in 2005, and 2015 as well as hydropower generation

data at the utility level, and spatially disaggregated data that provides information on weather,

hydrography, topography, soil, vegetation, and electricity lines. One common concern with re-

search that investigates the impact of power outages on firm performance is the endogeneity be-

tween outages and firm behaviour. To address these concerns we employ a hydro-instrumental

strategy similar in nature to Allcott et al. (2016); Mensah (2016); Cole et al. (2018). More

specifically, we use variations in hydropower generation due to exogenous weather shocks as

an instrument for power outages. Such an approach is appropriate for Vietnam as not only does

hydropower play a key role in the power mix of the country but Vietnam also has considerable

variation in climate conditions and different terrains.

Our paper contributes to a growing strand of the literature that examines the impact of power

outages on the economies of regions or large countries such as Sub-Saharan Africa (Mensah,

2016; Cole et al., 2018), India (Allcott et al., 2016; Alam, 2013), China (Fisher-Vanden et al.,

2015), and Pakistan (Grainger and Zhang, 2017). We examine an underexplored issues whether

the requirement for power quality of an economy changes over its development path.

Vietnam represents an ideal country to study the changing dynamics in the power sector.

The country has enjoyed strong economic growth and development alongside a rapid expansion

120



of the power supply sector. However, the reliability of the power network is still patchy. Over

the last 4 decades, Vietnam’s growth rate averaged round 6.8% a year between 1990 and 2013

(ADB, 2015a), the $1.90-a-day poverty rate was reduced to under 3% (WB and MPI, 2016)

and in 2008 the economy entered the group of lower-middle income countries. During this

time annual power consumption has grown at double digit rates while at the same time Vietnam

has almost completed the process of universal electrification with the capacity of the power

system reaching 15 GW of installed capacity in 2010 (Vagliasindi and Besant-Jones, 2013).1

However the quality of the installed electricity ranked only 113/144 countries by the Global

Competitiveness Index 2012-14 (Cattelaens et al., 2015). The result is that the average customer

experiences between 18.10 and 39.24 power interruptions per year (equivalent to 3,134 to 8,077

minutes per year) (EVN, 2017).

In estimating the cost of power outages on firm performance, the existing literature pro-

vides a number of insights. At a more general level, there appears to be a strong (potentially

non-linear) relationship between infrastructure investment, and growth (Esfahani and Ramırez,

2003; Calderón and Servén, 2004). For example, Canning and Pedroni (2008) claim that over-

investment in infrastructure could reverse the net benefit of infrastructure spending as a result

of resource misallocation. Second, as it is costly for firms to operate in locations where the

infrastructure is poor (Lee et al., 1999; Baisa et al., 2010; Iimi, 2011), firms may relocate to

areas or countries where the infrastructure is better (Holl, 2004). However, firms may tolerate

low quality infrastructure if energy prices are subsidized. In this case, governments may pursue

such a policy instead of undertaking expensive upgrades to existing infrastructure (Davis et al.,

1Since 1986 social-economic reforms (Doi moi), and energy sector reforms since 1995 have helped connect
almost the entire population of nearly 100 million people to the electricity grid. Just under 2% of households
remain off the grid and in 2014 just under 3% reported that their electricity needs were not being met (Ha-Minh
and Nguyen, 2017).
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2001). McRae (2015) offers an elegant explanation of why low-quality infrastructure, and the

subsidized energy-prices may be acceptable to all economic agents (consumers, suppliers, and

governments) and hence why the so-called ‘subsidy trap’ means an unreliable energy supply has

become a persistent phenomenon in many developing countries. It is also well-documented that

different types of infrastructure investment (for example transportation, ICT or dams) have dif-

ferent mechanisms by which they impact development (both growth and distributional effects)

that are both diverse and conditional (see Allcott et al. (2016)).

In terms of electricity provision, the response of firms may vary. At the simplest level, an un-

reliable electricity supply means additional costs, for example through the need to use a backup

generator (with higher unit costs of electricity). The result us that firms with limited finan-

cial resources will find it harder to access electricity-intensive sectors (Reinikka and Svensson,

2002; Adenikinju, 2003; Alby and Dethier, 2013). One consequence of increased costs is the

impact on productivity (Mensah, 2016), reduced firm size (Allcott et al., 2016; Grainger and

Zhang, 2017), and hence lower profitability (Doe and Asamoah, 2014). As a result, firms may

mitigate the impact of unreliable energy supply by switching to less energy-intensive technolo-

gies (Alam, 2013). Firms may also substitute electricity for other fuels (Allcott et al., 2016) or

materials (Fisher-Vanden et al., 2015) (where firms outsource the production of intermediates

instead of making them in house).

Despite power outages being intuitively costs, it is not easy to quantify the economic con-

sequences of power outages, especially within a fast-growing economy context. As previously

suggested, there are a number of potential endogeneity concerns. These include measurement

error (Allcott et al., 2016), selection bias (Alam, 2013), and simultaneity between firm perfor-

mance and power reliability (Steinbuks, 2011; Fisher-Vanden et al., 2015; Allcott et al., 2016).
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The simultaneity issue is further complicated in our case due to the dual role played by eco-

nomic growth. On the one hand, growth generates taxable income that can be used to develop

the power sector, but on the another hand, growth can lead to additional demand for power

which could impact reliability. It is usually the case that long lag times in construction of new

infrastructure means that governments are chasing to catch up with demand leading to fall in

reliability. Under such circumstances, the causal relationship between power provision and firm

performance is difficult to identify in the absence of a proper treatment of endogeneity concerns.

A key difference between our study and others that employ a hydro-IV approach is that they

have tended to investigate multiple-grid cases (different countries or states within a large country

that use different electricity grids). In this case access to different grids can help explain the

variation in firm level power provision. In our case, our instrument is constructed by matching

firms with (hydro)power plants that are connected to the same grid. Because we are dealing

with the case of a single-grid (i.e. all firms, and utilities connect to a same centrally managed

grid within a small country), and have limited information on the distribution rule (if any) this

presents several challenges. First, because of the interconnected system it is difficult to match

the power provision of a firm to particular large hydropower plant(s) as the impact of reduced

electricity production could be nationwide. Second, fossil fuel power plants are connected to the

system and can be used to increase power supply when hydropower plants reduce production as

a result of bad weather. Our solution is to take an interdisciplinary approach and use a rainfall-

runoff model based on Soil and Water Assessment Tool (SWAT) to simulate river flows to the

40 largest hydropower dams across Vietnam. This allows us to take into account a variety of

terrain conditions and variation in the weather. The simulated series from the SWAT model are

then used as a key predictor of hydropower generation to eliminate the component of electricity
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production that is driven by changes in demand. The estimated series from the generation model

are then used to construct an index for the weighted hydro-plant factors that are explained by the

exogenous variations in hydrological conditions, using a grid-based distance penalty parameter

calibrated by the ‘reduced-form equation’ of the IV estimation. Finally, the hydro-index is used

as a single instrument for power outages measured in multiple dimensions in the ‘structural

equation’ to address the endogeneity concerns.

To summarize, the contribution of this paper is three-fold. First, we contribute to the hydro-

IV literature by integrating river flow modelling with a firm level dataset for a fast growing

single gridded country. Second, we estimate the impact of power outages on the performance of

firms in a rapidly growing country, where potential endogeneity issues are likely to be more of a

concern than in countries with limited changes in demand. Third, to the best of our knowledge,

we are the first to show that the need to upgrade power provision changes over time and is

conditional in part on the complexity of the production process.

To briefly summarize our results, we find that the impact of power outages on firm perfor-

mance is relatively small but became more important in the later period as firms increased their

dependency on electricity. In 2015 we find a significant reduction in revenue of between 0.73%

to 1.81% in response to a 1% increase in power outages. In other results we find that frequent

outages are found to cause larger losses than a small number of long-lasting outages.

The remainder of the paper is organised as follows. Section 2 provides some background

information on Vietnam’s power sector. Section 3 sketches a theoretical model, and describes

our testable hypotheses. Section 4 presents our empirical strategy, describes our dataset and

provides the OLS estimates. Section 5 details our instrumental strategy, with the results shown
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in Section 6. Section 7 concludes.

2.2 The Power Sector and Power Reliability in Vietnam

Between 2004 to 2014, Vietnam succeeded in more than tripling its power capacity from 10.8

GW to 34.1 GW in response to a sharp increase in demand that grew rapidly from 41.2 TWh

to 128.63 TWh (ADB, 2015a; EVN, 2015a,b). Electrification was almost complete by 2014

with only 2% of the population still without access to electricity compared to around half of the

population in 1995 (ADB, 2015a). At the same time, consumption per head of the clean power

went up almost tenfold from 156 kWh in 1995 to 1,415 kWh in 2014 (ADB, 2015b). In 2004

this demand was supplied primarily by a combination of hydropower and natural gas. While

the share in the national installed capacity of hydropower increased from 37.6% to 40.2%, the

share supplied by natural gas was reduced from 28.5% to 21.5%. The remaining demand was

satisfied through an increase in the share from coal that increased substantially from 11.5%

to 28.7% and a small contribution from oil with its share increasing from 1.8% to 3.5%. To-

wards the end of the period small hydropower emerged as a contributor to the power sector

and accounted for 5.2% of capacity. Finally, other renewable sources make up just 0.2% of the

total installed capacity. Notably, during this period the economy moved from self-sufficiency

in electricity prior to 2004 to a net electricity importer with the balance exceeding 6.54% of its

consumption at the peak of Vietnam’s energy supply crisis in 2010 before falling to 3.3% in the

final two years of our time period.2 In terms of demand, the industrial sector was the largest

consumer, accounting for 41.8% of consumption in 2004 rising to 53.87% in 2014. The share

2Author’s own calculations from U.S. Energy Information Administration (2017).
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of consumption of households fell from 42.9% to 35.58% over the same period. Services and

agriculture consumed far less electricity, accounting for just under 5%, and 2% of consumption,

respectively.

One challenge that we face is that data on power quality in Vietnam is limited, especially

for the earlier years. According to Vagliasindi and Besant-Jones (2013), between 2005-2008,

the average SAIFI (System Average Interruption Frequency Index) varies between 2, and 12

interruptions per customer.3 As self-reported by EVN (2017), the period between 2012 and

2014 saw a sharp improvement in power quality, with the SAIDI (System Average Interrup-

tion Duration Index) falling from 8,077 to 3,134 minutes/customer, SAIFI falling from 39.24

to 18.10 times per customer, and MAIFI (Momentary Average Interruption Frequency Index)

falling from 5.07 to 2.63 times per customer.4

Despite the increase in the reliability of the power supply there remains room for improve-

ment. For example Vietnam’s power reliability in 2014 (SAIFI=18.10; SAIDI=3,134) com-

pared to a SAIFI of 0.86-1.33, and a SAIDI of 86-159 for North America (IEEE Working

Group on Distribution Reliability, 2015). The quality of Vietnam’s electricity provision is

ranked 113/144 by the Global Competitiveness Index 2012-14 with performance particularly

poor in rural areas (Cattelaens et al., 2015). Vietnam’s Getting Electricity Indicator is ranked

130 out of 190 countries in Doing Business as evaluated by the World Bank in 2014 (EVN,

2017).

A number of arguments have been made to explain the deficiencies in the power supply

3SAIFI indicates the average number of interruptions that a customer would experience.
4SAIDI indicates the average outage duration for each customer served while MAIFI indicates the average

number of momentary interruptions (outages of less than 5 minutes in length) that a customer would experience
during a given period (typically a year).
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in Vietnam. The most frequently cited explanation given by EVN is hydrology uncertainty.

The prominent role of hydropower in the energy mix means that the reliability of the system

largely depends on hydrological conditions which in turn are driven by changes in the weather.

As we shall show, although the operation of large reservoirs partially reduces this source of

variation, there remains a substantial effect. A second reason for power shortages, and common

to developing countries, is system overload, which refers to the situation when demand exceeds

the capacity of the delivery system due to spikes in demand at certain times of the day or year

(Carranza and Meeks, 2016). While fluctuations in either weather or demand are difficult to

predict, they are subject to regular seasonality, and cycles. However, the existence of power

outages suggests a lack of investment in existing and new power infrastructure.

Turning to electricity pricing in Vietnam, we know that the electricity tariff is regulated by

the government in order to maintain a low prices primarily as a way to reduce poverty and

as part of an industrial strategy and to attract foreign investors. Despite recent tariff reforms,

the average tax-included electricity selling price was 1,622 VND/kWh (approximately 7.5 US

cents/kWh), which according to Cattelaens et al. (2015) is still lower than the cost of production.

As a result, the power market is not an attractive investment opportunity which means that

funding from the state via state-owned companies, especially EVN and its subsidiaries, plays a

decisive role in the expansion of energy supply sector in Vietnam. Although state investment

was sufficient when Vietnam was first developing, it has not able to keep up with demand.

Furthermore, investment by EVN, which used to be a monopoly, has often been criticized for

being wasteful, ineffective, and for impeding the development of new energy sources to fill in

the gap in demand (UNDP, 2010).

In addition to problems with generation, problems with transmission, and distribution have
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contributed to power unreliability in Vietnam. A low automation rate, inconsistent management

of the power network, and grid maintenance has reduced the efficiency of the system (Cattelaens

et al., 2015). Although network power losses are reported to has fallen from 11.05% (2006) to

8.6% (2014), these compare with the rate of 7% in Germany (Cattelaens et al., 2015).5

2.3 Theoretical Framework and Testable Hypotheses

2.3.1 Theoretical Model

Our theoretical framework follows Allcott et al. (2016). To briefly summarize, assume firms use

a technology defined by a Cobb Douglas function with 4 inputs (capital K, labor L, electricity E,

and materials M) that generates revenue R with a price set by the perfectly competitive market

p given by:

R = p.Q = p.A.KαK LαL MαM EαE = Ω.KαK LαL MαM EαE (2.1)

where αF is the intensity of factor F ∈ {K, L,M, E}, Q is the physical output, A is the physical

productivity (TFP) and Ω = p.A is the revenue productivity (TFPR). Investment in capital K

is assumed to be fixed, and totally sunk prior to production. Labour L is partially flexible but

can only be adjusted at the beginning of each year, conditional on a firm’s prior belief about

the probability of power outages. Material inputs are assumed to be fully flexible during the

production process and can be adjusted conditional on the occurrence of a power disruption

happening. Yearly revenue is given by the accumulation of daily revenues, and for each day

5Power outages may also be caused by accidents. For example in May 2013, the 500 kV North-South lines
were hit by a falling tree. The accident interrupted the transmission, and distribution, and led to a collapse of the
power system due to large deficit of power causing a loss of 9,400 MW in installed capacity from 43 generators in
the South Vietnam and leaving 8 million customers off-grid over 1-8 hours (Son and Voropai, 2015).
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power outages may occur with a probability δ. A firm decides the level of inputs of materials

and electricity at the point where their marginal revenue products equals their prices. Without a

power outage, the marginal revenue product of electricity equals the cost to purchase electricity

from the grid pE. When a power outage occurs, the firm faces a higher electricity price (pG > pE

for firms that have a generator, and pS = ∞ for firms that do not have a generator). Therefore,

during an outage, generator-owners use less electricity, and non-generator-owners shutdown (do

not consume any electricity). The effect of a higher price of electricity incurred during a power

outage is to lower the marginal revenue product of material inputs, and the yearly expected

marginal revenue product of labor. Consequently, a firm will reduce its inputs of materials,

and labour, which Allcott et al. (2016) calls ‘input tax’ effects. Meanwhile, power outages also

lower productivity (measured TFPR) as all inputs except those that are fully flexible (material

inputs and electricity) are wasted during periods of power outage.

2.3.2 Testable Hypotheses

Based on this simple theoretical framework, we derive 5 testable and related hypotheses. Ev-

erything else equal, we hypothesis that a firm that has access to a less reliable electricity supply

tends to:

1. Hypothesis 1: Generate less revenue,

2. Hypothesis 2: Have lower productivity,

3. Hypothesis 3: Use less flexible inputs (electricity, labor and material inputs),

4. Hypothesis 4: Self-generate more electricity through the use of a generator.
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5. Hypothesis 5: Have a revenue gap that is wider than the productivity gap as the former is

driven by the combination of the latter, and the reduction in input usage.

2.4 Data and Empirical Strategy

2.4.1 Empirical Specification

To evaluate the impact of power reliability on the operation of firms, we estimate the following

regression:

yi jpt = α + β.Outagei jpt + Π′.FIRMi jpt + Σ′.PROVINCEpt + θ jt + εi jpt (2.2)

where i, j, p, and t are subscripts for firm, sector, province, and year, respectively. The depen-

dent variable yi jpt is a measure of the performance or factor inputs (in log form) of firm i in

sector j located in province p, and surveyed in year t. Finally, Outagei jpt is a measure of the

quality of power supplied to that firm, which could be one of three variables: power outage fre-

quency, intensity or volume (in log form). The intercept is α, and β is our parameter of interest.

FIRMi jpt is a vector of firm characteristics including size, age, ownership, legal status, foreign

trade activities, a measure of financial constraint, and corresponds to the vector of coefficients

Π. PROVINCEpt is a vector of province specific variables (in the given year) including the

average elevation, cooling degree, rainfall shocks, province industrial product (IP) share, and

province IP growth. This vector corresponding to the vector of coefficients Σ. θ jt is sector-year

dummies, and εi jpt is the idiosyncratic error term. Equation 2.2 is estimated for each individual
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survey (t = 2005, 2015).

2.4.2 Data and Summary Statistics

2.4.2.1 Firm-level Data

Our firm level data comes from the World Bank Enterprise Surveys (WBES) that includes a

range of questions on infrastructure and firm performance.6 The WBES data are collected from

interviews with owners/ top managers of registered companies in the manufacturing, and ser-

vices sectors with at least 5 employees. For Vietnam, there were 3 surveys that were undertaken

in 2005, 2009, and 2015. Each WBES survey records firm-level data for the previous fiscal

year. Hence, the 2005, 2009, and 2015 surveys capture the business environment and firm per-

formance indicators for the years 2004, 2008, and 2014, respectively. In this paper we use the

2005 and 2015 surveys.7

Firm characteristics. As our study includes a spatial dimension it is important to have firm

location information. We choose the province as the spatial unit of analysis based on an admin-

istrative GIS map for 2005. To account for the expansion of the capital city (Hanoi) after 2008,

all centroid-based variables for firms in Hanoi in Survey 2015 were constructed using weights

for the old Hanoi area, and the former Ha Tay area computed from their industrial values just

6The WBES covers 127 thousands firms across 139 countries and also asks questions on finance, corruption,
crime, competition, labor, obstacles to growth. The WBES has been operating since the 1990’s, and has been run
from the Enterprise Analysis Unit (EAU) since 2005-06.

7We exclude the 2009 survey as the 2007-2008 financial crisis means that the 2008 firm level characteristics
are less reliable. In additon, power outages in 2008 were in the main driven by failures to operate planned power
sources which means our hydro-IV strategy would not be able to capture shocks.
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before the expansion.8 We redefine sector, and size variables using variables collected from the

face-to-face interview phase of the WBES surveys.9 A series of variables were created to con-

trol for firm heterogeneity, including sector dummies (based on the first two digits of the main

product ISIC (International Standard Industrial Classification) code), four size dummies, a firm

age variable, four dummies for state and foreign ownership at the 10%, and 50% thresholds, a

share-holding dummy, a publicly quoted company dummy, a dummy for access to credit, and

an exporter dummy. For more details on the original variables, treatments for missing values,

and the data cleaning process see Appendix 2.A.1.

Power supply provision. We use two variables to measure the frequency and intensity of

power outages (the average number of power outages per month, and the typical duration of an

outage). To analyze the impact of both factors we create a variable that proxies power outage

volume (hours per month), calculated as the product of power outage frequency (occurrences

per month), and power outage intensity (hours per occurrence).10 We construct a variable for

generator usage as a percentage of electricity used, and assign a zero value for those firms that

do not own or share a generator. See Appendix 2.A.2 for details.

Firm performance. Monetary variables (revenues, and input variables including the replace-

ment value of machinery, vehicles, and equipment (proxied for capital stock); materials cost;

labor cost; fuel cost; electricity cost, and energy cost) are deflated using the World Bank defla-

8In 2007 industrial gross output at current prices for Hanoi and Ha Tay are 116,096.4, and 20,173.5 (billion
VND), respectively. The weight applied is 1:0.1737. We ignore the rural areas that used to belong to Hoa Binh,
and Vinh Phuc provinces, and latter appended to Hanoi due to their limited economic importance.

9The surveys were designed as a two-stage procedure. The variables in the first stage (screening by phone)
include sector and size are and considered less reliable than those collected in the second stage (face-to-face
interview with firm owners/managers).

10The three proxies for power quality were log transformed after being added to 1 (to address the log of zero
problem).
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tors and then logged (base year 2010=100). The energy cost variable is only available for 2005

Survey, and the electricity, and fuel cost variables are only available for the 2015 Survey. To

reduce the impact of outliers we apply the ‘three sigma rule’ to account for extreme values in

the revenue and factor input variables.11 We also estimate two total factor productivity revenue

(TFPR) variables based on YKL, and YKLM models (Details of how we measure the efficiency

of input usage are given in Appendix 2.A.3).

2.4.2.2 Province-level Data

It is possible that certain characteristics of a province may simultaneously affect firm perfor-

mance and power provision. We construct two variables to control for economic conditions at

the province level based on data from the Statistical Yearbooks of Vietnam by Vietnam’s Gen-

eral Statistics Office (GSO).12 Province industrial product (IP) share is calculated as the ratio of

the gross industrial output of each province, and national gross industrial output for each year

and is a proxy for agglomeration economies and also captures the importance of each province

to the national economy. We argue that this variable may affect both firm performance and

the priority that may be given to power distribution when there are shortages (priority given to

areas of strategic economic importance). Second, we calculate a Province IP index to capture

IP growth at the province level that could both improve a firm’s performance but worsen power

reliability if power supply significantly lags demand.13

We also control for topography differences. In general, we hypothesis that less elevated

11We calculate the mean, and the standard error of the log of firm revenue for each year in the original database
then define ‘extreme values’ as those that more than three standard errors deviations from the mean. A similar
process is applied for factor input variables.

12Data is accessible at http://www.gso.gov.vn/Default_en.aspx?tabid=515.
13See Appendix B1 for details
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provinces offer better conditions for business (i.e. better transportation and access to the sea

ports). However, they may also be more susceptible to electricity interruptions caused by an

overloaded system. On the other hand, highly-elevated provinces may be in a less favourable

position for the maintenance, and upgrade of power grids, and other distribution, and transmis-

sion facilities, which may be another cause of unreliability in the power sector. To control for

elevation we use the void-filled DEM from the HydroSHEDS database to calculate the mean

elevation of each province where the boundaries are defined by the GAUL dataset.14

In addition to elevation we also include controls for temperature that can both affect power

provision (hot weather increases electricity demand for air-conditioners, and hence is more

likely to cause a system overload) and firm performance (that could for example negatively af-

fect labor productivity). Following the literature, we control for cooling degree (Allcott et al.,

2016) which is derived from the forecast variable of air temperature at 2m extracted from a grid-

ded temperature data set (NCEP-DOE Reanalysis 2 provided by the NOAA/OAR/ESRL PSD).

See Appendix 2.B.2 for more details about spatial interpolation and computation methods.

Previous studies suggest that rainfall shocks can affect the economy through multiple chan-

nels other than through its effect on hydropower generation. For example, more rain may in-

crease agriculture-related activities, raise electricity demand in rural area due to increased in-

come for farmers, and together with storms, may affect power transmission and the electricity

distribution network (Alam, 2013). In addition, floods frequently hamper transportation net-

works. To measure the impact of rainfall shocks, we construct a Standardized Precipitation

Index (SPI) for each province derived from ‘Terrestrial Air Temperature, and Precipitation:

14HydroSHEDS DEM was derived from Space Shuttle flight for NASA’s Shuttle Radar Topography Mission
(SRTM) at three arc-second resolution.
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Monthly Climatologies’ (version 4.1) by the Daleware University (Matsuura and Willmott,

2009). Positive values of SPI indicate a positive rainfall shock while a negative SPI indicates a

negative rainfall shock. Near-zero values of SPI indicate normal rainfall conditions while large

values indicate extreme weather conditions.15

2.4.2.3 Summary Statistics

Table 2.1 provides a series of summary statistics for our regression sample. Compared with the

2005 sample, the sample in 2015 is characterized by a higher number of smaller firms, domestic

private firms, fewer exporters, publicly quoted firms, and those firms that have access to credit.

In terms of power provision, firms in the 2015 Survey on average have access to a more reliable

power supply regardless of how we measure power outages and the variation across firms is

also lower. An average firm in the 2005 Survey experiences 0.6 outages per month, which

typical last 2.51 hours while an average firm in the 2015 Survey experiences 0.37 outages per

month, which typically last 1.46 hours each. The average outage volume is 4.61 hours/month

in the 2005 Survey and 3.12 hours/month in 2015 Survey. This suggests an improvement in the

overall reliability of the power system. The share of firms that own a generator is comparable

between the two surveys (34% in 2005 and 35% in 2015). In terms of performance, firms in the

2015 Survey have higher average productivity levels, however, because they use fewer inputs

they subsequently generate lower revenues.

[Table 2.1 about here]

15As the measure fits a rainfall series into a gamma series to account for the skewness of rainfall, it has a number
of benefits not shared by those used in the literature (Duflo and Pande, 2007; Kaur, 2014; Sarsons, 2015), which
construct rainfall shocks from the long-term mean, and for certain degree assume normality of the rainfall series.
See Appendix 2.B.3 for more details about the spatial interpolation, and computation methods used in this paper.

135



2.4.3 OLS Estimation

Table 2.2 presents our estimates of the impact of outages on firm revenues. The coefficients on

the variable of interest after controlling for firms characteristics, province characteristics, and

sector dummies, are negative but insignificant. The results suggest that power outages have no

effect on firm performance in both years.

[Table 2.2 about here]

Turning to the other controls, in Table 2.3 we present our OLS estimates of the impact of

power outages on productivity (Panel A), firms’ use of energy inputs (Panel B), and firms’ use

of other flexible inputs (Panel C). We include the same controls as Table 2.2 including sector

dummies but not reported for reasons of space. Panel A shows that for 2004 power outages

resulted in a significant reduction in TFPR estimated by the YKL model. More precisely, one

percent increase in power outage intensity is associated with a reduction in TFPR by 0.06%,

while the equivalent reduction for power outage frequency is 0.15%, everything else equal.

The estimates are significant at the 10%, and 1% level, respectively. The coefficients for 2014

are also negative but insignificant. When material inputs are taken into account in the TFPR

estimation (YKLM model), the impact of power disruption is insignificant in both years.

Panel B presents the results for the use of a series of different factor inputs. The top panel

shows a significant increase in generator use in both years. A 1% increase in the volume of

power outages increases the share share of self-generated power by 0.09% in 2004, and 0.05%

in 2014. Due to the difference in the availability of energy input variables in the two waves

of WBES, we report results for two different dependent variable sets in Panel B: energy cost
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only for the 2005 Survey, and electricity cost and fuel cost for the 2015 Survey.16 Our OLS

results show no significant change in energy use. Unexpectedly, a 1% increase in power outages

is associated with 0.06%-0.11% increase in electricity costs and may reflect the previously

discussed issues of endogeneity. Finally, in Panel C we investigate the relationship between

power reliability, and non-power flexible factor utilization. Again, in both years power outages

are not found to affect the amount of material inputs or the number of workers employed within

a firm.

2.5 Instrumental Variable Approach

To overcome these challenges to the OLS approach from endogeneity concerns, we employ an

instrumental strategy that integrates information about weather, river flow, hydropower genera-

tion and the electricity grid. We exploit the fact that Vietnam is highly dependent on hydropower

and diverse in topography and weather conditions and hence the weather-induced variations in

river flows into large dams may well predict power provision while there is little reason for them

to correlate with firm performance via other channels. Before detailing our strategy, we discuss

how it is expected to appropriately address the empirical challenges.

The literature suggests three main sources of endogeneity that one may need to consider

when examining the link between power outages and firm performance. First, attenuation bias

due to measurement error could be serious because we need to rely on self-reported data and

hence the degrees of power outages reported could be correlated with unobserved characteristics

16The WBES 2005 survey has limited support documentation other than the questionnaire itself which unfor-
tunately does not include a precise explanation of the ‘energy cost’ variable. Correspondences with World Bank
staff suggests that energy cost in 2005 is likely to include both electricity and fuel costs rather than just the cost of
electricity alone.
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of firms that we were not able to control for. Second, power outages and firm performance

could be decided by business environment, and most importantly local economic growth in our

context. While this factor benefits firm performance and simultaneously increases resources to

upgrade facilities and infrastructures in general, the improvement needs time and is normally

lagged behind the demand in developing contexts. Consequently, the places where the economy

grows fast tend to experience more overloads (i.e., power supply cannot meet demand spike.)

This source of endogeneity also tends to bias the impact of power outages to zero. Finally,

firms can choose their initial location to best fit their businesses and in many cases including

the consideration of power quality and the location later decides the performance of firms. For

example, energy-intensive firms tend to locate where the power supply is more reliable.

As our instrumental strategy exploit an arguably exogenous source of variation (the weather),

there is little reason for the IV correlated with firm performance other than through power out-

ages driven by river-flow variation. In other word, there is little chance for our IV to relate to

unobserved characteristics of firms or business environment given a rich set of control variables

and therefore we are confident that our strategy is good at dealing with the two first sources

of endogeneity. Given the cross-sectional nature of our analysis, we need to carefully consider

the implication of endogeneity due to firm location as mentioned in Cole et al. (2018). We

however may argue that our IV strategy is appropriate despite this concern as long as firms do

not care about their relative location to hydropower dams used to construct the IV. Different

from the case of Sub-African countries investigated in Cole et al. (2018), geographical features

of Vietnam generate no compelling incentive for firms to locate near hydropower dams. These

dams are all situated in mountainous regions, where conditions for doing business are much

less preferable and all firms considered in WBES in fact gather in delta regions, which can offer
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much better facilities, access to markets and human resources. There is also restricted reason

for firms to relocate based on their expectation of rainfall variation at surrounding dams given

their distance to dams. In addition, dam performance is subject to short-term variations and

hence difficult to affect a long-term decision like firm location.

2.5.1 River Flow Simulation

At a national scale it is difficult, and prohibitively costly to obtain discharge data for a large

number of stations over a long period. Hence, we use the Soil and Water Assessment Tool

(SWAT) (Arnold et al., 1998) to simulate river flow. SWAT is one of the most widely used

water quality watershed, and river basin–scale models, and is applied extensively to a broad

range of hydrologic and/or environmental problems (Gassman et al., 2014, p. 1).17

The simulation process follows the approach taken by Nguyen-Tien et al. (2018). First, we

deploy HydroSHEDS (Hydrological data, and maps based on SHuttle Elevation Derivatives at

multiple Scales) (Lehner et al., 2008), and its subset HydroBASINS (Lehner and Grill, 2013) to

delineate the watershed.18 The watershed used in this paper is shown in Figure 2.1 and is a com-

bination of three large basins with a total area of 977,964 km2 as defined by the ‘FAO Rivers in

17SWAT is a physically based, continuous, semi-distributed model that was initially developed to project the
impact of land management practices on water, sediment, and agricultural chemical yields in large complex catch-
ment areas under various soil conditions, land use, and management over a long time period (Neitsch et al., 2009).
It is a continuation of thirty years of non-point source modelling by the US Department of Agriculture (USDA),
the Agricultural Research Service (ARS), and Texas A&M University. Other federal agencies also contributed to
the model, including the US Environmental Protection Agency, the Natural Resources Conservation Service, the
National Oceanic, and the Atmospheric Administration, and the Bureau of Indian Affairs.

