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Abstract 

This thesis describes the production, characterisation and catalytic performance of nanoclusters 

fabricated by cluster beam deposition using the magnetron sputtering, gas condensation 

technique. MoS2-based clusters and Au-based clusters are demonstrated in electrochemistry 

(HER) and gas phase heterogeneous catalysis (CO oxidation), respectively. The atomic 

structure analysis of the clusters was performed with aberration-corrected scanning 

transmission electron microscope with high angle annular dark field (HAADF-STEM). Size-

controlled (MoS2)300 clusters deposited on amorphous carbon present an incomplete multi-layer 

structure with the absence of extended crystalline order.  Such a layered structure was also 

found in Ni-MoS2 hybrid clusters [with a mass corresponding to (MoS2)1000] produced by dual 

target magnetron sputtering. Compared with MoS2 clusters, a significant enhancement in HER 

activity by Ni-MoS2 hybrid clusters was found. However, both MoS2 clusters (Mo:S = 1:0.9) 

and Ni-MoS2 clusters (Mo:S = 1:1.8) present a sulphur-deficient composition. In order to 

overcome the sulphur deficiency of the MoS2 clusters, a sulphur-enrichment technique based 

on a combination of sulphur addition (by sublimation) and annealing inside the cluster beam 

vacuum chamber was performed on size-selected (MoS2)1000 clusters. This process led to a 

notable increase in extended crystallinity and a moderate increase in size (from 5.5 nm to 6.0 

nm in diameter). Compared with Ni-MoS2 clusters, the sulphur-enriched MoS2 clusters show 

even more enhancement on the HER activities with more than 30-fold increases in exchange 

current densities.  

We have demonstrated a method of inhibiting the sintering of Au clusters in Au-based catalysis 

by exploring the stabilisation of supported Au clusters against sintering by alloying with Ti. 

Size-selected Au2057 (405, 229 amu) clusters and similar mass Au/Ti nanoalloy clusters (400, 

000 amu) were produced by cluster beam deposition onto thin silica films. A strong anchoring 
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effect was found in the case of Au/Ti clusters by HAADF-STEM experiments, consistent with 

DFT calculations by collaborators. Different sintering mechanisms were revealed between Au 

cluster dimers and Au/Ti cluster dimers. Preliminary CO oxidation measurements on Au and 

Au/Ti clusters indicates that Au/Ti clusters are promising as catalysts. Au/Ti clusters show 

catalytic activity on CO oxidation while Au clusters are non-active due to the serious sintering 

and the support effect. 
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Chapter 1  

Introduction and Background 

 

1.1 Cluster Science  

Clusters, or equivalently nanoclusters, are generally defined as collections of 2 to ~106 atoms 

with a diameter lying between a few angstroms and ~20 nm. The establishment of the field of 

cluster science can be dated back to early 1980’s when the “magic numbers” were discovered 

[1, 2]. It turned out that particularly stable electronic configurations can be found in clusters 

consisting of certain numbers of atoms (magic number). For example, Figure 1.1 shows the 

time-of-flight mass spectra of positively ionised Ta and Nb clusters produced from laser 

ablation cluster source [3]. It can be found that the spectra intensities of both Ta and Nb clusters 

with n= 7, 13, 15, 22, 29 are much higher than those of neighbouring clusters. Those n values 

are called magic numbers, and those clusters with magic numbers are traditionally considered 

to be easily formed in the gas phase and more stable than the ones lying between the magic 

numbers [4-6].  At the same time, the invention of the scanning tunnelling microscope (STM) 

[7] and electrochemical STM [8] together with the continuous improvement of the resolution 

of the transmission electron microscope (TEM) delivered the capability to directly image 

individual clusters [9, 10], which has notably promoted the evolution of cluster science. In 

addition, with the development of more sophisticated theoretical treatment of clusters as well 

as the prospect of applications in material science, scientific interest in cluster science is 

growing [11, 12]. 
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Figure 1.1 Time-of-flight mass spectra of positively charged Ta and Nb clusters fabricated 

from a laser ablation cluster source. The figure was reproduced from reference[3]. 

Cluster science emphasises the unique size-dependent properties of clusters, which are 

distinctly different from the corresponding bulk materials or individual atoms [13, 14]. For 

example, the catalytic activity to CO oxidation over Au/TiO2 shown in Figure 1.2 presents a 

strong size-dependent characteristic [15]. The reasons behind this are the increase of the surface 

area to bulk ratio and the change of the electronic band structure. When a material is shrunk 

from the bulk to the nanoscale, the surface area to bulk ratio significantly increases, introducing 

more edges and corners which are often identified as active sites in catalysis [16, 17]; these 
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new sites may bring new properties that cannot be found in bulk materials [18], for example, 

there may be an enhancement of the catalytic activities of bulk materials. At the same time, 

with the shrinking of the size, the electronic band structure will exhibit discrete energy levels 

[19, 20], which can dramatically alter the electronic properties of the clusters with consequence 

for the catalytic activities too. 

 

Figure 1.2  CO oxidation activity of Au supported on TiO2 as a function of the size of Au 

nanoparticles, reproduced from reference [15]. 

 

1.2 Catalysis with Clusters 

1.2.1 What Catalysis is and Why Clusters 

Catalysis is ubiquitous and plays an increasingly important role both in nature and in the 

chemical industry [21-23]. A significant number of products, like fuels, fine chemicals, 
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medicines and many other valuable products used by society, would not be available without 

catalytic processes [24-26]. The definition of catalysis is that the increase in the rate of a 

chemical reaction due to the presence of catalyst, in which the catalyst participates in the 

chemical reaction but is not itself consumed [23, 27]. Due to the preservation of the catalyst 

during the reaction, it is able to keep on catalysing new reaction cycle. Catalysis can be 

typically divided into homogeneous catalysis and heterogeneous catalysis, according to the 

number of the phases involved in the catalytic reaction. If the catalyst is in the same phase as 

the reactants, the reaction is homogeneous. In contrast, if the catalyst is in a different phase 

from the reactants, the reaction is heterogeneous. Homogeneous catalysis is prevalent in 

biological systems like the enzyme processes in the human body, while many of the catalytic 

reactions (90%) in the chemical industry are heterogeneous [28], for example, ammonia 

synthesis and catalytic cracking of gas oil. 

The primary catalytic process has been widely and intensively studied since the last century. It 

mainly consists of several elementary steps as illustrated in Figure 1.3: reactant molecules are 

adsorbed on the surface of catalyst, at the meantime dissociation might happen; the catalyst 

surface can facilitate to break bond(s) in adsorbed molecules; the adsorbate species then diffuse 

on the surface and collide with other species; reaction occurs and produces new products, 

which will eventually desorb from the surface of catalyst. The catalyst here plays a pivotal role 

to reduce the activation barrier and trigger a reaction with a high reaction rate [21]. From Figure 

1.3, it can be found that the potential energy change is the same with or without the presence 

of the catalyst. However, the potential energy barrier is much higher without catalyst resulting 

in a low reaction rate and high energy consumption. 
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Figure 1.3 Illustration of the primary catalytic process, reproduced from reference [21]. The 

dotted curve shows the elementary steps for a reaction proceeding heterogeneously. It contains 

the adsorption of reactants, diffusion and reaction of surface species, and desorption of 

products; the solid curve corresponds to a homogeneous process without catalysis, in which a 

more significant energy barrier can be found. 

 

During the early 20th century, the search for catalyst was mostly done by “trial and error” 

approach with different combinations of metals, sulfides and oxides [29]. Meanwhile, 

fundamental study also emerged initiated by Langmuir who proposed some basic ideas on 

surface science [30]. In 1925, another important concept of active site was brought up by Taylor, 

which suggests that under-coordinated surface atoms are more reactive than other surface 
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atoms [31]. Since then, the investigation of the elementary processes of heterogeneous catalysis 

has been the main motivation.  Thus, rational design and synthesis of new catalysts with high 

activity have become the ultimate goal in the catalysis study.  

Generally, the majority of industrial catalysts are particles in the sub-micron range supported 

on oxides (e.g. silica, alumina) [32]. Nanoparticles with dimensions less than 20 nm are 

gradually becoming attractive to catalysis since they can provide and expose as many active 

sites as possible. For example, supported Au nanoparticles with diameter below 2 nm are 

identified as the excellent catalyst to produce propene oxide which is a large-scale raw material 

in the polymer industry [33, 34]. Nanoparticles, especially for those with diameters of few 

nanometers or less, known as clusters, are attracting considerable interest in catalysis research 

due to an increased number of under-coordinated atoms [35]. Besides the catalytic property, 

clusters exhibit a vast range of fascinating properties like optical, magnetic and electronic 

properties, which cannot be found in bulk materials. This interesting behaviour is attributed to 

plenty of factors including electronic shell closing, geometric shell closing, superatomic 

character, quantum confinement, et al. [36-38] 

Gas phase clusters are regarded as ideal candidates to model the catalytic reactions in early 

studies because of their well-defined composition and size. The initial studies on well-defined 

clusters used gas phase ions consisting of few atoms based on mass spectrometric techniques 

[39, 40]. These investigations gave fundamental insights into the reaction mechanisms in the 

oxidation of hydrocarbons, C-H bond cleavage, C-C bond scission and O2 activation in the 

existence of clusters [41-44]. The emergence of supported clusters with selected composition 

and size gives a good connection between the fundamental gas phase study and the 

conventional applications of heterogeneous catalysis [45]. In addition, supported clusters make 

it possible to carefully investigate the support effects which are proved to be essential for many 

catalytic reactions [46]. Due to the small size of clusters and the considerable fraction of 



Introduction and Background 

 
 

7 

interface atoms between clusters and support, support effects are more remarkable in the case 

of clusters than common nanoparticles, which makes it easier to study the details of these 

effects. Meanwhile, the research on supported clusters is also promoted by the characterization 

techniques for deposited clusters which includes scanning tunnelling microscopy (STM), 

transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic 

force microscopy (AFM), synchrotron techniques, etc. [47-51] 

Controlling the size of clusters is becoming an essential way to increase the activity and tune 

the selectivity in a catalytic reaction. Additionally, multicomponent clusters with composition 

manipulated at the atomic level efficiently lead to study synergistic relationships. For instance, 

Pt/Cu alloys containing Pt atoms present both excellent selectivity and outstanding activity for 

hydrogenation of 1,3-butadiene to butenes [52]; Ag@Au core-shell nanoparticles show much 

higher catalytic activity to glucose oxidation than that of monometallic Au or Ag nanoparticles 

due to the electronic effect between the Au and Ag elements in one  nanoparticle [53]. The 

research on cluster catalysis provides a fascinating opportunity to make a deep understanding 

of atomic-level interactions occurring in catalytic processes, which can potentially obtain 

significant improvements in many fields of catalysis. There are many research groups studying 

size-selected clusters for heterogeneous catalysis. Scott L. Anderson’s group has done an 

intensive study on size-selected Pt clusters on different supports for many reactions [54-56]. 

For example (Figure 1.4), the catalytic activities of size-selected Ptn (n = 1 to 14) clusters to 

ethanol oxidation reaction have been studied [56]. Wolfgang Harbich also did many studies on 

size-selected Pt clusters for CO oxidation [57, 58]. They found the activity for ethanol 

oxidation is strongly related to cluster size and anti-correlated with the Pt 4d binding energy. 

Ulrich Heiz’s group is interested in size-selected clusters towards different applications. A 

thorough study on CO oxidation with different size selected clusters has been done by them 

[59-61].  Figure 1.5 shows the catalytic activities for CO oxidation on size-selected Aun, Ptn, 
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Pdn and Rhn (n = 8, 13, 20) clusters. For Au clusters, Au8 shows the highest activity at both 

140K and 240K while Au13, the electronically closed shell cluster, shows the lowest activity; 

in the case of Pt clusters, the activity increases with the clusters size, and Pt20 presents two 

mechanisms at ~350K and ~500K; for Pd and Rh clusters, even the smallest clusters (Pd8 and 

Rh8) can give a considerable activity. Stefan Vajda also has a strong interest on a broad range 

of size-selected clusters for many oxidation reactions (e.g. Pdn for cyclohexene oxidation and 

water oxidation electrocatalysis) [62, 63]. Besides single metal clusters, Ib Chorkendorff’s 

group has done many studies on alloy clusters [64, 65]. Figure 1.6 shows the catalytic activity 

and stability of mass-selected PtGd clusters for oxygen reduction reaction. The 8 nm clusters 

present the best activity and stability surpassing the highest activity reached so far with PtY 

clusters. 
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Figure 1.4 Catalytic activities of Ptn (n = 1 to 14) clusters supported on indium tin oxide to 

ethanol oxidation reaction regarding first oxidation peak (red), second oxidation peak (green) 

and reactivation peak (blue), reproduced from reference [56]. An anti-correlation between the 

activity and the Pt 4d3/2 binding energy (note inverted scale in top graph) was revealed. 
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Figure 1.5 CO oxidation on size-selected Au, Pt, Pd and Rh clusters, reproduced from 

reference [60]. The catalytic activity is strongly size dependent. 

 
 

Figure 1.6 The catalytic activity and stability of mass-selected PtGd clusters for oxygen 

reduction reaction, reproduced from reference [65], which surpasses the highest activity 

reached so far with PtY clusters. The maximum activity of mass-selected Pt clusters was 

plotted as the comparison.
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1.2.2 Cluster Beam Deposition Techniques 

As a clean way of fabricating nanomaterials, cluster beam deposition plays an essential role in 

the development of nanotechnology in both academia and industry [66]. It has been 

demonstrated a powerful technique for fundamental studies in physics, material science, 

chemistry, etc. In addition, with the scale up the cluster production, it has already shown the 

potential for industry use. For example, the matrix assembly cluster beam source has 

demonstrated the ability to produce 1 g of catalyst in 1 h [67]. Generally, the cluster beam 

sources used for cluster beam deposition include seeded supersonic nozzle cluster source, laser 

ablation cluster source, magnetron sputtering cluster source, pulsed arc discharge cluster source, 

liquid metal ion source and matrix assembly cluster source. 

The basic layout of seeded supersonic nozzle cluster source is shown in Figure 1.7. The metal 

stored in the high-temperature crucible is heated and forms the atomic vapour, the carrier gas 

(e.g. He) mixes into the chamber at a high pressure (several times of atmospheric pressure), 

then the gas-metal mixture goes through a pinhole nozzle into high vacuum via supersonic 

expansion [14]. Small metal clusters may form before the expansion. The small clusters or 

atoms will further condense into large clusters by the cooling from the supersonic expansion. 

The clusters will stop growing when the vapour pressure is not high enough to let collision 

happen. 
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Figure 1.7 Schematic of seeded supersonic nozzle cluster source, reproduced from reference 

[14]. The atomic vapour formed from the liquid metal in the large crucible mixes with the inert 

carrier gas and goes through a pinhole nozzle into high vacuum via supersonic expansion. 

The seeded supersonic nozzle source is suitable for low melting point materials (e.g. alkali 

metal), and can produce a cluster beam in order of 1018 atoms per second [68]. Normally the 

size of the cluster from this source is restricted up to several hundred atoms. The size can be 

moderately tuned by the crucible temperature, nozzle size, carrier gas mass and flow. The 

clusters generated from this source are neutral. Thus further ionisation device is needed for 

size-selected clusters. 

The laser ablation cluster source, also known as Smalley source, was invented and developed 

by R. E. Smalley’s group in 1980’s [69]. Like the seeded supersonic nozzle cluster source, it 

also introduces atomic vapour and carrier gas shown in Figure 1.8. However, it produces 

atomic vapour via laser vaporisation and is designed for both metal materials and non-metal 

materials (e.g. silicon). In contrast with the seeded supersonic nozzle source, the atomic vapour 

forms from a rather local regime by the focused laser beam. Thus, the atomic vapour can be 

promptly cooled down by the carrier gas and condensed into clusters. In principle, large clusters 



Introduction and Background 

 
 

13 

(more than 1000 atoms) can be formed if the vapour can be cooled down effectively. The gas 

mixture also goes through a supersonic expansion via a nozzle. The size of the clusters is 

affected by the gas pressure, the residence time in the growth channel, etc. 

The laser ablation cluster source has the capability to produce a wide range of materials. Alloy 

clusters can be fabricated from alloy target or multi-laser ablation. Generally, due to the local 

vaporisation, the cluster beam flux is lower than that form seeded supersonic nozzle cluster 

source, but the material consumption is also much lower. An ionisation device is needed for 

further analysis on clusters.

 

Figure 1.8 Schematic of laser ablation cluster source, reproduced from reference [70]. The 

atomic vapour is generated via laser vaporisation with high power pulsed laser, cooled down 

by the carrier gas and condensed into clusters. 

Magnetron sputtering cluster source combines plasma sputtering technique and gas 

condensation technique, which is able to fabricate clusters from metals, semiconductors and 

insulators [71, 72]. Figure 1.9 illustrates a magnetron sputtering cluster source together with 
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ion optics and Time-of-Flight mass filter from our group (NPRL). The bulk material is mounted 

in front of a movable magnetron gun. The condensation length can be controlled by moving 

the magnetron gun forwards and backwards. During the sputtering, Ar gas is introduced into 

the chamber from the front of the target and ignited by either DC power or RF power. In the 

case of DC sputtering, which is designed for conductive materials, a substantial negative bias 

is applied to the target. The strong electrical field between the target and the Ar+ plasma will 

force the Ar+ ions to bombard the surface of the target. The RF sputtering is designed for all 

types of materials (conductive, semiconductive, insulating materials). The Ar+ plasma is 

ignited by the RF bias and cyclically attracted and repulsed on the target. The atoms in the 

target will be sputtered out and form atomic vapour. The sputtering rate can be controlled by 

the sputtering power and Ar gas flow. High power and large Ar flux can generate dense atomic 

vapour, which is favourable for forming the large cluster.  The gas condensation happens in 

the same chamber via three body collisions when the inert gas He is introduced. Meanwhile, 

the whole chamber is cooled by liquid nitrogen helping to efficiently remove the extra kinetic 

energies in the three body collisions. Since the sputtering discharge can ionise a large 

percentage (30% - 80%) of the clusters, no further ionisation device is needed [73]. The clusters 

leave the sputtering chamber via supersonic expansion into the next chamber. More details on 

ion optics and mass filter are discussed in Chapter 2. 
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Figure 1.9 Schematic illustration of the size selected cluster beam source in NPRL, which 

combines the magnetron sputtering technique and gas condensation technique. Ar gas and He 

gas are introduced for plasma sputtering and gas condensation, respectively.  

 

The magnetron sputtering cluster source can produce high-density cluster beam from a wide 

range of materials. The clusters can be formed with a size up to ~105 atoms, and their size can 

be tuned by many parameters (gas flow, sputtering power, condensation length, etc.). Like laser 

ablation cluster source, alloy clusters can be fabricated from alloy targets or multi-magnetron 

sputtering. 