18HydroSHEDS is a derivative of the digital elevation model (DEM) at a three arc-second resolution of the Shut-
tle Radar Topography Mission (SRTM). The elevation data was void-filled, hydrologically processed, and corrected
to produce a consistent, and comprehensive suite of geo-referenced data that enables the analysis of upstream, and
downstream connectivity of watersheds. Among the subsets of the HydroSHEDS database, the polygon layers
that depict watershed boundaries, and sub-basin delineations at a global scale critical for hydrological analysis are
termed HydroBASINS.
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South, and East Asia”: Red River (165,007 km2), Vietnam Coast (186,187 km2), and a part of

Mekong River (similar to Lower Mekong River with an area of 626,771 km2). The watershed

was selected to take into account the interconnection of Vietnam’s rivers with those in upstream

countries. The watershed is divided into 7,887 sub-basins at level 12 of HydroBASINS. Arc-

SWAT then further divides the watershed into 53,024 terrain units called Hydrologic Response

Units (HRU) that are heterogeneous in terms of soil, land cover conditions, and slope thanks

to the inputs from the Digital Soil Map of the World (DSMW) (version 3.6) (FAO, 2007), the

University of Maryland Department of Geography (UMD) Land Cover classification collection

at the 1km pixel resolution (Hansen et al., 1998, 2000), and HydroSHEDS void-filled DEM.

Daily weather data for the watershed (the maximum, and minimum temperature, precipitation,

wind speed, relative humidity, and solar radiation) were supplied by 2,755 gridded stations from

the Climate Forecast System Reanalysis (CFSR) by the US’s National Centers for Environmen-

tal Prediction (NCEP) (Saha et al., 2010, 2014) to simulate monthly river flow for the whole

watershed for the period from January 1995 to July 2014. The simulation period was chosen

to best fit the available performance data of hydropower plants, subject to the availability of

weather data.

[Figure 2.1 about here]

2.5.2 Hyropower Generation Model

Our analysis focuses on the river flow into the 40 largest hydropower plants in Vietnam. Our

hydropower operation data at the plant level is from Electricity of Vietnam (EVN, 2015b) and

includes total capacity, and the electricity generation of 40 of the largest hydropower plants in
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Vietnam between 1995 and 2014. The combined installed capacity accounts for 75-85% of all

hydropower sources which in turn accounts for 35%-53% of energy generation across Vietnam.

[Figure 2.2 about here]

We use regression analysis to predict hydropower supply at each of the 40 large hydropower

dams in Vietnam between 1995 and mid 2014. This model utilizes installed capacity, a quadratic

function of SWAT simulated flow, upstream combined installed capacity, and dam fixed effects

as regressors to determine the level of electricity generation. Our estimating equation is given

by:

Genist = β0 + β1Flowist + β2Flow2
ist + β3CAPist + β4U pCAPist + µi + εist (2.3)

where i, s, t are indices for dam, month, and year, respectively; Gen is average daily generation

by month (MWh/day); Flow is the simulated discharge from SWAT model; CAP is the installed

capacity of the dam; U pCAP is the combined installed capacity of upstream dams; µi is dam

fixed effects, and εist is the idiosyncratic error term. The installed capacity provides us with

information on the optimized generation of a given dam at its designed level of discharge, while

the function of simulated flow explains the deviation in the generation of electricity due to the

deviations in the discharge from the value that the dam was designed for. The inclusion of a

squared discharge term reflects differences in turbine efficiency: dams under extreme hydrolog-

ical conditions (droughts) generate less electricity than predicted given water availability. The

upstream installed capacity takes into account the impact of the upstream dams’ operation on

electricity generation. We include dam fixed effects to take into account other sources of het-

erogeneity across dams. Table 2.4 presents the results of the model used to generate our IV for

the baseline regressions and explains 87.8% of the variation in electricity generation at the dam
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level.

[Table 2.4 about here]

From the results in Table 2.4 we predict the average daily production for each dam by month

(Ĝenist), then calculate the Hydrologically Predicted Plant Factor (HPPF) given by:

HPPFist =
Ĝenist (MWh/day)

CAPist (MW).24 (hours/day)
.100% (2.4)

where Ĝenist is the predicted value of dam generation in Equation 2.3, which excludes the error

term εist that could be correlated with power demand fluctuation. The HPPF is the ratio be-

tween predicted generation, and the generation under full utilization at the designed discharge.

HPPF of a dam at a given time point is mainly determined by the hydrological conditions at

that dam (water availability, and flow extreme degree); which in turn are driven by weather

conditions, and not affected by human activities or firm performance.

We calculate the HPPF for each year as the average of HPPF for each month in that year:

HPPFit =

∑T
s=1 HPPFist

T
(2.5)

Where T is the number of months in a year: T = 12 for t = 2004, and T = 7 for t = 2014,

as we were not able to simulate river-flow series for the last 5 months of 2014 due to the

unavailability of weather data. 19 It should be noted that for each survey, we used a different

number of hydropower plants to calculate HPPF, taking into account the dynamics of dam

19The incompleteness of the series however does not affect the IV for 2014 as the first 7 months already cover
the entire dry season when the variation in river flows to hydropower dams is most likely to affect power reliability.
As the last 5 months are within the rainy season, outages due to hydropower are less of a concern.
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hydropower construction: 11 for the 2005 Survey, and 40 for the 2015 Survey (for details see

Table 2.5).

[Table 2.5 about here]

2.5.3 Linking Provinces and Hydropower Plants

After estimating hydropower plant factors based on weather shocks, we need to link the perfor-

mance of power utility companies with the power provided to firms. One solution is to define

a cutoff radius (100km, 200km or 400km) to determine the hydopower plant that supplies a

certain province before constructing an instrumental variable (Cole et al., 2018). However, this

approach is not appropriate for a country like Vietnam that has a single grid system that con-

nects all provinces and power sources. More specifically, since 1994, Vietnam has constructed,

and operates a 500kV North - South line that has enabled the interconnection and exchange

of electricity across regions. For example, a power shortage in a large industrial centre in the

South could be filled by the transfer of a surplus of supply of a power plant located in the

North. Hence, in our single grid context, it is important to incorporate the performance of all

hydropower plants for each province centre. We consider two factors: the size, and the distance

of the utility to our sample of firms.

Distance plays an important role in energy transmission, especially in the single-grid system

like the case we deal with in this study. Although electricity is a special goods, which can

be consumed almost immediately after generation at any point on the grid Cole et al. (2018),

underdeveloped transmission and distribution system like the case of Vietnam means that a long

distance of power transmission is associated with large variable technical losses (Hussain et al.,
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2018). When a large hydropower plant needs to decrease its generation due to a shortage of

water, it is more efficient for the overall system to reduce supply to economic centres within

the proximity of the plant first. Otherwise, extra electricity from distant sources is required

to be transmitted to fill in the local power demand gap at the cost of power shortages at other

economic centres plus large technical losses due to long-distance transmission.

The size of a utility can be proxied by its installed capacity. However, we need to construct

a measure of distance. Figure 2.3 shows the provinces in the WBES, the hydropower plants

used in this study and the electric grid network that connects them.

[Figure 2.3 about here]

2.5.3.1 Distance to Hydropower Plants

A simple solution is to estimate the geodesic distance, the minimum length of a curve that links

a province centroid to a hydropower dam along the surface of the earth.20 However, Geodesic

distance is a fairly coarse measure as it does not take into account the distribution system (grid)

of the country. Our solution is to construct a second distance measure through the electricity

transmission network based on the grid GIS dataset by WB (2017) (see Appendix 2.B.4 for

details).

20More specifically, we compute this distance by the geodist package by Picard (2017), which uses the coordi-
nates in the WGS 1984 datum, and the equations in Vincenty (1975).
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2.5.3.2 Instrumental Variable Computation

We incorporate the HPPF from listed hydropower sources to compute an instrumental variable

that we call the Hydropower Availability Index (HAI) for each province and reflects the power

supply availability in that province given by:

HAI jt(ρ) =

∑N
i=1 HPPFit.wi jt∑N

i=1 wi jt
, where wi jt =

CAPit

dρi j

(2.6)

Accordingly, Hydropower Availability Index (HAI) of province j in year t is the weighted

average of HPPF of all (N) hydropower plants (indexed by i) within our sample in that year.

The weight wi jt is proportionate to the installed capacity of plant i but inversely related to the

distance raised to power ρ between plant i, and province j (dρi jt).

2.5.4 Distance Penalty Parameter Selection

One important aspect in the calculation of our IV is that is may be sensitive to the selection of

the distance penalty parameter (ρ). Hence, we need to make a decision on the value of ρ for

each survey. As can be seen from Table 2.6, increasing ρ tends to give us a lower minimum

and higher maximum values and a larger variation (measured by the standard error). A higher

penalty for distance means it is harder to smooth power production across the country, and a

more ‘localised’ measure of our hydrological predictor of power shortages and can take on more

extreme values.

[Table 2.6 about here]
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It is useful to consider each cross section in turn. A firm located in a province with higher

HAI is less likely to be constrained by poor power supply conditions everything else equal.

However, because in a given year, there is only one transmission and distribution system, there

should be only one value of ρ that is the most suitable to describe the system at that time. As

we have limited information on the power transmission and distribution system we rely on our

WBES sample to choose a suitable value of ρ for each survey.

For our IV to be a valid instrument it must be correlated with our outage measures (the

relevance condition) but should not drive firm performance via any channel other than through

the deficiencies in the power supply (the exogeneity condition). As we intend to use a single

hydro-IV for our endogenous variable (power outages), it is not possible to formally test the

exogeneity of our IV. However, as our IV is generated from an arguably exogenous source

of variation (the weather), it is difficult to imagine any mechanism through which the hydro-

IV could influence firm performance other than through power outage once factors that may

give cause for concern in the literature such as cooling degree, and rainfall shocks (Allcott

et al., 2016; Alam, 2013) are controlled for. One may concern that our IV (HAI) is computed

from a non-linear function of distance and therefore could be just a proxy for the remoteness,

for example if economically or politically important provinces are by chance relatively close

to hydropower dams in shortage of water. The exogeneity of our IV however remains given

such a valid concern as we already control for industrial production share, which captures the

importance of the provinces in the national industry. Our IV generation process ensures that

our hydro instruments are not dependent on weather local to the firm but the weather conditions

upstream from the dams (and in some cases even beyond Vietnam’s borders) that generate

electricity supplied to the local region where the firm is located. For this reason, we argue that
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we have a good instrument.

We now discuss why we believe that our IV is relevant. Besides the usual t-tests, which

are derived from the heteroscedasticity-robust standard errors clustered at the province level,

we adopt an underidentification test to check whether the ‘reduced form’ equation is identi-

fied, namely the Sanderson-Windmeijer (SW) first-stage χ2 test (Sanderson and Windmeijer,

2016).21 We also consider the problem of weak instruments, which may bias the 2SLS esti-

mates, and make the size of associated tests less reliable (Stock and Yogo, 2005). The widely-

used rule of thumb by Staiger and Stock (1997) suggests that an IV should not be used if the

first stage F-statistic is less than 10. In our case, to report a first stage F-statistic we rely on the

Kleibergen-Paap rank Wald F statistic, which is generalised for the non-i.i.d errors (Kleibergen

and Paap, 2006; Kleibergen and Schaffer, 2007). A remedy for a weak IV (if any) is to use a

test that is robust to weak instruments for the significance of the potentially endogenous vari-

able. Hence, we use the Anderson-Rubin (AR) test (Anderson and Rubin, 1949) where the null

hypothesis is that the coefficients on the endogenous variable in the structural equation (power

outage) are not statistically different from zero, and the overidentifying restriction is valid.

Our approach is to run the first stage with the same set of control variables as the OLS

estimations, using HAI(ρ) with varying values of ρ as an instrument for the measurement of

outages. Hence, to be considered as a possible instrument the variable must be relevant (i.e.,

correlated with the outage measurements conditional on the control variables) and the correla-

tions should be negative (i.e., less hydro-availability is associated with a greater risk of a power

supply shortage). Among the qualified candidates for the choice of IV, for a given set of control

21The SW test builds on the procedure by Angrist and Pischke (2008)[p217-218], and implemented using the
ivreg2 command (Baum et al., 2010).
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variables, we favour those that return the highest values in the first stage Kleibergen-Paap rank

Wald F-statistic. For the ‘calibration’ process we use the values of ρ from 1 to 10 with one unit

intervals with revenues (in logs) as the dependent variable (of the second stage).

We use Figure 2.4 to illustrate the performance of the first stage analysis for different choices

of HAI(ρ). In all of the graphs the coefficients of HAI(ρ) in the first stage regression, repre-

sented by the red lines, lie below the blue horizontal lines (constant value at 0) and the province-

clustered robust confidence interval bands (grey areas) do not touch the blue lines in any of the

graphs presented. These indicate that the IVs that we generate in the first stage are within the

chosen range of ρ, are negative and relevant. This gives us a certain flexibility when it comes to

the selection of IVs for the main regressions results.

[Figure 2.4 about here]

For the 2005 Survey we choose ρ = 1 for the baseline regressions where the IV is at its most

powerful (highest blue bars) regardless of which measure of power outage is used. For the 2015

Survey the IV is strongest when ρ = 9 for outage frequency and ρ = 10 for outage intensity

and volume. As a result, for the firms in the 2015 Survey, we choose ρ = 10 to generate the

IV for our baseline 2SLS regressions. The first stage has allowed us to decide on an optimal

value for the distance penalty parameter for the models that use different measures of outages

and gives us confidence in the selection process given our prior belief that in each year there

should be only one value of ρ that best describes the current system of power transmission and

distribution. One possible explanation for the higher value of ρ in 2015 is that more hydropower

plants were used in the constructions of the IVs (40 vs 11). When the network of power sources

became more intensive, the impact of each plant tends to be more localised (i.e., a local utility is
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more important to local supply) and hence one might expect a higher distance penalty parameter

(ρ).

2.6 Results

2.6.1 Baseline First Stage Results

Table 2.7 presents the results of our baseline first stage regressions (where revenue is the depen-

dent variable in the second stage) using our chosen IVs for each survey. The IVs are negatively

correlated with our outage measures and the correlations are significant at the 1% level. The

exception is the correlation between HAI(1) and outage frequency in the 2005 Survey (Col-

umn 1), which is significant only at the 5% level. The first stage (Kleibergen-Paap rk Wald)

F-statistic for this column is lower than the rule of thumb (6.08) while those of the five others

exceed 10, ranging between 13.29 (Column 4), and 20.12 (Column 2). Hence, our IVs can be

considered reasonably powerful. Everything else equal, if the (weighted) hydropower sources

that supply a particular firm experience more advantageous hydrological conditions, the firm is

less likely to face power constraints across all three measures. Our results for the 2005 Survey

show that a one percent increase in HAI(1) corresponds to a 4.34% reduction in outage fre-

quency, a 9.39% decrease in outage intensity, and a 11.65% decrease in outage volume. For the

2015 Survey we find that a one percent increase in HAI(10) corresponds to a 0.71% decrease in

outage frequency, a 1.56% decrease in outage intensity, and a 1.76% decrease in outage volume.

Under-identification is rejected at the 1% level for each regressions according to the SW χ2 test,

with the exception of Column 1, which is rejected at the 5% level.
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[Table 2.7 about here]

Table 2.8 provides the first stage results for our other second stage dependent variables

(TFPR, and our energy input factors). Due to missing values for a number of these dependent

variables, the sample sizes are smaller than those for total revenues. In general, the first stage

appears to be consistent across the different samples: The IV coefficients are negative and of

a similar magnitude to those shown in Table 2.7 and are generally significant at the 1% level

with some only at the 5% level. The exceptions are the estimates for Frequency, and when the

second stage dependent variable is a measure of TFPR in the 2015 Survey. However, the under-

identification problem of these first stage regressions are rejected at the 10% level implying the

IVs are still valid. For the other first stage results, IV irrelevance is rejected at least at the 5%,

and for the majority it is rejected at the 1% level. [Table 2.8 about here]

2.6.2 Second Stage Results

2.6.2.1 Revenues

Table 2.9 provides a comparison of the impact of outages on revenues. In both years, the 2SLS

coefficients are negative, and larger than those of the OLS estimates. The smaller coefficients

in the OLS results are in line with the hypothesized attenuation biases caused by measurement

error, and biases caused by pro-business environment factors and match what was found for

India (Allcott et al., 2016).22 Our findings for 2004 show that, on average, a 1% increase in

power outage frequency, intensity, and volume is associated with a loss of 0.74%, 0.34%, and

22Omitted environmental factors that support business may increase power demand and put further stress on
power supplies, causing more power disruption. This kind of bias pushes the negative impact of power deficiency
toward zero.
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0.27% in revenue. The coefficients for revenue losses are much larger in 2014, at 1.81%, 0.82%,

and 0.73%, respectively.23 In comparison, the marginal impact of power outages (measured in

Volume) on revenue for the case of India is -1.091 (Allcott et al., 2016) and -1.08 for Sub

Saharan (Cole et al., 2018). Our significant estimate at -0.73 (for Survey 2015) is slightly

smaller, probably because power outages in Vietnam are a less severe issue. The coefficients

for the 2005 Survey, however, remain statistically indistinguishable from zero, confirmed by the

results of a weak-instrument test. In contrast, the coefficients for the 2015 Survey are significant

at the 1% level for all three outage measures. The insignificance of an outage impact is also

rejected by the weak-instrument test at the 5% level. Overall, the 2SLS estimates support the

view of outages in 2004 had very little impact on firm revenues but in contrast to the OLS results

they do provide strong evidence that power unreliability in 2014 had a significant impact.

[Table 2.9 about here]

2.6.2.2 TFPR

Panel A of Table 2.10 shows the 2SLS estimates for the impact of power outages on productivity.

Again, the 2SLS estimated coefficients are negative and their magnitudes are greater than those

estimated by OLS. In line with the testable hypotheses, the size of the productivity losses are

smaller than the revenue losses. In 2004, a 1% increase in the power outages decreases the

efficiency of machinery, and labor usage by 0.25 - 0.77%, and the efficiency of machinery, labor,

and material input usage by 0.13- 0.38%. For 2014 the productivity losses for the same two

groups range from 0.55-1.36%, and 0.53-1.30%, respectively. The significance level of these

23Based on the summary statistics, a 1% increase in power outage volume equates to 2.8 minutes/month in the
2005 Survey 2005 and 1.9 minutes/month in the 2015 Survey.
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coefficients varies. The loss of TFPR measured by YKLM in the 2005 Survey is significant at

the 10% level. The loss of TFPR measured by the YKL model in the 2015 Survey is significant

at the 1% level. The loss of TFPR measured by the YKLM model in Survey 2015 is insignificant

according to the t-test but significant at the 5% level according to the weak-instrument test (AR

χ2).

[Table 2.10 about here]

2.6.2.3 Energy Inputs

Panel B of Table 2.10 shows how power deficiency affects a firm’s decision on the level of en-

ergy to use in the production process. A common adaptation that firms appear to make and that

we find evidence for in both years is to use self-generated electricity with the coefficients being

significant at at least the 5% level. An increase in the degree of power unreliability explains

0.35%-1.02%, and 0.31%-0.76% of the increase in the share of self-generated electricity in the

2005 and 2015 Surveys, respectively with the magnitude depending on the measure of outages.

Of the three measures, firms are more sensitive to the frequency rather than the intensity or

volume of outages.

Overall, the higher the level of unreliability in the power supply, the less energy firms use.

For the 2005 Survey the magnitude of energy reduction ranges from 0.76-2.03, and is significant

at the 5% level (t-test) and the 1% level (AR χ2 test). The same significance levels are found

for the use of electricity in the 2015 Survey with the size of the coefficient ranging between

-1.03, and -2.46. The impacts of outages on fuel use in 2015 is found to be negative but not

statistically different from zero.
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2.6.2.4 Other Inputs

Panel C of Table 2.10 shows the impact on other flexible inputs (material inputs and labor). For

both inputs, there is no impact on firms in the 2005 Survey. Those in the 2015 Survey are only

significant at the 10% level according to the AR χ2 test. Hence, in 2014 a one percent increase

in power outages is estimated to decrease the use of material inputs, and labor by 0.62-1.39%,

and 0.64-1.53%, respectively. The lack of strong results may suggest that firms are not able to

substitute factor inputs that easily in the face of power outages.

2.6.3 Distance Penalty Parameter Uncertainty Analysis

As part of our sensitivity analysis we investigate whether our 2SLS results are sensitive to the

selection of the distance penalty parameter (ρ). Figure 2.5 illustrates how the estimates for

the responses of revenue to power unreliability change across different values of ρ. In both

years, the 2SLS estimates (red dots) are negative, and considerably below the OLS estimates

no matter which ρ is chosen to generate the IV. The magnitude of the 2SLS coefficients for

the 2005 Survey are largest for ρ = 2, and gradually decreases as ρ becomes larger. However,

the change is negligible in comparison with the standard error of our baseline estimates. As

the 95% confidence intervals (grey bands) always cross the green line (zero coefficient) we can

conclude that the impact of power outages on revenues in 2004 is insignificant regardless of the

value of ρ.

[Figure 2.5 about here]

However, when we turn to the 2015 Survey we find our results are sensitive to the choice of
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ρ. From the baseline values, the coefficients increase when the we put a lower penalty (ρ) on

distance (the size of hydropower plants is more important), and exceeds one deviation from the

baseline values when ρ reaches 1. This implies the role of distance causes a range of coefficient

uncertainty. Nevertheless, regardless of the value of ρ, the coefficients for the 2015 Survey

are always negative and significant (at the 5% level or better), and their magnitudes are always

larger than those for the 2005 Survey. In Appendix 2.C we provide additional robustness checks

to show that our findings are robust to the use of alternative IVs or when regressions are run on

subsets of the data.

2.6.4 Differences across Years

Our robustness checks reinforce our main results power unreliability was more harmful (both in

terms of size and significance) for firm performance in the 2015 Survey than the 2005 Survey.

In this subsection we investigate the mechanisms that may be driving this difference. One pos-

sible explanation is that the extent to which firms require electricity to operate has intensified.

If electricity is mainly used for general purposes, such as lighting, or makes only a minimal

contribution to the value-added processes, there is no reason to expect a significant impact of

a power outage on firm performance. However, if firms have become more technologically ad-

vanced and now operate complex production processes then it is easy to imagine how power

outages could become more costly.

To investigate whether the electricity intensity hypothesis holds, we pool all manufacturing

firms (that report a value of machine use) and test whether there were changes in factor inten-

sities across the two surveys. We employ a median regressor to estimate the three log-linear
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versions of the Cobb-Douglas function: YKL, YKLM, and YKLMN, where the YKLMN is

an extension of the YKLM, adding energy (N) to the production function. We assume that

the energy cost reported in the 2005 Survey is the sum of electricity costs and fuel costs. All

regressions include the factor costs of production (in log form), their interaction terms with an

indicator for year 2015, and a year dummy. For robust checks, we sequentially include province

and sector dummies. The results are presented in Table 2.11.

[Table 2.11 about here]

Of primary interest are interactions terms that indicate whether factor intensities change

across the two surveys. All nine regressions confirm that there was a significant rise in capital

intensity, and the final three columns show that there has also been a significant increase in

energy intensity. The magnitude of the shift is relatively large. The results in the final column

show that in the 2005 Survey, the intensity of capital is just 2.9% whereas it quadruples to 12.4%

in the 2015 Survey. Over the same period the average energy intensity almost doubles from

5.6% to 10.3%. In contrast, material input intensity significantly decreases by 13%. Labour

intensity also falls, however the significance of the reduction is not robust, especially when

taking material inputs and energy into account.

Assuming the firms in the WBES are representative our results suggest that over the period

2004 to 2014 there was substantial development in the Vietnam manufacturing sector. Firms

engaged in more comprehensive, and complicated manufacturing processes that use fewer in-

termediate material inputs, generate more value from existing capital and energy inputs through

the more intensive use of machinery and hence being less reliant on simple product assem-

bly. It is also likely, although we cannot test it directly, that firms also became more electricity
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intensive and explains Vietnam’s increasing sensitivity to changes in the quality of electricity

provision. These findings are in line with the policies of industrialisation and modernisation that

Vietnam has been keen on pursuing and the observation that Vietnam’s economic complexity in

the global ranking was improved from 85 in 2004 to 54 in 2014 (Simoes and Hidalgo, 2011).

2.7 Conclusions

In this study the impact of power outages on firm performance by introducing an innovative

instrumental variable strategy in he context of a small rapidly growing economy. We contribute

to the hydro-IV literature by offering a solution for a single-grid country. More specifically we

propose a framework that integrates a rainfall-runoff model, a hydropower generation model,

and an interpolation technique using grid-based distances to generate an IV that is relevant and

powerful. We apply our framework to firm-level data from two waves of the WBES spanning

ten years.

Our results suggest that power quality matters for fast growing economies like Vietnam.

Firms that face frequent or long lasting power disruptions tend to generate less revenue than

their counterparts. We also find that productivity is lower and they use less flexible inputs, such

as material inputs and labor.Power outages also induce firms to use generators to supply more

of their electricity. Of the different types of outage, increased frequency is more damaging than

intensity. Comparing the impact of power outages in 2004 and 2014, we find that firm per-

formance appears to be less responsive to the low quality of power supply and not surprisingly

became more sensitive as firms became more dependent on electricity. This finding supports the

progressive approach in power development policy making. Our results that show an increase
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in production complexity over time also helps us to understand the differences in the empirical

results compared to previous studies, where the reduction in revenues due to power outages are

found to be significant in some (Allcott et al., 2016) but insignificant in others (Mensah, 2016).

In terms of policy prescriptions, our results show that an improvement in power reliability

could substantially enhance economic growth. According to our 2SLS estimates, in 2014 a

small reduction in power disruption by 22.8 minutes per year would have increased revenues

by 0.73%. Given that total revenues of registered firms in 2014 was 13,516 trillion dong (639

billion USD), and assuming that firms in WBES are representative, such an improvement in

power quality could have added 4.66 billion USD to the performance of Vietnam’s firms.24

The greater vulnerability of firms to power disruption in recent years reflects the changes

that Vietnam has made in moving up the global value chain, where simple product assembly and

processing has been replaced by more comprehensive manufacturing sector that uses machin-

ery, and energy more intensively. Other solutions to reduce firms’ sensitivity to power outages

include the promotion of power-saving technologies and to price electricity at full price to en-

courage greater inward investment in the sector. The potential for the latter is significant as it

has been identified that by 2030 Vietnam potentially could save 17% electricity if appropriate

energy efficiency polices were introduced (Danish Energy Agency, 2017).

24Total revenues of registered firms is from Vietnam General Statistics Office (GSO). The average official ex-
change rate for 2014 (1USD= 21,148 VND) is from International Monetary Fund, International Financial Statistics.
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Figure 2.2: Basins and hydropower plants

Source: Basins are derived from “FAO Rivers in South and East Asia” and MONRE (2012).
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Figure 2.3: Provinces, hydropower plants and electric grids in Vietnam
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Figure 2.4: First stage performance using HAI(ρHAI(ρHAI(ρ) as the IV and varying the distance
penalty parameter (ρρρ)

Note: The graphs in the subsequent pages illustrate the performance of our first stage regres-
sions. The dependent variable in the second stage is the log of revenue. The endogenous
explanatory variable in the second stage (the dependent variable in the first stage) is a measure
of power outages. The excluded instrumental variable is HAI(ρ) defined in Section 2.5 and
determined by a series of distance penalty parameters (ρ) from 1 to 10 with an interval of 1.
The control variables are as those in Table 2.2 (including sector dummies).
The title of each graph indicates the measure of power outages, which could be Frq - Frequency
(average number of outage per month); Int - Intensity (average duration (hour) per outage); and
Vol - Volume (average outage hour per month = Frq× Int) and the WBES data used.
The subtitle of each graph reports the optimal value of ρ; defined as that which produces the
highest F-statistic in the first stage and the value of the F-statistic, the estimate of the instrument
coefficient HAI(ρ) in the first stage and its p-value corresponding to the optimal ρ.
Each graph draws the estimate of coefficient of HAI (line, left y-axis), its 95% confidence
interval (area, left y-axis) and the F-statistic (bar, right y-axis) of the first stage regression for
each value of ρ within the stated range.
The vertically dashed line is drawn at the optimal value of ρ. The horizontal line at 0 (blue,
left y-axis) is drawn with reference to the confidence intervals to identify the significance of the
coefficients. The horizontal line at 10 (orange, right y-axis) is sketched with reference to the
F-statistic to identify the “weak” instrument issue, based on the rough rule of thumb (F-statistic
<10).
F statistic reported is for the heteroskedasticity Kleibergen-Paap weak instrument test.
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Figure 2.5: Distance penalty parameter uncertainty analysis
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Table 2.1: Summary statistics

Survey 2005 Survey 2015

VARIABLES N mean sd min max N mean sd min max

PROVINCE LEVEL DATA

Province characteristics

Elevation (m) 24 128 154 1.94 464 19 119 142 1.94 397

Rainfall shocks (SPI) 24 0.080 0.63 -1.35 0.76 19 -0.35 0.38 -0.95 0.46

Cooling degree (F) 24 11.9 2.95 7.20 15.8 19 11.6 2.60 7.90 15.4

Province IP share 24 0.033 0.058 0.0016 0.25 19 0.042 0.049 0.0051 0.18

Province IP Index 24 1.18 0.053 1.08 1.32 19 1.07 0.057 0.88 1.15

FIRM LEVEL DATA

Power provision

Power outages; frequency (occurences per month) 1,150 0.60 1.20 0 20 960 0.37 1.19 0 20

Power outages;intensity (hours per occurence) 1,149 2.51 8.56 0 96 960 1.46 5.82 0 96

Power outages; volume (hours per month) 1,149 4.61 20.7 0 384 960 3.12 18.7 0 480

Generator ownership or share; binary 1,131 0.34 0.47 0 1 684 0.35 0.48 0 1

Firm characteristics

Firm age 1,147 12.5 13.2 1 115 989 13.3 10.3 1 113

Small size 1,149 0.10 0.30 0 1 989 0.38 0.49 0 1

Medium size 1,149 0.37 0.48 0 1 989 0.35 0.48 0 1

Large size 1,149 0.26 0.44 0 1 989 0.17 0.38 0 1

Very large size 1,149 0.27 0.45 0 1 989 0.098 0.30 0 1

State ownership 10%-50% 1,145 0.14 0.34 0 1 994 0.020 0.14 0 1

State ownership > 50% 1,145 0.20 0.40 0 1 994 0.015 0.12 0 1

Foreign ownership 10%-50% 1,145 0.017 0.13 0 1 993 0.013 0.11 0 1

Foreign ownership > 50% 1,145 0.100 0.30 0 1 993 0.065 0.25 0 1

Share-holding 1,149 0.37 0.48 0 1 989 0.22 0.41 0 1

Share-traded 1,149 0.0035 0.059 0 1 989 0.039 0.19 0 1

Exporter 1,150 0.46 0.50 0 1 994 0.27 0.45 0 1

Access to credit 1,150 0.70 0.46 0 1 971 0.49 0.50 0 1

Firm performance

Revenues (bil. VND) 1,141 129 333 0.16 5,271 975 72.8 228 0.034 4,108

TFP YKL model; log 986 2.34 1.23 -1.76 6.57 432 2.34 1.37 -1.35 7.57

TFP YKLM model; log 975 1.43 0.84 -1.52 3.92 401 1.89 1.10 -0.44 5.85

Energy use

Generator use; % electricity 1,045 1.37 3.51 0 25 637 0.37 0.80 0 7

Energy cost (mil. VND) 1,146 2,854 9,659 1.14 128,264

Fuel cost (mil. VND) 476 4,271 40,972 0.68 753,043

Electricity cost (mil. VND) 892 681 2,387 0.68 34,229

Other factor use

Material cost (bil. VND) 1,134 97.4 299 0.036 5,808 552 63.7 447 0.0034 9,844

Labor cost (bil. VND) 1,139 10.7 23.0 0.023 324 899 5.75 16.2 0.010 222

Earning/labor (mil.VND) 485 23.1 17.1 1.82 173 876 38.5 45.0 0.89 430
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Table 2.2: The impact of outages on firm revenue(OLS estimates)

Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Revenue; log
Power outage; log -0.03 -0.01 -0.01 -0.14 -0.10 -0.07

(0.07) (0.04) (0.04) (0.13) (0.08) (0.06)
Age; log 0.09** 0.09** 0.09** 0.05 0.05 0.05

(0.04) (0.04) (0.04) (0.08) (0.08) (0.08)
Medium size 0.79*** 0.78*** 0.78*** 1.50*** 1.50*** 1.50***

(0.13) (0.13) (0.13) (0.10) (0.10) (0.10)
Large size 1.97*** 1.96*** 1.97*** 2.70*** 2.71*** 2.70***

(0.18) (0.18) (0.18) (0.20) (0.20) (0.20)
Very large size 3.13*** 3.13*** 3.13*** 3.89*** 3.90*** 3.89***

(0.22) (0.22) (0.22) (0.20) (0.19) (0.20)
State ownership 10%-50% 0.28** 0.28** 0.29** -0.09 -0.09 -0.09

(0.11) (0.11) (0.11) (0.32) (0.32) (0.32)
State ownership > 50% 0.66*** 0.66*** 0.66*** 0.50* 0.52* 0.51*

(0.15) (0.15) (0.15) (0.25) (0.25) (0.25)
Foreign ownership 10%-50% 0.70** 0.70** 0.70** 0.23 0.22 0.23

(0.25) (0.25) (0.25) (0.33) (0.33) (0.33)
Foreign ownership > 50% 0.73*** 0.73*** 0.73*** 0.49*** 0.49*** 0.49***

(0.23) (0.23) (0.23) (0.12) (0.12) (0.12)
Share-holding 0.20** 0.20** 0.20** 0.39** 0.38** 0.38**

(0.09) (0.09) (0.09) (0.16) (0.16) (0.16)
Share-traded 0.71** 0.71** 0.72** 0.45* 0.44* 0.44*

(0.28) (0.28) (0.28) (0.23) (0.22) (0.22)
Exporter 0.20*** 0.20*** 0.20*** -0.14* -0.14* -0.14*

(0.06) (0.06) (0.06) (0.08) (0.08) (0.08)
Access to credit 0.55*** 0.55*** 0.55*** 0.06 0.05 0.05

(0.07) (0.08) (0.08) (0.16) (0.16) (0.16)
IP share 0.84 0.85 0.85 7.03*** 7.04*** 7.03***

(0.72) (0.73) (0.73) (1.26) (1.26) (1.27)
IP index -0.21 -0.20 -0.20 1.94 1.93 1.94

(0.89) (0.90) (0.90) (1.32) (1.28) (1.29)
Cooling degree; log 0.39 0.39 0.39 0.03 0.03 0.03

(0.32) (0.32) (0.32) (0.14) (0.13) (0.14)
Elevation (km); log -0.10** -0.10** -0.09** 0.04 0.05 0.04

(0.04) (0.04) (0.04) (0.03) (0.03) (0.03)
Rainfall shocks (SPI) 0.04 0.04 0.04 0.03 0.02 0.02

(0.09) (0.09) (0.09) (0.13) (0.12) (0.12)

R-squared 0.60 0.60 0.60 0.48 0.48 0.48
Observations 1,133 1,132 1,132 915 915 915

The regression includes dummies for sectors. The dependent variable in bold. Robust standard er-
rors clustered at province level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Three measures of
power outages (in log form) indicated in each column name: Frq - Frequency (average number of
outage per month); Int - Intensity (average duration (hour) per outage); and Vol - Volume (average
outage hour per month = Frq× Int). 169



Table 2.3: Impact of power outages on TFP and other inputs (OLS estimates)

Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: TFPR
TFP YKL model; log
Power outage; log -0.15*** -0.06* -0.05** -0.12 -0.04 -0.03

(0.05) (0.03) (0.02) (0.16) (0.09) (0.07)
R-squared 0.07 0.07 0.07 0.10 0.10 0.10
Observations 978 977 977 421 421 421
TFP YKLM model; log
Power outage; log -0.03 -0.01 -0.01 -0.01 0.01 0.00

(0.02) (0.01) (0.01) (0.09) (0.05) (0.04)
R-squared 0.02 0.02 0.02 0.06 0.06 0.06
Observations 967 966 966 392 392 392

Panel B: Energy inputs
Generator use; log
Power outage; log 0.17*** 0.08*** 0.09*** 0.11*** 0.08*** 0.05***

(0.06) (0.02) (0.02) (0.04) (0.02) (0.01)
R-squared 0.10 0.10 0.11 0.16 0.18 0.17
Observations 1,036 1,035 1,035 605 605 605
Energy cost; log
Power outage; log 0.17 0.00 0.01

(0.12) (0.05) (0.04)
R-squared 0.37 0.36 0.36
Observations 1,137 1,136 1,136
Electric cost; log
Power outage; log 0.11 0.06 0.06

(0.10) (0.04) (0.03)
R-squared 0.40 0.40 0.40
Observations 841 841 841
Fuel cost; log
Power outage; log -0.26 -0.08 -0.09

(0.21) (0.12) (0.09)
R-squared 0.31 0.31 0.31
Observations 458 458 458

Panel C: Other inputs
Material cost; log
Power outage; log -0.03 -0.02 -0.01 -0.19 -0.14 -0.09

(0.10) (0.05) (0.04) (0.19) (0.13) (0.09)
(cont.)
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Survey 2005 Survey 2015
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
R-squared 0.50 0.50 0.50 0.40 0.40 0.40
Observations 1,125 1,124 1,124 529 529 529
Labor cost; log
Power outage; log 0.04 0.01 0.01 0.02 -0.00 -0.00

(0.05) (0.02) (0.02) (0.07) (0.03) (0.03)
R-squared 0.76 0.76 0.76 0.57 0.57 0.57
Observations 1,130 1,129 1,129 845 845 845

The regressions include control variables as those in Table 2.2 (including sector dummies). Depen-
dent variables are in bold. Three measures of power outages (in log form) indicated in each column
name are Frq - Frequency (average number of outage per month); Int - Intensity (average duration
(hour) per outage); and Vol - Volume (average outage hour per month = Frq× Int). Robust standard
errors clustered at province level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 2.4: Hydropower generation model

VARIABLES Average generation by month (MWh/day)

Installed capacity (MW) 6.187***
(1.083)

Upstream installed capacity (MW) 1.383**
(0.608)

Inflow to dam; SWAT simulation (m3/s) 4.167***
(0.458)

Inflow to dam; SWAT simulation squared (m6/s2) -0.000204**
(8.63e-05)

Observations 2,984
R-squared 0.878
Number of groups 40
Dam FE Y

Driscoll-Kraay standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.5: List of hydropower plants used to calculate IV

No. Dam Year of operation Installed capacity (MW) 2005 Survey 2015 Survey
1 Da Nhim 1964 160 x x
2 Thac Ba 1971 120 x x
3 Tri An 1991 400 x x
4 Hoa Binh 1994 1920 x x
5 Vinh Son 1994 66 x x
6 Thac Mo 1995 150 x x
7 Song Hinh 2000 70 x x
8 Yaly 2000 720 x x
9 Da Mi 2001 175 x x

10 Ham Thuan 2001 300 x x
11 Can Don 2003 78 x x
12 Sesan 3 2006 260 x
13 Quang Tri 2007 64 x
14 A Vuong 2008 210 x
15 Dai Ninh 2008 300 x
16 Tuyen Quang 2008 342 x
17 Binh Dien 2009 44 x
18 Buon Kuop 2009 280 x
19 Buon Tua Srah 2009 86 x
20 Plei Krong 1 2009 100 x
21 Sesan 4 2009 360 x
22 Song Ba Ha 2009 220 x
23 Song Con 2009 63 x
24 Ban Ve 2010 320 x
25 Cua Dat 2010 97 x
26 Huong Dien 2010 71 x
27 Son La 2010 2400 x
28 Song Tranh 2 2010 190 x
29 Srepok 3 2010 220 x
30 An Khe - Kanak 2011 173 x
31 Dak R’Tih 2011 144 x
32 Dong Nai 3 2011 180 x
33 A Luoi 2012 170 x
34 Bac Ha 2012 90 x
35 Dak Mi 4 2012 190 x
36 Dong Nai 4 2012 340 x
37 Ban Chat 2013 220 x
38 Hua Na 2013 180 x
39 Khe Bo 2013 100 x
40 Nam Chien 2013 200 x

Note: x indicates that the corresponding plants was used to construct IV in the given survey. Surveys cap-
ture the data of firm performance one year before.
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Table 2.6: Summary statistics of instrumental variables HAI(ρ)

2005 Survey 2015 Survey

ρ mean sd median min max N mean sd median min max N

ρ =1 0.460 0.0145 0.458 0.442 0.514 1141 0.437 0.0277 0.446 0.342 0.471 975

ρ =2 0.457 0.0319 0.455 0.428 0.592 1141 0.469 0.0667 0.486 0.302 0.559 975

ρ =3 0.458 0.0438 0.457 0.426 0.659 1141 0.491 0.0888 0.516 0.266 0.591 975

ρ =4 0.459 0.0499 0.458 0.424 0.693 1141 0.503 0.0992 0.524 0.248 0.599 975

ρ =5 0.460 0.0522 0.459 0.425 0.706 1141 0.510 0.105 0.526 0.235 0.601 975

ρ =6 0.460 0.0529 0.460 0.425 0.709 1141 0.513 0.108 0.528 0.226 0.601 975

ρ =7 0.460 0.0531 0.460 0.425 0.710 1141 0.516 0.111 0.528 0.220 0.601 975

ρ =8 0.460 0.0530 0.461 0.426 0.709 1141 0.518 0.112 0.529 0.216 0.601 975

ρ =9 0.460 0.0528 0.461 0.426 0.708 1141 0.519 0.113 0.529 0.213 0.601 975

ρ =10 0.460 0.0526 0.462 0.426 0.706 1141 0.520 0.113 0.529 0.212 0.601 975

Note: Table reports the summary statistics of IV HAI(ρ) with varying distance penalty parameters ρ of the sam-
ple including all observations with identified province and non-missing revenues after outlier-removal. See text
for more details.
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Table 2.7: First stage for Revenue

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
HAI(ρ) -4.34** -9.39*** -11.65*** -0.71*** -1.56*** -1.76***

(1.76) (2.09) (3.08) (0.19) (0.35) (0.42)
Age; log -0.00 0.03 0.02 -0.01 0.02 0.00

(0.02) (0.04) (0.04) (0.03) (0.03) (0.05)
Medium size 0.01 -0.09 -0.06 0.00 0.02 0.03

(0.06) (0.12) (0.14) (0.04) (0.06) (0.09)
Large size -0.03 -0.13 -0.12 0.01 0.07 0.05

(0.08) (0.16) (0.19) (0.04) (0.09) (0.11)
Very large size 0.01 -0.11 -0.09 0.08 0.22 0.20

(0.06) (0.15) (0.17) (0.10) (0.15) (0.20)
State ownership 10%-50% -0.04 -0.05 -0.04 0.11 0.20 0.27

(0.05) (0.08) (0.10) (0.17) (0.22) (0.33)
State ownership > 50% 0.01 0.01 -0.00 -0.07 0.06 -0.01

(0.04) (0.08) (0.10) (0.07) (0.24) (0.23)
Foreign ownership 10%-50% 0.08 0.28 0.31 -0.21*** -0.43*** -0.52***

(0.08) (0.21) (0.24) (0.07) (0.08) (0.11)
Foreign ownership > 50% -0.01 0.01 -0.01 -0.01 -0.05 -0.05

(0.05) (0.09) (0.11) (0.07) (0.13) (0.16)
Share-holding 0.05 0.05 0.06 -0.04 -0.11** -0.10

(0.04) (0.06) (0.07) (0.03) (0.05) (0.07)
Share-traded -0.31*** -0.71*** -0.89*** 0.01 -0.12 -0.11

(0.11) (0.22) (0.24) (0.14) (0.18) (0.28)
Exporter -0.02 -0.01 -0.03 0.03 0.00 0.04

(0.03) (0.05) (0.06) (0.05) (0.09) (0.12)
Access to credit 0.12*** 0.19*** 0.26*** 0.02 -0.03 0.00

(0.03) (0.06) (0.07) (0.03) (0.05) (0.06)
IP share -0.33 -0.43 -0.71 -0.02 0.24 -0.02

(0.23) (0.41) (0.50) (0.32) (0.58) (0.75)
IP index 0.21 0.74 0.80 -0.96* -1.90** -2.24*

(0.53) (0.85) (1.09) (0.51) (0.93) (1.15)
Cooling degree; log 0.16* 0.41*** 0.50*** 0.22*** 0.36** 0.45**

(0.08) (0.10) (0.13) (0.08) (0.16) (0.21)
Elevation (km); log -0.03 -0.04 -0.04 -0.03** -0.06* -0.08**

(0.02) (0.03) (0.04) (0.02) (0.03) (0.04)
Rainfall shocks (SPI) 0.01 0.02 0.04 0.04 -0.02 0.02

(0.05) (0.07) (0.09) (0.06) (0.11) (0.15)

Observations 1,133 1,132 1,132 915 915 915
Clusters 24 24 24 19 19 19
First stage F-statistic 6.08 20.12 14.32 13.29 19.84 17.68
SW χ2 test 6.56** 21.73*** 15.46*** 14.69*** 21.93*** 19.54***

The table reports the results for the first stage of our 2SLS estimates, which include dummies for sectors.
The dependent variable in the second stage is in bold. The endogenous variable in the second stage is a
measure of power outages as indicated in each column name, which could be Frq - Frequency (average
number of outage per month); Int - Intensity (average duration (hour) per outage); or Vol - Volume (aver-
age outage hour per month = Frq× Int). The first stage F-statistic reported is the Kleibergen-Paap rk Wald
F-statistic that is robust to heteroskedasticity. SW χ2 test is the Sanderson-Windmeijer first stage χ2 test
for underidentification. Robust standard errors clustered at province level are in parentheses. *** p<0.01,
** p<0.05, * p<0.1. 174



Table 2.8: First stage for TFP and other inputs

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: TFPR
TFP YKL model; log
HAI(ρ); IV -3.83** -9.56*** -11.53*** -0.62* -1.46** -1.53*

(1.78) (2.67) (3.72) (0.35) (0.61) (0.80)
Observations 978 977 977 421 421 421
Clusters 24 24 24 19 19 19
F-statistic 4.61 12.85 9.59 3.15 5.68 3.62
SW χ2 test 4.98** 13.88*** 10.36*** 3.61* 6.50** 4.15**
TFP YKLM model; log
HAI(ρ); IV -3.87** -9.52*** -11.54*** -0.61 -1.44** -1.50

(1.82) (2.78) (3.84) (0.40) (0.68) (0.91)
Observations 967 966 966 392 392 392
Clusters 24 24 24 19 19 19
F-statistic 4.54 11.69 9.01 2.25 4.45 2.71
SW χ2 test 4.90** 12.63*** 9.73*** 2.60 5.13** 3.13*

Panel B: Energy inputs
Generator use; log
HAI(ρ); IV -4.49** -10.61*** -12.88*** -0.75*** -1.71*** -1.86***

(1.84) (2.75) (3.82) (0.26) (0.46) (0.58)
Observations 1,036 1,035 1,035 605 605 605
Clusters 24 24 24 19 19 19
F-statistic 5.95 14.85 11.38 8.20 13.67 10.14
SW χ2 test 6.42** 16.02*** 12.28*** 9.17*** 15.28*** 11.34***
Energy cost; log
HAI(ρ); IV -4.53*** -10.04*** -12.19***

(1.73) (2.00) (3.00)
Observations 1,137 1,136 1,136
Clusters 24 24 24
F-statistic 6.82 25.16 16.47
SW χ2 test 7.36*** 27.16*** 17.78***
Electric cost; log
HAI(ρ); IV -0.78*** -1.62*** -1.85***

(0.19) (0.35) (0.42)
Observations 841 841 841
Clusters 19 19 19
F-statistic 17.13 20.89 19.32
SW χ2 test 19.01*** 23.18*** 21.44***
Fuel cost; log
HAI(ρ); IV -1.16*** -2.17*** -2.42***

(0.26) (0.52) (0.66)
Observations 458 458 458
Clusters 19 19 19
F-statistic 20.15 17.52 13.59
SW χ2 test 23.09*** 20.07*** 15.57***

Panel C: Other inputs
(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Material cost; log
HAI(ρ); IV -4.25** -9.32*** -11.52*** -0.83*** -1.72*** -1.87***

(1.72) (2.15) (3.12) (0.27) (0.48) (0.63)
Observations 1,125 1,124 1,124 529 529 529
Clusters 24 24 24 19 19 19
F-statistic 6.12 18.83 13.63 9.29 13.03 8.85
SW χ2 test 6.61** 20.34*** 14.72*** 10.53*** 14.76*** 10.03***
Labor cost; log
HAI(ρ); IV -4.20** -9.28*** -11.37*** -0.68*** -1.43*** -1.62***

(1.73) (2.11) (3.10) (0.19) (0.36) (0.43)
Observations 1,130 1,129 1,129 845 845 845
Clusters 24 24 24 19 19 19
F-statistic 5.90 19.32 13.45 12.41 16.07 14.10
SW χ2 test 6.37** 20.86*** 14.52*** 13.77*** 17.82*** 15.64***

Table reports the results for the first stage of our 2SLS estimates, which include control variables as those in Table 2.7 and dummies for sectors. The
dependent variable in the second stage is in bold. The endogenous variable in the second stage is a measure of power outages as indicated in each
column name, which could be Frq - Frequency (average number of outage per month); Int - Intensity (average duration (hour) per outage); or Vol -
Volume (average outage hour per month = Frq× Int). The first stage F-statistic reported is the Kleibergen-Paap rk Wald F-statistic that is robust to
heteroskedasticity. SW χ2 test is the Sanderson-Windmeijer first stage χ2 test for underidentification. Robust standard errors clustered at province
level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.9: Impacts of Outages of Firm Revenues (2SLS estimates)

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
Revenue; log
Outage; 2SLS -0.74 -0.34 -0.27 -1.81*** -0.82*** -0.73***

(1.21) (0.54) (0.44) (0.52) (0.28) (0.25)
Age; log 0.09* 0.10* 0.10* 0.04 0.08 0.06

(0.05) (0.05) (0.05) (0.09) (0.08) (0.09)
Medium size 0.79*** 0.75*** 0.76*** 1.48*** 1.49*** 1.50***

(0.13) (0.13) (0.13) (0.10) (0.09) (0.10)
Large size 1.94*** 1.92*** 1.93*** 2.69*** 2.73*** 2.71***

(0.21) (0.21) (0.20) (0.22) (0.22) (0.22)
Very large size 3.13*** 3.09*** 3.10*** 3.98*** 4.01*** 3.98***

(0.20) (0.22) (0.21) (0.25) (0.20) (0.22)
State ownership 10%-50% 0.26** 0.27** 0.27*** 0.08 0.05 0.08

(0.12) (0.11) (0.11) (0.39) (0.33) (0.36)
State ownership > 50% 0.67*** 0.67*** 0.67*** 0.41 0.59* 0.53*

(0.14) (0.14) (0.14) (0.29) (0.32) (0.31)
Foreign ownership 10%-50% 0.76*** 0.80** 0.78** -0.09 -0.07 -0.09

(0.29) (0.33) (0.31) (0.35) (0.32) (0.34)
Foreign ownership > 50% 0.72*** 0.74*** 0.73*** 0.46*** 0.44*** 0.44***

(0.25) (0.24) (0.24) (0.12) (0.08) (0.09)
Share-holding 0.24** 0.22** 0.22** 0.34** 0.31* 0.33**

(0.11) (0.09) (0.09) (0.16) (0.16) (0.17)
Share-traded 0.50 0.49 0.49 0.48 0.36 0.38

(0.38) (0.39) (0.39) (0.33) (0.25) (0.29)
Exporter 0.18*** 0.20*** 0.19*** -0.09 -0.14 -0.11

(0.06) (0.06) (0.06) (0.11) (0.11) (0.12)
Access to credit 0.63*** 0.61*** 0.62*** 0.12 0.06 0.08

(0.16) (0.11) (0.12) (0.16) (0.16) (0.16)
IP share 0.66 0.76 0.71 6.66*** 6.88*** 6.67***

(0.69) (0.71) (0.70) (0.86) (1.06) (1.08)
IP index -0.03 0.07 0.03 1.24 1.42 1.35

(1.03) (1.14) (1.10) (1.41) (1.23) (1.30)
Cooling degree; log 0.49** 0.51** 0.51** 0.28* 0.18 0.21

(0.23) (0.24) (0.24) (0.15) (0.16) (0.17)
Elevation (m); log -0.12* -0.11** -0.11** 0.03 0.04* 0.04

(0.06) (0.06) (0.06) (0.02) (0.03) (0.03)
Rainfall shocks (SPI) 0.09 0.09 0.10 0.04 -0.05 -0.02

(0.11) (0.11) (0.11) (0.12) (0.12) (0.13)

Outage; OLS -0.03 -0.01 -0.01 -0.14 -0.10 -0.07
(0.07) (0.04) (0.04) (0.13) (0.08) (0.06)

Observations 1,133 1,132 1,132 915 915 915
Clusters 24 24 24 19 19 19
First stage F-statistic 6.08 20.12 14.32 13.29 19.84 17.68
SW χ2 test 6.56** 21.73*** 15.46*** 14.69*** 21.93*** 19.54***
AR χ2 test 0.46 0.45 0.45 5.67** 5.67** 5.67**

The regression includes dummies for sectors. The dependent variables are in bold. The endogenous
variable is a measure of power outages as indicated in each column name, which could be Frq - Fre-
quency (average number of outage per month); Int - Intensity (average duration (hour) per outage); or
Vol - Volume (average outage hour per month = Frq× Int). The excluded IV is HAI(ρ) with predeter-
mined values of ρ for each survey. The OLS estimate is included for comparison. First stage F-statistic:
Kleibergen-Paap rk Wald F-statistic that is robust to heteroskedasticity. Underidentification test: SW χ2

test (Sanderson-Windmeijer first stage χ2 test). Weak-instrument robust tests for significant endoge-
nous variables : AR χ2 test (Anderson-Rubin Wald χ2 test). Robust standard errors clustered at province
level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.10: Impact of Outages on TFPR and other inputs (2SLS estimates)

Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)

Panel A: TFPR
TFP YKL model; log
Outage; 2SLS -0.77 -0.31 -0.25 -1.36*** -0.57** -0.55**

(0.67) (0.25) (0.22) (0.47) (0.25) (0.23)
Outage; OLS -0.15*** -0.06* -0.05** -0.12 -0.04 -0.03

(0.05) (0.03) (0.02) (0.16) (0.09) (0.07)
Observations 978 977 977 421 421 421
First stage F-statistic 4.61 12.85 9.59 3.15 5.68 3.62
SW χ2 test 4.98** 13.88*** 10.36*** 3.61* 6.50** 4.15**
AR χ2 test 2.59 2.50 2.50 3.97** 3.97** 3.97**
TFP YKLM model; log
Outage; 2SLS -0.38 -0.15* -0.13* -1.30 -0.55 -0.53

(0.25) (0.08) (0.07) (1.03) (0.38) (0.41)
Outage; OLS -0.03 -0.01 -0.01 -0.01 0.01 0

(0.02) (0.01) (0.01) (0.09) (0.05) (0.04)
Observations 967 966 966 392 392 392
First stage F-statistic 4.54 11.69 9.01 2.25 4.45 2.71
SW χ2 test 4.90** 12.63*** 9.73*** 2.60 5.13** 3.13*
AR χ2 test 3.65* 3.66* 3.66* 4.66** 4.66** 4.66**

Panel B: Energy inputs
Generator use; log
Outage; 2SLS 1.02*** 0.43*** 0.35*** 0.76*** 0.33*** 0.31***

(0.33) (0.14) (0.11) (0.21) (0.10) (0.10)
Outage; OLS 0.17*** 0.08*** 0.09*** 0.11*** 0.08*** 0.05***

(0.06) (0.02) (0.02) (0.04) (0.02) (0.01)
Observations 1,036 1,035 1,035 605 605 605
First stage F-statistic 5.95 14.85 11.38 8.20 13.67 10.14
SW χ2 test 6.42** 16.02*** 12.28*** 9.17*** 15.28*** 11.34***
AR χ2 test 8.16*** 8.26*** 8.26*** 6.49** 6.49** 6.49**
Energy cost; log
Outage; 2SLS -2.03* -0.92** -0.76**

(1.04) (0.38) (0.33)
Outage; OLS 0.17 0 0.01

(0.12) (0.05) (0.04)
Observations 1,137 1,136 1,136
First stage F-statistic 6.82 25.16 16.47
SW χ2 test 7.36*** 27.16*** 17.78***
AR χ2 test 7.40*** 7.63*** 7.63***
Electric cost; log
Outage; 2SLS -2.46** -1.18** -1.03**

(1.14) (0.49) (0.43)
Outage; OLS 0.11 0.06 0.06

(0.10) (0.04) (0.03)
Observations 841 841 841
First stage F-statistic 17.13 20.89 19.32
SW χ2 test 19.01*** 23.18*** 21.44***

(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10
VARIABLES Frq Int Vol Frq Int Vol

(1) (2) (3) (4) (5) (6)
AR χ2 test 9.31*** 9.31*** 9.31***
Fuel cost; log
Outage; 2SLS -1.31 -0.70 -0.62

(1.16) (0.59) (0.55)
Outage; OLS -0.26 -0.08 -0.09

(0.21) (0.12) (0.09)
Observations 458 458 458
First stage F-statistic 20.15 17.52 13.59
SW χ2 test 23.09*** 20.07*** 15.57***
AR χ2 test 1.78 1.78 1.78

Panel C: Other inputs
Material cost; log
Outage; 2SLS -0.75 -0.34 -0.27 -1.39 -0.67 -0.62

(1.89) (0.85) (0.70) (0.88) (0.42) (0.40)
Outage; OLS -0.03 -0.02 -0.01 -0.19 -0.14 -0.09

(0.10) (0.05) (0.04) (0.19) (0.13) (0.09)
Observations 1,125 1,124 1,124 529 529 529
First stage F-statistic 6.12 18.83 13.63 9.29 13.03 8.85
SW χ2 test 6.61** 20.34*** 14.72*** 10.53*** 14.76*** 10.03***
AR χ2 test 0.18 0.17 0.17 3.34* 3.34* 3.34*
Labor cost; log
Outage; 2SLS 0.10 0.05 0.04 -1.53 -0.73 -0.64

(0.50) (0.23) (0.18) (1.28) (0.58) (0.52)
Outage; OLS 0.04 0.01 0.01 0.02 0 0

(0.05) (0.02) (0.02) (0.07) (0.03) (0.03)
Observations 1,130 1,129 1,129 845 845 845
First stage F-statistic 5.90 19.32 13.45 12.41 16.07 14.10
SW χ2 test 6.37** 20.86*** 14.52*** 13.77*** 17.82*** 15.64***
AR χ2 test 0.04 0.04 0.04 2.75* 2.75* 2.75*

The regression include control variables as those in Table 2.9 and dummies for sectors. The dependent variables are in bold. The endogenous
variable is a measure of power outages as indicated in each column name, which could be Frq - Frequency (average number of outage per
month); Int - Intensity (average duration (hour) per outage); or Vol - Volume (average outage hour per month = Frq× Int). The excluded IV is
HAI(ρ) with predetermined values of ρ for each survey. The OLS estimate is included for comparison. First stage F-statistic: Kleibergen-
Paap rk Wald F-statistic that is robust to heteroskedasticity. Underidentification test: SW χ2 test (Sanderson-Windmeijer first stage χ2 test).
Weak-instrument robust tests for significant endogenous variables : AR χ2 test (Anderson-Rubin Wald χ2 test). Robust standard errors
clustered at province level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.11: Factor intensity: Survey 2005 vs Survey 2015, median regressor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES Revenues; log

αK 0.20*** 0.21*** 0.18*** 0.035*** 0.041*** 0.037*** 0.028*** 0.030*** 0.029***

(0.025) (0.026) (0.024) (0.0096) (0.0099) (0.010) (0.0088) (0.0092) (0.0096)

αK * Year 2015 0.18*** 0.18*** 0.16*** 0.12*** 0.12*** 0.12*** 0.098*** 0.10*** 0.095***

(0.040) (0.042) (0.037) (0.016) (0.016) (0.016) (0.015) (0.016) (0.016)

αL 0.81*** 0.79*** 0.84*** 0.24*** 0.23*** 0.24*** 0.23*** 0.23*** 0.21***

(0.031) (0.032) (0.029) (0.014) (0.014) (0.015) (0.013) (0.013) (0.014)

αL * Year 2015 -0.25*** -0.21*** -0.21*** -0.0018 -0.0098 -0.0028 -0.039* -0.040* -0.035

(0.050) (0.051) (0.046) (0.021) (0.022) (0.022) (0.022) (0.023) (0.024)

αM 0.73*** 0.73*** 0.73*** 0.70*** 0.70*** 0.71***

(0.010) (0.011) (0.011) (0.0096) (0.010) (0.011)

αM * Year 2015 -0.15*** -0.14*** -0.14*** -0.14*** -0.13*** -0.13***

(0.015) (0.016) (0.016) (0.015) (0.015) (0.016)

αN 0.053*** 0.056*** 0.056***

(0.0086) (0.0090) (0.0095)

αN * Year 2015 0.050*** 0.044** 0.047**

(0.019) (0.020) (0.020)

Observations 1,440 1,440 1,440 1,398 1,398 1,398 1,343 1,343 1,343

Year dummies Y Y Y Y Y Y Y Y Y

Province dummies N Y Y N Y Y N Y Y

Sector dummies N N Y N N Y N N Y∑
αi; 2005 1.02 1.00 1.02 1.00 1.00 1.00 1.01 1.01 1.01

CRS F-stat 2005 0.48 0.03 0.85 0.28 0.13 0.03 2.31 1.94 1.04∑
αi ;2015 0.94 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99

CRS F-stat 2015 2.74* 0.59 1.13 2.98* 3.27* 3.27* 1.31 0.67 0.62

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. CRS F-stat is the hypothesis test for constant return to
scales by year

(∑
αi = 1

)
. Input factors included in the regressions are: Machine values (K), labor cost (L), Material cost (M)

and Energy cost (N)
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2.A Appendix A: Firm-level Data Supplements

This appendix provides supplemental information about the raw data and our data cleaning

process. For variables not mentioned below there was no assumptions made on missing or their

extreme values.

It should be noted that the WBES applied the stratified random sampling method, which is

superior to simple random sampling (i.e., estimates with proper weights could lead to higher

precision). The population units are divided into strata (non-overlapping, homogeneous groups),

before simple random samples are drawn within each stratum. There are 3 levels of stratification

applied for Vietnam: industry, firm size, and region. In the 2015 Survey, firms were stratified

into 7 industry groups (5 manufacturing, and 2 services industries); 3 size groups including

small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees);,

and 4 region groups (Red River Delta, North Central Area, and Central Coastal Area, South

East, and Mekong River Delta).25 There is no accessible documentation on the sampling method

in the 2005 Survey.26 However, there are similarities in the distribution of firm size, region, and

manufacturing sector (see below), which suggests that the three levels of stratification were also

applied to the 2005 Survey. As the surveys were conducted in a two-stages, it is recommended

that information from the first stage (screening by phone) should be replaced by more reliable

information from the second stage (face-to-face interview with the mangers/owners) whenever

possible.

25Food, and Beverages (ISIC Rev. 3.1 code 15), Garments (ISIC code 18), Non-metallic mineral products (ISIC
code 26), Fabricated metal products (ISIC code 28), Other Manufacturing (ISIC codes 16,17, 19-25, 27, 29-37),
Retail (ISIC code 52), and Other Services (ISIC codes 45, 50, 51, 55, 60-64, and 72).