The pulsed arc discharge clusters source has been taken as a replacement of the laser ablation 

cluster source [74, 75]. The configuration of the pulsed arc discharged cluster source (Figure 

1.10) is similar to the laser ablation cluster source. Instead of using a pulsed laser, a discharge 

between the cathode and anode with high discharging current up to 105 A is applied to generate 

metal plasma. The metal plasma is then cooled down by the carrier gas and aggregates into 

clusters with a high ionisation yield (~10%).  A high cluster deposition rate (e.g. up to 2 

Angstrom per pulse for lead) can be achieved [76]. 
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Figure 1.10 Schematic of the pulsed arc discharge cluster source, reproduced from reference 

[74]. A pulsed high-current arc is fired between the cathode and the anode in a stream of carrier 

gas, the metal plasma is then cooled down and aggregates into clusters. 

The liquid metal ion source produces an ion beam from the apex of a liquid metal Taylor cone 

shown in Figure 1.11. A strong electrical field (normally few kV) is applied between the needle 

tip and the accelerator electrode. A low melting point metal is liquefied and introduced on to 

the needle tip by a liquid metal reservoir. As the liquid metal approaches the needle tip, the 

charge density becomes high enough to spray off the metal. Ionised clusters can be provided 

by this source, but the clusters have a comprehensive energy distribution due to the formation 

mechanism [77, 78]. Because of the absence of the cooling medium, the formed clusters 

contain incredibly high kinetic energy, which stops the clusters to grow into large ones. 

Although there are many limitations with the liquid metal ion source, it is still a useful method 

producing metal ions. 
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Figure 1.11 Schematic of the liquid metal cluster source, reproduced from reference [79]. The 

liquid metal under a strong electric field adopts a conical shape (Taylor cone) and emits ion 

beam. 

 

The matrix assembly cluster source was recently developed in NPRL and aims to address the 

low flux problem with the conventional cluster sources discussed above. The principle of the 

matrix assembly cluster source is illustrated in Figure 1.12. Firstly, the metal vapour generated 

from the evaporator is condensed with the Ar gas onto a cryogenically cooled support (~20 K, 

with a continuous flow of liquid He). The metal atoms will be embedded into the solid Ar gas 

matrix. Subsequently, the matrix is sputtered with Ar ions. The released metal atoms will 

nucleate into clusters via collisions. Prior to the Ar ion sputtering, small clusters may also form 

in the matrix via diffusion. The production of size-controlled clusters from the conventional 

cluster sources is at µg/h magnitude. The matrix assembly cluster source is able to increase the 

cluster production to mg/h magnitude, which can meet the industrial R&D scale. 
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Figure 1.12 Schematic of the principle of the matrix assembly cluster source, reproduced from 

reference [80]. The vaporised metal and Ar gas are simultaneously condensed onto a 

cryogenically cooled surface to form a metal-Ar matrix (a), then the matrix is sputtered by an 

Ar ion beam to release the metal and form clusters. 

There is already a pioneer in the field of high flux cluster source before the development of the 

matrix cluster source. The micro plasma cluster source, developed in Paolo Milani’s group, 

combines the micro plasma sputtering and aerodynamic focusing [81]. A deposition rate of 5 

nm/min can be reached by this source [82]. The typical cluster size, cluster beam flux and 

tuning parameters for cluster size for different cluster beam sources are summarised in Table 

1.1. 
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Table 1.1 Summary of cluster beam sources. 

 
 

1.2.3 Catalysis in Energy and Environment  

Due to the rocketing development of humanity, the global energy consumption keeps 

increasing and has no hint to turn down (Figure 1.13). Around 85% of the total energy 

consumption is based on oil, coal and natural gas (Figure 1.14), although the renewable energy 

has reached a record high (but still only 3.6%). Given that fossil fuel resources are being 

depleted at a much faster rate than they are formed, and there are great concerns regarding the 

influence of CO2 emissions on the global climate[83, 84], hydrogen energy is listed as a top 

candidate to meet the already enormous and still increasing energy demand in the world. 

Hydrogen is the lightest element with an impressive energy yield around 122 kJ/g, which is ~3 

times higher than hydrocarbon fuels [85]. As a clean fuel without toxic emissions, hydrogen 

can be used (i) to make conventional synthetic fuels (e.g. methane, methanol, gasoline), (ii) 

mixed with natural gas lines to dilute and increase the quality of the fossil fuel gas, or (iii) 

stored for use in fuel cells or power generators. However, the vast majority of the hydrogen 

production is produced from steam reforming of natural gas [86-88], eco-friendly technology 
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is needed to conduct a turnaround. Electrochemical water splitting has been regarded as the 

most promising technology to address this challenge and make “water as the coal of the future” 

[89-91]. 

Figure 1.13 Global primary energy consumption from 1992 to 2017 in million tons oil 

equivalent (mote), reproduced from reference [92]. The total consumption keeps increasing 

and has no hint to turn down. 

Figure 1.14 Shares of global primary energy consumption from 1965 to 2017, reproduced from 

reference [92]. In 2017, ~85% of the total energy is supplied by oil, coal and natural gas.  The 

renewable energy reaches a new high but is only 3.6% of the total energy. 
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Figure 1.15 Schematic of electrochemical water splitting including hydrogen evolution 

reaction (HER) on the left and oxygen evolution reaction (OER) on the right, reproduced from 

reference [93]. 

The water splitting process (Figure 1.15) includes hydrogen evolution reaction (HER) and 

oxygen evolution reaction (OER), which can be considered as a reverse reaction of H2 

combustion [93]. The HER plays an important role responsible for hydrogen production in the 

presence of suitable catalysts. However, platinum group metals including Pt, Pd, Ir, Rh and Ru 

are essential components of these catalysts; these “critical metals” are expensive and scarce 

[94]. Recently, transition metal dichalcogenides (TMD), such as layered crystalline materials 

with interlayer van der Waals bonding, are once more attracting great attention both in 

academia and industry due to their unique physical and chemical properties [95-97]. 

Molybdenum disulphide (MoS2), as a representative member of the TMD family, has been 

widely investigated with respect to its catalytic properties [98, 99]. MoS2 layer has a sandwich 

structure (illustrated in Figure 1.16) with molybdenum atoms in a layer between two sulphur 

sheets [100, 101]. It has been proved the edge sites, rather than the basal atoms, that mainly 

contribute to the catalytic activity of nanostructured MoS2 [102, 103]. More than that, there are 
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two types of edge site in crystalline MoS2: Mo-edge and S-edge.  It turned out that only the 

low coordinated sulphur atoms at Mo-edge sites are active, at which the free energy of atomic 

hydrogen adsorption is pretty close to zero, while the sulphur atoms at S-edge are catalytically 

inert [104-107]. Thus, nanostructured MoS2 with an abundance of edges remains a highly rated 

prospect as a substitution of scarce and costly platinum in HER [102]. 

 

Figure 1.16 Top view (a), side view (b), and oblique view (c) the sandwich structure of MoS2 

monolayer with molybdenum atoms in a layer between two sulphur sheets. The Mo and S 

atoms are represented as red and yellow balls, respectively. The schematic is reproduced from 

reference [101]. 

 

Many methods (e.g. sulfidation of MoO3 or Mo) have been utilised to produce nano MoS2 [28, 
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108, 109]. The previous research on MoS2 electrocatalysis has given an insight into the 

catalytic mechanism and active sites at the atomic scale. In this thesis, we explored the way to 

optimise and enhance the active sites of MoS2 clusters for HER. Size-controlled and size-

selected MoS2 clusters are produced by the cluster beam deposition technique, which is a 

simple and clean manufacture method of nano MoS2 fabrication.  

 

1.2.4 Au Nanocatalysis and Sintering 

Au nanoparticles represent the most remarkable example of a size effect in heterogeneous 

catalysis. However, A major issue hindering the use of Au nanoparticles in technological 

applications is their rapid sintering [110, 111]. Au is considered to be the noblest of all metals, 

long regarded as chemically inert [112], and thus (more or less) catalytically inactive. 

Nevertheless a report from as long ago as 1906 states that a hot Au mesh can facilitate the 

combination of O2 and H2 [113], while a paper from 1925 indicates that Au is capable of 

catalysing the oxidation of CO to CO2 [114]. But since Au is relatively expensive, and the 

reported reaction rates were lower compared with other metals, Au was not considered as a 

viable catalyst until Sennewald et al. [115] found that a Pd-Au catalyst was active for the 

oxidative acetoxylation of ethylene to vinyl acetate in 1965 and then Bond and Sermon [116] 

demonstrated the activity of supported Au particles with diameters of 2-100 nm for the 

hydrogenation of 1-pentene at 100°C in 1973. Later, in the 1980’s, Haruta et al. [117, 118] 

discovered that Au nanoparticles, with diameters of 3-5 nm hold up on reducible supports, were 

exceptionally active for CO oxidation even at -70°C, and Hutchings [119] demonstrated the 

catalytic activity of Au3+ in the hydrochlorination of acetylene to vinyl chloride. Since then, 

Au has attracted growing attention as a catalyst and become the preeminent example of a size 

effect in heterogeneous catalysis [17, 120, 121]. This short review on Au-based nanocatalysis 

is reproduced from the introduction of my published work of “Reduced sintering of mass-
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selected Au clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and 

computational study” [122].  

CO oxidation, as one of the best-known elementary reactions in heterogeneous catalysis, is one 

of the most straightforward reactions which Au nanoparticles can catalyse [123-125]. In 

addition, CO oxidation is frequently used as a probe reaction in surface science [126]. CO 

oxidation on TiO2 supported Au nanoparticles has become a prototypical model system in Au 

catalysis [127-130]. Numerous studies have been reported regarding the reaction mechanisms 

[131-133], active sites [17, 134-136], and active species [137, 138]. Figure 1.17 illustrates the 

impact of Au particle size on catalytic activities for CO oxidation from experimental data [17]. 

It can be clearly seen that the catalytic activity has a strong dependence on the size of Au 

particle size, and only the Au particles with diameters below 5 nm are active. In addition, it 

can also be seen that support materials play an important role in the activities. For example, 

Au particle (< 5 nm) is highly active on TiO2, but nearly non-active on SiO2. The explanation 

behind this size effect has been the subject of extreme controversy. One generally agreed 

explanation is that the smaller size Au particle provides more low-coordinated Au atoms, and 

the catalytic activity is highly dependent on the fraction of low-coordinated Au atoms. This 

suggests that the active sites for CO oxidation are the atoms on the corners and edges of Au 

nanoparticles, which has been confirmed by density functional calculations [17]. Regarding 

the Au species, different researchers have different finds. It could be positively charged, 

negatively charged or metallic Au nanoparticles that contribute to the activity for CO oxidation, 

and there is no clear conclusion [137]. 
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Figure 1.17 Catalytic activities of Au particle for CO oxidation as a function of Au particle 

size at 273K on different support materials, reproduced from reference [17, 139]. 

There is a general agreement that the elementary steps for CO oxidation include adsorption and 

desorption of CO and O2, O2 dissociation, surface migration of Oad and COad, and formation of 

possible transient intermediates like carbonates [140]. The formation of active oxygen from 

the dissociation of O2 plays a vital role among these steps. It is the most energy consuming step 

due to a considerable binding energy of 498 kJ mol-1 with O2 [130]. It has been shown that 

adsorbed O2 can be the active species for CO oxidation at low temperatures. However, 

adsorbed O2 is not stable and there is much less clear for the nature of active oxygen species 

under standard conditions [141]. There are few proposed reaction mechanisms for CO 

oxidation over supported Au nanoparticles illustrated in Figure 1.18 [131]. All these 

mechanisms assume that CO pre-adsorbs on the surface of Au nanoparticles, while the active 
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oxygen sites originate from different places. Figure 1.18A is “Au only mechanism” with either 

molecularly or atomically adsorbed oxygen as active oxygen species [142]. Figure 1.18B and 

1.18C show the “interface mechanism” active oxygen located at perimeter sites or  surface 

vacancies close to perimeter sites [141, 143]. In Figure 1.18D, the surface lattice oxygen from 

support acts as active oxygen [144]. The first three mechanisms belong to Langmuir-

Hinshelwood type mechanism, while the last one corresponds to a Mars-van Krevelen type 

mechanism, in which the surface lattice oxygen reacts with CO first, and then the reduced 

support surface is reoxidised by gas-phase oxygen. 

 

 

Figure 1.18 Schematic illustrations of the possible reaction mechanisms for CO oxidation on 

supported Au nanoparticles, reproduced from reference [131]. 

 

Although Au nanoparticles have been proved to be excellent catalysts for CO oxidation, they 

suffer from deactivation attributed to either sintering of Au nanoparticles or poisoning of active 

sites by the accumulation of byproducts. The latter cause for deactivation is reversible, and Au 
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nanoparticles can liberate their surfaces by CO2 evolution with heating, while sintering is 

irreversible and the Au nanoparticles will lose their catalytic activities once sintering happens. 

In this thesis, we utilise the size-selected Au cluster and Au/Ti alloy cluster to demonstrate a 

method against sintering. 

1.3 Thesis Overview  

This thesis demonstrates the capability of nanocluster beam deposition technique in the 

production of binary clusters and explores the catalytic activities of those nanoclusters for 

electrochemistry and heterogeneous catalysis. The cluster beam deposition utilised in the 

research is based on the magnetron sputtering, gas condensation technique. MoS2-based 

clusters and Au-based clusters have been demonstrated for electrochemistry (HER) and gas 

phase heterogeneous catalysis (CO oxidation), respectively.  

Theoretical calculations have predicted a promising way to dramatically improve the catalytic 

activity of nano MoS2 to HER by doping the S-edge sites of MoS2 with transition metal (TM) 

(Fe, Co, Ni). In order to validate this hypothesis, we explore the catalytic activity of Ni-MoS2 

in chapter 3 as a representation of TM-doped MoS2 clusters prepared via a dual-magnetron 

sputtering cluster beam source. In this chapter, pristine MoS2 clusters, Ni clusters and Ni-MoS2 

hybrid clusters are prepared to evaluate their electrocatalytic activity to HER. All the MoS2 

clusters produced from cluster beam deposition have a sulphur-deficient nature with 

stoichiometry MoS2-x. Chapter 4 provides an in vacuum processing approach to increase the 

sulphur content of the clusters. The atomic structure modification and catalytic activities of the 

sulphur-enriched MoS2 clusters have been studied.  

Au nanoparticles have proved to be good catalysts with genuine potential in technological 

applications, however, a major issue hindering their implementation is their rapid sintering. 

Chapter 5 demonstrates a method of reducing the sintering of Au clusters in Au-based catalysis 
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by exploring the stabilisation of supported Au clusters against sintering by alloying with Ti. 

The sintering behaviours of size-selected Au clusters and Au/Ti nanoalloy clusters have been 

studied by aberration-corrected scanning transmission electron microscope imaging in real 

space and real time. The strong anchoring effect found in the case of Au/Ti clusters may open 

up new possibilities in Au-based nanocatalysis. 
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Chapter 2  

Experimental Methods 

 

In this chapter, we discuss the general working principles of the main experimental techniques 

used in this thesis. The detailed parameters for each project are addressed in the according 

chapter. All the projects involved in this thesis are joint research with different collaborators.  

The cluster fabrication and STEM study work were conducted by me, and the catalytic 

measurements and theoretical calculation were done by collaborators. In the Ni-MoS2 research 

(chapter 3), the clusters were produced by the dual-magnetron cluster beam source in Teer 

Coatings Ltd with the help of Dr Jinlong Yin. In the research of sulphur-enrichment of MoS2, 

the clusters were produced by me with the cluster beam source in NPRL. All the HER 

measurements on Ni-MoS2 and sulphur-enriched MoS2 were conducted by Daniel Escalera 

Lopez (PhD student from Chemical Engineering, UoB), and the XPS measurements were 

conducted at Aston University. In the Au/Ti project (chapter 5), the clusters were made in 

NPRL; the CO oxidation measurements, XPS and LEIS were conducted together with Bela 

Sebok at DTU; and the DFT calculation was done by Philomena Schlexer from University of 

Milano-Bicocca. 
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2.1 Cluster Beam Deposition 

2.1.1 Cluster beam source 

The size-selected cluster beam source in our group shown in Figure 2.1 belongs to magnetron 

sputtering source, which can continuously produce high-density cluster beam with plasma 

sputtering and gas condensation techniques. It consists of four high vacuum chambers 

respectively for cluster generation, ion optics, mass selection, and deposition. Soft copper 

gaskets are used to bolt together those chambers to create semi-permanent seals, while a Viton 

gasket is used in the load lock section since it is frequently opened to load or unload samples. 

Each chamber is equipped with the backing pump and turbo-molecular pump to ensure the 

whole system is running under a high-vacuum (HV) environment. The oil-based rotary pumps 

and dry scroll pumps can provide a backing vacuum of 10-2 mbar, and then the turbo-molecular 

pumps can pump down the system to a pressure around 10-7 mbar. 

 

Figure 2.1 Schematic illustration of the size selected cluster beam source in our group. The 

cluster form in the first (from left) chamber by magnetron sputtering and gas condensation; a 

focused cluster beam is produced by supersonic expansion and ion optics; then the cluster beam 

is mass-selected by a time-of-flight mass filter and inducted into the deposition chamber. 
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The single-element clusters can be fabricated from the cluster beam source shown above with 

a single-element target. In order to prepare binary or hybrid clusters, two methods can be 

implemented. One method is employing single-magnetron cluster beam source with an alloy 

target to make alloy clusters. However, the composition of the clusters made from this method 

is hardly tuned. The other method is using multi-magnetron cluster beam source (described in 

Chapter 3) to produce binary or hybrid clusters. With this method, the composition of the 

clusters can be moderately controlled by tuning the power on each magnetron. 

 

2.1.2 Cluster Formation 

A bulk target can be mounted on top of a water-cooled copper plate at the front of the 

magnetron gun inside the cluster generation chamber. The cluster generation chamber is cooled 

down by a continuous liquid nitrogen flow. 

Argon (Ar) gas flows into the generation chamber from the magnetron gun and is ionised to a 

plasma state by a high potential between the target (cathode) and the shield (anode, ground) 

generated by a DC power supplier.  Then the target is sputtered by the Ar+ ions. The atoms in 

the target will be sputtered out if the energy of the Ar+ is higher than the binding energy of the 

atoms in the target. Meanwhile, secondary electrons are ejected out, which further ionise more 

Ar atoms. The secondary electrons are confined in helical orbits by the magnets behind the 

copper plate in the magnetron head, which can enhance the ionisation process to produce more 

Ar+ ions and free electrons. The magnets can also confine the plasma to the region above the 

target to avoid the damage of other parts from the plasma. Besides this advantage of magnetron 

sputtering method, the other advantage is that a cluster beam can be directly obtained by 
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focusing the sputtered materials without further ionisation step due to a high ionisation rate (at 

least 30%) of the sputtered materials [1].  

 

Figure 2.2 Schematic illustration of the cluster generation chamber. (A) Liquid nitrogen jacket, 

(B) movable magnetron, (C) adjustable nozzle, (D) nucleation region. 

During the sputtering, Helium (He) gas is introduced into the cluster generation chamber. The 

“hot” sputtered atoms and cluster seeds will be cooled down, nucleate and grow into clusters 

by three-body collisions. The nucleation time and the pressure in the chamber are the two main 

parameters to tune the size of the clusters. The nucleation distance can be controlled by moving 

the magnetron forwards or backwards along the axis of the cluster beam, while the pressure 

can be controlled by the gas flows and an adjustable nozzle located at the exit of the cluster 

generation chamber (Figure 2.2). 