26Nevertheless, 1.13% of firms recorded that their major product belongs to the service sector.
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2.A.1 Firm Characteristics

2.A.1.1 Location

Vietnam’s administration is organised in a 3-tier system: province level, district level, and com-

mune level.The highest tier (province level) is comprised of 63 units including 5 municipalities

(centrally managed cities), namely Ha Noi, Ho Chi Minh City, Hai Phong, Da Nang, and Can

Tho, and 58 provinces. The regional classification, although it has no official administrative

impact, can be helpful for spatial analysis as it groups municipalities, and provinces that share

common features in location, topography, terrain, climate, socio-economy. Accordingly, Viet-

nam can be divided into three parts (the North, the Central, and the South) or 8 regions (North-

west, Northeast, Red River Delta, North Central Coast, South Central Coast, Central Highlands,

Southeast, and Mekong River Delta). Within the context of the WBES Surveys cities are re-

ferred to as municipalities. We use ‘provinces’ to indicate all province level administrative units

(municipalities, and provinces).

The 2005 and 2015 surveys contain different variables for location. Survey 2005 has two

variables for region, and province. The 2015 Survey only has a variable for region but no vari-

able for province. However, they have an optional variable for location (a3x), which provides

information on province, district and/or commune where a firm is located although the details

vary across observation. The majority of firms provide information on province, and only a few

firms provide details on district and/or commune. Therefore, we choose province as the spatial

unit for analysis in our study. Since we can not find information on the location of 2 firms at the

province level (a3x variable) in the 2015 Survey, we treat their location as ‘unidentified’, and

exclude them from our analysis. The distribution of firms’ locations is illustrated in Table 2.A1.
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Out of the eight regions across the country only 5 were sampled in the surveys, namely, the

Red River Delta, the North Central, the Coastal Central, the South East, and the Mekong River

Delta. Among them, the Red River Delta together with the South East account for the majority

of the enterprises in the surveys, reflecting their importance to the economy. More than 30% of

firms are located in each of these two regions.

[Table 2.A1 about here]

There were some changes (splits and mergers) in administration between two surveys. The

most prominent is the expansion of the capital city (Hanoi) in 2008.27 As a large number of

variables (see below) are constructed based on the centroids of provinces, one implication to our

spatial analysis is that the centroid of Hanoi changes over two surveys. To generate centroid-

based variables for firms in Hanoi in Survey 2015, we used a GIS map before the merge (in

2005), construct separate variables for Hanoi, and Ha Tay as if there were no merge, then

weighted them by the industrial values just before the merge.28 Another more simple method

is just to calculate the centroid of Hanoi based on a new GIS map after the merge. However,

this is less reliable as the appended parts are very large in area but less important in terms of

economic activity.

27In 2008, the whole Ha Tay province, four communes in Hoa Binh province (Yen Trung, Yen Binh, Tien Xuan,
and Dong Xuan of Luong Son district), and one district (Me Linh) of Vinh Phuc province were merged into the
capital Hanoi.

28Gross output of industry at current prices by province in 2007 of Hanoi, and Ha Tay are 116,096.4, and
20,173.5 (billion VND). The weight applied is 1:0.1737. We ignore the rural areas that used to belong to Hoa
Binh, and Vinh Phuc provinces, and latter appended to Hanoi.
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2.A.1.2 Sector

The main difference between our surveys is that the 2005 Survey looks only at manufacturing

firms, which are classified into 17 sector groups.29 The 2015 Survey includes both manufac-

turing, and service firms following the sector classification of ISIC revision 3.1.30 We need

to reclassify sectors for several reasons. First, the sector classification is inconsistent across

surveys. Second, in the 2005 Survey, there are 95 firms (8.26 %) coded 20 (‘Other’) which is

much larger than many other sector groups in the same year useful. The 2015 Survey assigned

a firm to a sector as a result of screener questionnaires (based on the first stage of the survey

on the phone) rather than a face-to-face interview with the Manager/Owner /Director of each

establishment (in the second stage of the survey). Hence, it is possible that they contain inac-

curate information on the main activity of teh firm. Hence, we define a sector of firm based on

the the two first digits of the ISIC code of the main product in terms of revenue share (provided

by the variable d1a2 in the panel database), which were consistently collected in the face-to-

face interview phase of all surveys. For observations whose variable was missing or out of the

standard value range, we filled in the ISIC code using the information provided by the name

of the main product (d1a1x). If no information on the main product was available we used the

screener sector to assign the 2-digit ISIC code. This manual filling process was applied for 46

observations (35 in 2005 and 1 in 2015). When all sector codes were assigned, we grouped

29(1) Food & Beverage; (2) Textiles; (3) Apparel; (4) Leather products; (5) Wood & wood product, including
furniture; (6) Paper; (7) Chemical & Chemical products; (8) Rubber & plastic products; (9) Non-metallic mineral
products; (10) Basic metals; (11) Metal products; (12) Machinery, and equipment; (13) Electrical machinery; (14)
Electronics; (18) Construction materials; (19) Vehicles, and other transport equipment, and (20) Other.

30The codes for manufacturing firms (Section D) are: (2) Other manufacturing; (15) Food; (16) Tobacco; (17)
Textiles; (18) Garments; (19) Leather; (20) Wood; (21) Paper; (22) Publishing, printing, and Recorded media;
Refined petroleum product; (23) Refined petroleum product; (24) Chemicals; (25) Plastics & rubber; (26) Non
metallic mineral products; (27) Basic metals); (28) Fabricated metal products; (29) Machinery, and equipment;
(31) Electronics; (33) Precision instruments; Transport machines (34); Furniture (36), and Recycling (37). The
service sectors included in the Surveys are: (45) Construction (section F); (50) Services of motor vehicles; (51)
Wholesale; (52) Retail; (55) Hotel, and restaurant (section H);, and (60) Transport (section I); (72) IT;, and other .
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2-digit ISIC code into sectors as shown in Table 2.A2.

[Table 2.A2 about here]

2.A.1.3 Firm Size

There is no variable that explicitly classifies firm size in the 2005 Survey. In the 2015 Survey

firms are labelled as small (5-19 employees), medium (20-99 employees) or large (100, and

above employees). However, this is based on the screener questionnaires, which may contain

inaccurate information. Hence, we followed the manuals and reclassify firm size using the em-

ployment data gathered in the face-to-face interviews. Ideally, we would have relied on a com-

bination of data on the number of permanent workers (l1), number of temporary workers (l6),

and the average length of temporary employments (l8) to define the dimensions of firms. How-

ever, a large number of firms (especially in the 2005 Survey) did not provide their temporary

employment data. To avoid the serious loss of information, we use the permanent employment

numbers to put firms into four categories: small (<20), medium (20-99), large (100-299), and

very large (300, and above). The small number of firms that did not provide this information

are excluded from our analysis.

2.A.1.4 Age

We calculate firm age based on a question when firms started their business. No assumption

was made on missing values
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2.A.1.5 Ownership

We are interested in the share of the state and foreign owned firms. Two dummies were gen-

erated corresponding to an ownership that exceeds two thresholds 50% or 10%, which reflect

different levels of state/ foreign influence on firm performance. The former threshold captures a

majority ownership. According to Vietnam’ Enterprise Law 2005 and 2014, the holder of 10%

shares have some special rights including the right to nominate candidates to the Management

Board and the Control Board.

2.A.1.6 Legal Status

Based on the legal status variable, we generated a dummy for publicly traded companies. We

also include a dummy for companies with traded shares among share-holding companies. We

drop a negligible number of firms whose legal status is missing.

2.A.1.7 Credit

We use questions on whether a firm has access to loan/credit from a financial institution to

generate a binary variable for access to credit. No assumptions were made on missing values.

2.A.1.8 Exporters

All surveys contain information about the exporting activities of firms. We assume that firms

with missing values in the variables for the percentage of sales made up by indirect or/and

direct exports (d3b, and d3c) are not involved in either/both activities (zero percent). Hence,
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we define a dummy variable for exporters as those that have a combination of both direct, and

indirect exports value that account for at least 5% of their revenues.

2.A.2 Power Supply Provision

In each survey there are a number of variables that relate to the quality of power supply. The

first is a binary variable (c6), which reveals whether firms suffered from any power outages

over the last fiscal year. If the answer is yes, questions are then asked about the average number

of power outages per month (c7), the typical length of an outage (c8a), estimated losses as a

percentage of total sales due to power interruption (c9a), and the extent on a five level scale

in which electricity is an obstacle to the operation of firms (c30a). Power outage duration was

lower bounded at 1 hour in the 2005 Survey and 1 minute in the 2015 Survey.31 As some

firms report unreasonably high values for their power outage measurements, we put a limit of

20 (occurrences/month) on the outage numbers, and 96 (hours/occurrence). Any observation

that exceeds these thresholds is replaced by these thresholds. Only 5/1,149 observations in

Survey 2005, and 2/960 observations in Survey 2015 were subject to the replacement. The

most extreme values of self-reported outage number for Survey 2005, and 2015 are 60, and 20

hours/occurrence respectively. The most extreme values of self-reported outage duration for

Survey 2005, and 2015 are 400, and 480 hours/occurrence respectively. If we just use the raw

data to calculate the volume of outages, there are three values that exceed 960 hours/month,

roughly equivalent to 32 hours/day. We use the power outage frequency variable (the average

number of power outages per month - c7), and the power outage intensity variable (typical

31There is a variable for minutes to add to the average power outage duration in hours (_2015_c8 ), but this
exists in the 2015 Survey only.
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duration of an outage - c8a) as proxies for power (un)reliability.32 The outage volume variable

was computed as the product of these variable (after limits were imposed).

A typical mitigation measure of firms against the unreliability of power supply is the use

of generators. There are two variables that proved useful: a binary variable for the equipment

or share of generator(s) (variable c10), and the percentages of electricity generated from the

generator(s) owned/shared by firms (variable c11). These variables are available for all firms

in the 2005 Survey but not every firm in the 2015 Survey. Only firms that were interviewed by

the Manufacturing Questionnaire in this year were asked these questions while other firms (in

service sectors) interviewed by the Core Questionnaire or Retail Questionnaire were not.

2.A.3 TFPR Estimate

Since the concept of ‘technical change’ proposed by Solow (1957), productivity analysis has

become an important tool to examine the economic performance in the sense of how efficiently

resources are used by an aggregated economy or its agents. Specifically, firm data are used to

estimate a production function, and its residual, measured total factor productivity (TFP), can

be used to study policy impacts on firm performance (Van Beveren, 2012). OLS estimates of

TFP, are known to be biased due to the simultaneity issues (Marschak and Andrews, 1944). The

unobserved productivity shocks that firms already take into account when deciding the level of

inputs, such as managerial ability, expected machine breakdown, expected defection rate, and

expected rainfall pose identification challenges for OLS estimation (Ackerberg et al., 2015).

Consequently, positive shocks may lead to overestimation of input usage (De Loecker, 2011).

32For the special case of the 2015 Survey, we converted the variable _2015_c8 from minutes to hours before
added to c8a to compute the outage intensity variable)
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The estimates of labour are downward biased in a two-factor setup where quasi-fixed capital,

and flexible labour are positively correlated (Levinsohn and Petrin, 2003). Another source of

endogeneity associated with panel data, where firms exit, and entry are dependent on their

productivity, is attrition or selection bias. (Ackerberg et al., 2007). This kind of endogeneity

underestimates capital input, and overestimates TFP (Van Beveren, 2012).

There have been numerous methods designed to address the endogeneity issues. Fixed ef-

fects estimator are widely used to account for time-invariant firm specific characteristics that

could correct both simultaneous bias, and selection bias (Pavcnik, 2002; Levinsohn and Petrin,

2003). However the validity of this estimator requires the strict exogeneity of the inputs con-

ditional on firm characteristics (Wooldridge, 2009). Another solution is seeking a valid instru-

ment, and relying on either an IV or GMM estimator. Some sources of instruments are price

shocks of inputs, and outputs if the market is perfectly competitive, weather shocks, exogenous

shocks from input markets, and dynamics of inputs (Ackerberg et al., 2007; Van Beveren, 2012).

Yet the validity of IVs are subject to debate. Olley and Pakes (1996) propose a semi-parametric

estimator that uses investment decision as a proxy for the unobserved productivity shocks. The

survival problem is also incorporated to account for selection bias that may arise in an unbal-

anced panel dataset. Alternatively, Levinsohn and Petrin (2003) use intermediate inputs rather

than investment, which is susceptible to efficiency losses due to observations with zero value, as

a proxy. However, such an estimate does not address selection bias. Some later estimation im-

provements include those proposed by Ackerberg et al. (2007); Wooldridge (2009); Katayama

et al. (2009); De Loecker (2011).

In this study, as we work with cross-sectional data with a limited lags, there is a limited

ability to apply the above methods. Hence, we decided to follow EAU-WB (2017), which
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uses two versions of the Cobb-Douglas production function to estimate TFP for each sector

group, and addresses the endogeneity problem by adding dummies proxied for spatially-variant

factors, and time-variant factors that is not observed . The first (the YKL model) assumes firms

using two factors, namely capital (K), and labor (L), to generate output (Y). The second (the

YKML model) adds materials (M) to the production function. The corresponding parameters

αK , αL, αM are factor intensities.

Y = A.KαK .LαL (YKL model)

Y = A.KαK .LαL .MαM (YKLM model)

In our approach the estimation is based on a log-linear regression for each sector (indexed

by g), including province fixed effects (βp), and year fixed effects (γy), where p, and y are,

respectively, subscripts for provinces in which firms are located, and the year of the survey.

Manufacturing firms are allocated to 11 sector groups (to ensure a reasonable sample size), in-

cluding Food, beverages & tobacco (ISIC code 15, 16); Textiles (17); Garments (18); Leather

products (19); Wooden products & furniture (20, 36); Paper, printing & publishing (21, 22);

Refined petroleum products, chemicals, plastic & rubber (23 - 25); Non-metallic mineral prod-

ucts (26); Basic metal & Fabricated metal products (27, 28); Machinery, office, electronics &

precision instruments (29 - 33), and Transport machines (34). Estimations were applied for

manufacturing firms within our sample, excluding sectors that had too few observations (i.e.,

Mining & quarrying, and Recycling).

ln(Ygpy) = α0 + αK .ln(Kgpy) + αL.ln(Lgpy) + βp + γy + ugpy (YKL model)
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ln(Ygpy) = α0 + αK .ln(Kgpy) + αL.ln(Lgpy) + αM.ln(Mgpy) + βp + γy + ugpy (YKLM model)

All variables are observed in monetary terms rather than physical ones: revenue (Y); replace-

ment value of machinery, vehicles, and equipment (K); labor cost (L);, and materials cost (M).

Hence, we do not explicitly estimate TFP, but its revenue-based version, TFPR (Total factor

product revenue ) with the assumption of perfect market as follows:

ln(T̂ FPRgpy) = α̂0 + β̂p + γ̂y + ûgpy

From the two models (YKL, and YKLM), we obtain two sets of estimates of TFPR for man-

ufacturing firms. The results of our production function are shown in Table 2.A3, and 2.A4.

The YKLM model predicts total sales better than YKL (higher R̄2) but with a greater loss of

observations due to missing values for material input costs. Our results also show heterogeneity

in productivity across provinces, and across years. In addition, these two tables present a simple

linear hypothesis test of constant returns to scale (CRS) where the null hypothesis is that the

sum of total sales factor intensities in the production function equals 1.33 The F-statistic in the

last rows of these tables state that we cannot reject the CRS hypotheses at the given significant

levels in almost every sector group. The exceptions are Food, beverages tobacco, and Ma-

chinery, office, electronics & precision instruments in the YKLM model, whose sample rejects

the null hypotheses at 10%. The estimates of coefficients suggest that these sector groups have

decreasing returns to scale, and increasing returns to scale respectively.

[Table 2.A3 and 2.A4 about here]

33The null hypothesis for the YKL model is αK + αL = 1, and for the YKLM model is αK + αL + αM = 1
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2.B Appendix B: Province-level Data Supplements

2.B.1 Provincial Economic Conditions

Variables for economic conditions at the province level were derived from gross output value

of industry, and measures for provincial year-to-year industrial product (IP) growth. All data

are extracted from ’Statistical Yearbooks of Vietnam’ by Vietnam’s General Statistics Office

(GSO).34 Before 2010, the official measure for IP growth at the province level was the Index

of industrial output value at constant 1994 prices. From 2010 on-wards, it was replaced by a

more precise measure with a different methodology, namely the index of industrial production

(IIP) with the base prices in 2010. As gross output value of industry by province is not available

for the year 2014, we calculate an alternative, multiplying the gross output value of industry by

province at current price in 2010 by a series of IIP from 2011 to 2014. This roughly reflects

the gross output value of industry by province in 2014 at 2010 prices. We explicitly use two

control variables. First, we compute the province IP share calculated as the ratio between the

gross output industry at current prices or at 2010 prices of each province, and the whole country

in each year. Second, we explicitly use the province IP index as a measure of IP growth at the

province level.

2.B.2 Cooling Degrees

To compute cooling degree at the province level, we use gridded temperature data from the

NCEP-DOE Renanlysis 2 provided by the NOAA/OAR/ESRL PSD. It is among a small number
34Accessible at http://www.gso.gov.vn/Default_en.aspx?tabid=515. Gross output value of industry comprises

of the value of industrial products, and industrial services presented at either current prices or constant prices.
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of datasets that provide global daily weather data for the entire year 2014 (and beyond). We

downloaded daily forecast of Air temperature at 2m for a bounding box covering the entire

Vietnam from http://www.esrl.noaa.gov/psd/ in netCDF format then read, and cleaned data

with MatLAB.35

While covering a long course of updated, and consistent weather data, one disadvantage of

the dataset is the low resolution (2.50x2.5), which is not good at capturing spatial variations

in weather factors across provinces. Hence we need to use a spatial interpolation technique to

dis-aggregate the data. There are a wide range of techniques, which can be generally put under

3 categories: non-geostatistical interpolators, geostatistical interpolators, and combined meth-

ods (see Li and Heap (2008) for a comprehensive comparison). We use a combined method,

the "Gradient plus Inverse Distance Squared" (GIDS) method (proposed by Nalder and Wein

(1998)) to do this task as it is able to account for a wide range of factors in large scale region

with complex terrains (Stahl et al., 2006). The method combines the advantages of multiple

linear regression (MLR), and Inverse Distance Squared (IDS).

In the first step, we regress the temperature at daily time steps on a set of regressors in-

cluding longitude (Lon), latitude (Lat), altitude (Alt), and distance to the sea (S ea), assuming

that the temperature at each point (i) on day (t) is determined by its location, and topography

characteristics.36 To take into account the seasonality, regressions for two panels (Year 2004,

35The bounding box is 6-260N, and 100-1120E, containing 66 nodes (stations. NetCDF (Network Common Data
Form), hosted by the Unidata program at the University Corporation for Atmospheric Research (UCAR), is a set
of software libraries, and self-describing, machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data. See https://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
for more details.The original data have been packed into short integers for optimal storage. We unpacked the
data by computing unpacked_value = add_o f f set + packed_value × scale_ f actor with add_o f f set = 0.01, and
scale_ f actor = 447.65 as provided by the metadata.

36Lat, Lon, Alt are the variables most frequently used in GIDS. We include S ea to the model as Vietnam has
a long coastal line hence its climate is affected by the sea. The impact of the sea on local climate is proposed in
Maureen and Jean (2000).
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and 2014) are run separately by month m = 1, 2, ..., 12.

Tit = αm + βmLonit + γmLatit + δmAltit + φmS eait + εit (B1)

The results of the MLR are shown in Table 2.B1. All regressors appear to be significant predic-

tors of temperature. Overall, temperature is lower in the North (high latitude) across all years,

while the sign of variation across longitude is subject to seasonality. Temperature falls in more

elevated regions, with an estimated lapse rate of 1.07 - 1.99 0C/km in 2004, and 0.88-1.85 0C/km

in 2014. These values are lower than those proposed in the literature (6 − 6.50C), probably due

to the multicollinearity with other regressors (for example, mountainous, and hilly terrains are

concentrated in the Northern and Western parts of the countries). In addition, the sea also has

a significant impact on climate patterns, lowering the temperature with a magnitude that varies

across the month. The predictability of the regression is stronger between June- January (R2 ex-

ceeding 80%). In other months, the R2 is lower but never falls below 65%. The goodness-of-fit

of the model is much lower (56.1% in 2004, and 49.7% in 2014) when we pool all observations

across different months and captures the strong seasonality of the climate pattern. As a result

we run separate regressions for each month.

After obtaining parameters of the MLR, we predict the temperature of province j using

temperatures at the 5 nearest stations based on IDW method.

T jt =
( 5∑

k=1

1
d2

jk

)−1

×

5∑
k=1

[
Tkt + β̂m(Lon jt − Lonkt) + γ̂m(Lat jt − Latkt) + δ̂m(Alt jt − Altkt) + φ̂m(S ea jt − S eakt)

] 1
d2

jk

(B2)
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where d jk is the geodesic distance between the centroid of province j, and station k. Tkt is the

temperature observed in station k at time t, which is located at Lonkt, Latkt, Altkt, and within a

distance of S eakt to the sea. T jt is the interpolated temperature of province j at time t, whose

centroid is located at Lon jt, Lat jt, and within a distance of S ea jt to the sea. Alt jt is calculated

as the average elevation of the target province. β̂m, γ̂m, δ̂m, and φ̂m are parameters estimated in

Equation B1. The method is essentially equivalent to assigning T jt = T̂ jt + ¯̂ε jt, where T̂ jt is the

predicted temperature for province j at time t by regression B1, and ¯̂ε jt is the weighted average

of the residuals at 5 nearest stations.37 Intuitively, T̂ jt accounts for predetermined factors in

the model B1 while ε jt accounts for other unobserved factors outside the model. The predicted

values are in Celsius degrees.38 We converted them into Fahrenheit, and then calculated the

cooling degree Cit = max{0; Tit − 65}, which was then aggregated at the year level.

[Table 2.B1 about here]

2.B.3 Rainfall Shocks

For rainfall data we use ‘Terrestrial Air Temperature, and Precipitation: Monthly Climatologies’

(version 4.1) by the Daleware University (Matsuura and Willmott, 2009). Previous studies have

used this data to construct rainfall shock variables (Kaur, 2014; Sarsons, 2015; Allcott et al.,

2016). We obtained monthly data for 40 years (1975-2014) for 459 stations at 0.5× 0.5 degree

resolution.39 Although this resolution is finer than the temperature data but still not sufficient to

capture variation across provinces. To interpolate rainfall data, we use a similar GIDS method

37The mean(maximum) distance in km from province centroid to the 1st, 2nd, 3rd, 4th, and 5th nearest station
are 75(124); 144(185); 191(213); 213(235); 250(294).

38The raw data were recorded in Kelvin.
39Restricted by the bounding box 8-240N, and 100 − 1120E.
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as described above, where temperature is replaced by rainfall. There are several differences.

First, the rainfall variable is log transformed to reduce the skewness of the dependent variable,

and to ensure that the predicted values of rainfall are non-negative. Such a transformation is

necessary as the normality of all monthly rainfall series are rejected by either Shapiro –Wilk

or Shapiro –Francia test at the 1% level. We consider two regression specifications: double

log regression, and semi log regression as illustrated in Table 2.B2. All predetermined factors

(coordinates, altitude, and distance to the sea) appear with significant coefficients, however the

sign, and magnitude of these variables change across months, reflecting the seasonal patterns.

The predictability of the regressions are much lower than those for temperature in Table 2.B1,

so the IDW component is probably more important in the interpolation method. We decided

to use the double log regression as it is easier to interpret the results, and the performance of

the model across months is more stable.40 After obtaining the parameters, we apply the IDW

method, similar to Equation B2, using 7 nearest stations to predict the log of rainfall at the

centroid of the province (assigned average province altitude). 41

[Table 2.B2 about here]

The Standardised Precipitation Index (SPI) for each province is constructed as follows. First

we aggregate by 12 month moving windows the 40 years for each province. Second, we fit

the data to a Gamma distribution whose cumulative probability is determined by 2 parameters

α, β > 0:

G(x) =

∫ ∞

0

1
βαΓ(α)

rα−1e−r/β (B3)

40For example, rainfall in January respectively increases by 2.06%, 9.66%, 0.62%, and 0.09% in response to 1%
increase in latitude, longitude, altitude, and proximity to the sea. The R2 varies between 0.033, and 0.209 in the
double log specification, and between 0.020, and 0.227 in the semi log specification.

41The mean(maximum) distance in km from province centroid to the 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th nearest
station are 20(39); 41 (59); 52(73); 62(89); 74(98); 78(99) 87(114).

196



where r > 0 is the accumulated precipitation (rainfall in our case), and Γ(α) is the Gamma

function defined by:

Γ(α) =

∫ ∞

0
yα−1e−ydy (B4)

The cumulative distribution function G(x) is then transformed into a normal distribution with

mean r∗, and standard deviation σ.42 Finally, the SPI is computed as:

S PI =
r − r∗

σ
(B5)

SPI for province j at time t is calculated as the SPI of province j in the window that contains all

months of year t. The spatial distribution of cooling degree and SPI is shown in Figure 2.A.1.

[Figure 2.A.1 about here]

2.B.4 Grid-based Distance to Hydropower Plants

The electricity lines dataset includes 116 polylines, of which 16 are 500-kV grid, and 100

are 220-kV grid. In terms of status, 48 are labelled ‘existing’, and 68 are lablled ‘planned’.

Supplementary documents suggest that the ‘existing’ lines are those on-line by January 2005,

and the ‘planned’ are those proposed to be built by 2010 or 2020. Unfortunately, other details

on the dynamic of the system are unavailable (the operation year of each line). For simplicity,

we use all grids (both those labelled ‘existing’, and ‘planned’) for both WBES while allowing

the number of hydropower sources to increase over time. A justification for the use of ‘planned’

42If r contain zero values, the cumulative prbability should be expressed as H(x) = q + (1 − q)G(x), where q
is the probability to have zero rainfall. However, zero values do not present in our accumulate rainfall series at
12-month windows.
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transmission lines even in the earlier WBES is that although they certainly were not constructed

in 2004, there could have been lower-voltage lines that had been operating in that location (i.e.,

22 kV up to 110 kV), and were later upgraded to 220 kV or 500 kV as ‘planned’ lines in this

dataset.

The construction of the grid-based distance between each pair of hydropower plants, and a

province centre is as follows. First, we assigned the plant, and the province the nearest point

on the grid, then compute the grid-based distance as the sum of the geodesic distances between

the plant/ province, and their assigned nearest points, and the length of the shortest route that

connects the two assigned points through the transmission network. Technically, we used a

number of different ArcGIS tools to aid our computation. First, the assignment of the nearest

points, and the calculation of their distances to either the power source or the electric consump-

tion center was executed by the Near tool of the Analysis toolbox. The Integrate tool of the

Data Management toolbox was applied to strengthen the connectivity of the poly-lines within

the dataset, which was then transformed into a network dataset by Network Analyst extension.

Finally, the distance between the assigned grid points of all pair of given hydropower plants,

and WBES surveyed provinces were computed by the Origin-Destination cost matrix analysis

tool, and visualised for validation by the Route analysis tool.

The visual validation detected a number of pairs that are linked by unreasonably long routes

compared with their Geodesic distances. A reason is the absence of low-voltage lines (under

220 kV) in our grid dataset, which help connect those in close proximity. This requested for

some adjustments. As a results, We computed the ratios between the grid-based distances,

and Geodesic distances, and then define outliers as those that are more than one standard error

deviation from the sample mean. We then adjust the grid-based distances of the outliers by the
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product of their geodesic distances, and the mean ratio of the sample. Figure 2.B.1 provides

a comparison on the grid-based distances, and the Geodesic distances before, and after the

adjustment.

[Figure 2.B.1 about here]

2.C Appendix C: Robustness Checks

2.C.1 Alternative Instrumental Variables

Table 2.C1 presents a number of robustness checks, where alternative IVs are used, while the

other control variables are kept unchanged. The first six columns are for Survey 2005, and the

others are for Survey 2015. For simplicity, we only use volume to measure the degree of power

outages in these robustness checks.

[Table 2.C1 about here]

In Columns (2), and (8) the IVs were constructed from geodesic distance rather than grid-

based distance in baseline. In general there is just little difference in the estimates of coefficients

in regressions using these IVs. If the grid map had been missing, regressions based on IVs de-

rived from geodesic distances would have still been useful. The IVs that are constructed directly

from the real generation of hydropower plants (Column (3), and (9)) appear to be much weaker

than the baseline. The coefficients of revenue in these columns tend to be larger than those

in the baseline, and even positive (Column 3), suggesting the problem with exogeneity of the

IV constructed by actual generation. Due to the operation of large reservoirs, the real gener-
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ation series incorporates a large part of power demand fluctuation, and loses a certain amount

of exogenous shocks from weather factors, and just adds limited information to the reduced

equations once demand variations are strictly controlled for (i.e., cooling degree, IP index, IP

share). This highlights the importance of the use of the hydrologically-based generation model

in this study.

In Columns (4), and (10) we construct the IVs from the generation model that excludes

the installed capacity of upstream dams. Consequently, the IV for Survey 2015 become much

weaker as cascades of hydropower play an important role in the power supply of the country.

Taking the synergies of dams into account strengthens the IVs in our national-scaled study with

a single-grid context. In column (5) we construct the IVs for Survey 2005 that strictly repli-

cate those of Survey 2015, based on hydrologcially-predicted generation in the first 7 months

rather than the entire year. The IVs seem to be a little bit weaker than the baseline, and tend

to report a larger magnitude of the reduction in performance. However, such a change does not

drive the reduction in output. In Columns (6), and (12) we include time dummies to the gen-

eration prediction equation prior to the construction of the IVs. These alternative IVs seem to

be weaker than the baseline. The 2SLS estimates using different alternative IVs are consistent

with our baseline results. The alternative IVs confirm the finding that power deficiency is more

important in Survey 2015 rather than Survey 2005. The alternative IVs also find a reduction in

TFPR estimated by the YKLM model for the 2005 Survey, and all of them report a significant

reduction in the YKL model results for the 2015 Survey. Almost every set of IVs reports an

increase in generator use, and a reduction in energy, in general, and grid electricity, in particular,

in response to more severe power outages in both years. A t-test in column (9), and (10) report

a significant reduction in materials, and labour inputs due to power disruptions for Survey 2015
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while the ARχ2 test report these results in the majority of columns.

2.C.2 Firm Heterogeneity

Table 2.C2 shows the results of the baseline 2SLS regressions for different sub-samples: man-

ufacturing firms, firms with generators, firms without generators, electricity-intensive firms,

non-electricity-intensive firms, exporters, and non-exporters.43 Again, we use outage volume to

measure the unreliability of power supply. According to the first stage results, the IV is relevant

for all sub-samples in both year (at the 5% level, and even the 1% level for many sub-samples).

In panel A (Survey 2005) the signs for the impacts of power outages on sales are all negative,

except for the subsample of generator-owners, and non-exporters. However, all of the impacts

are insignificant as reported by the t-tests. The AR χ2 tests reports a significant sale loss for

the non-exporter subsample only where the associated coefficient is -0.86. For panel B (Survey

2015) all sub-samples excluding non-electricity-intensive show a significant reduction in rev-

enues where outage volume is high. In terms of magnitude, the coefficients vary between -0.16

to -1.48. In both years the magnitude of sale loss due to power outages slightly increases when

services firms are excluded.

[Table 2.C2 about here]

43Electricity-intensive firms are labelled as those in the industries whose electricity share in revenue exceeds the
median of the sample.
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2.C.3 Deviations in the Survey Designs

In this subsection we review some differences in the design, and implementation of two surveys,

and test whether they drive the difference in the magnitude, and significance of power outage

impacts. First, Survey 2015 reports the duration of power outages with higher accuracy as it

includes a variable for minutes in addition to a variable of duration in hour (_2015_c8).44 When

we round up duration in Survey 2015 according to the style in Survey 2005, there are only

discernible changes (at the second decimal place) in the estimates of the coefficient, and their

standard errors, and no change in the significance of power outage impacts.