 

2.1.3 Cluster Beam Optics 

The cluster beam exits the cluster generation chamber from the nozzle in a supersonic gas 

expansion. To realise the size selection with a high resolution, a well-focused cluster beam 
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with a spot size of around 10 mm is needed.  The central proportion of the cluster beam is 

extracted by a skimmer (Figure 2.3) before ion optics, and the off-axis part is removed and 

pumped away. The beam is then focused by electrical fields generated by sets of optics lens 

including extraction lens and a set of einzel lens. In order to correct the misalignment of the 

beam in the axial direction, split deflector lenses are introduced to tune the cluster beam in the 

horizontal axis (X) and vertical axis (Y) directions.  

 

 

Figure 2.3 Schematic illustration of the ion optics chamber. (A) Skimmer, (B) extraction and 

einzel lenses, (C) horizontal axis (X) deflector, (D) vertical axis (Y) deflector. 

 

2.1.4 Time-of-Flight Mass Filter 

The schematic of the linear Time-of-Flight mass filter is shown in Figure 2.4. The mass filter 

consists of three regions including the acceleration region, the flight region and the deceleration 

region. The accelerated and focused cluster beam enters the mass filter via an adjustable 

aperture (1-8 mm in height) at bottom. There are four isolated plates in the mass filter, two 
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plates at the top and the bottom perform as electrostatic pulse suppliers and two more central 

mesh plates in between form a field-free drift zone. The selected beam can pass through the 

field-free drift zone and go to the deposition chamber via the other adjustable aperture at the 

top. 

 

Figure 2.4 Schematic illustration of the Time-of-Flight chamber. (A) Adjustable height 

entrance slit, (B) adjustable height exit slit, (C) Faraday cup, (D) entrance pulse region, (E) 

field-free drift region, (F) exit pulse region. 

 

The basic principle of this Time-of-Flight mass filter is to provide the cluster beam with a 

momentum perpendicular to the beam direction via an electrostatic pulse. The vertical velocity 

of the cluster is corresponding with its mass. The clusters with different masses will travel 

different distances in a particular time. Then the perpendicular momentum of the cluster is 

removed by an opposite electrostatic pulse. Clusters with different masses are successfully 

separated due to their different perpendicular movement. 
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Figure 2.5 Schematic of the principle of the lateral Time-of-Flight mass filter [2]. 

Figure 2.5 is the schematic of the principle of the mass filter. The cluster beam enters the mass 

filter via the bottom aperture and gains a perpendicular momentum from the short high voltage 

pulse applied on plate 1. In order to ensure all the clusters gain the same perpendicular 

momentum, the pulse length is designed to be short enough to make sure there is no cluster 

leaving the acceleration region (between plate 1 and 2). The permitted clusters can travel into 

and out of the field-free region between plate 2 and 3 via the central mesh. An equal but 

opposite pulse is then added onto plate 4 to offset the perpendicular momentum of the clusters. 

Since the pluses added on plate 1 and 4 have no effect on the horizontal velocity of the cluster, 

the permitted clusters will travel into the deposition chamber via the exit aperture. 

The mass resolution of the mass filter can be deduced from the mass dependence of the 

perpendicular movement distance. If  is the mass of a cluster which is transmitted by the 

mass filter, and   is its perpendicular velocity. Since all clusters obtain the same 

perpendicular momentum in a given pulse length, a cluster with a mass of  will acquire the 

velocity [2]: 
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Its perpendicular movement distance is [2]: 

 

where D is the total perpendicular movement distance of the transmitted clusters,  is the pulse 

length, and  is the field-free flight time. Then the derivative of the perpendicular movement 

distance with respect to the mass is [2]: 

 

The exit aperture allows the clusters with a certain range of masses to go through. This certain 

range of masses is given by [2]: 

 

Then the mass resolution is given by: 

 

This implies that the maximum mass resolution is determined by the ratio of the perpendicular 

movement distance and the exit aperture height [2]. 

 

2.1.5 Cluster Deposition 

After the size selection from the mass filter, the size-selected clusters are focused to a beam 

with a diameter of ~1 mm by a set of lens located before the deposition chamber.  The clusters 

are then deposited onto the substrates held on a sample holder suspended in the deposition 

chamber. During deposition, a bias with a range of 0-1500 V will be applied on the substrate, 

which determines the impact energy of the clusters landed on the support. 
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Figure 2.6 Sample holder schematics. (a) Sample holder, stage and mask for cluster deposition 

on TEM grids, (b) sample stage and mask for cluster deposition on glassy carbon stubs, and (c) 

sample stage and mask for cluster deposition on micro-reactor and for large area. 

 

The sample stages for different substrates are shown in Figure 2.6. Figure 2.6a shows the 

sample holder with two TEM grid stages on and the mask for the deposition on TEM grid. The 

mask has 4 mm diameter apertures to let the cluster beam go through, and is separated from 

the sample holder by Teflon spacer. The cluster beam current is measured from the sample 

holder by a picoammeter to monitor the cluster flux. Figure 2.6b is the schematic of the sample 

stage and mask for the deposition on glassy carbon. The glassy carbon is used for 

electrochemical measurement, which is a cylinder with 5 mm diameter and 3 mm in height. 

Figure 2.6c illustrates the stage and mask for the deposition on micro-reactor, which can also 

be used for large area deposition. The micro-reactor is used for gas catalysis with dimensions 

of 20 mm  16 mm. 
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2.2 Scanning Transmission Electron Microscopy (STEM) 

Scanning transmission electron microscope (STEM) is regarded as one of the greatest 

inventions of last century and has been a powerful tool in the field of nanoscience. STEM, 

especially aberration-corrected STEM, becomes a crucial characterisation technique with 

extremely high analytical and spatial resolution. The STEM in our group is JEOL 2100F which 

is aberration-corrected, and a schematic is shown in Figure 2.7. It mainly consists of electron 

source, lens and aberration corrector, imaging system and element analysis system [3, 4]. 

 

 

Figure 2.7 Schematic of an aberration-corrected STEM and a photograph of the JEOL 2100F 

STEM in our group. 
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The electron beam is generated and accelerated from electron gun, then focused by the 

condenser lenses. An aperture with a set of selectable sizes is located under the condenser 

lenses and used to remove the wide scattered electrons. Since the lenses are not perfect, there 

is an aberration. The Cs-corrector (Cs means spherical aberration) is used to compensate the 

spherical aberration of the electron beam. An electron probe is then formed from the Cs-

corrected electron beam by the objective lens and scans over the selected area of the sample 

controlled by the scan coil. The electron is scatted by the sample and collected by the high 

angle annular dark field (HAADF) detector or bright field (BF) detector. Then the signals 

collected by the detector are processed into images. 

 

2.2.1 Electron Source 

STEM uses electrons as a probe to get a much higher resolution than visible light microscopy. 

Thermionic electron sources and field emission electron sources (also known as field emission 

gun, FEG) are the two typical electron sources for the electron microscope. Thermionic 

electron sources provide electrons with enough energy by applying high temperature to 

overcome the potential barrier and form an electron flow. Compared with FEGs, thermionic 

electron sources are cheap and easy to maintain, but they are less monochromatic. 

Unlike thermionic sources, FEGs use a strong electric field to let the electrons cross the 

potential barrier. A FEG consists of a very sharp tip and two anodes, its basic principle is 

illustrated in Figure 2.8. The electrons are extracted out of the tip through the electric field 

formed by the first anode, and then can be accelerated to a high energy (200 kV or more) by 

the second electrode. In our STEM, the electron source is a Schottky FEG which combines 

both heat and field emissions and is made of Lanthanum hexaboride (LaB6). The advantage of 
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Schottky FEG is its lower vacuum requirement than that of the cold FEG and better brightness 

than that of the thermionic source. 

 

Figure 2.8 (a) A very fine field emission gun tip and (b) a schematic of the configuration in a 

FEG. The schematics are reproduced from reference [5]. 

 

2.2.2 Lens and Aberration 

The electron beam from the electron source is controlled by the magnetic electron lens in TEM. 

The configuration of a magnetic lens is shown in Figure 2.9. It consists of two main parts: 

cylindrically symmetrical polepieces and coils. The polepieces are made of magnetic materials 

like soft iron and are surrounded by copper coils. A magnetic field is formed when current is 

applied to the coils, and the electron beam is refracted in a controllable manner by this magnetic 

field when passing through the lens. 
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Figure 2.9 Schematic diagram of magnetic lens used in the TEM, reproduced from reference 

[5]. 

 

Given that the accelerating voltage in our STEM is 200 kV, the wavelength of the electron 

beam is 0.00251 nm. If the wavelength of the electron beam is the only factor of the spatial 

resolution of STEM, the maximum spatial resolution can be 0.003 nm. However, the spatial 

resolution of the most advanced STEM in practice is 0.035 nm. The gap between the theoretical 

value and practical value comes from the imperfections of the electromagnetic lenses. 

Spherical aberration and chromatic aberration are the two major types of aberration in STEM. 

Spherical aberration (Figure 2.10) results from the imperfection of the magnetic field. The 

strength of the magnetic field depends on the distance to the axis, the further it is off the axis, 

the stronger it is. When the electron beam passes through the magnetic lens, the further the 

beam is off the axis, the stronger it is condensed. Therefore, the electron beam is converged to 

an area with a small radius from one point. Chromatic aberration occurs since the electron 

beam extracted from the electron gun is with a certain energy spread. The energy spread is in 
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a range from ~0.3 eV to ~1 eV. Due to the energy difference of the electrons, they cannot be 

converged to the same focal point. The energy spread range is so small that the influence of 

the chromatic aberration on the resolution is limited. Chromatic aberration will get worse if the 

specimen is thick since energy loss is caused during the interaction between the specimen and 

the electron beam. A thin specimen is a crucial requirement for STEM study. 

 

 

Figure 2.10 Schematic of spherical aberration. Cs is the spherical aberration coefficient, β is 

the maximum collection angle of objective-lens aperture, reproduced from reference [5]. 
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There are two main ways to compensate the spherical aberration, Nion corrector and CEOS 

system. The Nion corrector is a quadrupole-octupole corrector proposed by O.L. Krivanek et 

al.[6, 7] The CEOS system is a double-hexapole corrector designed by M. Haider et al.[8] The 

spherical aberration corrector in our STEM is a double-hexapole corrector. The main idea of 

the corrector is to spread the off-axis beams with a diverging lens, so that they can be refocused 

to the focal point on Gaussian-image plane.  

 

 

Figure 2.11 Schematic of (a) hexapole and (b) electron beam shape after passing through the 

hexapole, reproduced from reference [9]. 

 

Figure 2.11a illustrates the configuration of the hexapole. When the electron beam travels 

through the hexapole field with a direction into the plane of the paper, the electrons experience 

Lorentz force shown with arrows in Figure 2.11a. The electrons converge or diverge in three-

fold symmetry shown in Figure 2.11b. In the divergence part, the further the electron is away 

from the axis, the stronger force it experiences, then the more it diverges. On the other hand, 

the closer the electron is to the axis in the convergence part, the less it convergences. This gives 

the electron beam a divergence effect for all azimuths and introduces a “negative” spherical 

aberration corresponding to the “positive” spherical aberration discussed above. However, this 
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also introduces a three-fold astigmatism. The transfer lenses shown in Figure 2.12 transfer the 

electron beam from the first hexapole to the second one with a point inversion for the beam. 

After the second hexapole, the three-fold astigmatism can be eliminated (Figure 2.12), but a 

further “negative” spherical aberration is introduced.  

 

Figure 2.12 Configuration of the double-hexapole corrector and the beam shapes at first and 

second hexapole, reproduced from reference [9]. 

 

2.2.3 Imaging System and Z-Contrast Images 

Electrons will interact with the nucleus and electron cloud when they travel through the 

specimen. Figure 2.13 shows the trajectories of the electrons interacting with the specimen. 

Inelastic and elastic scattering can happen during the interaction. Electrons usually lose a 

certain amount of energy in the inelastic process and generate X-rays or secondary electrons. 

In contrast, in the elastic process, electrons retain their kinetic energy and change their 

trajectory with an angle.  
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Figure 2.13 Schematic diagram of (a) high angle (θ1) and low angle (θ2) elastic scatting, and 

(b) detector setup in STEM, reproduced from reference [5]. 

 

In STEM, there are bright field (BF) detector and dark field (DF) detector corresponding to BF 

image and DF image (Figure 2.13b). The BF detector only collects the electrons directly 

passing through the specimen, while the annual DF detector collects scattered electrons. In our 

STEM, a high angle annular dark field (HAADF) detector is used to collect the high angular 

incoherent elastically scattered electrons to form HAADF image. In HAADF image which is 

also known as Z-contrast image, the intensity is proportional to Zn (n<2), where Z is the atomic 

number and n is an index determined by each STEM. 

The “Z-contrast” is derived from the Rutherford scattering model. If the high-angle scattering 

comes from the electron-nucleus interaction alone, also known as Rutherford scattering, the 

differential cross section of the scattering can be written as: 
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in which,  is the scattering angle, Z is the atomic number of the nucleus,  is the solid angle 

of scattering, E0 is the energy of the electron, and  is the dielectric constant. Here the 

electron-electron cloud interaction (the screening effect) is not taken into consideration. If we 

consider the screening effect, equation 2.6 can be modified as: 

 

here, λR,  and  are the relativistically corrected electron wavelength, Bohr radius, and 

screening effect parameter, respectively, which are as below: 

 

where  is the rest mass of the electron, V is the acceleration voltage, h is the Plank constant, 

and c is the speed of light, 

 

 

If we combine equation 2.7 and equation 2.10, it can be seen that  is proportional to α, 

where α is less than 2. 

The HAADF detector is designed to collect the electrons with a scattering angle > 50 mrad 

(~3°). In our STEM, the inner and outer collection angles of the HAADF detector are 62 mrad 

and 164 mrad, respectively. 

Due to the incoherent nature of Rutherford scattered electrons, there is no phase relationship 

in between, and the contrast of HAADF image solely depends on Z. According to equation 2.7, 
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the HAADF intensity relationship of two clusters composed of two different elements (a and 

b) can be written as: 

 

where  represents the integrated HAADF intensity,  is the number of the atoms in a cluster, 

and  is the parameter determined by the collection angle of HAADF detector. The  in our 

STEM is 1.46 0.18 calculated from experimental measurement [10].  

 

2.3 Electrochemical Measurement 

Full cyclic voltammograms (CV) or linear sweep voltammograms (LSV) are the standard 

techniques to evaluate the performance of an electrochemical catalyst.  In CV or LSV 

measurement, a varying amount of energy is supplied by circulating a range of potential to 

drive the reaction, meanwhile, the reaction current is measured. The standard for a good 

catalyst is that a high reaction current can be produced with a small potential over the 

thermodynamic minimum. The electrochemical measurements were conducted by Daniel 

Escalera Lopez (PhD student from Chemical Engineering, UoB) and were carried out with a 

three-electrode set-up. It consists of a reference electrode (Saturated Calomel Electrode, SCE), 

a Pt mesh counter electrode and a working electrode terminated by a 5 mm wide, 2-3 mm thick 

glassy carbon. 
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Figure 2.14 Schematic of a standard three-electrode set-up. It consists of a working electrode 

(WE), a reference electrode (RE) and a counter electrode (CE). 

A schematic of three-electrode set-up for electrochemical measurements is shown in Figure 

2.14. The working electrode is the support of the clusters and normally made of inert but 

conductive material (e.g. glassy carbon) to minimise the background reactivity. In order to 

accurately measure calculate the potential of the working electrode, a reference electrode with 

stable redox potential is necessary. Several kinds of reference electrodes are available for 

electrochemical measurements, like Standard Hydrogen Electrode (SHE), Saturated Calomel 

Electrode (SCE), silver chloride electrode, and et al. Here, the reference electrode is a Saturated 

Calomel Electrode based on the reaction between mercury and mercury chloride. The counter 

electrode is a platinum mesh electrode which oxidises hydrogen to balance the redox reaction 

at the working electrode. In order to study the kinetics of the catalytic reaction, an electrolyte 

with low proton concentration is needed to realise a mass transport limited state. The electrolyte 

used here is the freshly prepared solution with ultrapure water containing 2mM HClO4, 0.1M 

NaClO4. 
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In LSV measurement, the standard for an excellent catalyst is to produce high current density 

(j) with a small potential over the thermodynamic minimum (overpotential, η). The onset 

potential, the overpotential at which the reaction current is observed, is an important metric to 

evaluate a catalyst [11]. However, the ambiguity of the definition on onset potential makes it 

rather difficult to compare the results from different researchers. The current density value for 

onset potential could vary from 0.05 mA cm-2 to 5 mA cm-2. The more popular metric is the 

overpotential value located at the current density of 10 mA cm-2, which rose up from solar 

water splitting [12, 13]. The Tafel slope is an essential metric to address the catalytic 

mechanism, which can be obtained from the slop analysis of Tafel plot (overpotential vs. log 

j). Exchange current density is another metric to represent the total electrode activity. It is the 

current density in the absence of other critical information and at zero overpotential and can be 

reached from the Tafel equation. An example graph of LSV and Tafel plot of two theoretical 

catalysts is shown in Figure 2.15. The two catalysts require the same overpotential for reaching 

the current density of 10 mA cm-2. However, they present different onset potentials. The one 

in red has a much larger onset potential than the one in blue.  The Tafel plot indicates two 

different HER mechanisms in the two catalysts. A lower Tafel slope is found with the catalyst 

in red, which means a smaller amount of potential is needed to increase a certain amount of 

exchange current density. 
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Figure 2.15 An example graph of LSV (a) and Tafel plot (b) based on two theoretical catalysts, 

reproduced from reference [11].  

2.4 Micro-reactor 

The term “micro-reactor” here means a chemical reactor with micrometre range dimensions 

used for analysing chemical reactions and surface science. Generally, the discovery, 

characterisation and optimisation of catalysts are viewed as the basic steps for developing new 

catalytic process. Before the emergence of micro-reactor, macroscale reactor was used to fulfil 

these steps in heterogeneous catalysis. Compared with the traditional macroscale reactor, 

micro-reactor has shown a series of advantages. Due to the small dimensions of micro-reactor, 

the mass transfer is improved, and the concentration gradients are reduced, the reaction 

parameters (pressure and gas flow rate) are easy to tune. The heat transfer at the reaction area 
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is also enhanced by the high surface to volume ratio, which makes it possible to control the 

reaction temperature accurately. 

Figure 2.16 illustrates a micro-reactor used in this study for CO oxidation, which is designed 

and fabricated by Ib Chorkendorff’s group at Technical University of Denmark (DTU). The 

micro-reactor with a microchannel system is fabricated on a silicon chip by reactive ion etching 

and deep reactive ion etching techniques.[14, 15] It has a 16 by 20 mm2 surface area with a 

thickness of 350 μm. There are two inlets (I1, I2), two outlets (O1, O2), a mixing channel and 

a reaction zone. The reactant gas introduced from I1 and I2 fully mix in mixing channel, then 

either go to O1 or go to the reaction zone. After reaction occurs in the reaction zone, the gas 

containing products proceeds to O2 which is connected to quadrupole mass spectrometer 

(QMS), so the composition of the entire gas can be analysed. 

 

Figure 2.16 (a) A photograph of micro-reactor and (b) a schematic diagram of the design of 

microreactor, reproduced from reference [15]. 

 

Anodic bonding is used to seal the micro-reactor with Pyrex glass lid, and this can ensure the 

micro-reactor working properly at a pressure between 0.1 to 5.0 bar [16]. Because of the high 

sensitivity of the micro-reactor, it becomes a versatile tool for many fundamental studies of 
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model catalytic reactions, especially for the studies of size effects and catalytic activities of 

size-selected clusters. 

 

2.5 Other Techniques 

2.5.1 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) was developed by Kai Siegbohn in the 1960’s. It has 

been widely used in surface characterization for elemental composition, oxidation states, and 

electronic structures. The basic principle of XPS is concerned with the photoelectric effect [17, 

18]. As shown in Figure 2.17, when the sample surface is irradiated by a focused X-ray with 

energy  (e.g. Mg- : 1253.6 eV), the electron in the sample will be ejected out. The kinetic 

energies Ek of the ejected photoelectrons are then analysed by electron spectrometer and 

recorded by the detector.  The binding energy Eb is a characteristic parameter of the element, 

which can be used to retrospect its atomic energy level and parent element. The binding energy 

of a photoelectron can be calculated from the following equation [17]: 

 

where W is the work function dependent on both the spectrometer and the material, which is 

characteristic to the specific system.  

 



Experimental Methods 

 
 

68 

Figure 2.17 Schematic of X-ray photoelectron spectroscopy, reproduced from reference [19]. 

The principle is to generate and analyse the photoelectrons with kinetic energy Ek by a focused 

X-ray with energy . 

 

In order to quantitatively determine the elemental information of materials, a narrow energy 

distribution of X-rays is necessary. This can be obtained by bombarding specific metals with 

high energy electrons. Normally, Al and Mg are used in the X-ray sources with characteristic 

energies of 1248.63 eV and 1253.6 eV, respectively [20].  In Modern XPS, a monochromator 

is usually introduced to obtain monochromatic X-rays. 

 

2.5.2 Low Energy Ion Scattering 

Low energy ion scattering (LEIS), sometimes referred to ion scattering spectroscopy (ISS), is 

a surface-sensitive analytical technique used to characterise the outermost layer of materials. 

The principle of LEIS is illustrated in Figure 2.18, which is based on binary collisions of the 

noble ion and the surface atoms of materials. An incident noble gas ion (He+, Ne+, Ar+ or Kr+,) 

with mass m1 and energy Ei (1-8 keV) is elastically scattered by the surface atom with mass m2 

in an angle of . The energy of the scattered ion (Ef) can be expressed as [21]: 

 

During the measurement,  is set by the instrument. Then, the mass of the surface atom (m2) 

can be derived by measuring Ef. A significant percentage of the noble ions can penetrate the 

first atomic layer of the sample surface and then neutralised, so that they won’t be detected by 
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the analyser. This means LEIS owns a high surface sensitivity by detecting the outmost atomic 

layer of the surface. 

 

Figure 2.18 Schematic of the principle of low energy ion scattering, reproduced from reference 

[22]. The incident noble gas ion with mass m1 and energy Ei (1-8 keV) is elastically scattered 

by the surface atom with mass m2. By analysing the energy of the scattered ion (Ef), m2 can be 

derived.  
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Chapter 3  

Atomic Structures and HER Activities of 

MoS2 Clusters and Ni-MoS2 clusters 

 

The work in this chapter is represented in the publication of “Escalera-López D, Niu Y, Yin J, 

Cooke K, Rees NV, Palmer RE. Enhancement of the hydrogen evolution reaction from Ni-

MoS2 hybrid nanoclusters. ACS Catalysis 2016, 6(9): 6008-6017” [1]. The draft of the 

published paper was written by me and Daniel Escalera Lopez. I was in charge of the cluster 

fabrication and STEM analysis, and Daniel Escalera Lopez was in charge of the XPS analysis 

HER analysis. Most of the text, figures and tables in this chapter are the replica from the 

publication. 

 

3.1 Introduction  

Two-dimensional transition metal dichalcogenides (TMD) have attracted renewed attention 

since the isolation of graphene [2-4]. Molybdenum disulphide (MoS2), as a representative 

member of the TMD family and an earth-abundant material, has been widely investigated 

because of its intriguing catalytic [5, 6], electronic [7-9], optoelectronic [10], and tribological 

[11] properties. MoS2 layers have a sandwich structure with molybdenum atoms arranged 

between two sulphur sheets [8, 12, 13]. In nanoparticles (NPs), the atoms at the edge sites of 

the MoS2 layers, rather than the basal plane atoms, make the main contribution to the catalytic 

activity [6, 14]. Nanostructured MoS2 materials have a highly rated prospect as a substitution 
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of the scarce and costly platinum group metals in catalysis. Intensive research has been 

conducted since the discovery of the linear relationship of the hydrogen evolution reaction 

(HER) activity and the number of  MoS2 edge sites [14]. In the case of MoS2, the focus is on 

maximizing the proportion of active edge sites and minimizing the in-plane/through-plane 

charge transfer resistance by the development of single-layered nanoplatelets [15], nanowires 

[16], mesoporous structures [17] and nanocomposites with highly conductive supports [18].  

There are two kinds of edge sites, Mo-edge and S-edge, and only the Mo-edge sites are active 

to HER due to their near-zero hydrogen adsorption free energy (ΔGH= 0.06 eV) [19]. Several 

methods have been proposed to enhance the HER activity, one promising way is to dope the 

S-edge sites with transition metal (TM) (Fe, Co, Ni) to activate their HER activity by shifting 

the ΔGH value closer to ΔGH =0 (thermo-neutral) [20]. Experiments on MoS2 nanoparticles 

and MoS3 thin films reported a HER enhancement upon non-selective edge doping [21, 22] 

and later tests on edge-terminated MoS2 nanofilms demonstrated the 2-fold (in the case of Cu 

dopant) and almost 3-fold (for Fe, Co, Ni) HER enhancement observed with the activation of 

the S-edge sites [23]. Nevertheless, TM-doping of MoS2 nanoparticles is scarcely reported 

probably due to the difficulty in separating the effects of surface area and morphology changes 

from the electrocatalytic enhancement [24, 25].  

Lamellar MoS2 NPs, prepared by magnetron-sputtering and gas condensation to create clusters 

in the gas phase prior to the deposition, are excellent candidates for TM-doping due to their 

narrow size-distribution and the present ability to control the stoichiometry in the cluster beam 

source [5]. Here we explored the catalytic activity of Ni-MoS2 as a representation of TM-doped 

MoS2 NPs prepared via a dual-magnetron sputtering and gas condensation deposition 

technique. Pristine MoS2 clusters, Ni clusters and Ni-MoS2 hybrid clusters are prepared to 

evaluate their electrocatalytic activity to HER. The term “MoS2” used in this thesis means the 

general MoS2-based clusters, and it does not necessarily mean the stoichiometry of Mo and S 
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is 1:2. Because the clusters produced from cluster beam deposition have the same layered 

structure with the MoS2 (Mo:S = 1:2) materials reported in the literatures, we call them MoS2 

clusters in this research.   

 

3.2 Materials and Methods 

MoS2, Ni and hybrid Ni-MoS2 clusters were prepared using a custom-built cluster beam source 

at Teer Coatings Ltd (Worcestershire, UK). The system layout is shown in Figure3.1. The 

clusters are generated within the first section of the source by sputtering with dual, independent 

magnetrons and gas condensation. After leaving the magnetron sputtering chamber via a small 

nozzle (5 mm in diameter), clusters with a positive charge are accelerated and steered by the 

ion optical electrostatic lenses which guide the beam in the second vacuum chamber. In the 

next step, the ion beam is focused and directed into the third vacuum chamber for mass 

selection. By using the Time-of-Flight mass filter, the mass distribution of clusters can be 

monitored in real time. The cluster size is tuned by varying the sputtering power, gas flux and 

condensation length. When the desired cluster size distribution within the sampled ion beam is 

achieved, the high voltages applied to the deflector in the centre of the Ion Optics chamber are 

switched to a deflection mode, so that the positively ionised fraction of the cluster beam is 

deflected horizontally towards the deposition chamber. Glassy carbon (GC) stubs (5 mm x 5 

mm x 3 mm, mirror finish) are mounted on a carousel, which can be rotated and also translated 

vertically. The rotation speed of the carousel and its vertical motion are carefully controlled to 

ensure an even cluster distribution on the substrates. For all the samples, an average cluster 

spacing of 2.5 nm was targeted. According to this cluster spacing and the mass spectra, the 

mass loadings are 1.28 µg/cm2, 3.45 µg/cm2, and 4.25 µg/cm2 for Ni, MoS2 and hybrid Ni-
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MoS2 clusters, respectively. A high voltage bias is applied to the carousel in order to control 

the impact energy of the clusters landing on the support.

 

Figure 3.1 Schematic of the cluster beam system (top view). It consists of four sections: 

magnetron sputtering, ion optics, mass filter and cluster deposition. Note that in the described 

experiments, the mass filter is only used for cluster size monitoring, not for deposition. The 

clusters are instead deposited directly onto substrates in the chamber shown at the top of the 

figure. 

During the cluster deposition, a condensation length (i.e. the distance between the sputtering 

target surface and the exit nozzle) of 24 cm was used and a pressure of approximately 0.23 

mbar was maintained in the condensation chamber, with 70 standard cubic centimetres per 

minute (sccm) argon flow and 10 sccm helium flow.  In the preparation of pure MoS2 or Ni 

clusters, only the magnetron sputtering source fitted with the respective target (MoS2 or Ni) 

was operated, while the other magnetron’s power supply was switched off. For the deposition 

of Ni-doped MoS2 clusters, the two magnetrons were operated simultaneously.
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Clusters were deposited on TEM grids covered with amorphous carbon films for STEM 

characterization. The clusters were imaged with a 200kV aberration-corrected STEM (JEOL 

2100F) in the HAADF mode, and Energy Dispersive X-ray spectroscopy (EDX) was also 

performed to analyse the elemental composition. X-ray photoelectron spectroscopy (XPS) was 

performed by Aston university on a Kratos Axis His X-ray photoelectron spectrometer fitted 

with a charge neutralizer and magnetic focusing lens employing Mg Kα achromatic radiation 

(1253.6 eV).  

Electrochemical measurements of HER activity were carried out by Daniel Escalera Lopez in 

a thermostatted three-electrode electrochemical cell (295±2 K) with a PC-controlled 

PGSTAT128N potentiostat (Metrohm Autolab B.V, Netherlands). The electrodes used were a 

saturated calomel (SCE) reference electrode (BAS Inc, Japan), a bright Pt mesh counter 

electrode (Alfa Aesar Ltd, UK) and 5mm diameter, 3 mm thick GC type 2 stubs (Alfa Aesar, 

UK) modified with either pure Ni or Ni-doped/undoped MoS2 clusters as working electrodes.  

All experiments were performed in a 2mM HClO4, 0.1M NaClO4 solution (pH 2.70), freshly 

prepared with ultrapure water (resistivity not less than 18.2 MΩcm, Millipore Milli-Q Direct 

8). Deoxygenation was achieved by vigorous N2 bubbling prior to each electrochemical 

experiment and maintained under positive N2 pressure. This electrolyte was chosen in contrast 

to other electrolytes more commonly reported in the literature for hydrogen evolution 

experiments (0.5M H2SO4, pH≈ 0.3; 0.1M HClO4, pH≈ 1) due to the non-coordinating nature 

of the perchlorate anion being likely to yield more reproducible results and enable a more 

accurate elucidation of the reaction kinetic parameters. The modified electrodes were 

preconditioned with 10 cycles between -0.045 and -1.645 V vs. SCE at a scan rate of 50 mVs-

1. Electrocatalytic measurements were made at a range of voltage scan rates from 2 to 1200 

mVs-1.  
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3.3 Structure and Composition Analysis of the Clusters  

The time-of-flight mass filter enabled the mass of clusters formed in the sputtering chamber to 

be monitored before deposition onto the GC stubs. Figure 3.2 shows the mass spectra of the 

samples employed in the HER measurements. During the preparation of pure MoS2 samples, a 

sputtering power of 8W was applied to the MoS2 target and a peak mass of 4.8 x 104 amu, 

equivalent to (MoS2)300, was found in the mass spectra (300 being the number of MoS2 units 

contained in one MoS2 cluster). The pure Ni sample was prepared similarly, and a resulting Ni 

peak mass of 1.3 x 105 amu, equivalent to ~Ni2200, was found (2200 being the number of Ni 

atoms in one Ni cluster). When the sputtering power for the Ni target was changed from 4W to 

8W, the peak mass shifted from 6 x 104 amu to 1.3 x 105 amu, and the peak beam current 

shifted from 11 pA to 90 pA. Thus, higher sputtering power on the Ni target generates more, 

and larger, Ni clusters. Consequently, a lower sputtering power of only 3W on the Ni target 

was used in the preparation of the hybrid Ni-MoS2 clusters in order to avoid an excess of Ni 

clusters, while 8W of sputtering power was used on the MoS2 target. The peak mass of the 

hybrid Ni-MoS2 clusters was located at 1.6 x 105 amu, equivalent to a mass of (MoS2)1000 (1000 

equivalent MoS2 units per Ni-MoS2 cluster) or Ni2712 (2712 equivalent Ni atoms per Ni-MoS2 

cluster). In the following sections, we will refer to the Ni, MoS2 and hybrid Ni-MoS2 clusters 

as Ni2200, (MoS2)300 and (Ni-MoS2)1000, respectively. 
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Figure 3.2 Mass spectra obtained by time-of-flight. From the spectra, MoS2, Ni (8W) and Ni-

MoS2 (3W) show peak masses of around 4.8 x 104 amu ((MoS2)300), 1.3 x 105 amu (~Ni2200) 

and 1.6 x 105 amu [(MoS2)1000], respectively. The mass spectra of Ni (4W) is also plotted to 

show the effect of the power applied to this target. 

The STEM images in Figure 3.3 show (top to bottom) the morphologies of MoS2 clusters, Ni-

MoS2 hybrid clusters and Ni clusters. A HAADF-STEM image is a Z-contrast image, meaning 

that the image intensity depends on the atomic number of elements, and in practice, the images 

are dominated by Mo atoms. The distinct intensity contrast across one MoS2 cluster indicates 

an incomplete multi-layer structure (the HAADF-STEM intensity line profile analysis is shown 

in Figure 3.5). Ni-MoS2 clusters present a broadly similar morphology to that of the pure MoS2 

clusters, while Ni clusters show a quite distinct crystalline structure. This implies that Ni is 

atomically added to the MoS2 clusters when the hybrid Ni-MoS2 clusters are formed. After fast 

Fourier transformation (FFT) analysis of STEM images in Figure 3.3 and comparison with the 

crystalline lattice parameters of MoS2 polymorphs 1T and 2H no clear crystalline structure 

could be found on either MoS2 or Ni-MoS2 clusters. Based on the projected surface areas of 

more than 100 clusters of each kind, the average diameter distributions are shown in Figure 
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3.3. The peak values in the distributions for MoS2 clusters, Ni-MoS2 clusters and Ni clusters 

are 2.6 nm, 5.0 nm, and 4.2 nm respectively. 

 

Figure 3.3 STEM images and size distribution in diameter based on the cluster surface area. 

MoS2, Ni-MoS2, and Ni (8W) have a peak value of 2.6 nm, 5.0 nm, and 4.2 nm respectively. 

 

In order to confirm the existence of Ni in the hybrid Ni-MoS2 clusters, EDX analysis was 

conducted, and the result is shown in Figure 3.4.  Mo, S, and Ni signals are found in the same 

clusters, which indicate Ni-MoS2 hybrid clusters were made successfully. The characteristic 

energy difference between the Mo L-edge and S L-edge is only 14 eV, which is smaller than 

the energy resolution of the EDX instrument (133 eV). Consequently, Mo and S signals cannot 

be distinguished by EDX, and the cyan dots in Figure 3.4b are due to the signal overlap of Mo 
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and S.  Ni signals are found both in MoS2 areas and between them, which means Ni might be 

located on or between MoS2 clusters. Figures 3.4c to 3.4e display the individual elemental 

maps. Cluster shape mismatch between HAADF-STEM image shown in Figure 3.4a and 

Figures 3.4b to 3.4e is ascribed to STEM image drift during EDX measurement. Compared 

with the large clusters, the small cluster located at the bottom of each image is much less 

abundant in Ni, which is found primarily at MoS2 edge sites and between clusters. During the 

formation process in the cluster source, small clusters may sometimes aggregate, being bonded 

to each in the gas condensation process to form big clusters. Generally, the big clusters contain 

more Ni atoms with random locations. Besides the signals found in the clusters (marked by the 

yellow shapes), signals can be found outside the clusters; these signals may come from small 

clusters originating from the deposition process or electron beam sputtering of the deposited 

clusters. Since Mo and S signals are overlapped with each other, the exact cluster compositions 

cannot be obtained from EDX analysis.  

 

Figure 3.4 STEM image (a) containing large and small clusters used for EDX measurement. 

(b)EDX mapping shows the composition of Ni-MoS2 clusters; Mo, S, and Ni are shown in 
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green, blue, and red respectively. The signal in cyan comes from the overlap of Mo and S 

signals. Mo, S, and Ni signals are also shown separately in panels c, d and e; where the cluster 

positions are marked by the yellow shapes. 

 

Figure 3.5 (a) STEM image of Ni-MoS2 hybrid cluster and (b) example HAADF intensity line 

profile corresponding to the yellow region in (a). The line profile shows step changes in cluster 

height, and the layer numbers are labelled as a guide. 

To identify the composition of the hybrid Ni-MoS2 clusters, we employ a method based on 

atom counting and STEM intensity measurement. The HAADF intensity (I) of two kinds of 

elements (A and B) follows the relationship IA/IB = (ZA/ZB)1.46, in which Z is the atomic number, 

for our microscope calibration [26]. Thus the intensity relationship between Mo, S and Ni can 

be expressed as below: 

 

Since the single atom intensity of Mo is much higher than that of S and Ni, we assume the 

atoms most easily visible in STEM images are Mo. According to the intensity line profile 

shown in Figure 3.5, the number of Mo columns intersected by the line and the number of Mo 

atoms in each column can be obtained. Once all the surface area of the cluster is scanned by 

such lines, the total number of Mo atoms (NMo) is obtained. The number of S atoms (Ns) in this 

cluster can also be derived on the assumption that the ratio of Mo atoms to S atoms is 1:2. 
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Therefore the composition of the cluster can be regarded as (MoS2)NMoNix. Now the integrated 

intensity of the whole cluster (Icluster) can be given by: 

 

Since the intensity of the whole cluster can be measured from STEM image, against using a 

single Mo atom as the standard, the value of x can be given by combining equations 3.1 and 

3.2: 

 

Then the cluster composition is revealed. 

 

By this method, the compositions of six clusters of varying size were calculated and are listed 

in Table 3.1. The outcome is that there is no fixed ratio of Ni atoms to MoS2 units in the hybrid 

clusters, but in general, the proportion of Ni increases with cluster size, which agrees with the 

EDX results. 