Second, while all firms in Survey 2005 reports the data for the entire 2004 fiscal year, a

number of firms (293 firms ∼ 29.5%) do not report for the entire 2014 fiscal year.45 In the base-

line regressions we retain all observations, and assume that other control variables fully account

for the difference between these firms, and those that report the entire 2014 fiscal year. For

robustness we include a dummy to indicate the group of these special observations in Column

(2) of Table 2.C3. The coefficient of output loss is -0.55, a little bit smaller in magnitude than

the baseline (-0.73), however still larger than the estimate for Survey 2005. A t-test can not

reject the null that the newly added dummy is an insignificant predictor of the revenue given the

rich control variable set. This may help justify our use of the baseline specification.

[Table 2.C3 about here]

Third, in columns (3) - (5), we take into account the weights, which is available for Survey

44 That means firms in Survey 2015 report the duration up to a minute (for example 2 hour, and 18 minutes)
while firms in Survey 2005 only report up to a half of hour (for example .5 hours).

45It could happen as some interviews occur too early for firms to prepare data for the whole fiscal year, and
hence report the data of the latest 12 months instead.
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2015 but not 2005. Three weights are provided in the dataset, computed based on stratum,

and three different assumptions on the eligible firms (strict, median, and weak).46 As can be

seen, the three weights provide quite similar coefficients for all dependent variables. These

estimates confirm the evidence provided by the baseline that firms with a disadvantage in power

provision generate less revenue, self-generate more, and use less electricity from the grid. As

the stratification in the WBES is based on 3 conditioning variables (sector, size, province),

we prefer the unweighted estimator. As long as the stratification is based on the independent

variables, the unweighted estimator is shown to be consistent, and the validity of the usual

asymptotic variance matrix estimator remains (Wooldridge, 2010, pg863). Furthermore, under

generalised conditional information matrix equality, the weighted estimator is less efficient than

the unweighted estimator (Wooldridge, 1999, 2001).

46Strict assumption: eligible establishments are only those for which it was possible to directly determine el-
igibility. Median assumption: eligible establishments are those for which it was possible to directly determine
eligibility, and those that rejected the screener questionnaire or an answering machine or fax was the only re-
sponse. Weak assumption: in addition to the establishments included in points a, and b, all establishments for
which it was not possible to contact or that refused the screening questionnaire are assumed eligible.
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Figure 2.A.1: Cooling degree and Standardised Precipitation Index (SPI)

Source: Cooling degree and SPI are calculated for provinces in either waves of WBES 2005/2015 from the grid-
ded weather data provided by NOAA/OAR/ESRL (temperature) and the University of Delaware (rainfall). The
administrative GIS map (before the extension of Hanoi) in 2005 was used. See text and Appendix 2.A.1 for the
weighted method used to calculate the variables for firms in expanded Hanoi for Survey 2015.
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Figure 2.B.1: Grid-based distances vs Geodetic distances comparison
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Note: The graph compares the Grid-based distances and Geodetic distances between Vietnam’s provinces
surveyed by the WBES 2005/2015 and hydropower dams used to construct the IV. See text for more definitions
and methodology of distance construction. Adjustments were applied on the outliers, whose ratio between the
grid-based distance and geodetic distance more than one standard error deviates from the sample mean. The grid-
based distances of the outliers were replaced by the product of the corresponding geodetic distances and the sample
mean of the ratio.
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Table 2.A1: Province, and region statistics by year

Province Region
2005 2015

Frq Per Frq Per
Ha Noi (mun. cap.) Red River Delta 139 12.09% 174 17.47%
Hai Phong (mun.) Red River Delta 80 6.96% 72 7.23%
Ha Tay (before merge) Red River Delta 44 3.83% 0 0.00%
Bac Ninh Red River Delta 22 1.91% 9 0.90%
Hai Duong Red River Delta 19 1.65% 30 3.01%
Nam Dinh Red River Delta 41 3.57% 11 1.10%
Quang Ninh Red River Delta 0 0.00% 8 0.80%
Total region Red River Delta 345 30.00% 304 30.52%
Thanh Hoa North Central 64 5.57% 47 4.72%
Nghe An North Central 39 3.39% 48 4.82%
Ha Tinh North Central 27 2.35% 0 0.00%
Thua Thien Hue North Central 20 1.74% 6 0.60%
Total region North Central 150 13.04% 101 10.14%
Da Nang (mun.) Coastal Central 46 4.00% 81 8.13%
Quang Nam Coastal Central 16 1.39% 0 0.00%
Quang Ngai Coastal Central 9 0.78% 0 0.00%
Binh Dinh Coastal Central 39 3.39% 13 1.31%
Khanh Hoa Coastal Central 38 3.30% 44 4.42%
Total region Coastal Central 148 12.87% 138 13.86%
Ho Chi Minh (mun.) South East 242 21.04% 191 19.18%
Binh Duong South East 77 6.70% 30 3.01%
Dong Nai South East 61 5.30% 83 8.33%
Ba Ria - Vung Tau South East 15 1.30% 3 0.30%
Total region South East 395 34.35% 307 30.82%
Long An Mekong River Delta 36 3.13% 60 6.02%
Dong Thap Mekong River Delta 7 0.61% 0 0.00%
An Giang Mekong River Delta 16 1.39% 0 0.00%
Tien Giang Mekong River Delta 16 1.39% 32 3.21%
Can Tho (mun.) Mekong River Delta 37 3.22% 52 5.22%
Total region Mekong River Delta 112 9.74% 144 14.46%

Unidentified 0 0.00% 2 0.20%
Total sample 1150 100.00% 996 100.00%

Source: Author’s extracted from the clean database. Note: mun. = municipalities; cap.
= the capital
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Table 2.A2: Sector reclassification

Sector ISIC code
2005 2015

Freq Percent Freq Percent
Mining & quarrying 10 - 14 7 0.61% 0 0.00%
Food, beverages & tobacco 15, 16 197 17.13% 130 13.05%
Textiles 17 46 4.00% 24 2.41%
Garments 18 110 9.57% 140 14.06%
Leather 19 41 3.57% 14 1.41%
Wood 20 88 7.65% 21 2.11%
Paper 21 70 6.09% 8 0.80%
Publishing, printing & recorded media 22 2 0.17% 12 1.20%
Refined petroleum product & chemicals 23, 24 72 6.26% 19 1.91%
Plastics & rubber 25 58 5.04% 20 2.01%
Non-metallic mineral products 26 126 10.96% 131 13.15%
Basic metals 27 36 3.13% 14 1.41%
Fabricated metal products 28 63 5.48% 98 9.84%
Machinery 29 66 5.74% 35 3.51%
Office, electronics & precision instruments 30-33 36 3.13% 10 1.00%
Transport machines 34, 35 57 4.96% 3 0.30%
Furniture 36 62 5.39% 12 1.20%
Recycling 37 0 0.00% 3 0.30%
Construction (section F) 45 9 0.78% 75 7.53%
Motor vehicles services 50 1 0.09% 13 1.31%
Wholesale 51 0 0.00% 106 10.64%
Retail 52 0 0.00% 61 6.12%
Hotels and restaurants (section H) 55 0 0.00% 15 1.51%
Transport (section I) 60 - 64 2 0.17% 28 2.81%
IT 72 0 0.00% 4 0.40%
Other services 85 1 0.09% 0 0.00%
Unidentified 99 0 0.00% 0 0.00%
Total 1150 100.00% 996 100.00%

Source: Authors redefined sector of firms in the World Bank Panel dataset of Vietnam 2005-
2009-2015 Enterprise Surveys based on the 2 first digits of the ISIC code of the main product in
terms of revenue share.
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Table 2.A3: TFPR estimate using YKL model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Factor

Capital stock; log 0.247*** 0.166 0.477*** 0.367* 0.288*** 0.119** 0.123* 0.209*** 0.260*** 0.274*** 0.123*

(0.0524) (0.107) (0.0576) (0.197) (0.0617) (0.0460) (0.0657) (0.0521) (0.0730) (0.0526) (0.0700)

Labor cost; log 0.762*** 0.803*** 0.457*** 0.514* 0.653*** 0.853*** 0.855*** 0.801*** 0.724*** 0.793*** 0.935***

(0.0665) (0.141) (0.0741) (0.275) (0.104) (0.0896) (0.0810) (0.0774) (0.0802) (0.0730) (0.140)

Province

Hai Phong (mun.) 0.0865 -0.298 -0.573 1.178* -1.502*** 0.0349 0.654 0.451 -0.140 -0.0268

(0.358) (0.387) (1.252) (0.605) (0.363) (0.285) (0.623) (0.408) (0.244) (0.477)

Ha Tay (before merge) -0.556* -1.253 -0.123 0.269 -0.808** -0.290 0.834 -1.350*** 0.0388

(0.323) (0.855) (0.302) (0.358) (0.315) (0.302) (0.554) (0.375) (0.430)

Bac Ninh 0.285 -0.339 0.453 -0.559* -0.000906 0.589** -0.227

(0.946) (0.914) (0.484) (0.279) (0.488) (0.258) (0.208)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Hai Duong 0.170 -1.846*** 0.144 0.155 0.301 -0.297 -1.426*** 0.353 0.499 -0.599**

(0.262) (0.338) (0.317) (1.159) (0.457) (0.457) (0.442) (0.680) (1.022) (0.253)

Nam Dinh -0.194 -0.932 0.164 0.361 0.432 -0.271 0.235 -0.360 -0.388 -0.631

(0.569) (0.698) (0.626) (0.781) (0.365) (0.239) (0.552) (0.314) (0.332) (0.695)

Quang Ninh 1.748*** -0.177 0.0320

(0.283) (0.288) (0.266)

Thanh Hoa 0.0613 -0.0214 0.102 -0.126 -0.686 -0.827*** -0.444 0.0744 -0.156 -0.445

(0.420) (0.308) (0.509) (0.325) (0.760) (0.276) (0.286) (0.391) (0.273) (0.448)

Nghe An -0.527* -0.216 0.216 0.258 -0.483* 0.665 -0.250 -0.205 0.467*

(0.299) (0.400) (0.771) (0.265) (0.287) (0.591) (0.291) (0.697) (0.279)

Ha Tinh 0.00359 -0.722 -0.527 0.341 0.881*** -0.120 -0.402 -0.573*** -0.534

(0.540) (0.490) (0.326) (0.451) (0.233) (0.338) (0.276) (0.202) (0.386)

Thua Thien Hue -0.831*** -1.545** -0.610* 1.110 0.347 1.418*** -0.0818 -0.349 -0.671 -0.00179

(0.282) (0.589) (0.314) (1.295) (0.490) (0.372) (0.357) (0.326) (0.462) (0.362)

Da Nang (mun.) 0.171 -0.229 0.0333 0.603 -0.150 -0.942*** 0.589 -0.451 0.275 0.524 -0.182

(0.438) (0.752) (0.359) (1.254) (0.356) (0.273) (0.524) (0.332) (0.321) (0.592) (0.410)

cont.

209



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Quang Nam -0.405 -0.0910 -1.396 0.316 -0.723*** -0.579 -0.0691 0.794*

(0.499) (0.378) (0.896) (0.387) (0.198) (0.932) (0.471) (0.393)

Quang Ngai -0.956*** -0.566* 0.124 -0.182 -0.385

(0.241) (0.288) (0.360) (0.557) (0.469)

Binh Dinh 0.255 -3.013*** 0.114 0.598** -0.745*** -0.428 -0.0135 -0.296

(0.430) (0.420) (0.617) (0.295) (0.216) (0.305) (0.612) (0.399)

Khanh Hoa 0.221 0.574* 0.200 0.463 -0.905*** -0.152 -0.403 0.259 -0.362

(0.308) (0.318) (0.544) (0.541) (0.237) (0.328) (0.249) (0.230) (0.400)

Ho Chi Minh (mun.) 0.320 -0.472 0.567* 0.601 0.0701 -0.490* 0.187 -0.146 0.309 -0.136 0.420

(0.296) (0.432) (0.306) (1.264) (0.281) (0.264) (0.280) (0.420) (0.324) (0.231) (0.515)

Binh Duong 0.171 -0.459 -0.303 0.423 0.769** -0.848 0.155 -0.539** 0.212 -0.0998 -0.0439

(0.716) (0.425) (0.398) (0.978) (0.364) (0.515) (0.520) (0.265) (0.581) (0.458) (0.540)

Dong Nai 0.373 -0.0166 -0.154 -0.286 0.469 0.228 0.382 0.333 0.857* -0.118 0.395

(0.547) (0.335) (0.439) (0.604) (0.390) (0.376) (0.352) (0.303) (0.464) (0.262) (0.512)

Ba Ria - Vung Tau 0.109 -0.666 0.0309 0.398

(0.317) (0.634) (1.172) (0.291)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Long An 0.106 0.197 -0.112 1.186 0.101 -0.698** -0.00645 -0.0830 0.485 -0.0357

(0.307) (0.560) (0.410) (1.304) (0.236) (0.280) (0.431) (0.513) (0.457) (0.295)

Dong Thap 1.143 -1.747***

(1.353) (0.429)

An Giang 0.852*** 0.102 0.931 0.240

(0.327) (0.332) (1.361) (0.268)

Tien Giang -0.362 -2.503*** -0.127 -0.967** -0.892*** 1.945***

(0.416) (0.385) (0.393) (0.378) (0.263) (0.347)

Can Tho (mun.) 1.232*** -0.151 -0.0339 -0.521 -0.196 0.263 -0.241 -0.705 0.762

(0.323) (0.311) (1.103) (0.378) (0.558) (0.798) (0.409) (0.776) (0.629)

Survey

2015 -0.369** 0.566 0.452** 0.0578 0.428* -1.222*** -0.163 0.154 -0.0320 -0.256 -0.917

(0.177) (0.431) (0.192) (0.814) (0.244) (0.257) (0.229) (0.176) (0.213) (0.258) (0.605)

Constant 2.103*** 2.900 2.253* 3.256* 2.606** 3.399** 2.726*** 1.627 2.205** 0.962 1.387

(0.807) (2.196) (1.196) (1.646) (1.298) (1.348) (0.990) (0.993) (0.991) (0.829) (2.148)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Observations 243 58 191 44 161 75 135 195 155 107 54

R-squared 0.785 0.799 0.751 0.787 0.720 0.875 0.801 0.748 0.693 0.880 0.867

αK + αL 1.01 0.97 0.93 0.88 0.94 0.97 0.98 1.01 0.98 1.07 1.06

CRS F-stat 0.04 0.06 1.15 0.87 0.63 0.11 0.15 0.03 0.09 2.28 0.25

Note: Sector group definition: Group 1 = Food, beverages & tobacco (ISIC code 15,16); Group 2 = Textiles (17); Group 3 = Garments (18); Group 4 = Leather

products (19); Group 5 = Wooden products & furniture (20, 36); Group 6 = Paper, printing & publishing (21 & 22); Group 7 = Refined petroleum products,

chemicals, plastic & rubber (23 - 25); Group 8 = Non-metallic mineral products (26); Group 9 = Basic metal & Fabricated metal products (27 & 28); Group 10

= machinery, office, electronics & precision instruments (29 - 33); Group 11 = Transport machines (34).

The reference group for fixed effects is firms that are located in Hanoi (mun. cap.), and surveyed in 2005. The dependent variable is the log of revenues. Standard

errors in parentheses. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.A4: TFPR estimate using YKLM model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Factor

Capital stock; log 0.0762*** 0.0186 0.211*** 0.0636 0.0437** 0.0446 0.103* 0.184*** 0.0560 0.123*** -0.00914

(0.0222) (0.0655) (0.0505) (0.0624) (0.0184) (0.0297) (0.0535) (0.0480) (0.0402) (0.0303) (0.0237)

Labor cost; log 0.269*** 0.508** 0.265*** 0.262*** 0.160*** 0.348*** 0.316*** 0.390*** 0.302*** 0.348*** 0.138***

(0.0389) (0.196) (0.0517) (0.0750) (0.0418) (0.0786) (0.0770) (0.0793) (0.0834) (0.0757) (0.0326)

Material cost; log 0.616*** 0.447*** 0.464*** 0.684*** 0.780*** 0.590*** 0.546*** 0.453*** 0.633*** 0.575*** 0.877***

(0.0368) (0.152) (0.0364) (0.0694) (0.0368) (0.0821) (0.0950) (0.0645) (0.0808) (0.0944) (0.0324)

Province

Hai Phong (mun.) 0.125 0.0481 0.784* 0.214 -0.661** 0.148 -0.159 0.166 -0.00594 -0.00619

(0.126) (0.221) (0.379) (0.142) (0.321) (0.186) (0.303) (0.195) (0.189) (0.0992)

Ha Tay (before merge) -0.155 -0.533 0.501* 0.0640 -0.531** -0.123 0.230 -0.639** -0.0740

(0.122) (0.400) (0.263) (0.149) (0.236) (0.230) (0.261) (0.244) (0.101)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Bac Ninh 0.557*** 0.421 0.0102 -0.419* 0.0237 -0.197 0.0738

(0.198) (0.356) (0.142) (0.228) (0.339) (0.132) (0.168)

Hai Duong 0.360 0.0419 0.110 0.0368 -0.229 -0.376 -0.228 -0.248 0.0619 -0.260*

(0.267) (0.807) (0.300) (0.392) (0.148) (0.243) (0.266) (0.418) (0.426) (0.153)

Nam Dinh -0.0858 -0.221 -0.211 0.199 -0.0477 -0.429* -0.0665 -0.0717 -0.244 0.0182

(0.216) (0.217) (0.553) (0.228) (0.128) (0.217) (0.314) (0.278) (0.216) (0.151)

Quang Ninh 0.0159 -0.252 -0.302**

(0.155) (0.281) (0.142)

Thanh Hoa -0.0116 -0.156 0.000263 0.0869 -0.498* -0.122 -0.393 0.0134 -0.177 0.0866

(0.176) (0.218) (0.266) (0.208) (0.296) (0.233) (0.254) (0.197) (0.163) (0.116)

Nghe An 0.0398 0.163 0.411 0.0244 -0.409* 0.0924 0.292 -0.00140 -0.0408

(0.187) (0.343) (0.271) (0.144) (0.216) (0.330) (0.374) (0.242) (0.182)

Ha Tinh 0.165 -0.424 0.986*** 0.111 1.450*** 0.0147 0.178 -0.155 0.0276

(0.124) (0.264) (0.185) (0.176) (0.275) (0.239) (0.176) (0.200) (0.150)

Thua Thien Hue 0.0706 -0.489 0.0147 0.368 0.0563 0.662*** 0.167 -0.131 -0.159 -0.119

(0.205) (0.566) (0.166) (0.233) (0.140) (0.222) (0.149) (0.180) (0.196) (0.0958)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Da Nang (mun.) -0.162 -0.300 -0.0521 0.199 -0.136 -0.609** 0.999* -0.357 0.141 0.123 0.0589

(0.149) (0.387) (0.272) (0.215) (0.142) (0.255) (0.578) (0.298) (0.187) (0.348) (0.128)

Quang Nam 0.0970 0.316* 2.511*** -0.0113 -0.535** -0.214 -0.312 0.350***

(0.107) (0.184) (0.561) (0.119) (0.222) (0.275) (0.237) (0.118)

Quang Ngai 0.0835 -0.222 -0.00991 -0.240 0.0384

(0.116) (0.147) (0.209) (0.347) (0.114)

Binh Dinh 0.126 -1.562*** 0.132 -0.0308 -0.566** -0.106 -0.0288 -0.0450

(0.161) (0.354) (0.186) (0.124) (0.227) (0.174) (0.412) (0.197)

Khanh Hoa 0.290** 0.557*** 0.100 -0.0409 -0.577** 0.131 -0.276* -0.00533 0.138

(0.142) (0.170) (0.287) (0.139) (0.262) (0.182) (0.145) (0.128) (0.184)

Ho Chi Minh (mun.) 0.162 -0.121 0.243 0.439* 0.00556 -0.330 0.0786 -0.185 0.230 -0.145 0.108

(0.130) (0.279) (0.190) (0.221) (0.122) (0.235) (0.162) (0.252) (0.172) (0.128) (0.108)

Binh Duong -0.00684 0.552 0.374 0.368 0.0945 -0.471* 0.304 -0.330 0.611 0.0479 0.162

(0.185) (0.657) (0.309) (0.218) (0.204) (0.259) (0.184) (0.253) (0.523) (0.156) (0.126)

Dong Nai 0.247 0.174 -0.287 -0.102 0.0547 -0.148 0.757 -0.0157 0.264 -0.120 0.308**

(0.211) (0.240) (0.229) (0.392) (0.193) (0.204) (0.666) (0.275) (0.210) (0.136) (0.116)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Ba Ria - Vung Tau 0.339 0.0343 0.0844 0.517***

(0.281) (0.276) (0.249) (0.177)

Long An -0.0168 0.0366 0.210 -0.0534 -0.176 -0.443* 0.0445 -0.196 0.0510 -0.163

(0.144) (0.393) (0.219) (0.367) (0.125) (0.246) (0.205) (0.415) (0.185) (0.157)

Dong Thap 0.482 -1.063***

(0.391) (0.108)

An Giang 0.246* 0.376** 0.214 0.172

(0.140) (0.169) (0.242) (0.134)

Tien Giang 0.269 -0.889 0.550* -0.451** -0.161 0.610**

(0.185) (0.785) (0.297) (0.225) (0.279) (0.300)

Can Tho (mun.) 0.342** 0.298 -0.0261 -0.378 -0.183 -0.172 -0.0515 -0.677 -0.0460

(0.139) (0.383) (0.254) (0.278) (0.371) (0.457) (0.192) (0.410) (0.108)

Survey

2015 0.394*** 0.476 0.497*** 0.303 0.329** -0.191 0.291* 0.324*** 0.321*** 0.407* 0.862***

(0.0922) (0.375) (0.112) (0.232) (0.130) (0.207) (0.157) (0.113) (0.104) (0.209) (0.165)

cont.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

Constant 1.731*** 2.031* 2.057*** 0.474 1.086** 1.923*** 1.785*** 0.881 1.097** 0.418 0.462

(0.404) (1.091) (0.754) (0.615) (0.477) (0.578) (0.629) (0.790) (0.549) (0.509) (0.357)

Observations 237 55 181 40 159 75 134 188 149 104 54

R-squared 0.957 0.892 0.890 0.980 0.951 0.975 0.916 0.879 0.909 0.961 0.995

αK + αL + αM 0.96 0.97 0.94 1.01 0.98 0.98 0.97 1.03 0.99 1.05 1.01

CRS F-stat 3.06* 0.16 2.25 0.07 0.44 0.35 0.93 0.45 0.11 4.51** 0.09

Note: Sector group definition: Group 1 = Food, beverages & tobacco (ISIC code 15,16); Group 2 = Textiles (17); Group 3 = Garments (18); Group 4 = Leather

products (19); Group 5 = Wooden products & furniture (20, 36); Group 6 = Paper, printing & publishing (21 & 22); Group 7 = Refined petroleum products,

chemicals, plastic & rubber (23 - 25); Group 8 = Non-metallic mineral products (26); Group 9 = Basic metal & Fabricated metal products (27 & 28); Group 10

= machinery, office, electronics & precision instruments (29 - 33); Group 11 = Transport machines (34).

The reference group for fixed effects is firms that are located in Hanoi (mun. cap.), and surveyed in 2005. The dependent variable is the log of revenues. Standard

errors in parentheses. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.B1: Temperature interpolation - MLR

Temperature (0C)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
ARIABLES All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Year 2004

Latitude -0.400*** -0.780*** -0.718*** -0.562*** -0.403*** -0.287*** -0.118*** -0.0853*** -0.0230*** -0.192*** -0.394*** -0.534*** -0.713***
(0.00609) (0.0195) (0.0225) (0.0154) (0.0143) (0.0125) (0.00774) (0.00746) (0.00655) (0.00794) (0.00930) (0.0149) (0.0181)

Longitude -0.0275*** -0.246*** -0.171*** -0.309*** -0.160*** 0.0447*** 0.159*** 0.152*** 0.154*** 0.144*** 0.0501*** -0.0169 -0.132***
(0.00792) (0.0236) (0.0279) (0.0235) (0.0193) (0.0160) (0.0109) (0.00955) (0.00919) (0.0113) (0.0113) (0.0185) (0.0224)

Altitude (km) -1.629*** -1.355*** -1.986*** -1.072*** -1.923*** -1.469*** -1.565*** -1.675*** -1.725*** -1.833*** -1.643*** -1.785*** -1.563***
(0.0873) (0.230) (0.320) (0.255) (0.217) (0.196) (0.119) (0.0977) (0.0757) (0.115) (0.125) (0.204) (0.227)

Distance to sea (km) -0.00659*** -0.00705*** -0.00283*** -0.00320*** -0.00441*** -0.00602*** -0.00736*** -0.00694*** -0.00804*** -0.00695*** -0.00829*** -0.00818*** -0.00959***
(0.000264) (0.000776) (0.000963) (0.000768) (0.000626) (0.000539) (0.000346) (0.000289) (0.000251) (0.000339) (0.000359) (0.000615) (0.000742)

Constant 34.55*** 60.31*** 51.61*** 66.06*** 49.89*** 26.98*** 12.50*** 12.71*** 11.74*** 14.52*** 26.36*** 34.61*** 47.56***
(0.844) (2.523) (2.943) (2.496) (2.054) (1.697) (1.155) (0.998) (0.958) (1.208) (1.211) (1.967) (2.396)

Observations 24,156 2,046 1,914 2,046 1,980 2,046 1,980 2,046 2,046 1,980 2,046 1,980 2,046
R-squared 0.561 0.796 0.688 0.666 0.698 0.697 0.808 0.825 0.849 0.847 0.883 0.817 0.822

Year 2014

Latitude -0.398*** -0.746*** -0.748*** -0.550*** -0.330*** -0.233*** -0.0969*** -0.0403*** -0.0600*** -0.122*** -0.310*** -0.551*** -1.005***
(0.00663) (0.0154) (0.0235) (0.0156) (0.0105) (0.0108) (0.00662) (0.00702) (0.00701) (0.00780) (0.00874) (0.0128) (0.0160)

Longitude -0.00549 -0.0804*** -0.262*** -0.233*** -0.121*** -0.00481 0.101*** 0.154*** 0.174*** 0.140*** 0.0995*** 0.00682 -0.0608***
(0.00859) (0.0221) (0.0313) (0.0232) (0.0152) (0.0135) (0.00979) (0.0105) (0.0101) (0.0103) (0.0110) (0.0164) (0.0207)

Altitude (km) -1.253*** -0.880*** -0.912*** -1.239*** -0.961*** -0.953*** -1.451*** -1.683*** -1.845*** -1.805*** -1.728*** -1.294*** -0.262
(0.0916) (0.233) (0.318) (0.236) (0.189) (0.182) (0.0905) (0.0796) (0.103) (0.105) (0.110) (0.157) (0.203)

Distance to sea (km) -0.00614*** -0.00586*** -0.00279*** -0.00257*** -0.00491*** -0.00610*** -0.00815*** -0.00738*** -0.00703*** -0.00663*** -0.00742*** -0.00829*** -0.00636***
(0.000285) (0.000692) (0.00103) (0.000758) (0.000500) (0.000465) (0.000283) (0.000273) (0.000312) (0.000317) (0.000346) (0.000523) (0.000635)

Constant 32.04*** 40.55*** 61.13*** 57.69*** 44.55*** 31.92*** 19.08*** 11.95*** 9.816*** 14.17*** 20.39*** 32.52*** 43.00***
(0.914) (2.353) (3.358) (2.478) (1.632) (1.442) (1.028) (1.095) (1.061) (1.082) (1.172) (1.766) (2.202)

Observations 24,090 2,046 1,848 2,046 1,980 2,046 1,980 2,046 2,046 1,980 2,046 1,980 2,046
R-squared 0.497 0.803 0.651 0.670 0.691 0.674 0.845 0.820 0.819 0.828 0.874 0.854 0.861

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.B2: Rainfall interpolation - MLR

Monthly rainfall (mm); log

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
ARIABLES All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Double log regression

Latitude; log 0.355*** 2.058*** 2.609*** 1.172*** 0.339*** 0.220*** 0.342*** 0.241*** 0.219*** -0.565*** -1.820*** -0.996*** 0.441***
(0.0178) (0.0529) (0.0447) (0.0484) (0.0318) (0.0281) (0.0357) (0.0350) (0.0329) (0.0346) (0.0390) (0.0586) (0.0563)

Longitude; log 4.012*** 9.635*** 4.169*** 4.611*** 5.638*** 3.456*** 3.613*** 1.800*** 0.399* -2.497*** -4.698*** 6.838*** 15.17***
(0.160) (0.473) (0.414) (0.407) (0.261) (0.202) (0.252) (0.236) (0.221) (0.211) (0.367) (0.503) (0.485)

Altitude (km); log 0.265*** 0.620*** 0.00366 -0.217*** -0.0401* -0.204*** -0.0784*** 0.317*** 0.173*** -0.0885*** 0.441*** 1.167*** 1.089***
(0.0152) (0.0460) (0.0384) (0.0401) (0.0237) (0.0200) (0.0252) (0.0230) (0.0214) (0.0227) (0.0349) (0.0517) (0.0477)

Distance to sea (km); log -0.0910*** -0.437*** -0.278*** -0.0678*** 0.125*** 0.135*** 0.137*** 0.100*** 0.0784*** -0.0201*** -0.198*** -0.332*** -0.335***
(0.00483) (0.0147) (0.0126) (0.0129) (0.00995) (0.00823) (0.00949) (0.00937) (0.00852) (0.00761) (0.0106) (0.0151) (0.0151)

Constant -15.25*** -46.71*** -22.80*** -21.22*** -23.56*** -12.22*** -13.24*** -4.261*** 2.532** 18.65*** 32.46*** -24.41*** -68.22***
(0.740) (2.198) (1.927) (1.890) (1.240) (0.942) (1.173) (1.108) (1.043) (0.996) (1.723) (2.309) (2.225)

Observations 217,440 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120
R-squared 0.011 0.198 0.209 0.055 0.049 0.040 0.041 0.047 0.033 0.045 0.175 0.090 0.157

Semi log regression

Latitude 0.0232*** 0.130*** 0.174*** 0.0794*** 0.0278*** 0.0174*** 0.0226*** 0.0175*** 0.0120*** -0.0423*** -0.117*** -0.0649*** 0.0230***
(0.00111) (0.00318) (0.00261) (0.00300) (0.00188) (0.00162) (0.00206) (0.00198) (0.00189) (0.00195) (0.00241) (0.00360) (0.00339)

Longitude 0.0335*** 0.0802*** -0.0110** 0.00906** 0.0329*** 0.0210*** 0.0310*** 0.0100*** 0.00191 -0.0183*** -0.0192*** 0.0985*** 0.166***
(0.00180) (0.00518) (0.00445) (0.00454) (0.00278) (0.00214) (0.00281) (0.00265) (0.00249) (0.00228) (0.00391) (0.00553) (0.00513)

Altitude (km) 0.154*** 0.356*** 0.0713*** -0.0818*** -0.00726 -0.125*** -0.0775*** 0.166*** 0.0747*** -0.0481*** 0.265*** 0.665*** 0.593***
(0.00967) (0.0299) (0.0242) (0.0248) (0.0142) (0.0123) (0.0155) (0.0138) (0.0133) (0.0142) (0.0232) (0.0337) (0.0311)

Distance to sea (km) -0.000586*** -0.00252*** -0.00285*** -0.00137*** 8.14e-05 0.000406*** 0.000719*** 0.000413*** 0.000436*** -1.03e-05 -0.000463*** -0.000833*** -0.00105***
(3.86e-05) (0.000113) (9.54e-05) (0.000101) (5.85e-05) (4.51e-05) (5.51e-05) (5.34e-05) (5.10e-05) (4.81e-05) (7.85e-05) (0.000115) (0.000107)

Constant 0.184 -8.349*** 1.303*** 1.140** 0.300 2.560*** 1.437*** 3.881*** 4.920*** 7.986*** 8.643*** -6.023*** -15.59***
(0.186) (0.537) (0.464) (0.469) (0.294) (0.220) (0.291) (0.278) (0.262) (0.241) (0.411) (0.564) (0.521)

Observations 217,440 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120 18,120
R-squared 0.011 0.184 0.227 0.061 0.033 0.020 0.031 0.036 0.024 0.059 0.159 0.063 0.136

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 2.C1: Robustness check: Alternative IVs

Survey 2005, ρ = 1 Survey 2015, ρ = 10

VARIABLE Baseline Geodetic Realproduction Noupcap 7month Timedummy Baseline Geodetic Realproduction Noupcap 7month Timedummy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Performance

Revenue; log

Outage (Vol); log -0.27 -0.30 0.37 -0.23 -0.36 -0.32 -0.73*** -0.73*** -0.51** -0.49** -0.73*** -0.68***

(0.44) (0.44) (1.14) (0.44) (0.53) (0.46) (0.25) (0.24) (0.21) (0.23) (0.25) (0.26)

Observations 1,132 1,132 1,132 1,132 1,132 1,132 915 915 915 915 915 915

First stage F-statistic 14.32 13.06 1.61 14.60 14.11 13.27 17.68 18.28 17.25 15.36 17.68 10.30

SW χ2 test 15.46*** 14.10*** 1.74 15.76*** 15.23*** 14.33*** 19.54*** 20.20*** 19.07*** 16.98*** 19.54*** 11.38***

AR χ2 test 0.45 0.58 0.15 0.32 0.54 0.55 5.67** 5.68** 3.01* 2.33 5.67** 4.13**

TFP YKL model; log

Outage (Vol); log -0.25 -0.27 -0.01 -0.24 -0.33 -0.27 -0.55** -0.53** -0.58*** -0.46** -0.55** -0.61*

(0.22) (0.22) (0.39) (0.21) (0.27) (0.23) (0.23) (0.23) (0.21) (0.19) (0.23) (0.37)

Observations 977 977 977 977 977 977 421 421 421 421 421 421

First stage F-statistic 9.59 8.92 2.94 9.90 8.22 8.95 3.62 3.67 3.90 3.86 3.62 1.58

SW χ2 test 10.36*** 9.63*** 3.17* 10.69*** 8.88*** 9.67*** 4.15** 4.21** 4.46** 4.42** 4.15** 1.81

AR χ2 test 2.50 2.81* 0 2.35 3.10* 2.26 3.97** 3.88** 5.13** 3.14* 3.97** 2.57

TFP YKLM model; log

(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10

VARIABLE Baseline Geodetic Realproduction Noupcap 7month Timedummy Baseline Geodetic Realproduction Noupcap 7month Timedummy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Outage (Vol); log -0.13* -0.16** 0.04 -0.12* -0.21** -0.11 -0.53 -0.52 -0.33 -0.49* -0.53 -0.57

(0.07) (0.07) (0.23) (0.07) (0.08) (0.09) (0.41) (0.41) (0.30) (0.28) (0.41) (0.65)

Observations 966 966 966 966 966 966 392 392 392 392 392 392

First stage F-statistic 9.01 8.43 2.97 9.26 7.85 8.46 2.71 2.76 2.45 2.65 2.71 1.03

SW χ2 test 9.73*** 9.10*** 3.21* 10.01*** 8.48*** 9.14*** 3.13* 3.18* 2.83* 3.05* 3.13* 1.19

AR χ2 test 3.66* 5.96** 0.04 3.57* 7.07*** 1.50 4.66** 4.64** 1.47 6.25** 4.66** 1.53

Panel B: Energy inputs

Generator use; log

Outage (Vol); log 0.35*** 0.36*** -0.48 0.31*** 0.22** 0.49** 0.31*** 0.31*** 0.28*** 0.23** 0.31*** 0.37***

(0.11) (0.10) (0.86) (0.09) (0.09) (0.20) (0.10) (0.09) (0.10) (0.10) (0.10) (0.12)

Observations 1,035 1,035 1,035 1,035 1,035 1,035 605 605 605 605 605 605

First stage F-statistic 11.38 10.69 1.58 11.56 10.34 10.40 10.14 10.56 10.73 8.58 10.14 8.81

SW χ2 test 12.28*** 11.54*** 1.71 12.48*** 11.16*** 11.23*** 11.34*** 11.81*** 12.00*** 9.60*** 11.34*** 9.85***

AR χ2 test 8.26*** 8.39*** 0.87 8.15*** 4.84** 9.20*** 6.49** 6.82*** 5.17** 2.72* 6.49** 10.32***

Energy cost; log

Outage (Vol); log -0.76** -0.78** 0.66 -0.73** -0.95** -0.97**

(0.33) (0.33) (1.57) (0.33) (0.42) (0.40)

Observations 1,136 1,136 1,136 1,136 1,136 1,136

First stage F-statistic 16.47 14.90 1.68 16.76 16.46 14.90

(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10

VARIABLE Baseline Geodetic Realproduction Noupcap 7month Timedummy Baseline Geodetic Realproduction Noupcap 7month Timedummy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

SW χ2 test 17.78*** 16.09*** 1.82 18.10*** 17.77*** 16.09***

AR χ2 test 7.63*** 8.66*** 0.30 7.26*** 8.14*** 9.74***

Electric cost; log

Outage (Vol); log -1.03** -1.04** -1.06*** -1.11*** -1.03** -1.15***

(0.43) (0.43) (0.32) (0.29) (0.43) (0.44)

Observations 841 841 841 841 841 841

First stage F-statistic 19.32 19.97 20.32 17.92 19.32 11.01

SW χ2 test 21.44*** 22.16*** 22.55*** 19.88*** 21.44*** 12.22***

AR χ2 test 9.31*** 9.63*** 11.90*** 15.51*** 9.31*** 9.17***

Fuel cost; log

Outage (Vol); log -0.62 -0.64 -0.64 -0.64 -0.62 -1.08

(0.55) (0.55) (0.41) (0.42) (0.55) (0.76)

Observations 458 458 458 458 458 458

First stage F-statistic 13.59 13.93 10.63 8.58 13.59 6.11

SW χ2 test 15.57*** 15.96*** 12.18*** 9.83*** 15.57*** 7.00***

AR χ2 test 1.78 1.88 3.61* 3.81* 1.78 5.13**

Panel C: Other inputs

Material cost; log

Outage (Vol); log -0.27 -0.30 0.03 -0.23 -0.32 -0.32 -0.62 -0.60 -0.85* -0.62* -0.62 -0.67

(cont.)
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Survey 2005, ρ = 1 Survey 2015, ρ = 10

VARIABLE Baseline Geodetic Realproduction Noupcap 7month Timedummy Baseline Geodetic Realproduction Noupcap 7month Timedummy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(0.70) (0.68) (0.92) (0.69) (0.84) (0.74) (0.40) (0.39) (0.46) (0.38) (0.40) (0.50)

Observations 1,124 1,124 1,124 1,124 1,124 1,124 529 529 529 529 529 529

First stage F-statistic 13.63 12.43 1.62 13.84 13.36 12.74 8.85 9.13 8.91 7.49 8.85 6.30

SW χ2 test 14.72*** 13.43*** 1.75 14.95*** 14.43*** 13.76*** 10.03*** 10.34*** 10.09*** 8.48*** 10.03*** 7.14***

AR χ2 test 0.17 0.23 0 0.12 0.16 0.22 3.34* 3.22* 3.71* 2.97* 3.34* 2.25

Labor cost; log

Outage (Vol); log 0.04 0.01 0.34 0.06 -0.01 0.02 -0.64 -0.63 -0.62 -0.72* -0.64 -0.72

(0.18) (0.19) (0.53) (0.18) (0.22) (0.19) (0.52) (0.51) (0.38) (0.40) (0.52) (0.56)

Observations 1,129 1,129 1,129 1,129 1,129 1,129 845 845 845 845 845 845

First stage F-statistic 13.45 12.55 1.60 13.80 12.87 12.87 14.10 14.56 14.73 13.64 14.10 8.35

SW χ2 test 14.52*** 13.55*** 1.73 14.90*** 13.90*** 13.90*** 15.64*** 16.16*** 16.34*** 15.13*** 15.64*** 9.26***

AR χ2 test 0.04 0.01 0.73 0.08 0 0.01 2.75* 2.68 5.48** 8.12*** 2.75* 3.41*

The regressions include control variables as those in Table 2.9, and dummies for sectors. The dependent variables are in bold. The endogenous variable is power outage volume (Vol). First stage

F-statistic: Kleibergen-Paap rk Wald F-statistic that is robust to heteroskedasticity. Underidentification test: SW χ2 test (Sanderson-Windmeijer first stage χ2 test). Weak-instrument robust tests

for significant endogenous variables : AR χ2 test (Anderson-Rubin Wald χ2 test). Robust standard errors clustered at the province level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

223



Table 2.C2: Robustness check : Sale loss, and firm heterogeneity

First stage Second stage

Sample HAI(ρ) F-statistic Outage (Vol); log Obs Cluster SW χ2 test AR χ2 test

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Survey 2005 (ρ = 1)

Baseline (Whole sample) -11.65*** (3.08) 14.32 -0.27 (0.44) 1,132 24 15.46*** 0.45

Manufacturers -11.67*** (3.18) 13.50 -0.28 (0.44) 1,119 24 14.52*** 0.50

Generator -12.44*** (3.58) 12.09 0.14 (0.42) 379 24 13.78*** 0.09

Non-generator -8.83** (3.50) 6.38 -0.86 (0.53) 734 24 6.98*** 4.14**

Elec-intensive -11.28*** (3.40) 11.01 -0.42 (0.53) 874 24 11.86*** 0.79

Non-Elec-intensive -13.27*** (5.08) 6.82 -0.01 (0.42) 258 24 7.95*** 0

Exporters -17.90*** (4.71) 14.45 -0.39 (0.31) 524 24 16.10*** 2.63

Non-exporters -6.07** (2.63) 5.32 0.37 (0.80) 608 24 5.92** 0.24

Survey 2015 (ρ = 10)

Baseline (Whole sample) -1.76*** (0.42) 17.68 -0.73*** (0.25) 915 19 19.54*** 5.67**

Manufacturers -1.94*** (0.55) 12.36 -0.88*** (0.31) 643 19 13.78*** 8.05***

Generator -1.47** (0.72) 4.10 -1.48** (0.71) 224 19 5.08** 8.14***

Non-generator -2.06*** (0.57) 13.23 -0.90*** (0.25) 416 18 15.25*** 10.84***

Elec-intensive -1.53*** (0.55) 7.72 -1.32*** (0.45) 580 19 8.59*** 12.57***

Non-Elec-intensive -2.29*** (0.24) 94.74 -0.10 (0.29) 335 18 109.49*** 0.10

Exporters -2.83*** (0.80) 12.61 -0.82*** (0.21) 251 18 15.82*** 16.60***

Non-exporters -1.55*** (0.33) 22.36 -0.51* (0.26) 664 19 25.12*** 2.22

Note: The regressions replicate the baseline 2SLS estimates as those in Table 2.7 (first stage), and 2.9 (second stage) for var-
ious sub-samples. The dependent variable is revenues (log). The endogenous variable is power outage volume (Vol). First
stage F-statistic: Kleibergen-Paap rk Wald F-statistic that is robust to heteroskedasticity. Underidentification test: SW χ2

test (Sanderson-Windmeijer first stage χ2 test). Weak-instrument robust tests for significant endogenous variables : AR
χ2 test (Anderson-Rubin Wald χ2 test). Robust standard errors clustered at the province level are in parentheses. *** p<0.01,
** p<0.05, * p<0.1.
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Table 2.C3: Robustness check: Survey 2015

Handle fiscal year Weights

VARIABLE Baseline Add dummy Weak Median Strong

(1) (2) (3) (4) (5)

Panel A: Performance

Revenue; log

Power outage; log -0.73*** -0.55* -1.13*** -1.03** -1.03**

(0.25) (0.29) (0.41) (0.40) (0.41)

Observations 915 915 915 915 915

First stage HAI(10) -1.76*** -1.64*** -2.13*** -2.19*** -2.19***

(0.42) (0.41) (0.49) (0.46) (0.47)

First stage F-statistic 17.68 15.98 18.91 22.67 22.02

SW χ2 test 19.54*** 17.68*** 20.90*** 25.06*** 24.33***

AR χ2 test 5.67** 3.71* 5.04** 4.51** 4.40**

TFP YKL model; log

Power outage; log -0.55** -0.34 -0.15 -0.11 -0.09

(0.23) (0.27) (0.18) (0.17) (0.17)

Observations 421 421 421 421 421

First stage HAI(10) -1.53* -1.60** -4.24*** -4.37*** -4.55***

(0.80) (0.74) (0.71) (0.74) (0.75)

First stage F-statistic 3.62 4.67 35.37 35.17 37.31

SW χ2 test 4.15** 5.37** 40.52*** 40.29*** 42.74***

AR χ2 test 3.97** 1.44 0.66 0.42 0.28

(cont.)
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Handle fiscal year Weights

VARIABLE Baseline Add dummy Weak Median Strong

(1) (2) (3) (4) (5)

TFP YKLM model; log

Power outage; log -0.53 -0.45 -0.04 -0.04 -0.04

(0.41) (0.40) (0.18) (0.17) (0.17)

Observations 392 392 392 392 392

First stage HAI(10) -1.50 -1.43* -4.44*** -4.56*** -4.75***

(0.91) (0.80) (0.80) (0.83) (0.84)

First stage F-statistic 2.71 3.16 31.14 30.36 32.38

SW χ2 test 3.13* 3.65* 35.90*** 35.00*** 37.33***

AR χ2 test 4.66** 2.83* 0.07 0.05 0.04

Panel B: Energy inputs

Generator use; log

Power outage; log 0.31*** 0.21 0.19** 0.19** 0.19**

(0.10) (0.13) (0.08) (0.08) (0.08)

Observations 605 605 605 605 605

First stage HAI(10) -1.86*** -1.83*** -3.93*** -4.03*** -4.14***

(0.58) (0.58) (0.55) (0.53) (0.52)

First stage F-statistic 10.14 10.11 52.04 57.51 62.60

SW χ2 test 11.34*** 11.33*** 58.21*** 64.32*** 70.02***

AR χ2 test 6.49** 2.13 4.52** 5.27** 5.56**

Electric cost; log

Power outage; log -1.03** -0.84* -0.87** -0.91** -0.90**

(0.43) (0.45) (0.40) (0.39) (0.38)

(cont.)

226



Handle fiscal year Weights

VARIABLE Baseline Add dummy Weak Median Strong

(1) (2) (3) (4) (5)

Observations 841 841 841 841 841

First stage HAI(10) -1.85*** -1.76*** -2.12*** -2.18*** -2.18***

(0.42) (0.41) (0.52) (0.49) (0.49)

First stage F-statistic 19.32 18.55 16.40 19.87 19.44

SW χ2 test 21.44*** 20.62*** 18.20*** 22.05*** 21.57***

AR χ2 test 9.31*** 5.19** 7.20*** 8.45*** 8.28***

Fuel cost; log

Power outage; log -0.62 -0.71 0.24 0.23 0.23

(0.55) (0.61) (0.23) (0.23) (0.23)

Observations 458 458 458 458 458

First stage HAI(10) -2.42*** -2.33*** -4.48*** -4.55*** -4.60***

(0.66) (0.63) (0.50) (0.54) (0.54)

First stage F-statistic 13.59 13.84 79.05 69.99 72.24

SW χ2 test 15.57*** 15.90*** 90.58*** 80.20*** 82.77***

AR χ2 test 1.78 1.88 0.98 0.98 0.95

Panel C: Other inputs

Material cost; log

Power outage; log -0.62 -0.43 -0.20 -0.23 -0.21

(0.40) (0.42) (0.50) (0.49) (0.48)

Observations 529 529 529 529 529

First stage HAI(10) -1.87*** -1.87*** -4.01*** -4.10*** -4.16***

(0.63) (0.58) (0.76) (0.76) (0.76)

(cont.)
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Handle fiscal year Weights

VARIABLE Baseline Add dummy Weak Median Strong

(1) (2) (3) (4) (5)

First stage F-statistic 8.85 10.39 27.81 28.91 29.56

SW χ2 test 10.03*** 11.79*** 31.50*** 32.75*** 33.49***

AR χ2 test 3.34* 1.29 0.17 0.23 0.20

Labor cost; log

Power outage; log -0.64 -0.74 -0.15 -0.16 -0.13

(0.52) (0.58) (0.34) (0.33) (0.32)

Observations 845 845 845 845 845

First stage HAI(10) -1.62*** -1.48*** -1.91*** -1.98*** -1.98***

(0.43) (0.42) (0.44) (0.41) (0.41)

First stage F-statistic 14.10 12.33 18.76 23.57 22.70

SW χ2 test 15.64*** 13.70*** 20.82*** 26.15*** 25.19***

AR χ2 test 2.75* 2.70 0.23 0.26 0.19

The regressions include control variables as those in Table 2.9, and dummies for sectors. The dependent variables are in bold. The endoge-

nous variable is power outage volume (Vol). First stage F-statistic: Kleibergen-Paap rk Wald F-statistic that is robust to heteroskedasticity.

Underidentification test: SW χ2 test (Sanderson-Windmeijer first stage χ2 test). Weak-instrument robust tests for significant endogenous

variables : AR χ2 test (Anderson-Rubin Wald χ2 test). Robust standard errors clustered at the provincea level are in parentheses. *** p<0.01,

** p<0.05, * p<0.1.
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Chapter 3

Do Natural Disasters Make Politicians
More Environmentally Friendly? -
Evidence from Environmental Legislation
in the US Senate
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Chapter abstract

This paper investigates whether United States Senators are more likely to vote in favour of envi-
ronmentally friendly legislation following a natural disaster. To this end we combine senatorial
scores of roll call votes on environmental legislation with modelled state level human and eco-
nomic natural disaster losses over a 44 year period. Our empirical results show that support
for environmental legislation increases in response to human losses but falls after economic
damages. We find the documented response to such events is two years, although senators from
states with low natural disaster risk, high income, or those that benefit from statewide Presi-
dential Disaster Declarations, vote for more environmentally friendly legislation within a year.
Regardless, the impact is short-lived.
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“Disasters are very political events.”

A testimony to senators by James L. Witt, the former director of FEMA
(April 1996)

“We can’t destroy the competitiveness of our factories in order to prepare for
nonexistent global warming. China is thrilled with us.”

A tweet of Senator Donald J. Trump (November 2012)

“I don’t think that’s changed,”

A response from White House Press Secretary when asked whether
Hurricanes Irma and Harvey altered the view of President Donald J. Trump

on climate change (September 2017)

3.1 Introduction

Following the inauguration of President Donald Trump, there have been a number of changes in

US environmental policies, including the introduction of the fossil-fuel-reviving ‘America First

Energy Plan’, a threat to withdraw the US from the Paris Climate Change Agreement, and the

removal of such terms as ‘climate change’ or ‘global warming’ from official government doc-

uments, plans, and strategies (Wolff, 2017; Mckibben, 2017; Flavelle, 2018). Coincidentally,

shortly after the inauguration of the president in 2017, the US was faced with a series of large

natural disasters with economic damages estimated to be $306 billion dollars. Specifically, the

cost of 16 single events exceeded 1 billion dollars, including 3 of the 5 costliest hurricanes have

hit the US since 1900 (Mooney and Dennis, 2018; NOAA National Hurricane Center, 2018).1

1The three hurricanes were Harvey ($125 billion), Irma ($25 billion), and Maria ($90 billion).
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Following these disasters, scientists, and environmental advocates argues that the government

should reconsider the current environmentally hostile of the US’ environmental policy (Fried-

man, 2017; Colman, 2017, 2018). However, despite these protestations, there is little progress

has been made. In this paper we investigate whether extreme losses caused by natural disasters

influenced politician’s voting behaviour on the environmental legislation. More specifically,

we investigate whether senator’s preference for environment changed after their constituencies

were severely hit by natural disasters.

There are several reasons why one may expect natural disasters to alter Senate level leg-

islation in general, and in particular those associated with the environment. While ideology

has been found to play an important role in congressional voting in the US (Poole and Rosen-

thal, 1985; Arnold, 1990; Lee et al., 2004; Ringquist and Dasse, 2004; Clinton, 2006; Poole

and Rosenthal, 2007), one would expect that legislators, who are elected to act on behalf of

their electorates, take into account the preferences of their constituencies when casting their

votes (Anderson and Mizak, 2006; Tanger et al., 2011; Chupp, 2011; Canes-Wrone et al., 2011;

Miler, 2016; Vandeweerdt et al., 2016). In this regard, natural disasters, which are unanticipated

and can have a devastating impact on local communities, could serve as ‘focusing’ events, in

that they can grab the public’s attention, result in extensive media coverage, and trigger public

debate, thus possibly changing the balance of competing advocate groups, and in turn altering

the attitude and actions of elected legislators (Kahn, 2007; Birkland, 2016).2 There are at least

two different narratives that can arise in the aftermath of a natural disaster. First, perception of

the close relationship between natural disasters and the environment means that issues related

2Boscarino (2009) explains this phenomenon as ‘problem surfing’, that is advocacy groups tend to attach any
seemingly relevant problems that arise in society to the preferred solution that they are keen on fighting for. For
example, in his empirical work he finds that two sustainable forestry advocacy groups, Wilderness Society and
Sierra Club, take advantage of different salient events covered by media belonging to 5 different topics: wildlife,
water quality, recreation, economic inefficient and climate change to promote their campaign.
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to the environment may emerge as a critical issue in the constituencies that have been impacted

by a natural disaster. One common argument is that environmental degradation such as changes

to the underlying climate makes natural hazards more damaging and/or frequent and hence in-

creases the vulnerability of affected communities (UNEP, 2007; Gupta and Nair, 2012; Wouter

Botzen and Van Den Bergh, 2012; Estrada et al., 2015) and legislation is expected to respond

to such a concern. For example, after the catastrophic hurricane Katrina, many environmen-

tally friendly bills were proposed to cope with the risks of climate change. At the same time,

natural disasters can directly or indirectly result in further deterioration of the environment, for

example ecosystem destruction, oil spills, and contaminant mobilisation (Labadie, 2006; Atkin,

2017; Dart et al., 2018; Natter and Calkins, 2018). Therefore, natural disasters could help trig-

ger demand for stringency of environmental regulation. For example, the concern on the risk of

earthquake contributed to the introduction of Gravel amendment (1971) to the Atomic Energy

Commission Authorizations (HR 9388), which aimed to delay nuclear testing in Alaska.3

On the other hand, natural disasters can cause considerable economic losses, that means

constituencies prioritise economic recovery and redevelopment.4 Therefore, environmental reg-

ulations, if they are believed to impose additional costs on businesses and negatively impact

employment, even if it is just in the short term, could become less preferable where costly nat-

ural disasters strike. An example for the thinking that environmental protection should step out

in emergency is the proposal by Senator Rand Paul (2012), which sought to amend the Mov-

ing Ahead for Progress in the 21st Century Act (MAP-21) (S. 1813), and relax environmental

3See http://scorecard.lcv.org/roll-call-vote/1971-138-nuclear-testing
4While it has been estimated that about one third of the working population in the US believe in the trade-

off between environmental regulation and jobs (Goodstein, 1994), existing studies suggest just negligible impacts
of environmental regulation on productivity and employment in the US (Ferris et al., 2017). There is a popular
political mythology that exaggerates the scopes, intensity and duration of such impacts on firms, industries, and
localities (Meyer, 2002). Also, an analysis by Kahn and Kotchen (2010) found that increased unemployment rate
and decreased income reduce public concern on environment.
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regulations for the rebuilding of transportation project after disasters.5

In order to study how natural disasters affect congressmen voting on environment related

laws, we put together a 44 year data set of the ‘environmentally friendly’ voting behaviour

of US Senators and state level measures of human and economic losses caused by different

types of natural disasters. To measure environmental senatorial voting since 1971 we use the

scores constructed by the League of Conservation Voters (2018) from records of selected roll

call votes at the Senate. A naïve approach is just directly using the level of disaster damages

in modelling, which implicitly assumes a uniformly linear impact on voting at the congress

of natural damages of different magnitudes and ignores various degrees of exposure to natural

disaster across different states. As it has been highlighted in the literature, only salient events

have noticeable political power and therefore a challenge in building measures of state level

natural disaster losses is to identify events that are important, i.e., rare, enough to possibly

trigger changes in attitude, and to take account of the likelihood that the definition of ‘rare’ may

differ across states given their historical exposure to natural disasters. To model these features

we use the comprehensive record of monetary and non-monetary losses due to natural events

contained in the SHELDUS database (Hazards & Vulnerability Research Institute, 2015) and

identify the more extreme natural disasters using extreme value theory (EVT). Arguably, EVT

is ideally suited to the task at hand, as it allows one to take account of the ‘fat tail’ distribution

that are typical of losses due to natural events, where there are many smaller, negligible, and a

few potentially very damaging events (the ‘fat tails’). To isolate and classify the probabilities

of the latter we employ a peak over threshold (POT) model for each state, thus allowing the

associated derived probabilities of events to differ across space.

5See details at http://scorecard.lcv.org/roll-call-vote/2012-47-environmental-review-transportation-rebuilding.
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Our study contributes to a strand of the literature that investigates political consequences of

natural disasters, and more specifically within the context of the US. A majority of these studies

examines the executive branch and how voters punish or reward federal and local governments

after the occurrence of a natural disaster (Abney and Hill, 1966; Achen and Bartels, 2004;

Malhotra and Kuo, 2008; Healy and Malhotra, 2009; Gasper and Reeves, 2011; Bechtel and

Hainmueller, 2011). Several studies also look at the legislative branch, paying attention to the

policy domains of disaster relief and prevention (Birkland, 1996, 2016).

To the best of our knowledge, there has been no empirical study on the impact of natural

disasters within the broader domain of environmental legislation. Arguably, a challenge in

using findings from the existing studies to infer the political impacts of natural disasters has

been external validity. More specifically, most of the literature has focused on one or a few

salient events, such as a 500-year flood, and thus it is difficult to generalise from or directly

compare their findings to other contexts where the ‘rarity’ of the event may be very different.

In addition, the restriction to specific types of disasters (for example hurricanes only) fails to

take account of the fact that many, particularly, climatic events are driven by similar forces,

such as the El Niño–Southern Oscillation (Goddard and Dilley, 2005), and thus that it may be

the cumulative losses due to natural disasters that matter in terms of changing environmental

attitudes. The approach we take in this paper allows us to homogenise the rarity of all economic

and human losses across time and states. The key identification assumption is that whenever

the yearly accumulated damage from natural disasters in a constituency exceeds an arbitrary

degree of rarity, it may become a matter of public concern and influence the behaviour of elected

politicians (senators). Otherwise, it will be considered non-salient and likely to be ignored. The

empirical threshold we use in this study is 10-year return level, although we investigate whether
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alternative thresholds are more appropriate.6

To briefly summarise our results, we find that the environmental voting patterns of senators

are responsive to extreme losses from natural disasters in their constituencies. However, this

response is not instantaneous, in that a significant signal is found on average two years after

an event and lasts only a year. Importantly, human loss shocks and economic loss shocks

from the disasters have opposite effects. The former makes the senators lean toward ‘green’

policies, while the latter drives them away. State characteristics, such as low exposure to natural

disasters, high personal income, and benefiting from Presidential Disaster Declarations make

the responses of senators earlier and stronger.

The remainder of the paper is organised as follows. Section 2 describes our data sets and

construction of variables. Section 3 presents our regression specification, the results of which

are shown and discussed in Section 4. In Section 5 we conduct some counter-factual analysis.

Finally, Section 6 concludes.

3.2 Data

3.2.1 Senatorial Environmental Voting Scores

To construct an indicator of environmental friendly voting of Senators we use the National En-

vironmental Scorecard by League of Conservation Voters (2018) (LCV). More precisely, every

year since the first Earth Day (1970), LCV has consulted experts from over 20 organisations

6The threshold 10-year return level should not be mistakenly interpreted as an extreme level that is repeatedly
exceeded each decade but rather an extreme level that could be exceeded every year with a chance of 1/10= 10%
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that have a reputation for supporting environmental conservation to select a list of key votes

in environment-related issues to construct the LCV scores. Accordingly, each vote is scored 1

(pro-environment) if in line with LCV’s position, or 0 (anti-environment) otherwise, including

absentee votes. The annual score for each legislator, except for those who were ill or died,

and the Speakers of the House, whose vote is discretionary, is computed as the average score

of all selected issues within the year and then transformed into a scale from 0 (environment

enemies) to 100 (environment heroes). In certain years, some important issues are counted

twice while the sponsorship of some bills or petitions may be selected as replacements for real

votes to construct the scores. In order to control for changes in issues of legislative pieces

each year, we construct their share as grouped by: (1) Air issues, (2) Clean Energy issues,

(3) Dirty Energy/Toxics/Public Right to Know issues, (4) Water, Oceans and Drilling issues,

(5) Lands/Forest/Wildlife issues, (6) Transportation issues, (7) Climate change issues, and (8)

Other issues.7

3.2.2 Senatorial Characteristics

To control for senators’ characteristics we use information from Voteview (Lewis et al., 2017)

and the Congress Legislator project on GitHub.8 The Voteview dataset provides information

about the birth date, party affiliation, and ideology of the congressmen.9 As an ideology control,

we include the two dimensions of NOMINATE, which are calculated from DW-NOMINATE

7Note that the sum of these shares could exceed 100 as a vote can belong to multiple groups. In addition these
share variables are not absorbed by year fixed effects as they can vary over legislators each year if some, for certain
reasons (such as midterm election, illness, death...) , cast fewer votes in the selected issues.

8The Voteview data set collates information on US congressmen, president and vice president from 1789 to
recent, using various information sources; see https://github.com/unitedstates/congress-legislators for details.

9Party affiliation of legislators in the LCV dataset is corrected for those senators who switched party or changed
jobs.
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(Dynamic Weighted NOMINATE Three-step Estimation) (Poole, 2005; Poole and Rosenthal,

2007). The first dimension captures ideology in terms of economic/re-distributive issues, while

the second accounts for social/racial issues. For both dimensions, which are normalised between

-1 and 1, a higher estimate means a more conservative politician. The estimates are changed

for those that switched party. The GitHub data set also provides information on the gender and

class of the senators (to determine the election year) and the history of their appointment at the

Senate.10

3.2.3 Natural Disasters

To measure the impact of natural disasters we rely on the SHELDUSTM database (Hazards &

Vulnerability Research Institute, 2015). The database tracks the damages of natural hazards

and perils including, but not limited to, thunderstorms, hurricanes, floods, wildfires, tornadoes,

flash floods, and heavy rainfalls.11 Annual losses are given in terms of crop losses, properties

losses, injuries, and fatalities. We have access to data at the county level for the period 1960

- 2014. Since senators are elected by their states as a whole, we aggregate losses to the state

level. We compute human losses at state level as the sum of annual injuries and fatalities and

economic losses as the aggregated damage to crops and properties by year. We adjust values of

the later by 2014 prices to cancel out the possible impact of inflation. In addition, we look at the

intensity of losses (per capita variables) rather than their levels to take into account the changes

in population and economic density.

10The tenure of senators is 6 years. Every 2 (even numbered) years, one-third of their seats (33-34) are re-elected
and the class helps determine the year of election. For example, those of Class 1, 2, and 3 are up for re-election in
2018, 2020 and 2022, respectively.