 



MoS2 and Ni-MoS2 clusters 

 
 

84 

Table 3.1 Composition analysis of six hybrid Ni-MoS2 clusters based on HAADF-STEM 

images. 

The chemical composition and oxidation state of the untested clusters deposited on TEM grids 

analyzed by STEM imaging were further characterized by XPS at Aston University. Detailed 

spectra in the Mo 3d and S 2p region for fresh and 14 h air-exposed (MoS2)300 are shown in 

Figure 3.6. One Mo 3d5/2 and Mo 3d3/2 spin-orbit doublet found at ~229.8 eV and ~232.9 eV 

in the fresh (MoS2)300 clusters, which is the characteristic of the Mo4+ oxidation state of MoS2 

materials [27]. After exposed in air for 14 h, an additional doublet at ~233.1 eV and ~236.2 eV 

related to the Mo6+ oxidation state found in MoO3 [28] and an upward shift of ~0.4 eV in the 

Mo4+ components indicate an oxidation state increase in MoS2 clusters. The fresh S 2p 

spectrum can be deconvoluted into two components at ~160.7 eV and ~161.9 eV corresponding 

to the spin-orbit S 2p3/2 and S 2p1/2 doublet characteristic of the S2- oxidation state [29]. The 

additional broad signal at ~167 eV related to oxidised sulphur species such as sulfites or 

sulfates [30]. Quantification of the Mo4+:S2- peak areas gives a Mo:S ratio of 1:0.90±0.02, 

which confirms the sulphur-deficient nature of (MoS2)300 clusters. 

Ni-MoS2 cluster Ratio of Ni atoms number  
to MoS2 units number 

(MoS2)373Ni22 0.06  

(MoS2)378Ni30 0.08  

(MoS2)461Ni720 1.56  

(MoS2)844Ni648 0.77  

(MoS2)1163Ni1235 1.06  

(MoS2)1458Ni2181 1.50  
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Figure 3.6 Detailed XPS spectra of Mo 3d (left) and S 2p (right) for fresh (top) and 14 h air 

exposed (bottom) (MoS2)300 clusters. Quantification of the Mo4+:S2- peak areas gives a Mo:S 

ratio of 1:0.90±0.02. Labels: raw spectra (solid black), cumulative peak fit (solid red), Mo4+ 

3d5/2 (solid green), Mo4+ 3d3/2 (dashed green), Mo6+ 3d5/2 (solid orange), Mo6+ 3d3/2 (dashed 

orange), S 2p3/2 (solid blue) and S 2p1/2 (dashed blue). 

Detailed spectra in the Mo 3d and S 2p region for 14 h air-exposed (Ni-MoS2)1000 are shown 

in Figure 3.7. Both Mo4+ oxidation state (~229.8 eV and ~232.9 eV) and Mo6+ oxidation state 

(~233.1 eV and ~236.2 eV) can be found in the fresh Mo 3d XPS spectrum. An upward shift 

of 0.2 eV in the Mo4+ and Mo6+ components after air exposure as well as a photoemission 

intensity increase of the latter doublet indicate an oxidation state increase in Ni-MoS2 clusters. 

This is also supported by analysis of the Mo4+:Mo6+ XPS atomic photoemission percentages 

(at. %), which reveal a conversion of MoS2 into MoO3 from Ni-MoS2 fresh samples 

(Mo4+/Mo6+ 78.1/21.9 at. %) to air exposed (Mo4+/Mo6+ 54.9/45.1 at. %). Quantification of the 

Mo4+:S2- peak presents a Mo:S ratio of 1:1.8±0.1 in (Ni-MoS2)1000 clusters, which is similar to 

the Mo:S ratio expected in MoS2. Compared with (MoS2)300 clusters, such difference in the 

oxidation behaviour could be ascribed to the presence of surface Ni atoms prone to oxidation 

which would mitigate S2- oxidation under ambient conditions. The lack of definition in the 
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spin-orbit S 2p3/2:2p1/2 doublet found here had been previously ascribed in amorphous MoS3 

materials to the presence of mixed S2-/S22- oxidation states,25 but in our case it could be due 

either to the low photoemission counts due to low sample loading (~4 μg cm-2) or to the 

inherent amorphous nature of the MoS2 clusters provided the S-deficiency of the samples.  

Figure 3.7 Detailed XPS spectra of Mo 3d (left) and S 2p (right) for fresh (top) and 14 h air 

exposed (bottom) (Ni-MoS2)1000 clusters. Quantification of the Mo4+:S2- peak presents a Mo:S 

ratio of 1:1.8±0.1. Labels: raw spectra (solid black), cumulative peak fit (solid red), Mo4+ 3d5/2 

(solid green), Mo4+ 3d3/2 (dashed green), Mo6+ 3d5/2 (solid orange), Mo6+ 3d3/2 (dashed orange), 

S 2p3/2 (solid blue) and S 2p1/2 (dashed blue).

Analysis of the Ni 2p Detailed spectra of both Ni and Ni-MoS2 clusters is paramount to evaluate 

the oxidation state of the Ni dopant atoms as well as to identify the presence of nickel species 

such as oxides and sulfides. Deconvolution of the Ni 2p3/2 component of the untested Ni 

clusters (Figure 3.8) shows the predominance of oxidized species such as NiO and Ni(OH)2, 

with Ni:NiO:Ni(OH)2 composition percentages practically invariable after air exposure 

(7.4:49.8:42.8 fresh, 6.6:51.2:42.2 air exposed). As for (Ni-MoS2)1000 clusters shown in Figure 

3.9, quantitative analysis of the Ni 2p region is not possible due to low signal-noise ratio 

ascribed to the low Ni content aimed during the cluster formation. The peak position of the Ni 
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2p3/2 component for the fresh (Ni-MoS2)1000 samples at ~852.8 eV and the lack of clearly 

defined satellite signals seem to suggest predominance of metallic Ni (theoretical value: 

852.7±0.4 eV) [31], but air exposure leads to an upward shift of the Ni 2p3/2 component to 

~854eV, similar to the 854.6 eV characteristic of the NiO principal XPS peak [32] as well as 

in increase in the Ni 2p3/2 and Ni 2p1/2 satellite intensities (~861 and ~872.5 eV, respectively). 

This would indicate that under air exposure the doping Ni atoms spontaneously increase their 

oxidation state to Ni2+ as found in NiO species, agreeing with the behaviour observed for bare 

Ni clusters. Presence of a nickel sulfide phase cannot be discarded from XPS results as it is 

well reported that directly bonded S atoms leave the Ni 2p3/2 peak position unaltered [33], and 

the S 2p3/2:2p1/2 doublet overlap commonly reported in nickel sulfides [34] is also found in the 

bare (MoS2)300 clusters. However, the upward shift of the Ni 2p3/2 component to binding 

energies similar to those of NiO species after air exposure makes the presence of a nickel 

sulfide phase unlikely. Thus, the Ni oxidation state conversion observed after 14 h air exposure 

will have significant repercussions in the electrocatalytic performance of the Ni-MoS2 hybrid 

clusters. 
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Figure 3.8 Detailed XPS spectra of Ni 2p fresh (top) and 14 h air exposed (bottom) Ni clusters. 

Labels: raw spectra (solid black), cumulative peak fit (solid red), Ni0 2p3/2 peak deconvolution 

(solid blue), Ni2+ (NiO) 2p3/2 peak deconvolution (solid green) and Ni2+ [Ni(OH)2 ] 2p3/2 peak 

deconvolution (solid orange).  

Figure 3.9 Detailed XPS spectra of Ni 2p for fresh (top, solid black) and 14 h air exposed 

(bottom, solid red) (Ni-MoS2)1000 clusters. The dashed vertical line indicates peak position of 

metallic Ni (theoretical value: 852.7±0.4 eV).  
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3.4 Electrocatalytic Activity to HER 

Figure 3.10 shows the linear sweep voltammograms acquired in the 0 to -1.2 V range 

[normalised vs. Normal Hydrogen Electrode (NHE)] at a scan rate of 25mVs-1 in 2mM 

HClO4/0.1M NaClO4 aqueous electrolyte for all samples tested. A diffusion decay peak profile 

is observed in all samples due to the low proton concentration present in the electrolyte (

), purposefully chosen to perform a better elucidation of the samples’ 

kinetic parameters (Tafel slope analysis). 

 

Figure 3.10 Linear sweep voltammograms recorded at 5 mm diameter glassy carbon (dashed 

black) samples modified with (a) fresh (MoS2)300 (solid red), (b) fresh (Ni-MoS2)1000 (solid 

magenta), (c) Ni2200 (solid blue), (d) 14-h air exposed  (MoS2)300 (solid green), and (e) 14-h air 

exposed  (Ni-MoS2)1000 (solid orange) clusters in the 0 to -1.2 V range vs. NHE. Scan rate: 25 

mV s-1. 
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Freshly prepared (MoS2)300 clusters (Figure 3.10a) exhibit an onset potential of ca. 650 mV, 

reaching a peak half maximum current density ( ) of 0.31 mA cm-2 at an overpotential 

( ) of ca. 770 mV. The experimental onset potential is approx. 400 mV higher than that of 2H-

MoS2 nanosheets reported in the literature (ca. 200 mV vs NHE): this originates from the MoS2 

preparation methodology and hence the degree of sulphur enrichment.  

The main factors that hinder HER activity in MoS2 materials are their intrinsic conductivity, 

metal-to-chalcogen ratio, edge site abundance and catalyst loading. Previous investigations 

from our research group demonstrated that magnetron-sputtered MoS2 size-selected clusters 

presented a 2-layer thickness in the 150-500 unit range [5]. In this investigation, it was observed 

again that (MoS2)300 clusters exhibit an incomplete multilayered structure ranging from 1 to 4 

layers. As through-plane electron mobility in MoS2 is 2200 times slower than in-plane, the 

absence of single-layered clusters hampers the electrocatalytic activity. XPS analysis 

performed in this study have revealed that both (MoS2)300 and (Ni-MoS2)1000 clusters are S-

deficient. A high correlation between metal-to-chalcogen ratio and HER activity has been 

extensively reported. Eng et al. observed a substantial increase in both HER overpotential and 

Tafel slope in chalcogen deficient TMDs [35], that can be ascribed in the case of MoS2 to a 

deficiency of active sites and the formation of oxide species MoO2/MoO3 at the S-deficient 

sites, experimentally confirmed by XPS measurements reported here. The intrinsic MoO3 

material has not been regarded as an catalyst in HER due to the lack of active edges [36]. 

Sulphur-rich MoS2 nanostructures with enhanced HER activities and stability in an acidic 

environment have been prepared by use of gas phase or liquid phase methods. However, 

evidence has shown that the morphology of MoS2 is modified by the exposure to the sulphur 

gas phase or liquid phase [37, 38]. Thus, ex-situ sulfidation treatments were not performed to 

guarantee that the HER enhancement in the samples is unambiguously due to the Ni-doping of 

the edge sites. In addition to this, reports by Vrubel et al. and Rowley-Neil et al. revealed that 
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the HER activity of the molybdenum sulfide catalysts is correlated with the catalyst loading: 

higher molybdenum sulfide catalyst loading lead to enhanced HER performance [39, 40]. Thus, 

the HER performance of our clusters cannot be unambiguously judged by the current density 

values obtained at the same overpotentials as those reported by the literature. Assuming a 

cluster interspacing of 2.5 nm, the mass loadings for Ni2200, (MoS2)300 and (Ni-MoS2)1000 are 

1.28 μg cm-2, 3.45 μg cm-2 and 4.25 μg cm-2, respectively. These values are at least one order 

of magnitude smaller than those reported in more competitive MoS2 materials, supporting our 

claims that the low catalyst loadings lead to overpotentials higher than those reported in the 

literature. 

Electrochemical testing of the (MoS2)300 clusters after the aforementioned testing and exposure 

to air for 14 hours indicates an enhancement in their electrocatalytic performance to the HER, 

with a  of ca. 0.40 mA cm-2 at  749 mV. This is due to the dissolution of the 

(MoS2)300 clusters outermost layers due to the conversion of MoS2 to MoO3, compound soluble 

in acidic conditions. Yu et al. observed that electrochemical cycling of bilayered MoS2 

nanoflakes assisted in the oxidation of Mo4+ to Mo6+ ascribed to air exposure, leading to the 

complete loss of the MoS2 outermost layer after re-immersion in the acidic electrolyte used. 

The loss of such layer resulted in enhanced HER performance and Tafel slope, concluding that 

the loss of a full MoS2 monolayer increases the HER activity by a factor of ~4.47 [41]. As the 

(MoS2)300 clusters have been shown to consist of an incomplete multilayered structure (1 to 4 

MoS2 layers thick,), any loss of the outermost layers will consequently enhance the HER 

activity. 

Similar voltammograms were recorded for (Ni-MoS2)1000 hybrid clusters (Figure 3.10b). It can 

be seen that (Ni-MoS2)1000 hybrid clusters exhibit a significant improvement in the 

electrocatalytic activity with respect to the undoped counterparts: the onset potential is reduced 

by ca. 100 mV and the  (0.35 mA cm-2) is reached at  680 mV (100 mV less than 
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(MoS2)300 clusters). To confirm that the HER enhancement is due to the effective Ni-doping of 

the S-edge sites and not to the presence of HER-active Ni clusters in the sample, the response 

of a GC sample modified with Ni clusters (average atomic mass units= 2200, Figure 3.10c) 

was evaluated. Ni2200 clusters exhibited an onset potential and similar to (MoS2)300 

clusters (0.36 mA cm-2,  770 mV) but with faster HER kinetics (as per Tafel analysis, vide 

infra). This is evidenced by the fact that Ni2200 clusters achieve a peak current density ( ) of 

0.72 mA cm-2 at  870 mV whereas (MoS2)300 clusters only a 0.63 mA cm-2 at  905 

mV. Thus, we can satisfactorily conclude that the HER enhancement observed in (Ni-MoS2)1000 

clusters is due to the increase in active edge sites density upon Ni-doping of the initially 

inactive S-edge sites.  

Exchange current density ( ) can provide insight on the predicted HER enhancement by Ni-

doping as well as an indication of the intrinsic activity per-site. Freshly-prepared (MoS2)300 and 

(Ni-MoS2)1000 clusters presented similar  values (≈8×10-10 A cm-2), but after the above 

electrochemical experiments and 14-h air exposure (Ni-MoS2)1000 hybrid clusters (Figure 3.10e) 

showed an almost 3-fold increase with respect to their initial  value (2.1×10-9 vs. 7.6×10-10). 

This significant HER enhancement is in good agreement with previous reports that indicated a 

3-fold increase in active sites but a worse per-site activity due to the overall less thermo-neutral 

ΔGH values. 

Tafel slope analysis was then carried out to provide insight into the HER efficiency of the 

catalysts and the HER reaction mechanism. Noble metals such as Pt follow the Volmer-Tafel 

mechanism, in which the rate determining step is the chemical hydrogen desorption from the 

catalyst surface, with Tafel slopes b≈30 mV dec-1 [30]. Tafel slope analysis of the 25mV s-1 

cathodic scans (Figure 3.11) revealed that all the MoS2 samples are in the 95-130 mV dec-1 

range, (MoS2)300 exhibiting the lowest Tafel slope (94 mV dec-1) after exposure to air for 14 
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hours. This compares to exfoliated MoS2 layers reported to display Tafel slopes, b ≈ 120 mV 

dec-1, in agreement with the Volmer mechanism which dictates the monoatomic hydrogen 

adsorption to be the limiting step [42]. Edge-rich nanosheets  and pure 1T-phase MoS2 samples 

exhibited, respectively, b ≈ 55-60 mV dec-1 and b ≈ 40 mV dec-1 [15, 31].  

 

Figure 3.11 Tafel plots (  vs. ) of the Ni-doped/undoped MoS2 clusters with scan 

rate: 25 mV s-1. 

 

Electrodissolution of oxygen-rich HER inactive regions or electrochemical exfoliation of MoS2 

outermost layers, previously reported in the literature, might expose edge-abundant cluster 

regions with a higher through-plane conductivity that could explain (MoS2)300 lower Tafel 

slope after air exposure. Ni2200 samples present a Tafel slope of 106 mV dec-1, similar to the b 

≈ 120 mV dec-1 reported in the literature for electrodeposited Ni thin films. When as-prepared 

Ni-doped/undoped MoS2 clusters are compared, Ni-doping does not decrease the Tafel slope 

value significantly, leaving the HER mechanism unchanged as reported previously [23].  
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The HER enhancement of (Ni-MoS2)1000 hybrid clusters after 14 h air exposure is probably 

related to the Ni surface: reports suggest this could comprise a spontaneously formed 

NiO+Ni(OH)2 shell several atomic layers thick [43]. Oxygen present in the NiO+Ni(OH)2 shell 

acts a proton-acceptor site, reported both theoretically and experimentally to catalyse HER [44, 

45]. The presence of NiO after 14 h air exposure of (Ni-MoS2)1000 hybrid clusters has been 

confirmed by XPS measurements (see previous analysis), which is also expected to be found 

in the samples tested electrochemically.  This effect would synergistically contribute to the 

HER enhancement already observed for 14 h air exposed (MoS2)300 related to the dissolution 

of the MoS2 outermost layers. 

 

3.5 Conclusions 

Size-controlled (MoS2)300 and Ni2200 clusters have been produced by cluster beam deposition 

with magnetron sputtering and gas condensation techniques. Ni-MoS2 hybrid clusters have also 

been successfully fabricated by dual target magnetron sputtering, obtaining a unimodal size 

distribution with an average cluster size of 1000 equivalent MoS2 sub-units. The MoS2 clusters 

present an incomplete multi-layer structure, which can also be found in Ni-MoS2 hybrid 

clusters. EDX mapping on the aberration-corrected HAADF-STEM images confirms that the 

resulting clusters are a hybrid of Ni and MoS2 rather than their segregated components. The 

composition analysis shows that there is no fixed ratio of Ni atoms to MoS2 units in the hybrid 

clusters, but in general, the proportion of Ni increases with cluster size, which agrees with the 

EDX results. Sulphur-deficient nature in both MoS2 clusters (Mo:S = 1:0.9) and Ni-MoS2 

hybrid clusters (Mo:S = 1:1.8) was revealed by XPS measurements. 

The activity of Ni-MoS2 hybrid clusters is on par with previous reports of electrocatalytic 

enhancement to HER: an almost 3-fold increase in exchange current densities along with a 
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significant shift in the onset potential (approx. 100 mV), as well as an almost unaffected Tafel 

slope (≈ 120 mVdec-1). This activity is only achieved when clusters are exposed to the 

atmospheric environment, suggesting that the Ni-doped edge sites become fully HER active 

only when Ni dopant atoms are oxidised.  
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Chapter 4  

Modification of Deposited, Size-Selected 

MoS2 Clusters by Sulphur-Enrichment and 

Their HER Activities 

 

Most of the work in this chapter has been represented in my publications of “Niu Y, Park S, 

Palmer R. Modification of deposited, size-selected MoS2 nanoclusters by sulphur addition: An 

aberration-corrected stem study. Inorganics 2016, 5(4): 1” [1] (the draft of this paper was 

written by me) and “Escalera-López D, Niu Y, Park S, Isaacs M, Wilson K, Palmer RE, Rees 

NV. Hydrogen evolution enhancement of ultra-low loading, size-selected molybdenum sulfide 

nanoclusters by sulfur enrichment. Applied Catalysis B: Environmental 2018, 235: 84-91” [2] 

(I was in charge of the cluster fabrication and STEM analysis, and Daniel Escalera Lopez was 

in charge of the XPS analysis HER analysis). Most of the text and figures have also been used 

in the publications. 