11In full, SHELDUSTM includes 18 types of natural hazards: Avalanche, Coastal, Drought, Earthquake, Flood,
Fog, Hail, Heat, Hurricane/Tropical Storm, Landslide, Lightning, Severe Thunderstorm, Tornado, Tsunami/Seiche,
Volcano, Wildfire, Wind, Winter Weather
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To identify the salient, i.e., relatively rare, human and economic loss years in a state we

use to extreme values theory (EVT) and employ a Peak Over a Threshold model (POT) (Coles,

2001). The approach can be summarised as follows. If, for each of the 50 states, for each

of the two series of annual losses, we assume that they are a sequence of independently and

identically random variables, then an appropriate normalisation of the maximum of such a se-

quence, according to the Extremal Types Theorem (Fisher and Tippett, 1928), must asymptot-

ically approximate one of 3 extreme value distribution families, namely Fréche, Gumbel, or

Weilbull, which can be generalized by a Generalised Extreme Value (GEV) distribution (Jenk-

inson, 1955). Under certain asymptotic arguments, the probabilities of the extremes of these

sequences, above a certain threshold, can then be modelled via generalised Pareto distribution

(GPD); see (Pickands, 1975). Importantly, for the practical implementation of POTs is the

choice of the extremes’ threshold. A high threshold limits the number of observations, mak-

ing the estimation less precise, while a low threshold undermines the underlying asymptotic

assumptions, posing a potential risk of bias in the estimation. We follow the guidelines of Coles

(2001) when use a series of visualisation tools determining the threshold for each series. First,

we draw the mean residual life plot (MRL), which captures the relationship between the average

exceedances and thresholds, and select a low threshold where such a relationship still plausibly

mirrors a straight line, as would be expected from the theory. The selection is verified by a POT

parameter stability plot.12 After the threshold is chosen, the GPD is estimated by the Maximum

Likelihood Estimator (MLE). Post-estimation graphs are used to further assess the selection of

threshold. Appendix 3.A provides a detailed explanation of our EVT and POT approach.

The estimated GDP distribution is used to determine the return level z(N) of the extreme

12As suggested by the theory, once the threshold is appropriate, relevant (transformed) parameters must be stable
when increase the value of threshold (see Appendix 3.A for details)

246



loss intensity values corresponding to a predefined return period of N years. For our baseline

results we choose a return period of 10 years, which corresponds to a return level z(10) such

that the annual natural disaster damages/losses in a given state in any year can exceeds such a

level with a probability of 1/10 = 0.1.

3.2.4 Other State Level Controls

In our estimations we also control for a number of state characteristics including demographic,

economic, and weather related, that could be correlated with voting behaviour and the pos-

sibility that natural events translate into large losses. In terms of demographic data we take

information from ‘The US Population Data by National Cancer Institute’, which provides an

estimate of the annual population by age, sex, and race at the county level.13 To generate con-

trols for the macro-economic environment (GDP, personal income, and implicit price deflator)

at the state level, we use data from Bureau of Regional Economic Analysis (BEA).14

As noted by Auffhammer et al. (2013), when modeling climate related phenomina it is

important to also control for general weather patterns that could be correlated. To construct

measure at state level temperature and precipitation we use data from the nClimDiv (NOAA,

2014; Vose et al., 2014) that interpolates climatic data from stations at 5km × 5km resolution

using an area weighting method and taking into account topographic and network variability.

The data covers states in the contiguous United States (CONUS) and Alaska (added in 2015,

based on 1971-2000 PRISM averages) and excludes Hawaii. For Hawaii, we use the Global

13The data is accessible at https://seer.cancer.gov/popdata/methods.html.
14Data is available at https://www.bea.gov/regional/downloadzip.cfm.
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Summary of the Year data provided by National Climatic Data Center (NCDC).15

3.2.5 Summary Statistics

Table 3.1 summarises the data used in our regression. After the data matching processes, we

obtain 4,414 observations from 381 senators that we were able to obtain the full set of senato-

rial environmental voting scores, natural disaster measures, senatorial characteristics and other

state-level controls.16 Regarding our variables of interest (the modelled natural disaster mea-

sures), we depict the spatial distribution of human and economic losses in Figures 3.1 and 3.2,

respectively. As can be seen from the figures, the 10-year return levels for economic loss inten-

sity in 2014 prices ranges from 16.5 (Connecticut) to 509.2 (Iowa) dollars per head, while the

10-years return levels for human loss intensity ranges from 4.7 (Rhode Island) to 144.2 (Mis-

sissippi) deaths and injuries per million of the population. Spatially, the South, followed by the

Midwest, has the highest 10-year return levels of ND damages, both in terms of economic and,

human losses. In Figure 3.3 we shows the temporal variation of human and economic losses

in conjunction with the number of states affected. As can be seen there has been considerable

variation in both the incidence and the intensity.

[Table 3.1 about here]

[Figure 3.1, 3.2, and 3.3 about here]

15More specifically, we compute temperature and precipitation for Hawaii as the average of data from three
stations Hilo International Airport, Honolulu observatory, and Lihue weather service office airport.

16The average age of Senator is quite high, at 58.6. The oldest senator in the dataset is Sen Strom Thurmond
(1902), who was 100 years old when serving the Senate in 2002 before his death in 2003. The women are un-
derrepresented in the Senate, with an average share of only 7.3% over the entire period. The share was almost
negligible in the early years, then dramatically rose since 1992 and reached nearly 20% in 2014.
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3.3 Specification

Our benchmark specification to estimate whether natural disaster shocks have an impact on

environmental voting patterns of senators is given by:

Yi jt = α +

q∑
k=0

βkHshock jt−k +

q∑
k=0

γkEshock jt−k + ΨXit + ΩZ jt + µi + νt + εi jt (3.1)

where Yi jt is the average LCV in year t of Senator i elected to state j. Hshock jt−k is the hu-

man losses, a binary variable that indicates whether there were human losses due to natural

disasters (per capita) in state j, k years prior to year t that exceeded the 10-year return level,

and the binary variable Eshock jt−k for economic losses is similarly defined. We control for a

delayed effect between the natural disasters and voting behaviour by including lagged values

of Hshock jt−k and Eshock jt−k. The sets of coefficients βk and γk are the parameters of interest.

Xit is our set of variables that control for characteristics of senators including ideology (mea-

sured by 2-dimensions of the NOMINATE estimates), party affiliation, age, gender, tenure of

legislators (whether they are in first year at the chamber and whether they are in an election

year) and a range of issues (share of issues by topic) voted in year t. Z jt is a vector of state

characteristics, including demography (share of voters by ethnicity and age), economy (average

personal income, and real growth rate) and weather variables (precipitation, and temperature).

The model also includes legislator (µi), and time fixed effects (νt). Time fixed effects control for

common factors across the country that vary across years. Since senators represent states, legis-

lator fixed effects control not only for time invariant unobserved senator heterogeneity, but also

take account of state-specific time-invariant characteristics. Arguably, after controlling with

for differences in local natural disaster loss exposure through these fixed effects, Hshock jt−k and
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Eshock jt−k capture random, unanticipated realizations of the natural disaster loss distributions.17

Standard errors are clustered at the state level in all specifications.

3.4 Results

3.4.1 Baseline regression

Table 3.2 shows the results from our baseline regressions. To this end we employ both an OLS

[Ordinary Least Squares] (Columns 1-5) and a (senator) FE [Fixed Effects] (Column 6-10)

model, where both include the same set of time varying control variables and year fixed effects.

We also allow for up to four years of lagged values for our two main variables of interest. In

a robustness check we also include lags of all control variables (see Section 3.4.2). Overall,

our results show that natural disasters have a significant impact on voting patterns, although the

effects depend on the time horizon examined. Importantly, the effect of the two types of shocks

differ qualitatively, in that while relatively rare human loss events tend to induce legislators

to vote for more environmentally friendly legislation, economic loss shocks have the opposite

impact.

[Table 3.2 about here].

Comparing the two estimators, the OLS results tend to give larger coefficients. In our OLS

results we find a significant impact for human losses for the year of the shock and up to 2 years

17Of course whether an environmental event translates into a natural disaster depends on time varying ex-ante
population exposure, disaster mitigation policies and local infrastructure, all of which could feasibly also be cor-
related with voting patterns. We assume that these concerns are controlled for through our rich set of time varying
state specific controls.
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later with the largest coefficients for 2 years after the natural disasters. For economics losses,

column (5) shows that the impact starts at t−1 and lasts until t−2, although the effect is sensitive

to including other lags. In contrast, when we take into account senator and state heterogeneity

in the FE model, the estimated coefficients tend to be lower, suggesting that a failure to control

for these effects may induce an upward bias in the results. However impact for the 2-year lag

remains significant at the 1% level for human loss shocks, and at the 10% level for the economic

losses.

Since there appears to be no impact beyond two year lags for either natural disaster indicator,

Column 8, which allows for up to a two year effect, is considered as our benchmark specification

for our remainder of the paper. Accordingly, we can say that human losses in a particular state

adds 2.66 points to a senatorial environment score 2 years after the event while an economic

loss shock reduces it by 1.40 points. To put this in context, the average senatorial environmental

score is 46.99 (N=4,414) for the whole sample, 23.52 for non-Democratic senators (N=2,123)

and 68.75 for Democratic senators (N=2,291). One extension is to ask whether the impact

of natural disasters remains significant if they simultaneously cause extreme losses in both

monetary and human terms.18 Under such circumstances, the total impact of natural disasters

is the linear combination of both shocks. Using the benchmark specification, the combined

coefficient for the 2 year lag variable is 1.26 with a standard error of 0.98.19 The t-test cannot

reject the null that such an overall effect is not statistically different from zero (p-value=0.197).20

18One should note that a feature of our ND shocks variables is that human loss shock and economic loss shock
rarely occur together. More precisely, among our 2,200 state-year pairs (50 states × 44 years), there are 155 single
human loss shocks, 192 single economic loss shocks, and 64 incidences of both occurring in the same year and
state.

19As a numerical illustration, the benchmark specification can be explicitly written as Yi jt = α +
2∑

k=0

βkHshock jt−k +

2∑
k=0

γkEshock jt−k + ΨXit + ΩZ jt + µi + νt + εi jt and the combined coefficient at 2 year lags

is β2 + γ2=2.66+(-1.40)=1.26.
20The coefficient, stand error, t statistics and p-value of the combined effect here were computed by the STATA
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Yet, when both damages happen together, the two significant impacts neutralise each other given

the effects are in opposite directions and senators seem to be unresponsive to the the events that

cause extreme losses to both human and the economy.

3.4.2 Robustness Tests

We conduct a number of robustness checks to gain further confidence in our findings. Firstly,

in Table 3.3, we compare the findings of the benchmark specification (Column 1) with some

alternative specifications (Columns 2 to 12). Odd numbered columns are variations on the

benchmark specification and even numbered columns resemble the columns before but includ-

ing up to 2 lags of all controls. Column (3) considers the impact of both types of natural disaster

shock, but at t − 2 only and excludes the shocks at t − 0 and t − 1. Column (5) only considers

the impact of human loss shock and its lags. Column (7) only considers the impact of economic

loss shock and its lags. Column (9) and (11) include dynamic terms of the dependent variable

to address the concern that our benchmark specification fails to capture potential dynamics in

environmental voting in our static model and that thus the lagged ND variables are partially

picking these up. More precisely, we add to our baseline specification up to two lags of the

LCV score, i.e., the same number of lags for which we find significant effects on economic and

human losses, and re-estimate the model using both a FE (column 9) and Generalized Method

of Moments [GMM] estimator (column 11), the latter of which takes account of the endogene-

ity of the lagged dependent variables. Accordingly, the significant impact of lagged human loss

shock is robust across all specifications while the robustness of lagged economic loss shock

varies. It becomes insignificant in Column 2, and 7-10 but turn to significant at 5% in Columns

command lincom.
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9-10, where the dynamics of the dependent variable is added and estimated by GMM. Notably,

in such a specification, the first lag of LCV score appears to be a significantly positive predic-

tor of LCV score itself. A note of caution is that these 12 specifications are not always strictly

comparable as the samples of some are slightly reduced when we try to include the lags of some

variables that lack of historical observations.

[Table 3.3 about here].

As noted in the introduction, in the literature on the determinants of congressional voting

ideology has been shown to be the one of the most important drivers. In parallel, it may affect

the perceptions of natural disasters risk and the decide demand for adaptation measures (Botzen

et al., 2016). However, our proxy for ideology varies little after controlling for senator fixed

effects (since it can only change due to a switch of party or a change to another political posi-

tion), so that one may have some concerns over whether we might not by chance be capturing

ideological changes concurrent with ND events. To further investigate this we replaced the

NOMINATE measures by a more time-varying ideology proxy, namely Liberal Quotient (LQ)

by American for Democratic Action (ADA). The LQ is a ‘standard measure of political liber-

alism’ (Americans for Democratic, 2017) and is constructed for each senator from the records

of 20 selected votes each, which cover a wide range of issues, including domestic and inter-

national social and economic issues, as well as environmental concerns. Results of including

this alternative ideology proxy, under the reduced sample size given that not all senators have

observations for LQ, are illustrated in Table 3.4. Compared with baseline regressions in Table

3.2, the difference in coefficients is, however, negligible and the main conclusions remain.

[Table 3.4 about here].
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After controlling for state level fixed effects, the ND losses are arguably unanticipated reali-

sations of the ND loss distributions. A potential counter-argument is that the dependent variable

(LCV score of elected senator) may serve as a proxy of local elite attitude and public opinion

towards the environment in the associated state, which is possibly correlated with natural hazard

prevention and preparedness and predicts the actual loss caused by natural disasters later. To

shed a light on this issue, in Columns (6) to (10) of Table 3.5 we conduct a placebo test, where

the treatment in the baseline (lags t − 1, ..., t − 4 of natural disaster shocks in Columns (6) to

(10) of Table 3.2) is replaced by the leads t + 1, ..., t + 4 of these variables. One should note this

will inevitably change our sample as we do not have natural disaster data after 2014. To make

sure the results of our placebo test are not driven by sample variation, we replicate Columns (6)

to (10) of Table 3.2 in Column (1) to (5) of Table 3.5 with the same restricted samples as the

regressions with the lead variables. In this regard, although the point estimates of ND shock

lags in these columns slightly differ from Table 3.2 the main conclusion is unchanged: senators

react strongly to ND shocks at 2 years after the event. The results of the placebo test in Columns

(6) to (10) of Table 3.2 indicate that there is almost no correlation between future ND shocks

and senators’ voting, except for the third lead of human loss shocks, although this is only at the

10% level. Thus, we can confidently rule out the reverse causality that environmental voting

process predicts ND shocks.

[Table 3.5 about here].

To ensure that our significant results are not due to a chance occurrence of ND shocks and

changes in environmental voting we also undertook a randomization (Monte Carlo permutation)

test. More precisely, within each state ND shocks were randomly assigned to a year with a

probability of 10 per cent, corresponding to their 10-year return period exceedance probability,

254



using a binomial distribution and then the specification of Column 8 of Table 1 re-estimated.

This was done 1,000 times, where for each simulation we recuperated the t-statistics on our

ND shocks variables and their lags. We provide the corresponding the p-values of our actual

estimates relative to the distribution obtained from the simulations in Table 3.6. As can be seen,

the test confirms the significance (at 10% by the least) at time t-2 of human loss shock (p-

value=0.002) and economic loss shock (p-value=0.062). The impact of natural disaster shocks

in our study is quite extreme between other random events with similar degree of rarity.

[Table 3.6 about here].

3.4.3 Alternative Definition of ‘Salient’ ND Events

We define salient NDs very clearly as those that had a return period of at least 10 years. How-

ever, admittedly, there is no a priori reason to settle on a 10-year ‘return period’, i.e., a 10%

probability event, as a the minimum threshold for which to identify ND shocks that matter for

environmental voting. To explore how sensitive our results are to this choice we investigate dif-

ferent values of return level to define ND shocks and re-estimate the baseline regressions with

4 lag lengths (similar to Column 10 of Table 3.2). Figures 3.4 and 3.5 show the estimated the

contemporaneous and lagged coefficients on economic and human losses, along with their 95%

confidence bands, using various return period thresholds ranging from 2 to 20 years. Accord-

ingly, while the coefficients at t, t − 1, t − 3, and t − 4 are consistently insignificant for both

economic and human losses, no matter what return period threshold we choose, this is not the

case for the coefficients of the t − 2 lags. Rather significant (at the 95% level) effects are found

at return period thresholds between 6 years (16.7%) and 12 years (8.3%) for human loss shocks
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and between 3 years (33.3%) and 13 years (7.7%) for economic loss shocks, although in some

cases only at the 10 per cent level for the latter.21 Moreover, for the human loss estimate the

coefficient appears highest for the 10-year return period definition, while it remains relatively

stable for the significant range for economic losses. We can thus be fairly confident that our

main results hold as long as we define the salience of the ND shocks within the neighborhood

of a 10-year return period.

[Figure 3.4, and 3.5 about here].

3.4.4 Heterogeneity Treatment Effects

Our results thus far represent average treatment effects of ND shocks on senatorial environmen-

tal voting. Feasibly the effects could differ within our sample. We explore treatment hetero-

geneity along several fronts below, the results of which are all illustrated in Table 3.7.

[Table 3.7 about here].

Our baseline regressions implicitly assume that legislators’ responses to ND shocks are

stable over time. However, it is well known that American politics, at both mass and elite

level, has become more polarised over time (Garand, 2010). To investigate how this might have

affected our ND and environmental voting relationship we create two dummies breaking down

our sample period into that pre- and that post-1990, and interact these with the ND shocks and

their lags for our base specification. The results are illustrated in Column (1) of Table 3.7.

For both periods, significant responses of senators to ND shocks are found at 2 years after the

21The percentages in parentheses indicate the rarities of the events corresponding to the return periods
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shocks, but such responses are statistically and quantitatively weaker after 1990. For example,

senators’ environmental friendliness is 3.54 points 2 years after a human loss shock (significant

at 1%) but dropped by 3.01 points 2 years after an economic loss shock (significant at 10%).

After 1990 senators are only significantly affected by human loss shocks, where a salient event

year increase environmental voting by 1.86 points.

One caveat with using total annual losses to define salient events is it treats many multiple

small events and one major event in the same manner. To indirectly address this issue, in Col-

umn (2), we interact each shock with binary variables that indicate whether there was statewide

Presidential Disaster Declaration (SPDD) in the year when the shock occurred.22 PDD, which

are requested by governors of the affected areas and decided by the president, are required for

the allocation of disaster relief from FEMA. Previous research suggests that though the grant-

ing of PDD status could be politically manipulated (Garrett and Sobel, 2003), it is a matter of

public supervision where disasters strike and implies potential political consequences on the

politicians, who act inappropriately (Gasper and Reeves, 2011). Our results suggest that SPDD

urges Senators to react to ND shocks earlier and more strongly. More precisely, without a

SPDD it takes senators 2 years to see a significant reaction, where, on average, the LCV scores

increase by 2.72 points after a human loss shock and reduces by 1.33 points after an economic

loss shock. In contrast, senators change their voting behaviour within a year in response to

ND shocks when SPDD is declared. Moreover, this impact is larger than any of the average

treatment effects at t−2: 10.93 for human loss shocks and -9.39 for economic loss shocks, both

significant at 1%. The impact of an economic loss shock lasts for two years but declines to 6.97

points.

22PDDs could be for the whole state or some counties within the state only. As we examine the voting patterns
of senators, we only pay attention to statewide events.
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Column (3) compares the impact in election to non-election years, i.e., whether senators vote

differently when they are up for election years.23 However, as can be seen, regardless of whether

senators were in an election year or not, they responded to human loss shocks 2 years after

their occurrences as demonstrated through stronger support for environmental legislation. The

reaction is nevertheless much stronger in election year where the coefficient roughly doubles.

We also examine whether characteristics of constituencies can affect the extent to which

senators respond to ND shocks. In Columns (4) and (5) of Table 3.7, we depict the coefficients

of the interaction terms of ND shocks with indicator variables for low risk and high income

states respectively.24 The results suggest that reactions of senators from these states to human

loss shocks can be detected earlier and stronger. Just one year after the salient year of natural

disasters, the LCV score of a senator from a low risk state and a high income state increases

by 5.98 (significant at the 1% level) and 4.22 (significant at the 10% level) points respectively.

One possible reason may be that inhabitants in states less exposed to natural disasters are less

likely to expect and prepare for such an event. Hence, when natural disasters happen, they may

leave large psychological shocks on voters as well as politicians, leading to a speedy and strong

action from the legislators.

Categorising states by whether they are high or low income states, i.e., whether their per-

sonal income per capita is in the top quintile or not, also produces some interesting heterogene-

ity. More specifically, a significant impact from human losses is seen after a year for senators

from high income states, but only after two years for low income states. This may be because in

high income states there could be more people and groups that care about environmental issues

23We classify years as election years based on the class of senators and thus are assuming that all senators
planned to re-run for their seat even in this was not the case.

24We define low-risk states as those less exposed to natural disasters in that their 10-year return level estimates
for annual losses was within the lowest quintiles of the nationwide distribution; see in Figure 3.1 and 3.2.
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in such communities. As a result, a human loss shock will more easily attract attention and

drive elected senators to vote for more environmentally friendly.

Finally, we examine whether senators’ personal characteristics affect their voting reaction

to ND shocks in the last last three columns of Table 3.7. The estimates in Column (6) suggest

that senators’ response to ND shocks in the past is significant only if they actually occupied

the post when the shocks occurred, and not if they were not elected yet. In contrast, the het-

erogeneous impact across affiliations in Column (7) is harder to interpret. If we use a more

conservative level (5%) to determine statistical significance, then one can conclude that only

Democratic senators are significantly affected by ND shocks. Taking the estimate at face value

their scores two years following human loss shocks increases by 2.86%. Using a less conser-

vative significance level, one would conclude that Democratic senators vote greener after both

human loss shocks (2 year lags) and economic loss shocks (contemporaneously). In contrast,

non-Democratic senators only respond to human loss shock (at 0 and 2 year lags) assuming that

10 per cent is the appropriate cut-off for significance. Finally, Column (8) suggests that only

male Senators actually respond to human loss shocks.

3.5 Counter-factual analysis

In this section we ask how the Senate might have performed if there had been no ND shocks.

To this end we use the baseline regression results (Column 8 of Table 3.2) to predict yearly

LCV scores for each senator but setting all the economic and human ND loss variables to zero

and adding up the observed residuals. Then the deviation of the average real score from the

average simulated score can be attributable to the impact of ND shocks ceteris paribus. We do
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this separately for human loss shocks and economic loss shocks as well as a combination of the

two. One may want to note that in our predictions we assume that all controls are significant

predictors but only use the significant coefficients for the ND variables.

Figure 3.6 visualises our counterfactual analysis, where we compare the average LCV scores

of senators (solid lines) to their ND free conterfactuals (dashed lines). The bar graphs represent

the gap between the real scores and the simulated scores, or in other words, the impacts of ND

shocks, where grey bars indicate positive and black bars negative impacts. Accordingly, during

our sample period human loss shocks add to LCV score of the average senator up to 0.95 (1976)

points, where the average effect is 0.48 points per year. In contrast, economic loss shocks reduce

the average LCV score by up to 0.47 (2013) points and by 0.18 points on average. Overall, the

combination of both types of shocks has a net positive impact and thus natural disaster losses

have on average benefited environmentally friendly bills by about 0.30 points.

[Figure 3.6 about here].

3.6 Conclusions

Ideally elected politicians will act with their voters’ best interests at heart. The occurrences of

natural disasters offers researchers a quasi-natural experiment to investigate to what extent this

is the case. More precisely, the often devastating human and monetary losses due to natural

disasters set the context for possibly bringing about sudden changes in politicians’ support of

environmental issues. While, on the one hand, they may be inclined to prioritise the immediate

economic needs after a disastrous event, casting environmental concerns aside, they may also
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consider supporting environment issues more urgently in order to reduce the impacts of natural

hazards in the future.

Our study, using a long panel of senatorial environmental voting behaviour and state level

salient natural disaster losses, shows that senators are indeed responsive to the losses of their

electorates after important natural disasters. However, their reaction in terms of voting for en-

vironmental friendly legislation is not immediate and is short-lived. The observed gap of two

years between the occurrences of the natural shocks and changes in the environmental friendli-

ness of senators perhaps suggest that such changes are not driven by immediate self-reflection

and self-motivation of senators themselves, but rather through gradual interactions with exter-

nal pressures, such as media coverage, public opinion, and advocacy groups. Our additional

findings that senators from low risk, high income states and those profiting from statewide

Presidential Disaster Declaration respond one year earlier than others further supports this pos-

sibility. In addition, the fact that any impact appears to be short-lived may reflect bounded

rationality: impacts of natural disasters on senators disappear rapidly as other concerns arise.

In considering how senators react to natural disasters we find strong evidence that senators

vote more favourably on environmentally friendly legislation if there is an extreme number of

injuries and fatalities in their constituencies after natural disasters, and weaker evidence that

they vote against the environment if there are exceptional monetary losses. These counteracting

forces may help explain why the attitude of politicians toward environmental issues, on many

occasions, seems unaltered despite the occurrences of major events, as these tend to come with

extreme losses both in human and economic terms.

Finally, it should be acknowledged that one weakness of our study is that in identifying
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the important natural disaster event years used to identify any causal effects between natural

disasters and senatorial voting behaviour we are assuming that the distribution of possible losses

has remained stable over our 44 year sample period and that there is no temporal clustering of

events. This may be an arguably unrealistic assumption and one could possibly explore this by

modelling such changes explicitly, although our sample period may be too short to detect such

effects. In addition, it is also interesting to test whether similar voting patterns can be observed

at the House of Representatives. A difficulty that may arise in doing so, however, is that the

boundaries of congressional districts have not been consistent over time due to the redistricting.
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Figure 3.1: Estimates of 10-year return level for annual human damages caused by
natural disasters by state

Source: Authors calculated from SHELDUS data between 1960-2014 for 50 states that have Senators. The dam-
ages are calculated as the total number of people injured or killed per 1 million heads by natural disasters of all
kinds. See text for details.
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Figure 3.2: Estimates of 10-year return level for annual economic damages caused by
natural disasters by state

Source: Authors calculated from SHELDUS data between 1960-2014 for 50 states that have Senators. The dam-
ages are calculated as the total damages to crops and properties (in 2014 USD) per capita by natural disasters of
all kinds. See text for details.
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Figure 3.3: Natural disaster shocks over time

Source: Authors computed from the SHELDUS data for 50 states that have Senators. Human losses are the sum
of fatalities and injuries. Economic losses are the sum of damages (in 2014 dollars) to crops and properties caused
by natural disasters. Economic/human loss shocks are the years that economic/human losses of a particular state
exceed their 10-year return levels as detailed in Figure 3.1 and 3.2.
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Figure 3.4: Return period sensitivity for human loss shocks
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The figure illustrates the coefficients and confidence intervals of human loss shocks and their lags in the baseline
regression using FE with 4 lags of the shocks (Column 10 of Table 1), where the shocks are defined by varying
values of return periods in the EVT model. Significant coefficients are determined at the 5% level.
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Figure 3.5: Return period sensitivity for economic loss shocks
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The figure illustrates the coefficients and confidence intervals of economic loss shocks and their lags in the baseline
regression using FE with 4 lags of the shocks (Column 10 of Table 1), where the shocks are defined by varying
values of return periods in the EVT model. Significant coefficients are determined at the 5% level.
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Figure 3.6: Counterfactual analysis: Baseline regression

The figure compares the real average LCV score of the Senate over time (solid lines) with the conterfactual scores
supposed there were no human loss shocks (top panel), no economic loss shocks (middle panel) and no ND shocks
(bottom panel). The bars indicates the gap between two lines. The lines use the left axes, the bars use the right
axes.
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Tables

Table 3.1: Summary statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

Annual legislators’ LCV score (0-100 scale) 4,414 46.99 34.50 0 100
Human loss shocks (10-year return) 4,414 0.0995 0.299 0 1
Economic loss shocks (10-year return) 4,414 0.116 0.321 0 1
NOMINATE dim. 1 (ideology) 4,414 0.00264 0.354 -0.762 0.919
NOMINATE dim. 2 (ideology) 4,414 -0.0663 0.449 -1 1
Democrat [binary] 4,414 0.519 0.500 0 1
First year at the Senate [binary] 4,414 0.0662 0.249 0 1
Senator in election year [binary] 4,414 0.167 0.373 0 1
Age 4,414 58.55 10.37 31 100
Male senator [binary] 4,414 0.927 0.260 0 1
Share of black voters 4,414 0.0998 0.0936 0.00186 0.380
Share of 18-29 voters 4,414 0.257 0.0438 0.178 0.420
Share of 30-44 voters 4,414 0.285 0.0360 0.213 0.443
Share of 45-64 voters 4,414 0.293 0.0386 0.203 0.395
Personal income, $2014 thousand 4,414 32.48 9.404 13.92 66.92
Real growth rate, % 4,414 3.030 4.050 -28.18 43.55
Share of Air issues, % 4,414 7.082 12.66 0 66.67
Share of Clean Energy issues, % 4,414 10.89 12.37 0 50
Share of Dirty Energy issues, % 4,414 35.65 13.96 0 66.67
Share of Water issues, % 4,414 28.51 13.83 0 71.43
Share of Land issues, % 4,414 33.41 19.86 0 85.71
Share of Transportation issues, % 4,414 8.056 11.35 0 53.85
Share of Climate change issues, % 4,414 5.629 11.48 0 40
Share of Other issues, % 4,414 19.69 13.45 0 50
Average temperature (0C) 4,414 11.11 5.020 -5.403 24.56
Precipitation (inches) 4,414 37.89 14.90 6.240 94.31

Note: Dirty Energy issues is shortened for Dirty Energy/Toxics/Public Right to Know issues. Water issues is
shortened for Water, Oceans and Drilling issues. Land issues is shortened for Lands/Forest/Wildlife issues.
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Table 3.2: Senatorial votes for environment related issues in response to natural disaster(s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES OLS OLS OLS OLS OLS FE FE FE FE FE

Human loss shock, lag 0 1.65* 1.54* 1.68* 1.67* 1.72* 0.81 0.82 1.06 1.08 1.18
(0.90) (0.89) (0.92) (0.92) (0.94) (0.77) (0.77) (0.80) (0.81) (0.82)

Human loss shock, lag 1 1.84* 1.65* 1.70* 1.68* 0.90 0.96 1.03 1.06
(0.96) (0.95) (0.96) (0.96) (1.01) (1.00) (1.02) (1.02)

Human loss shock, lag 2 3.49*** 3.41*** 3.44*** 2.66*** 2.70*** 2.78***
(1.06) (1.03) (1.04) (0.90) (0.90) (0.90)

Human loss shock, lag 3 1.34 1.27 0.91 0.95
(0.87) (0.86) (0.70) (0.71)

Human loss shock, lag 4 1.20 1.04
(1.13) (1.02)

Economic loss shock, lag 0 -0.21 -0.21 -0.25 -0.29 -0.28 0.63 0.59 0.49 0.47 0.47
(1.07) (1.08) (1.10) (1.11) (1.12) (0.81) (0.81) (0.84) (0.84) (0.85)

Economic loss shock, lag 1 -1.53 -1.55 -1.57 -1.60* -0.51 -0.61 -0.62 -0.66
(0.93) (0.93) (0.94) (0.94) (0.77) (0.78) (0.79) (0.79)

Economic loss shock, lag 2 -2.50** -2.51** -2.52** -1.40* -1.42* -1.44*
(0.99) (1.00) (1.00) (0.75) (0.77) (0.77)

Economic loss shock, lag 3 -1.05 -1.06 -0.046 -0.084
(0.95) (0.96) (0.74) (0.74)

Economic loss shock, lag 4 -0.79 -0.19
(0.94) (0.73)

NOMINATE dim. 1 (ideology) -58.5*** -58.8*** -59.2*** -59.3*** -59.3*** -54.3*** -54.4*** -55.8*** -56.7*** -57.7***
(7.37) (7.40) (7.40) (7.39) (7.36) (9.98) (10.0) (10.2) (10.1) (9.81)

NOMINATE dim. 2 (ideology) -21.6*** -21.5*** -21.5*** -21.4*** -21.4*** 6.92 7.22 7.85 8.53 9.89
(2.54) (2.55) (2.55) (2.55) (2.55) (22.1) (22.1) (22.2) (22.1) (21.6)

Democrat [binary] 14.0*** 13.8*** 13.6*** 13.5*** 13.5*** -1.26 -1.45 -2.26 -2.80 -3.62
(4.72) (4.75) (4.75) (4.74) (4.73) (9.92) (9.90) (9.95) (9.90) (9.60)

First year at the Senate [binary] -0.94 -0.92 -1.06 -1.02 -1.01 -1.65 -1.64 -1.73 -1.71 -1.70
(1.08) (1.08) (1.09) (1.08) (1.08) (1.02) (1.02) (1.03) (1.03) (1.03)

Senator in election year [binary] -0.38 -0.38 -0.40 -0.40 -0.39 0.0056 0.0083 -0.010 -0.016 -0.015
(0.66) (0.66) (0.65) (0.65) (0.65) (0.67) (0.67) (0.67) (0.67) (0.67)

Age -0.10 -0.10 -0.10 -0.10 -0.10 -0.19 -0.19 -0.20 -0.20 -0.21
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(0.065) (0.065) (0.064) (0.064) (0.064) (0.35) (0.36) (0.36) (0.37) (0.37)
Male senator [binary] -2.85 -2.83 -2.81 -2.83 -2.84

(2.37) (2.37) (2.34) (2.33) (2.34)
Share of black voters 6.04 6.01 6.02 5.99 5.93 -63.1 -64.2 -66.2 -67.0 -68.5

(11.8) (11.8) (11.7) (11.6) (11.6) (93.2) (93.7) (95.1) (95.4) (95.9)
Share of 18-29 voters -151** -152** -153** -153** -154** -192 -193 -198 -200 -204

(58.9) (59.0) (59.0) (59.0) (59.0) (129) (129) (127) (127) (127)
Share of 30-44 voters -103* -103* -102* -101* -101* -317** -316** -319** -319** -321**

(59.1) (58.7) (57.8) (57.5) (57.3) (139) (139) (137) (136) (135)
Share of 45-64 voters -110 -110 -109 -109 -109 -427*** -426*** -429*** -431*** -433***

(83.2) (83.6) (83.9) (84.1) (84.3) (159) (159) (157) (156) (155)
Personal income, $2014 0.47*** 0.47*** 0.47*** 0.47*** 0.46*** 0.47** 0.46* 0.44* 0.43* 0.42*

(0.16) (0.16) (0.16) (0.16) (0.16) (0.23) (0.23) (0.23) (0.23) (0.23)
Real growth rate, % 0.065 0.066 0.063 0.064 0.067 -0.081 -0.080 -0.081 -0.081 -0.077

(0.11) (0.11) (0.11) (0.11) (0.11) (0.089) (0.089) (0.088) (0.087) (0.086)
Share of Air issues -0.46*** -0.48*** -0.49*** -0.48*** -0.49*** -0.19* -0.19* -0.19* -0.19* -0.19*

(0.17) (0.17) (0.17) (0.17) (0.17) (0.098) (0.098) (0.099) (0.100) (0.10)
Share of Clean Energy issues -0.27** -0.27** -0.27** -0.27** -0.26** 0.0063 0.0069 0.015 0.014 0.013

(0.12) (0.11) (0.11) (0.11) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Share of Dirty Energy issues 0.67*** 0.70*** 0.69*** 0.69*** 0.70*** -0.14*** -0.14*** -0.14*** -0.14*** -0.14***

(0.18) (0.18) (0.18) (0.18) (0.18) (0.047) (0.047) (0.047) (0.047) (0.048)
Share of Water issues 0.22** 0.23** 0.23** 0.23** 0.23** 0.013 0.016 0.033 0.034 0.037

(0.088) (0.088) (0.087) (0.087) (0.087) (0.062) (0.062) (0.064) (0.064) (0.065)
Share of Land issues 0.46*** 0.47*** 0.47*** 0.47*** 0.47*** -0.011 -0.011 -0.012 -0.014 -0.015

(0.099) (0.099) (0.099) (0.098) (0.097) (0.050) (0.050) (0.050) (0.050) (0.050)
Share of Transportation issues -0.045 -0.063 -0.054 -0.049 -0.049 0.018 0.018 0.020 0.020 0.020

(0.27) (0.28) (0.27) (0.27) (0.27) (0.17) (0.17) (0.17) (0.18) (0.18)
Share of Climate change issues 0.58*** 0.59*** 0.61*** 0.62*** 0.62*** 0.38*** 0.38*** 0.41*** 0.42*** 0.42***

(0.15) (0.15) (0.14) (0.14) (0.14) (0.091) (0.091) (0.093) (0.094) (0.094)
Share of Other issues 0.58*** 0.59*** 0.58*** 0.58*** 0.58*** 0.31*** 0.31*** 0.35*** 0.35*** 0.36***

(0.16) (0.16) (0.16) (0.16) (0.16) (0.11) (0.11) (0.11) (0.11) (0.11)
Average temperature (0C) -0.26 -0.26 -0.25 -0.25 -0.25 -1.11** -1.13** -1.12** -1.10** -1.12**

(0.22) (0.22) (0.22) (0.22) (0.21) (0.48) (0.49) (0.49) (0.49) (0.49)
Precipitation (inches) 0.0061 0.0057 0.0030 0.0029 0.0031 -0.064 -0.064 -0.070 -0.070 -0.070

(0.080) (0.080) (0.079) (0.079) (0.079) (0.053) (0.053) (0.052) (0.052) (0.052)
Constant 84.7 83.8 83.8 83.5 83.3 329*** 329*** 332*** 334*** 337***

(50.8) (50.6) (50.7) (50.7) (50.7) (119) (119) (118) (117) (117)
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Observations 4,414 4,414 4,414 4,414 4,414 4,414 4,414 4,414 4,414 4,414
Year FE Y Y Y Y Y Y Y Y Y Y
AIC 38144.6 38140.8 38122.0 38117.0 38118.9 35884.7 35883.0 35868.9 35867.4 35865.6
BIC 38470.7 38473.2 38454.4 38443 38457.7 36197.9 36196.2 36182.2 36180.7 36178.8
Number of id 381 381 381 381 381

Note: The dependent variable is annual LCV score of senators. Standard errors clustered at state level are in parentheses. *,**,*** are estimates
significant at 10%, 5% and 1% respectively. Dirty Energy issues is shortened for Dirty Energy/Toxics/Public Right to Know issues. Water issues is
shortened for Water, Oceans and Drilling issues. Land issues is shortened for Lands/Forest/Wildlife issues.
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Table 3.3: Robustness checks: Alternative specifications

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
VARIABLES FE FE FE FE FE FE FE FE FE FE GMM GMM

Human loss shock, lag 0 1.06 0.96 1.21 1.08 1.01 1.02 1.00 1.06
(0.80) (0.88) (0.78) (0.85) (0.93) (0.86) (0.93) (0.93)

Human loss shock, lag 1 0.96 0.99 0.89 0.84 0.87 0.90 0.43 0.38
(1.00) (1.05) (1.01) (1.07) (1.02) (1.02) (0.91) (0.92)

Human loss shock, lag 2 2.66*** 2.94*** 2.54*** 2.82*** 2.44** 2.74*** 2.76*** 2.79*** 2.81*** 2.72***
(0.90) (0.93) (0.88) (0.90) (0.92) (0.98) (0.93) (0.90) (0.96) (0.96)

Economic loss shock, lag 0 0.49 0.36 0.74 0.58 0.17 0.23 0.11 0.078
(0.84) (0.95) (0.81) (0.90) (0.92) (0.93) (0.93) (0.94)

Economic loss shock, lag 1 -0.61 -0.52 -0.33 -0.29 -0.70 -0.56 -1.15 -1.17
(0.78) (0.84) (0.82) (0.88) (0.83) (0.82) (0.74) (0.76)

Economic loss shock, lag 2 -1.40* -1.39 -1.38* -1.37* -0.83 -0.86 -1.38 -1.30 -1.84** -1.79**
(0.75) (0.85) (0.71) (0.81) (0.75) (0.84) (0.85) (0.82) (0.84) (0.83)

LCV score, lag 1 0.15*** 0.14*** 0.071** 0.067**
(0.021) (0.022) (0.029) (0.030)

LCV score, lag 2 0.040* 0.038* -0.0073 -0.0062
(0.022) (0.023) (0.026) (0.025)

Observations 4,414 3,661 4,414 3,661 4,414 3,661 4,414 3,661 3,659 3,659 3,329 3,329
Number of id 381 328 381 328 381 328 381 328 327 327 326 326
Year FE Y Y Y Y Y Y Y Y Y Y Y Y
Lagged controls N Y N Y N Y N Y N Y N Y

Note: The dependent variable is annual LCV score of senators. This table also includes control variables identical as Table 3.2 and up to 2 lags of all
controls (where Lagged controls=Y). Standard errors clustered at state level are in parentheses. *,**,*** are estimates significant at 10%, 5% and 1%
respectively.
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Table 3.4: Robustness check: Control for ADA Score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES OLS OLS OLS OLS OLS FE FE FE FE FE

Human loss shock, lag 0 1.66** 1.53** 1.66** 1.70** 1.72** 0.85 0.87 1.12 1.14 1.19
(0.73) (0.74) (0.77) (0.77) (0.78) (0.73) (0.73) (0.77) (0.79) (0.79)

Human loss shock, lag 1 1.75* 1.54* 1.62* 1.61* 0.96 1.02 1.07 1.08
(0.88) (0.86) (0.87) (0.88) (0.94) (0.93) (0.94) (0.94)

Human loss shock, lag 2 3.52*** 3.46*** 3.48*** 2.86*** 2.86*** 2.90***
(0.95) (0.92) (0.92) (0.85) (0.85) (0.85)

Human loss shock, lag 3 0.50 0.45 0.35 0.38
(0.78) (0.77) (0.66) (0.66)

Human loss shock, lag 4 0.65 0.54
(1.08) (0.96)

Economic loss shock, lag 0 -1.16 -1.15 -1.19 -1.23 -1.24 0.44 0.40 0.31 0.27 0.29
(0.97) (0.97) (0.99) (1.00) (1.01) (0.78) (0.78) (0.80) (0.80) (0.81)

Economic loss shock, lag 1 -2.25** -2.24** -2.27** -2.29** -0.70 -0.78 -0.81 -0.82
(0.89) (0.89) (0.90) (0.90) (0.75) (0.75) (0.76) (0.75)

Economic loss shock, lag 2 -2.31*** -2.31*** -2.31*** -1.22* -1.25* -1.25*
(0.76) (0.77) (0.77) (0.62) (0.64) (0.64)

Economic loss shock, lag 3 -1.70** -1.70** -0.41 -0.43
(0.81) (0.81) (0.69) (0.70)

Economic loss shock, lag 4 -0.67 0.038
(0.92) (0.72)

ADA score 0.78*** 0.78*** 0.78*** 0.78*** 0.78*** 0.49*** 0.49*** 0.50*** 0.50*** 0.50***
(0.031) (0.031) (0.031) (0.031) (0.031) (0.034) (0.034) (0.034) (0.034) (0.034)

Observations 4,368 4,368 4,368 4,368 4,368 4,368 4,368 4,368 4,368 4,368
AIC 36884.9 36874.5 36850.6 36848.0 36846.9 34870.3 34867.8 34850.3 34849.7 34849.1
BIC 37210.3 37200 37169.7 37173.5 37172.4 35183 35180.5 35163 35162.4 35161.8
Year FE Y Y Y Y Y Y Y Y Y Y
Number of id 370 370 370 370 370

Note: The dependent variable is annual LCV score of senators. This table also includes control variables identical
as Table 3.2 with ideology variables (NOMINATE estimates) replaced by Annual ADA score. Standard errors
clustered at state level are in parentheses. *,**,*** are estimates significant at 10%, 5% and 1% respectively
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Table 3.5: Placebo test: The impact of future ND shocks

L=Lag L=Lead

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES FE FE FE FE FE FE FE FE FE FE

Human loss shock, L0 0.81 1.01 1.23 1.33 1.27 0.81 1.00 0.87 1.00 0.84
(0.77) (0.80) (0.86) (0.87) (0.85) (0.77) (0.80) (0.83) (0.86) (0.86)

Human loss shock, L1 0.99 0.96 1.01 1.16 -0.077 0.23 0.059 0.057
(1.00) (0.99) (1.03) (1.05) (0.78) (0.75) (0.78) (0.79)

Human loss shock, L2 2.96*** 3.04*** 3.17*** -0.76 -0.66 -0.60
(0.89) (0.91) (0.92) (0.92) (0.97) (0.99)

Human loss shock, L3 0.99 1.12 -1.66 -1.72*
(0.74) (0.77) (1.00) (1.01)

Human loss shock, L4 0.90 -0.21
(1.01) (0.86)

Economic loss shock, L0 0.63 0.52 0.50 0.53 0.62 0.63 0.57 0.75 0.78 0.88
(0.81) (0.81) (0.84) (0.87) (0.94) (0.81) (0.81) (0.79) (0.85) (0.93)

Economic loss shock, L1 -0.63 -0.59 -0.65 -0.58 -0.028 -0.093 -0.062 0.14
(0.74) (0.76) (0.78) (0.78) (0.80) (0.80) (0.84) (0.88)

Economic loss shock, L2 -1.84** -1.73* -1.80** 1.14 1.08 1.12
(0.79) (0.87) (0.88) (0.73) (0.75) (0.79)

Economic loss shock, L3 0.16 0.26 -0.23 -0.12
(0.78) (0.78) (0.76) (0.78)

Economic loss shock, L4 -0.054 0.31
(0.81) (0.75)

Constant 329*** 345*** 321** 316** 306** 329*** 344*** 315** 313** 303**
(119) (119) (121) (124) (124) (119) (120) (122) (127) (127)

Observations 4,414 4,314 4,211 4,112 4,011 4,414 4,314 4,211 4,112 4,011
Number of id 381 379 362 362 349 381 379 362 362 349
AIC 35884.7 35083.0 34270.0 33503.5 32724.2 35884.7 35087.0 34284.2 33516.2 32739.1
BIC 36197.9 35395.1 34587.2 33813.3 33032.7 36197.9 35405.5 34595.1 33826 33047.6
Year FE Y Y Y Y Y Y Y Y Y Y

Note: The dependent variable is annual LCV score of senators. This table also includes control variables identical
as Table 3.2. Standard errors clustered at state level are in parentheses. *,**,*** are estimates significant at 10%,
5% and 1% respectively.

Table 3.6: Monte Carlo permutation test

Lag Human loss shock Economic loss shock
0 1.32 [.206] 0.59 [.524]
1 0.96 [.312] -0.79 [.424]
2 2.96 [.002] -1.86 [.062]

This table illustrates the t-statistics of natural disaster shocks and their lags in the benchmark regression and the
2-tail p-values (in brackets) of these statistics derived from a Monte Carlo permutation test. The distribution
of t-statistics is constructed from the 1,000 repetitions of the benchmark regression with natural disaster shocks
randomly reassigned to each state-year pair by a binomial distribution with a probability of 10%. The p-values are
calculated as the percentage of t-statistics in the distribution that are more extreme than the benchmark values.
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Table 3.7: Heterogeneity analysis

Year characteristics State characteristics Senator characterisitcs

(1) (2) (3) (4) (5) (6) (7) (8)

Before 1990 Since 1990 SPDD year Other year Election year Other Low risk Other High income Other Incumbent Other Democrat Other Male Female

Human loss shock, lag 0 × 1.11 1.27 2.96 1.06 0.85 1.09 0.78 1.03 1.97 0.76 1.10 -0.01 2.28* 1.29 -3.21
(1.22) (0.97) (5.74) (0.82) (1.65) (0.88) (1.31) (0.92) (1.97) (0.93) (0.80) (1.05) (1.15) (0.82) (2.57)

Human loss shock, lag 1 × 1.19 0.91 10.93** 0.92 -2.22 1.50 5.98*** -0.08 4.22* 0.15 1.20 -3.60 1.07 0.96 1.05 -1.28
(1.40) (1.09) (4.84) (1.02) (2.31) (0.93) (2.00) (1.08) (2.48) (1.01) (1.00) (3.63) (1.20) (1.37) (0.98) (4.16)

Human loss shock, lag 2 × 3.54** 1.86* -0.18 2.72*** 4.21** 2.34** 0.57 3.05*** 3.10 2.49** 2.83*** 0.89 2.86** 2.49* 2.68*** 2.24
(1.53) (0.96) (2.33) (0.89) (1.74) (0.99) (2.11) (0.98) (1.90) (1.03) (0.95) (2.85) (1.20) (1.27) (0.90) (3.60)

Economic loss shock, lag 0 × -1.22 1.45 -1.47 0.46 -0.46 0.65 -1.83 1.02 0.10 0.50 0.47 2.37* -1.58 0.48 0.66
(1.67) (1.05) (3.90) (0.84) (1.91) (0.89) (1.38) (0.93) (1.74) (0.92) (0.83) (1.29) (1.06) (0.84) (3.23)

Economic loss shock, lag 1 × -1.65 -0.19 -9.39*** -0.54 0.68 -0.82 -1.27 -0.56 -0.37 -0.73 -0.68 0.96 -0.20 -1.15 -0.73 0.82
(1.57) (0.95) (1.36) (0.78) (2.21) (0.76) (1.78) (0.93) (1.44) (0.91) (0.79) (3.10) (1.29) (0.79) (0.80) (1.95)

Economic loss shock, lag 2 × -3.01* -0.48 -6.97*** -1.33* -2.60 -1.17 -2.49* -1.07 -2.57 -1.15 -1.59* 0.61 -1.51 -1.31 -1.23 -3.77
(1.58) (0.99) (1.74) (0.77) (1.94) (0.84) (1.46) (0.90) (1.82) (0.85) (0.85) (2.83) (1.20) (1.02) (0.79) (3.28)

Observations 4,414 4,414 4,414 4,414 4,414 4,414 4,414 4,414
AIC 35861.68 35865.64 35864.27 35853.46 35862.68 35865.89 35859.32 35865.65
BIC 36174.91 36178.88 36177.51 36166.69 36175.92 36179.13 36172.56 36178.88

Note: The dependent variable is annual LCV scores of senators. Besides interaction terms, regressions in this table also include control variables identical as Table 3.2
(including senator FE and year FE). Standard errors clustered at state level are in parentheses. *,**,*** are estimates significant at 10%, 5% and 1% respectively
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3.A Appendix A: Extreme Value Theory (EVT) and Peaks

Over a Threshold model (POT)

This appendix explains how we apply the Extreme Value Theory (EVT) and Peaks Over a

Threshold model (POT) to construct the measures of natural disaster shocks. We examine

the sequence of intensity of annual damages (in terms of either economic or human cost)

{X j1, X j2, ...X jt} caused by ND in state j (among 50 states), of which we have observations over

55 years (between 1960 and 2014) thanks to the SHELDUS database.25 We are interested in

modelling the unknown ‘fat-tail’ distribution of the maximum of the intensity sequence, which

is assumed to be independent and identically distributed (i.i.d): M jt = max{X j1, X j2, ..., X jt}. If

we can normalise {M jt} by appropriate sequences of constants {a jt > 0} and {b jt} to obtain a

non-degenerate distribution function G j for all y ∈ R:

Pr
{

M jt − b jt

a jt
≤ y

}
→ G(y) as t → ∞ (3.A.1)

then by the Extremal Types Theorem (Fisher and Tippett, 1928), G(y) must fall into one of 3

extreme value distribution families: Fréche, Gumbel or Weilbell. Furthermore, these families

are specific cases of a single parametric distribution, namely the Generalised Extreme Value

(GEV) (Jenkinson, 1955). This allows us to approximate the distribution of its maximum {M jt}

by a GEV distribution, which is characterised by 3 parameters: location (µ j), scale (σ j), and

shape (ξ j):26

25t is the subscription for year.
26We use subscription j for the GEV distribution function and its parameters here to hightlight the fact that we

model state j separately. As revealed by its name, the parameter ξ j control the shape of the GEV. It falls into
Fréche, Gumbel or Weilbell families if ξ > 0, ξ → 0 and ξ < 0 respectively.
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Pr{M jt ≤ z} ≈ G j(z) = exp
{
−

[
1 + ξ j

(
z − µ j

σ j

)]−1/ξ j}
, −∞ < z < ∞ (3.A.2)

Then the positive excesses over a threshold u j large enough (y jk = X jk − u j conditional on

X jk > u j) approximate a generalised Pareto distribution (GPD) (Pickands, 1975):

Pr{X jk − u j ≤ y|X jk > u j} ≈ H j(y) = 1 −
(
1 +

ξ jy
σ j + ξ j(u j − µ j)

)−1/ξ j

(3.A.3)

Intuitively, as we are modelling the upper tail of an i.i.d distribution, only observations on the

right matter hence the approach requires the selection of a threshold u j to determine obser-

vations used for the approximation. The GPD H j(y) includes 2 parameters: a shape param-

eter ξ j, which is the same as the shape parameter of GEV in (3.A.2) and a scale parameter

σ̃ j = σ j + ξ j(u j − µ j), both of which can be estimated using Maximum Likelihood Estimator

(MLE) and observed positive threshold excesses. The approach is sensitive to the choice of

threshold u j as there is a tradeoff between unbiasedness and accuracy of the estimates. As only

observations that exceed the threshold enter the estimation, a lower threshold retains more ob-

servations, yielding lower standard errors but at the cost of possible violation to the asymptotic

basis of the model, which may cause biasness. In practice, a small threshold is preferable as

long as the limit model can provide a reasonable approximation (Coles, 2001).

The selection of such a threshold can be aided by the use of relevant visualising tools. From

the GPD (3.A.3), we have:

E{X jk − u j|X jk > u j} =
σ j + ξ j(u j − µ j)

1 − ξ j
(3.A.4)

279



Note that (µ j, σ j, ξ j) are the fixed parameters of the GEV G j(z) in (3.A.2). Thus, (3.A.4) is

obviously a linear function of threshold u j as long as u j is large enough to make the asymptotic

approximation behind the EVT to be valid. This motivates the use of the mean residual life plot

(MRL), which visualises the relationship between the average of positive excesses correspond-

ing to threshold u j and the threshold:

MRL =

{(
u j,

1
nu j

∑
X jk>u j

(X jk − u j)
)

: u j < Xmax
j

}
(3.A.5)

where nu j is the number of all exceedances defined by the threshold u j in the dataset (all X jt

exceeding the threshold u j). The strategy is to pick the lowest threshold u j, above which the

MRL illustrates a reasonable line, taking into account the sample variations (i.e., incorporating

the confidence intervals derived from the approximate normality of sample means). Once a

reasonable threshold is obtained, the log-likelihood functions as detailed in Coles (2001) was

adopted to estimate the pair of parameters ξ̂ j and ˆ̃σ j. It is noted that as long as the asymptotic

approximation is valid (u j large enough), the shape parameter ξ j and the transformed scale

parameter σ̃∗j = σ̃ j − ξ ju j = σ j − ξ jµ j are independent of the threshold u j. This enables

a post-estimation strategy to assess the selection of threshold u j: to plot the estimates of ξ j

and the transformed σ̃ j against a range of corresponding u j and validate whether the estimates

become stable when u j increases above the chosen threshold. Finally, the estimation can also

be validated by a number of diagnostic plots including probability plot, quantile plot, return

level plot ,and density plot (Coles, 2001). The first three plots compare the model-based and

empirical estimates of the distribution function. The last one compares the density function of

the fitted model with a histogram of the data. Figure 3.A.1 - 3.A.3 provide an example for the

use of these graphs to select and verify the threshold and validate the POT model. The variable
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modelled in the example is (annual) human losses per 1 million heads in Mississippi (MS)

caused by natural disasters. Similar graphs for other states and the other variable (economic

loss) are available upon requests.

Figure 3.A.1: Mean residual life plot

The figure provides an example for the use of Mean residual life plot (MRL) to support threshold selection. The
variable modelled in the graph is (annual) human losses per 1 million heads in Mississippi (MS) caused by natural
disasters. The threshold of 12 (red dotted line) is chosen as the the mean excesses above this point (blue line)
seems to be reasonably linear once take into account the sample variations represented by the confidence interval
(black area). Such a decision is supported by Figure 3.A.2 and validated by Figure 3.A.3.

Once we obtain the satisfactory ML estimates of the parameters (ξ̂ j; ˆ̃σ j), the N-year return

level is estimated by:

ẑ j(N) = u j +
ˆ̃σ j

ξ̂ j
[(Nζ̂u j)

ξ̂ j − 1] for ξ̂ j , 0 (3.A.6)

ẑ j(N) = u j + ˆ̃σ jlog(Nζ̂u j) for ξ̂ j = 0 (3.A.7)
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Figure 3.A.2: POT parameter stability check

The figure provides an example for the use of parameter stability plot to justify the threshold selection in Figure
3.A.1. The parameters (blue lines) including transformed scale parameter σ̃∗ (upper panel) and the shape parameter
ξ (lower panel) corresponding to a range of threshold values seem to be stable when the thresholds exceed the
chosen value of 12 (red dotted line) once take into account the sample variations represented by the confidence
interval (black area).

where ζu j is the probability of an individual observation X jt greater than the threshold u j and can

be estimated by the ratio between the number of observations in the sample that exceeding the

chosen threshold (k j) and the total observation number (n j): ζ̂u j = k j/n j. The standard errors and

confidence intervals of return levels can be computed by the delta method, taking into account

the uncertainty due to ζu j (Coles, 2001).
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Figure 3.A.3: POT and diagnosis plots

The figure provides an example for diagnosis plots to verify the Peak Over a Threshold model given the threshold
selected in Figure 3.A.1 and 3.A.2. The figure include the probability plot (up left), quantile plot (up right), return
level plot (down left), and density plot (down right). See Coles (2001) for theoretical details about these plots.
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Conclusions, Limitations and Future
Research

This thesis provides evidence on the multidimensional relationship between the environment

and human activities in two domains, economics and politics. These processes could both

support and compete each others and their linkages tend to change over space and time.

Chapter 1 indicates that when proper policies are adopted, humans are able to harness natu-

ral resources to benefit their society while still living peacefully with the environment. Indeed,

the national system of large hydropower dams in Vietnam not only supplies clean power for the

economy to get out of poverty and thrive but also protects its people from extreme weathers

such as floods and droughts. The cascade design is shown to strengthen the resilience of such a

system against weather shocks, which is important for a country like Vietnam that is considered

to be among the most vulnerable to climate change. Vietnam’s experience can be helpful for

other economies where hydropower potential remain underexploited and power supply is still a

constraint to the development.

Chapter 2 however shows that policies need to be frequently reviewed and updated to take

into account the possible changes in natural and social processes. The abundance of untapped

power sources in the past (such as hydropower, coal, and gas reserves), and the relatively low

dependency of simple businesses on power quality allowed Vietnam’s growth to benefit from

a rapid expansion of an inefficient and unreliable power system. However, as shown in this

chapter firms have become more vulnerable to power disruption, and as we show this is because

they have moved up the supply chain, where simple assembly, and processing are replaced by
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more comprehensive manufacturing processes, that, with machinery and energy, are used more

intensively to generate higher value added. Under such circumstances, the improvement in

power quality is essential to support growth. Given the exhaustion of traditional power sources

(the almost full exploitation of hydropower and and the more reliance on imports of coal),

this task means that Vietnam needs to adopt legal reform to liberalise the market and promote

new technology to harness new power sources (wind, solar, nuclear), increase the reliability of

current system (construct facility for pumped-storage hydropower and upgrade the transmission

and distribution system) and promote power saving technology.

Chapter 3 sheds light on how law is made to protect the environment under an established

democratic setting. Similar to previous studies, it confirms that ideology is a prominent factor

that decides how legislators vote for environmental issues at the US’s Senate. However, there

is still a role for their response to an exogenous shock in their constituencies such as unantic-

ipated immense damages by natural disasters, though the effect is slow in coming (two years)

and short-lived (one year), probably due to bounded rationality of the legislators. Yet, activists

may find an opportunity in the occurrence of a natural disaster to draw public attention to envi-

ronmental issues and call for more stringent regulations that could prevent future environmental

degradation, which contributes to the vulnerability to natural disasters, and reduces the con-

sequences of environmental disasters triggered by natural disasters.27 However our empirical

findings suggest that senators vote more for such stringency after natural disasters only if they

cause extreme losses in terms of human suffering. If disasters damage the economy instead,

their votes becomes less friendly to the environment. This may reflect the concern that strict

regulation could put further restriction on businesses, where the interests in economic recovery

and redevelopment are prioritised.

27 For example, low carbon policies may help with the issues of changing climate, which is deemed to be
associated with increasing frequencies and damages of weather-related events such as wildfires, floods, hurricanes.
Another example is that strict regulations may help prevent oil spills or pollutant releases after flooding.
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Limitations

While we attempt to use high-quality datasets from reliable sources, and adopt the advanced

research designs to gain robust findings, this research is not free from limitations. This section

will discuss some of the key issues.

For chapter 1, the scope of analysis is restricted among large hydropower dams only as

consistent data on medium and small dams were not available. Therefore, one should interpret

the results of this study with prudence and not overgeneralise our findings.28 In addition, there

are also a number of simplifications in our rainfall-runoff model (SWAT) such as we were not

able to take into account the construction and operation of hydropower dams upstream from

Vietnam, changes in land cover, the transportation of sediment load and the degradation of soil.

These factors together with measurement errors in the original data may not be fully offset by the

fixed effects and hence bias the regression results though the direction of the potential biasness

remains unknown. In addition, should we have been able to better calibrate the rainfall-runoff

model, the simulated flows should be fit for the real flows and thus be a more reliable proxy

for the power generation regression. Finally, we need to acknowledge that our flood measure is

relatively coarse and is not able to capture all aspects of floods in a monsoon context (to be able

to differentiate the impacts of beneficial vs disaster floods) and our static model of flood control

benefit is not appropriate to model the long run impact.

For chapter 2, our analysis is largely dependent on the quality of two World Bank Enterprises

Surveys though it could be not strictly comparable between two waves 2005 and 2015. In

addition, the limited access to distribution and transmission data generates a substantial source

of uncertainty in our estimates though we try to partially mitigate the issue by capturing it in a

distance penalty parameter and analysing the sensitivity of our results to the changes in such a

parameter.

28Different from large dams, there are a number of problems with the construction and operation of medium
and small dams due to a lack of effective supervision and regulation (PanNature, 2010; Le and Dao, 2016). For
example, flood control function could be squeezed for power generation purpose as only the later creates profit for
dam owners. The cooperation between dams in cascade is also a big question.
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For chapter 3, we establish the causal relationship between natural disaster and senatorial

voting behaviour by identifying the important natural disaster event years and rest on the as-

sumption that the distribution of possible losses is identical over 55 years (1960-2014) of our

sample period and there is no temporal clustering of events. Such an assumption could be ar-

guably less unrealistic and should be validated by properly explicit modelling when longer data

is available.

Future Research

The framework in chapter 1 can be extended in a number of ways. First, when the rainfall-

runoff is properly calibrated, the model is appropriate to link with climate change scenario

data to simulate the operation of large dams in Vietnam under different conditions of changing

climate. Second, if more data on hydropower dams were to become available for countries

outside Vietnam, for example Mekong Region countries, our framework has the potential to

evaluate how dams in upstream countries affect downstream ones and as a such support the

international attempt to coordinate trans-boundary water resources management. Third, our

framework may be useful to evaluate the impact of other factors on hydropower generation,

such as land cover change, soil degradation and sediment transportation. Finally, the framework

can be linked with data for water demand and usage to better analyse the irrigation function of

large dams.

The framework in chapter 2 can be extended to panel data set up if applicable, for example

by combining annual firm surveys by General Statistics Office (GSO) and power reliability in-

dices (SAIDI/SAIFI) for province level, though the credibility of these indices if accessible need

further investigation. It is also desirable to incorporate more information on power transmission

and distribution to achieve more robust findings.

Finally, it could be interesting to replicate the study in chapter 3 for the House of Repre-
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sentatives. The shorter tenure of representatives mean that natural disasters could have stronger

impact on their voting patterns, though the direction is not totally clear. A main challenge for

such a study probably is to model the distribution of natural disasters when the constituency

boundary changes over time due to redistricting. The approach is also relevant for the examina-

tion of other countries to better understand the democracy.
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