4.1 Introduction  

In the MoS2 nanomaterials, the low coordinated, additional sulphur atoms at Mo-edge sites are 

notably active in HER [3-6], and these materials are sulphur rich, with stoichiometry MoS2+x, 

rather than MoS2. The electrocatalytic activity tends to decrease with an increase in the number 

of MoS2 layers, due to poor electron hopping efficiency between the stacked layers [7]. In 
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general, edge-abundant MoS2 nanomaterials remain a potential substitute for scarce and costly 

platinum-based catalysts [4, 8]. Good control over the atomic structure of MoS2 nanostructures 

should contribute to the enhancement of the catalytic performance.  

Several methods have been developed to fabricate nanostructured MoS2 with one or several 

layers, such as chemical exfoliation of bulk MoS2 [9], chemical vapour deposition (CVD) [7, 

10] and solvothermal synthesis [11]. However, the chemical preparation of MoS2 

nanomaterials with well-defined size is still a formidable challenge. The preparation of size-

selected MoS2 clusters by the cluster beam deposition technique was reported by Cuddy et al 

[12]. The clusters were reported to be somewhat sulphur poor. The sulphur-deficient nature of 

MoS2 clusters produced with cluster beam deposition was also discussed in Chapter 3. Here 

we studied an in vacuum processing approach, based on a combination of sulphur addition (by 

sublimation) and annealing inside the cluster beam source, to increase the sulphur content of 

the clusters and to explore structural modifications. The atomic structures of these MoS2 

clusters were characterised with an aberration-corrected STEM in HAADF mode [13-16]. 

Their catalytic activities to HER were also explored. 

 

4.2 Materials and Methods 

Size-selected MoS2 clusters were produced using a magnetron sputtering (DC, 45 W) and gas 

condensation cluster beam source (Figure 2.1, Chapter 2) [17]. A 2-inch sputtering MoS2 target 

(PI-KEM, 99.9% purity) was used and Ar (180 sccm) and He (160 sccm) gases were introduced 

to enable sputtering and cluster condensation, respectively. The positively charged clusters 

were accelerated with ion optical electrostatic lenses and then size-selected with a lateral time-

of-flight mass filter [18]. The size-selected MoS2 clusters were deposited onto amorphous 

carbon-coated TEM grids (Agar Scientific, 200 Mesh Cu) and thin silica films coated TEM 
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grids (EMS, 200 Mesh Cu). The mass resolution of the time-of-flight mass filter used in the 

experiment is ~20 (e.g. the error in the deposition of a cluster containing 40 atoms is 1.0 

atoms). Sulphur addition was conducted in a sulphur atmosphere created by evaporating 

sulphur using a home-built in-situ thermal evaporator (5 min) shown in Figure 4.1. Annealing 

(7 min, 215 ± 5 °C) was performed with an electron beam bombardment heating stage. The 

temperature was monitored using a pyrometer (IMPAC Pyrometer, IPE 140). All the STEM 

images were taken with a 200 kV spherical aberration-corrected STEM in the HAADF mode. 

All electrochemical measurements were performed in a conventional 3-electrode 

electrochemical set-up. The solution and method used in the electrochemical measurements 

were described in Chapter 3. 

Figure 4.1 Schematic illustration of the size selected cluster beam source together with sulphur 

addition chamber. The cluster beam source was described in Chapter 2. An additional chamber 

is attached to the deposition chamber with a thermal evaporator and heating stage in it. 
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4.3 Atomic Structure of As-Deposited MoS2 Clusters  

Size-selected MoS2 clusters were produced using a gas condensation, magnetron sputtering 

cluster source in conjunction with a lateral time-of-flight mass filter [17, 18]. The clusters were 

deposited onto amorphous carbon covered TEM grids with an impact energy of 1.5 eV per 

MoS2 unit [e.g. a 1500 V bias is applied to the substrate in the deposition of (MoS2)1000]. Figure 

4.2a shows an aberration-corrected HAADF-STEM image of (MoS2)1000 clusters at low 

magnification with a peak diameter of 5.5 nm (Figure 4.2b). The clusters were deposited with 

a surface coverage of ~5 % (approx. 5% of the surface area is covered by the clusters) to keep 

them separate. However, the image shows that some clusters diffused and aggregated after 

deposition. The HAADF intensity distribution (Figure 4.2c) measured from 155 independent 

clusters indicates several peaks in the size spectrum. In order to confirm which peak 

corresponds to the original (MoS2)1000 clusters, the size of the cluster shown in Figure 4.2d was 

derived from Mo atom counting used in Chapter 3 [13, 19]. This cluster was found to contain 

approximately 1100 Mo atoms and is located in peak 3. This indicates peak 3 is the peak 

corresponding to the original (MoS2)1000 clusters, while peak 4 corresponds to clusters with 

double mass. We note there are some clusters located in the lower intensity region (peaks 1 

and 2, Figure 4.2c) and, correspondingly, in the smaller diameter region (3.8 ± 1.8 nm, Figure 

4.2b). We believe that these smaller clusters may come from the fragmentation of the original 

clusters during the impact on the substrate surface. It is notable that the sum of the peak 

intensities of peak 1 and peak 2 in Figure 4.2c is located in the region of peak 3. An 

interpretation is that, during the formation process in the cluster source, small clusters may 

sometimes aggregate, being bonded to each other with a rather weak interaction in the gas 

condensation process. We envisage that such “composite clusters” may break up into two or 

more smaller clusters when they land on the support. 
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Figure 4.2 STEM images of as-deposited size-selected (MoS2)1000 clusters shown at (a) low 

and (d) high magnification with FFT pattern inset. (b) Size distribution and (c) integrated 

HAADF intensity distribution of independent clusters. (e) HAADF intensity line profile 

corresponding to the orange line in (d). (f) (MoS2)1000 cluster with partially crystalline structure. 
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(g) A side-on (oriented perpendicular to the substrate) MoS2 cluster displays its layered 

structure. 

 

Figure 4.2d highlights the atomic structure of one MoS2 cluster at higher magnification and 

includes a FFT pattern, inset. The shape of the cluster is rather irregular and the absence of 

extended crystalline order is confirmed by the diffuse ring in the FFT pattern. While most 

clusters present such poorly ordered structures, a few clusters are observed with more 

developed crystalline structure, as shown in Figure 4.2f. The uneven layered structure of cluster 

is evident in the steps in the HAADF intensity line profile (Figure 4.2e). The STEM image 

intensity is proportional to the number of MoS2 layers. The HAADF intensity line profile 

indicates the cluster has an approximate pyramid shape with four layers in the central part. The 

layered structure of the MoS2 clusters is also confirmed by the side-on cluster shown in Figure 

4.2g. This side-on structure displays the (002) edge sites with a 0.67 nm interlayer spacing 

comparable with that of bulk MoS2 (0.65 nm) [20]. Similar TEM images on particular side-on 

MoS2 nanoparticles were reported recently by Fei et al. [21] Such side-on clusters were 

captured in only a few cases, which might depend on favourable bonding to particular defects 

on the support. 
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Figure 4.3 HAADF-STEM image (a) and simulated structure (b) of side-on (MoS2)650 cluster 

(bilayer), and the atomically resolved HAADF-STEM intensity maps of the left (c) and right 

(d) single layer. The Mo column number in c and d means the counting number of the Mo dot 

from up to down.  

 

Figure 4.3a illustrates a side-on MoS2 cluster which was found among (MoS2)650 clusters with 

an observed interlayer spacing of 0.69 ± 0.07 nm in accordance with that of bulk MoS2 (0.615 

nm), and Figure 4.3b presents a model of this side-on cluster. By comparing its HAADF 

intensity with the (MoS2)650 cluster, we can determine that this bilayer cluster is a fragment 

originating from a (MoS2)650 cluster. This implies MoS2 clusters can realise a given mass by 

combining two or more small clusters besides increasing single layer area and stack layers, 

which can also be found in size-selected (MoS2)1000 clusters.  

The HAADF intensity of each Mo column in this bilayer was measured, and the number of 

MoS2 units was calculated by comparing with the intensity of (MoS2)650. The atomically 
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resolved intensity maps (Figure 4.3c, d) show that this bilayer contains ~128 MoS2 units with 

58 units in the left layer and 70 units in the right layer. The changing trends of intensity from 

column to column indicate that both these two layers have no regular shapes (polygon), and 

that the left layer has a different shape than the right layer, this can be seen in the structural 

model of this bilayer based on HAADF intensity (Figure 4.3d). Unlike the trigon or truncated 

trigon morphologies made by chemical synthesis such as sulphurising Mo islands on Au(111), 

the irregular shapes of the single MoS2 layer provide firm evidence showing the quasi-stable 

growth process of the MoS2 cluster in the condensation chamber due to short residence time in 

this chamber and rapid quenching of growth after the supersonic expansion. 

 

Figure 4.4 (a, b, c) STEM images of (MoS2)1000 clusters deposited on amorphous carbon at 

low and high magnifications, and the FFT pattern indicates the amorphous feature of the cluster. 

(d, e, f) STEM images of (MoS2)1000 clusters deposited on silica at low and high magnifications, 

and the FFT pattern indicates the crystalline feature of the cluster. 
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During the deposition of size-selected MoS2 clusters, a support-effect was found when 

(MoS2)1000 clusters were deposited onto amorphous carbon film and silica film. Figures 4.4 

shows the STEM images of the (MoS2)1000 clusters deposited on those two kinds of supports, 

and a much different structural feature can be found. The clusters on amorphous carbon display 

amorphous feature confirmed by FFT (Figure 4.4c) and partial crystalline feature. In contrast, 

quite a number of the clusters on the silica present clearly crystalline structure. This crystalline 

structure might come from single- or multi-wall Fullerene-like cage, which is highly stable 

even after annealing under 215 ± 5 °C (Figure 4.5a). Besides annealing, the crystalline structure 

also underwent electron beam irradiation, and the related STEM images are shown in Figure 

4.5b and 4.5c. After about 20 min electron beam irradiation, a hole was drilled in the middle 

of the cluster. This might because the cage structure was destroyed from the weak point (the 

middle in this case) by the electron beam, the atoms in the middle were pulled away by the 

adjacent surfaces, and then formed a hole in the middle. However, it can be seen that the cage 

construction was retained, which implies this is a rather stable structure.

 

Figure 4.5 STEM image of annealed (7 min, 215 ± 5 °C) (MoS2)1000 clusters deposited on 

silica, and STEM images of (MoS2)1000 clusters deposited on silica (b) before and (c) after 

electron beam irradiation for ~20 min. 
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Figure 4.6 STEM images of (MoS2)500 clusters deposited on (a, b) amorphous carbon and (c, 

d) silica. 

The support-effect was also found among (MoS2)500 clusters shown in Figure 4.6. The 

(MoS2)500 clusters on amorphous carbon (Figure 4.6a and 4.6b) show amorphous feature, while 

the clusters on silica (Figure 4.6c and 4.6d) present crystalline structures. The cluster shown in 

Figure 4.6c displays a hexagonal shape with a projected area of 16.71 nm2. Given that there 

are 500 MoS2 units in the cluster, the calculation indicates the cluster has 2.6 layers rather than 

a monolayer. It can be seen that four of the six edges of the cluster are brighter than the middle 

part, which implies there are might be several vertical layers on edge sites in between the 

bottom layer and up layer. This indicates this cluster might be a Fullerene-like cage, which also 

happens in the cluster shown in Figure 4.6d. 
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4.4 Atomic Structure of Sulphur-Added MoS2 Clusters  

One possible cause of the limited crystallinity of the as-deposited MoS2 clusters observed here 

is the sulphur deficiency discussed in Chapter 3 and our previous study [12]. Thus, we have 

explored sulphur addition (by thermal sublimation of solid sulphur for 5 minutes) to the 

deposited clusters, in vacuum (in the cluster source), accompanied by thermal annealing (7 min, 

215 ± 5 °C). The nominal amount of sulphur deposited was equivalent to a thick film (10,000 

layers), but the excess sulphur (i.e. beyond that which bonds chemically to the clusters) was 

sublimed away from the cluster surface given the annealing temperature. Sulphur is long 

known to sublime at temperatures well below 100 °C [22, 23].  
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Figure 4.7 STEM images of (a) (MoS2)1000 clusters with sulphur addition and annealing at low 

magnification. (b) Size distribution of independent clusters. (c) Bilayered MoS2 cluster with 

FFT pattern. (d) MoS2 cluster with four layers with FFT pattern, indicating a ~30° rotation 

angle between the first (from bottom) and the second layer. (e) HAADF intensity line profile 

of the line in (d). (f) A side-on MoS2 cluster with a 0.64 nm interlayer spacing and (g) its 

HAADF intensity line profile of the line in (e). 
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The STEM images and HAADF intensities of clusters subjected to this additional treatment 

are presented in Figure 4.7. Compared with the as-deposited clusters (Figure 4.2a), the STEM 

image at low magnification (Figure 4.7a) reveals that the “sulphurised” and annealed clusters 

become larger. The size distribution shown in Figure 4.7b gives a peak diameter of 6.0 nm. 

The fragmental clusters (3.8 nm, Figure 4.2b) may recombine with each other in this treatment 

leading to the absence of the peak of smaller size in Figure 4.7b. STEM images at high 

magnification indicate that most of the clusters have rather crystalline structures. Figure 4.7c 

shows a single crystalline MoS2 cluster with a single set of diffraction spots corresponding to 

the (100) plane with 0.26 nm spaced. The regular honeycomb pattern shown here originates 

from the atomic arrangements of Mo and S atoms, which is in agreement with the TEM studies 

on the MoS2 nanoparticles made by other methods, e.g. CVD and exfoliation [24, 25]. The 

intensity profile shows this cluster consists of two, non-identical hexagonal layers; the brighter 

region in the middle has a bi-layered structure with mono-layer structures on the both sides. 

While some clusters present this kind of layer stacking with the hexagonal atomic structure, 

some clusters show misorientation between layers, leading to a Moiré pattern. The cluster 

shown in Figure 4.7d consists of 4 layers; the layer step changes can be seen in the STEM 

image and are confirmed by the HAADF intensity line profile shown in Figure 4.7e. Layer 2 

has a ~30° rotation angle with respect to layer 1, which is indicated by the STEM image and 

the two sets of diffraction spots in the FFT pattern. As in the case of as-deposited samples, we 

found a minority of side-on MoS2 cluster structures after sulphur addition and annealing 

(Figure 4.7f). This suggests that sulphur deficiency does not deteriorate the layered nature of 

MoS2, in agreement with the simulation first-principles study done by Wu et al. [26], and 

sulphur addition and annealing do not affect layer arrangement of the clusters and that the 

structural modification into crystalline clusters mainly takes place within the 2D layers. 
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Figure 4.8 Detailed Mo 3d (a) and S 2p (b) XPS spectra of sulphurised, annealed (MoS2)1000 

clusters. Labels: raw spectra (black), cumulative peak fit (red), Mo4+ 3d5/2:3/2 (green), MoaObSc 

3d5/2:3/2 (blue), Mo6+ 3d5/2:3/2 (orange), S 2p3/2:1/2 (S2-, yellow) and S 2p3/2:1/2 (S22-, magenta). 

 

Detailed XPS spectra on the sulphur-evaporated and annealed (MoS2)1000 clusters are shown in 

Figure 4.8. The Mo spectra (Figure 4.8a) could not be solely deconvoluted into the Mo4+ 

3d5/2:3/2 spin-orbit doublet characteristic of MoS2 materials (binding energies of ~229.8 and 

~232.9 eV, respectively). Two additional doublets were needed, ascribed to MoaObSc (~231.5 

and ~234.6 eV, see ESI for MoaObSc definition) and Mo6+ (~233.1 and ~236.2 eV) oxidation 

states reported in molybdenum compounds such as molybdenum oxysulfides and MoO3 [27, 

28].  The S spectra (Figure 4.8b) were deconvoluted using two 2p3/2:1/2 spin-orbit doublets 

related to the S2- (~161.3 and ~162.5 eV) and the S22- (~162.6 and ~163.8 eV) oxidation states. 

The XPS measurement gives a Mo4+/MoaObSc: S2-/ S22- ratio of 1: 4.9±0.1, which confirms the 

sulphur-enrichment in the clusters. 
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4.5 The Effect of The Sulphur Addition and Annealing Treatment 

To further understand the effect of the combined sulphur addition and annealing treatment on 

the MoS2 cluster structures, we independently treated as-deposited MoS2 clusters by annealing 

or sulphur addition alone. Annealed clusters are illustrated in Figure 4.9a and b, where the 

clusters present poorly ordered structures confirmed by the diffuse FFT pattern. The most 

notable change is in the cluster size, which now shows two main peaks at 3.1 nm and 8.9 nm 

in the size distribution, Figure 4.9c. Thus the 5.5 nm peak in the original size distribution 

(Figure 4.2b) disappeared. As discussed above, some of the as-deposited (MoS2)1000 clusters 

are actually the result of weak binding of several smaller clusters in the gas phase. We envisage 

that these component clusters are liberated in the annealing process, leading to the 3.1 nm peak 

in Figure 4.9c or migrating and coalescing with other clusters to generate the 8.9 nm peak. 

Such a process could account for the dissolution of the main peak in Figure 4.9b and the 

formation of the two new main peaks in Figure 4.9c.  
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Figure 4.9 STEM images of MoS2 clusters after (a, b) annealing only and (d, e) after sulphur 

addition only of as-deposited samples, (MoS2)1000. (c) and (f) are the corresponding size 

distributions of the clusters after annealing only and sulphur addition only, respectively. 

By contrast with annealing, surface diffusion of clusters and coalescence is rarely observed in 

the purely sulphurised samples shown in Figure 4.9d. Their size distribution is illustrated in 

Figure 4.9f showing a similar peak diameter (5.4 nm) as the as-deposited sample (5.5 nm, 

Figure 4.2b). Note that there is no evidence in the images of a thick film of sulphur on the 

clusters; we suspect that warming of the sample by radiation from the nearby evaporator is 

sufficient to induce re-sublimation. These sulphurised MoS2 clusters (Figure 4.9e) show a 

partial improvement in crystalline structure, unlike the annealed MoS2 samples, but not to the 

same extent as the clusters which are both sulphurised and annealed. We concluded that the 
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combination of annealing and sulphur addition of as-deposited, amorphous MoS2 clusters is 

the best way to create the extended crystalline structures. 

It has been reported that the structural damage on a crystalline MoS2 structure could be induced 

by the electron beam, where the maximum transferred energy from electron beam with 200 kV 

(~16 eV for S) is larger than the displacement threshold energy of sulphur atom (~7 eV) [29]. 

However, the significant damage to the MoS2 crystalline structure was hardly observed in this 

work. This is presumably because of a short exposure time to electron beam during taking 

images (~ 20 s for each image) and a small number of MoS2 layers. Although it cannot be ruled 

out the possibility of the electron beam damage on the structure, it does not affect the 

conclusion through this work. 

 

4.6 Electrocatalytic Activity to HER 

The linear sweep voltammograms of as-deposited and sulphur-enriched (MoS2)1000 clusters are 

done by Daniel Escalera Lopez and shown in Figure 4.10. The low proton concentration in the 

electrolyte used ([H+] ≈2 × 10-6 mol cm-3, pH≈ 2.7) is responsible for the diffusion decay peak 

profile in Figure 4.10a and b, analogous to that found with our previously reported magnetron-

sputtered clusters. The as-deposited samples present onset potentials (ηonset) of ca. 690 mV for 

current densities of j=0.05 mA cm-2, which are ~60 mV positively shifted compared to the 

recorded ηonset for bare glassy carbon. This confirms that even at ultra-low loadings MoS2 

effectively catalyzes the HER. The peak half-maximum overpotentials (ηhalf max) and current 

densities (jhalf max) metrics previously used to describe the HER catalysis of magnetron-

sputtered clusters are found to be ca. 810 mV and 0.31 mA cm-2, respectively. These are in 

good agreement with the results obtained for (MoS2)300 clusters, which presented a higher 

cluster loading (ca. 3.5 μg cm-2) but equivalent surface coverage (~20%) because of the smaller 
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cluster sizes. Interestingly, such ultra-low loadings of size-selected MoS2 clusters used in the 

present work (5% coverage: ~84 ng cm-2, 20% coverage: ~335 ng cm-2) already show HER 

activities comparable to those of (MoS2)300 clusters with loadings higher by 1 order of 

magnitude. After sulphur enrichment, all (MoS2)1000 clusters exhibit remarkable improvements 

in their HER performance. A consistent 200 mV shift in the HER ηhalf max was found 

independently of the sample loading 

 

Figure 4.10 Linear sweep voltammograms recorded at 5 mm diameter mirror-polished glassy 

carbon samples (black) modified with as-deposited (MoS2)1000 clusters (blue) and sulphurised, 

annealed (MoS2)1000 clusters (olive) at surface coverages of 5% (a) and 20% (b). 

 

Tafel analysis of the linear sweep voltammograms shows that the Tafel slopes of all (MoS2)1000 

cluster samples are located in the 143-154 mV dec-1 range irrespective of both loading and 

sulphur modification, which means the Volmer mechanism applies to all these samples and the 

electroadsorption of monoatomic hydrogen is the rate-limiting step. This indicates the catalytic 

mechanism is not affected by the sulphur-addition treatment. 

The exchange current density (j0) analysis presents a j0≈ 8.8 × 10-10 A cm-2 at ηhalf max= 825 mV 

for as-deposited clusters with 5% surface coverage, whereas sulphur-rich clusters present a j0≈ 
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2.8 × 10-8 A cm-2 at an equivalent ηhalf max with the same coverage. For 20% surface coverage, 

similar enhancements can be found (at ηhalf max= 814 mV; j0≈ 5.2 × 10-8 vs. 7.9 × 10-10 A cm-2). 

More than 30-fold increase in j0 indicates improved per-site activities and active site densities: 

positive shifts in onset potential values under given HER kinetics (i.e. same Tafel slope values) 

have been related to higher densities of active sites. The ultra-low loadings utilized in this study 

preclude quantitative comparisons based on the HER metrics commonly cited (η at 10 mA cm-

2 and jgeom at 200 mV) in the literature. It is well known that these metrics are heavily affected 

by the TMD morphologies, catalyst loading, and catalyst layer thickness.  Instead, we 

normalized the jgeom values by mass activity (mA mg-1), a metric widely accepted in the noble 

metal electrocatalysis community. The values obtained at η values as low as 400 mV (close to 

the HER onset) are ca. 110 mA mg-1 at 5% coverage and ca. 70 mA mg-1 at 20% coverage. For 

ηhalf max mass activities are ca. 3620 mA mg-1 (as-deposited) and ca. 4010 mA mg-1 (sulphur-

added) for 5% coverage; and ca. 980 mA mg-1 (as-deposited) and ca. 1040 mA mg-1 (sulphur-

added) for 20% coverage. These values are comparable with the best reported MoS2 catalysts 

at 200 mV tested using a high proton concentration electrolyte. This highlights the remarkable 

activities of the sulphur-added (MoS2)1000 clusters obtained at very low loadings. The 

evaluation of the short-term stability of (MoS2)1000 clusters (20% surface coverage) in HER 

was carried out by comparing the first and the eleventh LSV measurements. The as-deposited 

MoS2 clusters present a 415 mV decay on ηhalf max indicating the high electrochemical 

instability of the amorphous MoS2 clusters. In contrast, the sulphur-added MoS2 clusters are 

dramatically stable in electrocatalysis with only 30 mV shift on ηhalf max. This implies the 

improved crystallinity of sulphur-added MoS2 clusters leads to a minor presence of the 

undercoordinated Mo sites and significantly reduces the MoS2 leaching. 
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4.7 Conclusions 

In summary, size-selected MoS2 clusters were produced using a gas condensation, magnetron 

sputtering cluster source in conjunction with a lateral time-of-flight mass filter and 

characterised by HAADF-STEM and XPS. The as-deposited clusters on amorphous carbon 

show layered structure. The sulphur-deficient nature of as-deposited clusters leads to the 

absence of extended crystalline order in clusters. Besides the laminar clusters, few side-on 

clusters were found on the support due to the surface defects. A support-effect was found in 

MoS2 clusters when they were deposited onto silica film. The size-selected clusters on silica 

form single- or multi-wall Fullerene-like cage with high stability.  In order to obtain well 

crystalline MoS2 clusters deposited on amorphous carbon, sulphur-enrichment treatment was 

conducted to the as-deposited (MoS2)1000 clusters. A combination of sulphur addition and 

annealing led to a notable increase in extended crystallinity and a moderate increase in size. 

The sulphur-rich nature was confirmed by the XPS measurement. Clusters with annealing only 

show decomposition and coalescence, resulting in both larger and smaller sizes compared with 

the as-deposited samples, whereas the clusters simply sulphurised retain their size but are only 

partially crystallised. Thus, to obtain the most crystalline MoS2 clusters, the combination of 

annealing and sulphur addition is needed. 

The HER measurement shows a clear enhancement to HER activity in sulphur-enriched MoS2 

clusters. The more than 30-fold increases in j0 value surpasses the HER enhancements in (Ni-

MoS2)1000 hybrid clusters. Cluster benchmarking by mass activity emphasises the remarkable 

performance of sulphur-enriched (MoS2)1000 size-selected clusters at the ultra-low loading level. 

These results are comparable to the state-of-the-art MoS2-based catalysts, reflecting the 

significant activities of size-selected MoS2 clusters obtained at ultra-low loadings, resembling 

previous enhancements reported for noble metals.  
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Chapter 5  

Reduced Sintering of Mass-Selected Au 

Clusters on SiO2 by Alloying with Ti 

 

Most of the work in this chapter has been represented in my publications of “Niu Y, Schlexer 

P, Sebok B, Chorkendorff I, Pacchioni G, Palmer RE. Reduced sintering of mass-selected Au 

clusters on SiO2 by alloying with Ti: an aberration-corrected STEM and computational study. 

Nanoscale 2018, 10(5): 2363-2370” [1]. The draft of the published paper was written by me 

(cluster fabrication and STEM study), Bela Sebok (XPS and LEIS analysis) and Philomena 

Schlexer (DFT calculation). Most of the text, figures and tables have also been used in the 

publication. 

 

5.1 Introduction  

Looking at the experimentally measured catalytic activities of Au nanoparticles on different 

supports in the CO oxidation reaction, two main conclusions can be drawn. The Au 

nanoparticles are not active above a size of approx. 5 nm and on some oxide supports, such as 

SiO2, they are not active at all, regardless of size [2]. Although supported Au nanoparticles 

have genuine potential in technological applications, a major issue hindering their 

implementation is rapid sintering. It has been shown that Au atoms are mobile and can migrate 

to form 3D islands on a TiO2 surface even at 150-160 K [3, 4]. Also on silica, Au particles tend 

to sinter quickly, unless defects are present on the surface to which the Au particles bind more 
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strongly [5]. However, the defects have to be present on the surface before the cluster 

deposition and are unlikely to be formed in situ [6]. Figure 5.1 illustrates the two principal 

sintering mechanisms for supported inter-particles: Ostwald ripening and Smoluchowski 

ripening. Several studies were made to investigate the sintering mechanism of  supported Au 

nanoparticles. According to the work of Yang et al. [7], Au clusters on TiO2 sinter by Ostwald 

ripening between 300 K and 410 K and the sintering is accelerated by the presence of a mixture 

of CO and O2. The sintering modes of mass-selected Au clusters deposited on amorphous 

carbon were studied by Hu et al. [8] They found that the sintering process is size-dependent; 

Au561±13 and Au923±20 clusters exhibit Ostwald ripening, whereas Au2057±45 ripens through 

cluster diffusion and coalescence (Smoluchowski ripening) [8]. 

 

Figure 5.1 Schematic illustration of the two sintering mechanisms of supported particles: 

Ostwald ripening, in which large particles grow into larger ones at the expense of smaller 

particles through atom/small cluster diffusion; and Smoluchowski ripening, in which whole 

particles diffuse and coalesce with neighboring particles.  

The stabilisation of supported nanoparticles against sintering has attracted significant research 

effort [9]. Two pathways are usually described: alloying the particles or encapsulating them 

within an oxide or organic shell. The latter may hinder the use of nanoparticles in catalytic 
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applications because of surface passivation, but alloying may provide a route to nanoparticles 

which are both stable and active. In particular, the investigations of mass-selected alloy 

nanoparticles synthesised in the gas phase have already shown the unique properties of such 

materials. Examples include increased activity in the oxygen reduction reaction (ORR) for the 

case of PtxY and PtxGd nanoparticles as a result of strain [10, 11] and the dynamic behaviour 

of CuZn nanoparticles under methanol synthesis reaction conditions [12]. With regards to 

sintering, it has been shown that alloying Au with Ir, Cu or Ag increases the stability of 

chemically synthesised nanoparticles on oxide supports [13-19]. However, studies of the 

effects of alloying on the stability of mass-selected nanoparticles against sintering have lacked 

to date. Here we show that the sintering rate of mass-selected Au/Ti alloy clusters is much 

lower than that of mass-selected pure Au clusters on silica. The composition of the clusters was 

characterised by X-ray Photoelectron Spectroscopy (XPS) and Low Energy Ion Scattering 

(LEIS), while aberration-corrected Scanning Transmission Electron Microscopy (STEM) was 

used to investigate the sintering process via direct real space imaging with atomic resolution. 

Complementarily, ab initio calculations confirm stronger binding between alloyed Au/Ti 

clusters and the SiO2 surface compared with pure Au clusters.  

 

5.2 Materials and Methods 

Au2057 (405,229 amu) and Au/Ti (400,000 amu) clusters were produced with a DC magnetron 

sputtering, gas condensation cluster beam source (Chapter 2) from Au (PI-KEM, 99.99%) and 

Au/Ti (PI-KEM, 50/50 at%, 99.99%) targets, respectively. The clusters with a specific mass 

were selected by a lateral time-of-flight mass filter before deposition onto the support with a 

kinetic energy of approx. 0.5 eV/atom. The mass-selected clusters were deposited onto thin 

silica films suspended on copper TEM grids (EMS, USA) with a loading of approx. 10% 
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(projected surface area coverage), i.e., approx. 10% of the surface covered by clusters. Then 

the clusters were imaged with 200 kV aberration-corrected STEM in HAADF mode after 

transfer under atmospheric conditions. 

The clusters were also deposited onto the reaction zone of micro-reactor described in Chapter 

2 (solid Si substrates terminated with a 50 nm thermally grown SiO2 layer) with the same 

loading as on TEM grids for CO oxidation measurements. An Ar+ beam from the cluster source 

was used to clean the micro-reactor and create surface defects to anchor the clusters with a 

beam current of ~1 nA for ~500 s (at 1000 eV Ar+). The micro-reactor samples were then 

transferred under atmospheric conditions to DTU for CO oxidation measurement, XPS 

characterisation (non-monochromatized Mg Kα line from a SPECS XR50 x-ray gun, using an 

OMICRON NanoSAM 7 channel energy analyser) and LEIS measurement (1 KeV He+ from 

an Omicron ISE100 ion gun using the same energy analyser). The CO oxidation measurement 

was performed in 1 bar of O2:CO=4:1 with the temperature gradient between room temperature 

and 370 K (100°C), meanwhile the CO, O2 and CO2 signal was recorded with QMS. In this 

research, the ratio of O2/CO is not a crucial factor since a full conversion of CO is not expected. 

In order to study the stability of the clusters, the micro-reactor samples were heated in 1 bar of 

O2:CO=4:1 to 100°C. Then XPS and LEIS were conducted before and after heating to 

investigate the surface composition of the clusters and the effect of the heating. 

Density functional theory (DFT) calculations were carried out by Philomena Schlexer 

(University of Milano-Bicocca) with the Vienna Ab Initio Simulation Package (VASP 5.2) 

[20-23] using the Perdew, Burke and Ernzerhof (PBE) exchange-correlation functional [24, 

25]. Electron-ion interactions were described via the projector augmented wave (PAW) method 

[26, 27]. A periodic fully hydroxylated α-quartz (001) surface was used to represent the silica 

surface [28]. A (3×3) surface supercell was used with lattice parameters of a = b = 15.11 Å and 

γ = 120° and with a slab thickness of 9 layers of [SiO4] tetrahedra. The slabs were separated 
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by more than 20 Å of vacuum to ensure enough space for the metal clusters. Wave functions 

were expanded in a plane wave basis up to a kinetic energy of 400 eV. A Γ-centred K-point 

grid in the Monkhorst-Pack scheme [29] was used, which was set to the Γ-point. As dispersion 

forces can be important for the cluster-support interaction, the semi-empirical dispersion 

correction proposed by Grimme [30] (known as the DFT-D2 approach) was applied. As the 

DFT-D2 approach is assumed to overestimate the dispersion in oxides, we changed the C6 and 

R0 parameters as suggested by Tosoni and Sauer [31]. The resulting approach is called DFT-

D2’. Atomic charges q were determined via the Bader decomposition scheme [32-34]. The 

adsorption energies of the clusters, EADS, are defined in equation 5.1, where E(AuxTiy) are the 

metal clusters in the gas-phase and S is the support. 

EADS (AuxTiy/S) = E(AuxTiy/S) - E(AuxTiy) - E(S)                             (5.1) 

 

5.3 STEM Study of the Sintering Process 

The mean diameters of Au2057 and Au/Ti (400k amu) clusters deposited onto thin silica film 

were measured, based on projected surface area, and found to be 4.07 nm and 3.94 nm, 

respectively. The shape of Au2057 clusters can be obtained from the relationship between the 

cluster diameter (D) and the number of Au atoms (N) [35]. The shape of the Au cluster would 

be pseudospherical, if their D ~ N1/3 relations correspond with the spherical geometric model, 

Ds =  κN1/3. Here, κ = 0.328 nm, is calculated from the experimental data [36]. This value is 

corresponding to twice of the Wigner-Seitz radius, rws = 0.165 nm [37]. The diameters of the 

Au2057 clusters fit a quasi-spherical geometric model well, indicating that they do not relax 

substantially to a hemispherical shape on the surface. 

To evaluate whether the addition of Ti enhances the stability of the alloy clusters compared 

with the pure Au clusters, and to shed light on the sintering mechanism(s), the process of 
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sintering induced by electron beam irradiation was investigated with the aberration-corrected 

STEM. Figure 5.2 shows sequential images of Au and Au/Ti cluster dimers exposed to the 

electron beam.  

 

Figure 5.2 STEM images of dimers of Au2057 and of Au/Ti clusters continuously exposed to 

electron beam irradiation, with an acquisition time of 1.3 seconds per frame and a dose of 6.3 

× 103 e- per Ångstrom2 per frame. At the beginning of imaging, the gap sizes between the Au2057 

and Au/Ti cluster pairs are ~0.30 nm and ~0.25 nm, respectively. 

 

The observed sintering process of the Au clusters can be divided into two phases according to 

the STEM images and the change of the measured major axis of the Au dimer. In the first phase, 

the two Au clusters are seen to move toward each other once they are exposed to the electron 

beam driven by surface plasmon coupling [38, 39], which can be confirmed by the major axis 

of the Au dimer shrinking from 8.31 nm to 7.66 nm after 39 s, as plotted in Figure 5.3. The 

cluster migration can be clearly observed in Figure 5.4, in which a more significant gap (~0.75 

nm) lies in between the two Au clusters. The cluster migration leads the two initially separated 

clusters to make contact with each other. Afterwards, in the second phase, a process of 

coalescence, presumably driven by the peripheral atom diffusion, decreases the surface area of 
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the dimer. Two different shrink rates of the major axis of the dimer can be found in these two 

phases of sintering, which are ~1.00 nm/min and ~0.17 nm/min for the first and second phases, 

respectively (Figure 5.3). Thus, the sintering behaviour of the Au dimer starts at a relatively 

high rate with the two clusters quickly migrating towards each other. After about 50 s, once 

the clusters collide, the second and slower phase of sintering begins, and the rate of peripheral 

Au atom diffusion regulates the rate of sintering. In the case of the Au2057 clusters, 8 pairs of 

Au cluster dimers were imaged with the STEM, and 6 pairs of them showed similar sintering 

behaviour as that discussed above. The clusters in the other 2 pairs of dimers with a gap size 

of ~0.8 nm in between were merely found to move away from each other during imaging.

 

Figure 5.3 The length of the major axis of the cluster dimers as a function of the time of 

exposure to the electron beam. The inset shows an enlarged view of the graph in the blue square.
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Figure 5.4 Sintering process of Au2057 dimer continuously exposed to electron beam irradiation with 

acquisition time of 1.3 seconds per frame and a dose of 6.3 × 103 e- per Angstrom2 per frame. At the 

beginning of imaging, the gap size is ~0.75 nm. 

Compared with the Au clusters, the Au/Ti clusters show different sintering behaviour, although 

once more it can be divided into two phases. In the first phase, the Au/Ti clusters remain at 

their original positions instead of quickly migrating towards each other like the Au clusters. 

Thus, the Au/Ti cluster dimer retains the same length of major axis (8.15 nm) after being 

exposed to the electron beam for 39 s. In this first phase, only peripheral atom diffusion is 

found. However, once diffusing atoms found in the gap between the two clusters make a first 

physical connection between the clusters, the second phase of sintering is initiated. In this phase, 

coalescence takes place around the bridge formed in between, but the coalescence rate here 

(0.08 nm/min) is much lower than that of the Au cluster dimer, Figure 5.3. This can also be 

confirmed by the sintering process of the connected Au dimer and Au/Ti dimer illustrated in 
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Figure 5.5 and 5.6, respectively. The two Au or Au/Ti clusters are already connected with each 

other by the atoms in between before exposed to the electron beam, and a much slower 

coalescence rate presents in the case of Au/Ti dimer. 

 

Figure 5.5 Sintering process of Au2057 dimer continuously exposed to electron beam irradiation with 

an acquisition time of 1.3 seconds per frame and a dose of 9.8 × 103 e- per Angstrom2 per frame. The 

two clusters are already connected with each other at the beginning and quickly coalesce into one cluster. 

 

Figure 5.6 STEM images of Au/Ti (400k amu) cluster dimer with two connected clusters 

continuously exposed to electron beam irradiation with an acquisition time of 1.3 seconds per frame 

and a dose of 9.8 × 103 e- per Angstrom2 per frame. 

The different sintering behaviour of Au/Ti clusters compared with Au clusters on silica can be 

attributed to the strong interaction between Ti and the lattice oxygen of the silica support, which 
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tends to anchor the clusters in the dimer against sintering. However, the anchoring effect is 

insufficient to prevent coalescence once two clusters come into contact, so it can slow down 

the coalescence process but cannot prevent it completely. If the distance between two 

neighbouring clusters is large enough (see below) that the diffusing atoms cannot “build a 

bridge” between them, then sintering is exceptionally slow. 

 

Figure 5.7 STEM images of Au/Ti cluster dimers, with a larger gap (~0.65 nm) between than 

Figure 3, continuously exposed to electron beam irradiation with an acquisition time of 1.3 

seconds per frame and a dose of 9.8 × 103 e- per Angstrom2 per frame. 

Figure 5.7 (and Figure 5.8) shows an Au/Ti cluster dimer with a slightly larger gap than that in 

Figure 5.2. It can be seen that the two clusters do not sinter after electron exposure for as long 

as 13 min, and basically, the major axis of this dimer retains the same value. Peripheral atom 

diffusion is again found during electron exposure. At 1 min 28 s, the atoms highlighted by 

arrows can be found located between the two clusters, and then disappear 3 s later by moving 

away from the dimer area or binding to one of the two clusters. It is further observed that the 
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cluster on the right exhibits a transient asperity due to the accumulation of diffusing atoms at 

3 min 33 s. However, the distance between the clusters is too large for a contact bridge to be 

formed, and the asperity has decayed at 3 min 57 s. This confirms that sintering does not happen 

between Au/Ti clusters if the cluster distance is too large for the diffusing atoms to build a 

bridge in between. In future, experimental studies of hundreds of such dimer pairs may lead to 

the precise measurement of a critical distance for sintering by bridge formation, dependent on 

temperature and other key parameters (including in the case of the electron beam experiments, 

the current). In the case of Au/Ti clusters, 14 pairs of Au/Ti clusters dimers were imaged with 

STEM, and all of them showed similar behaviour against sintering.

 

Figure 5.8 STEM images of Au/Ti (400k amu) cluster dimer continuously exposed to electron beam 

irradiation with an acquisition time of 1.3 seconds per frame and a dose of 9.8 × 103 e- per Angstrom2 

per frame. The gap size is ~0.60 nm at the beginning of imaging. 
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5.4 XPS and LEIS of the clusters 

XPS was used to provide information on the composition of the deposited clusters. Typical 

XPS spectra are shown in Figure 5.9 for both the Au2057 and Au/Ti clusters deposited on micro-

reactors, as received after transport under atmospheric conditions, and also after heating in a 

mixture of O2 and CO in order to simulate the effect of CO oxidation conditions. In all samples, 

the Si in the SiO2 binding state, originating from the substrate, can be detected. Traces of 

carbonaceous contaminants from atmospheric exposure are also visible in the spectra. In case 

of the Au2057 cluster sample, no significant changes are visible in the XPS spectra taken before 

and after heating in O2/CO (Figure 5.9A). In the case of the Au/Ti clusters, the relative intensity 

of the Au signal compared with the Si signal (normalized peak size) in the spectrum decreases 

after heating. This is consistent with a segregation process in which more Ti is drawn to the 

cluster surface, which is underlined by the change of the Au:Ti ratio determined from the 

spectra. The as-received clusters show a surface Au:Ti ratio of 60:40, while after heating the 

ratio is approx. 40:60.  

 

Figure 5.9 XPS spectra of Au2057 (A) and Au/Ti (B) clusters deposited on Si/SiO2 slabs before 

and after 100°C for 1 h in 1 bar of O2:CO=4:1 mixture. Spectra were calibrated for Au 4f7/2 
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line to appear at the binding energy of 84 eV and were normalised with the area of the Si 2s 

peak. The plots were offset in y-direction for better visibility. 

 

The binding state of Ti in Au/Ti clusters were revealed by the surface detailed spectra of the 

Ti 2p region shown in Figure 5.10. After transporting under atmospheric conditions the Ti is 

oxidized and present on the surface as TiO2 which does not change after heating under a gas 

mixture of O2 and CO. However, the relative amount of Ti compared to Si is increasing. This 

could be the result of a segregation process and the enrichment of the outer layers of the clusters 

with Ti. 

 

Figure 5.10 Detailed XPS spectra of the Ti 2p region recorded before (A) and after (B) 100°C 

for 1 h in 1 bar of CO/O2 in case of the sample having Au/Ti mass-selected clusters deposited. 

The spectra were shifted to give an Au 4f7/2 binding energy of 84 eV and were normalised with 

the area of the Si 2s peak.  
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In order to further investigate the surface of the samples, LEIS spectra were recorded (Figure 

5.11) characterising the outermost layer of the sample surface. In both Au and Au/Ti cluster 

samples, O, Si and Au are detectable on the surface before heating, as expected for Au-

containing clusters deposited on a SiO2 surface. In the case of the sample with Au2057 clusters 

(Figure 5.11A), small additional contaminant(s) can be detected having a mass of approx. 39 

amu (Cl, K or Na), which could originate from the handling of the sample. In the case of Au/Ti 

clusters (Figure 5.11B), after heating the samples, the Si and O peaks disappear from the 

spectra. As XPS confirms the presence of SiO2, this disappearance is most probably the effect 

of carbonaceous contaminants on the surface completely covering the support. Nevertheless, 

in both samples Au is still clearly visible at the outermost surface. 

 

Figure 5.11 LEIS spectra of Au2057 (A) and Au/Ti (B) clusters deposited on Si/SiO2 slabs 

before and after (inset) 100°C for 1 h in 1 bar of O2:CO=4:1 mixture taken with 1 keV He+ 

ions. 

 



Au and Au/Ti clusters 

 
 

140 

Based on the XPS and LEIS measurements, a segregation process upon heating in O2/CO is 

changing the surface composition of the Au/Ti clusters, but in line with the computational 

investigation (see below) Au atoms are still present on the surface, thus opening up the 

possibility of Au catalysis using the Au/Ti clusters under realistic reaction conditions. 

 

5.5 DFT Calculations of Surface Anchoring 

In order to understand more details on the anchoring effect of Au/Ti clusters, DFT calculations 

were conducted in a collaboration with Philomena Schlexer (University of Milano-Bicocca). 

The size of the observed particles (around 2000 atoms) is such that we cannot directly model 

them with DFT calculations. We assumed that it is likely that these particles will adopt shapes 

derived from a Wulff construction, such as a truncated octahedron dominated by (100) and 

(111) surfaces. To investigate further the role of Ti atoms against sintering, we considered, 

amongst others, the adsorption of Au20 and Au10Ti10 tetrahedral clusters which exhibit (111) 

faces only. While these clusters are smaller than in the experiment, the nature of the bonding 

with the surface is rather local, and the essence of the interaction between cluster and support 

is sufficiently well represented by the chosen model. Before adsorbing the clusters on the 

surface, we optimised the geometries of the free-standing clusters. Our previous study found 

that size-selected Au20 clusters present a tetrahedral structure when they are soft-landed on 

amorphous carbon film [40]. Other experimental [41] and computational [42] studies also 

identify the tetrahedral geometry. In our simulations, we also find that the tetrahedral structure 

is the lowest energy geometry for free Au20 clusters. For the bimetallic Au10Ti10 cluster, we 

considered this and other structures, while also testing different distributions of the two 

elements within the clusters. We considered several cluster isomers, but the potential energy 

surface (PES) possesses a substantial number of local minima, which cannot be extensively 
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explored without a global search algorithm. In this respect, our results are representative of 

some potential structures, but we do not pretend to have identified the global minimum on the 

PES. We find that the best cluster shape for the Au10Ti10 cluster is not in fact a pyramid, but a 

compact structure with Ti atoms sitting mainly inside the cluster and a majority of Au atoms 

in the outer layer.  

After the optimisation of the free-standing clusters, the most stable cluster isomers were 

deposited on the fully hydroxylated α-quartz (001) surface. This choice is dictated by the 

assumption that under experimental conditions the silica surface is not hydroxyl-free. Fully 

dehydroxylated silica surfaces can be obtained only after thermal treatment above 600 °C [43], 

and SiO2 surfaces get partially hydroxylated even under high vacuum conditions almost 

instantly [44]. Since our samples are exposed to air, it is likely that a given concentration of 

OH groups will be present. The density of the OH groups in our model is probably higher than 

that in the real samples, but no quantitative assessment is possible. The resulting structures are 

shown in Figure 5.12, and relevant adsorption parameters are summarized in Table 5.1. 
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Figure 5.12 (a) Top and (b) side views of Au20 supported on the fully hydroxylated α-quartz 

(001) surface from DFT simulations. (c) Top view and (d) side view of Au10Ti10 supported on 

the same surface. 

We find that the Au20 cluster exhibits a relatively low adsorption energy on the silica surface, 

only -1.05 eV, Table 5.1. The atoms in the supported Au clusters show an average Bader charge 

close to zero, indicating the absence of chemical interaction with the surface. The relatively 

weak binding of the Au cluster on the surface is thus largely due to dispersion forces.  

Table 5.1 Adsorption energies EADS (eV), average Bader charges qAVG(Au or Ti) (|e|) on the 

Au or Ti atoms in the cluster and total Bader charge on the cluster qTOT(Cluster) (|e|) from DFT 

simulations. 
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The Au10Ti10 bimetallic cluster, on the other hand, exhibits a much larger adsorption energy of 

-4.41 eV. Only around 20% of the adsorption energy is due to dispersion forces. The large 

adsorption energy is due to a spontaneous local reaction of the cluster with the surface, via 

hydrogen reverse spillover. This can be seen in the side view in Figure 6 (d). The surface ≡Si-

O-H group is split, enabling the H atom to bind to the cluster at a Ti hollow site, while the 

residual ≡Si-O• group binds to an adjacent Ti atom of the cluster, with a resulting Ti-O bond 

length of 1.96 Å. This local reaction anchors the cluster to the support via the formation of a 

≡Si-O-Au10Ti10 complex. We expect this strong local binding interaction to anchor the AuTi 

bimetallic clusters to the hydroxylated silica surface, and to operate independently of the cluster 

size, leading to reduced sintering, as observed in the experiments. 

Of course, in the experimental situation, the clusters are exposed to ambient conditions between 

deposition and the sintering experiments. Thus, we may expect some oxidation of the Ti atoms 

at the periphery of the Au/Ti clusters, after the removal of the sample out of the deposition 

chamber, as the XPS confirms that Ti is present on the surface in the form of TiO2. However, 

during and directly after the deposition of the clusters in UHV, the metallic clusters can react 

with the silica surface, as shown in the calculations.  

EADS qAVG(Au) qAVG(Ti) qTOT(Cluster)

Au20 free-standing --- 0 --- 0

Au20 on silica -1.05 0 --- 0

Au10Ti10 free-standing --- -0.77 0.77 0

Au10Ti10 on silica -4.41 -0.79 0.93 1.39
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5.6 CO Oxidation on Au and Au/Ti clusters 

The CO oxidation measurement was carried out with the micro-reactor decorated with Au2057 

or Au/Ti clusters. Figure 5.13 shows the catalytic activity measurement results of the first pair 

of micro-reactors with Au and Au/Ti clusters. In the case of Au2057 clusters, the gas signals 

(CO2, CO and O2) just fluctuate around the baseline with the changing of temperature with no 

production of CO2 and consumption of CO and O2, which implies that Au2057 clusters are not 

active to CO oxidation under the test conditions. However, catalytic activity can be found in 

Au/Ti clusters as shown in Figure 5.13b. The signal of CO2 production increases and decreases 

with the temperature ramping, but a deactivation presents with the maximum CO2 signal slowly 

going down.

Figure 5.13 CO oxidation activity measurements of the first pair of Au2057 (a) and Ai/Ti (400k 

amu) (b) micro-reactor samples. The measurements were performed in 1 bar of O2:CO=4:1 

with temperature ramping between room temperature and 100°C. 

The non-active performance of Au2057 clusters can be explained by the inert support and serious 

sintering among the Au2057 clusters. One one hand, Au clusters supported on SiO2 is not a 
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favourable combination for CO oxidation as shown in Figure 1.17. Figure 5.14 shows the 

scanning electron microscope (SEM) images of Au2057 and Ai/Ti clusters before and after 

heating under 100°C for 1 h in 1 bar of O2:CO=4:1 mixture. The according size distributions 

are shown in Figure 5.15. A severe sintering can be found in Au2057 clusters and leads to a 

considerable increase of the cluster size, which drives the clusters to permanently lose their 

catalytic activity. The significant difference in the catalytic performance between Au2057 and 

Au/Ti clusters implies that the Ti in Au/Ti clusters plays as not just a cluster anchor but also a 

catalytic participator. The Ti dioxides on the cluster surface may play a role of active oxygen 

supplier to make the reaction happen. The deactivation of Au/Ti clusters may be due to the 

accumulation of carbonates on the cluster surface or the surface segregation. 

In a period of almost a year, another ~25 micro-reactors were tested for CO oxidation, but none 

of them showed catalytic activity to CO oxidation. This is due to some technical issues with 

the CO oxidation measurement set-up at DTU (it turned out that the temperature control and 

temperature measurement with the micro-reactor were unreliable). Therefore, no constant 

conclusion can be drown here in terms of catalytic activity. 
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Figure 5.14 SEM images of Au2057 (a, b) and Ai/Ti (400k amu) (c, d) clusters before and after 

100°C for 1 h in 1 bar of O2:CO=4:1 mixture. 

 



Au and Au/Ti clusters 

 
 

147 

 

Figure 5.15 Size distributions of Au2057 (a) and Ai/Ti (400k amu)  (b) clusters before and after 

100°C for 1 h in 1 bar of O2:CO=4:1 mixture. 

 

5.7 Conclusions 

Size-selected Au/Ti nanoalloy clusters (400, 000 amu) and pure Au2057 (405, 229 amu) clusters 

were produced by gas-phase synthesis with a magnetron sputtering, gas condensation cluster 

beam source and deposited onto silica supports. Chemical characterisation of the deposited 

clusters was provided by XPS and LEIS measurements. Upon heating the clusters in an O2/CO 

environment to simulate catalytic reaction conditions, the surface composition of the Au/Ti 

clusters was changed by a segregation process, but both Au and Ti were still visible on the 

surface.  

The sintering behaviour of the clusters under electron beam annealing was explored by 

aberration-corrected STEM imaging in real space and real time. Two neighbouring Au2057 

clusters in a dimer were found to quickly migrate and, in a second slower phase, coalesce with 

each other. In contrast, Au/Ti dimers showed a strong anchoring effect against sintering due to 

the presence of the reactive Ti atoms, most notably when the gap between them exceeded 0.60 

nm. Sintering can still happen if two Au/Ti clusters are extremely close to each other, but this 
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is due to atom diffusion between the two clusters instead of cluster migration. Sintering is 

expected to be exceedingly slow if the distance between the Au/Ti clusters is large enough and 

the diffusing atoms cannot “build a bridge” in between. 

DFT calculations show that, in model bimetallic clusters (20 atoms), the Au atoms prefer a 

position at the surface of the clusters, in good agreement with the outcome of the LEIS 

experiments. The calculations furthermore show that Au clusters can be bonded much more 

strongly (by a factor of 5) to silica support by alloying them with Ti. This effect is due to the 

increased reactivity of the Au/Ti bimetallic clusters when they present a surface containing a 

reactive metal (Ti). Future computations may address the role of the oxidation of the bimetallic 

Au/Ti clusters, but the qualitative enhancement of surface anchoring against sintering is 

expected to be preserved. The presence of surface Au atoms in size-selected Au/Ti nanoalloy 

clusters and the anchoring effect due to Ti incorporation may open up new possibilities in Au-

based nanocatalysis. 
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Chapter 6  

Conclusions and Outlook 

This thesis focuses on the production, characterisation and catalytic performance of 

nanoclusters fabricated by cluster beam deposition based with the magnetron sputtering, gas 

condensation technique. MoS2-based clusters and Au-based clusters have been demonstrated 

for electrochemistry (HER) and gas phase heterogeneous catalysis (CO oxidation), respectively. 

The atomic structure analysis of the clusters was performed with aberration-corrected HAADF-

STEM, and the chemical analysis was conducted with EDX, XPS and LEIS. 

Size-controlled (MoS2)300 clusters deposited on amorphous carbon present an incomplete 

multi-layer structure with the absence of extended crystalline order.  Such a layered structure 

was also found in Ni-MoS2 hybrid clusters [ with the mass corresponding to (MoS2)1000] 

produced by dual-magnetron sputtering. The EDX mapping of the aberration-corrected 

HAADF-STEM images confirms the hybrid nature of Ni-MoS2 clusters. But the composition 

analysis shows that there is no fixed ratio of Ni atoms to MoS2 units in the hybrid clusters. XPS 

measurements reveal the sulphur-deficient nature in both MoS2 clusters and Ni-MoS2 hybrid 

clusters, and the ratios of Mo:S are 1:0.9 and 1:1.8, respectively. Compared with the MoS2 

clusters, a significant enhancement in HER activity by the Ni-MoS2 hybrid clusters was found 

when Ni dopant atoms are oxidised: approx. 100 mV shift in the onset potential and an almost 

3-fold increase in exchange current densities. The unaffected Tafel slope (≈ 120 mVdec-1) 

indicates the HER catalytic mechanism (Volmer mechanism) is not altered by the Ni-MoS2 

hybrid clusters.  
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In order to overcome the sulphur deficiency of MoS2 clusters, a sulphur-enrichment technique 

based on a combination of sulphur addition (by sublimation) and annealing inside the cluster 

beam vacuum chamber was performed on size-selected MoS2 clusters. This process led to a 

notable increase in extended crystallinity and a moderate increase in size (from 5.5 nm to 6.0 

nm in diameter). XPS measurements confirm the sulphur-rich nature with a Mo:S ratio of 1:4.9. 

Compared with the as-deposited MoS2 clusters, the clusters treated with annealing only still 

present poorly ordered structures but evolve into both larger and smaller sizes due to 

decomposition and coalescence; whereas the clusters treated with simply sulphur addition are 

partially crystallized and retain their size. Thus, the combination of annealing and sulphur 

addition is the necessary step to obtain the most crystalline MoS2 clusters. In addition, during 

the cluster deposition, a support effect was found while MoS2 clusters were deposited onto 

silica films. The size-selected clusters on silica form single- or multi-wall Fullerene-like cage 

with high stability.   

Compared with Ni-MoS2 clusters, the sulphur-enriched MoS2 clusters show even more 

enhancement on the HER activities with more than 30-fold increases in exchange current 

densities. The mass activity analysis of sulphur-enriched (MoS2)1000 size-selected clusters 

reveals a remarkable performance on HER at the ultra-low loading level. In the future, doping 

TM elements (Fe, Co, Ni) into sulphur-enriched MoS2 clusters could be conducted to verify 

several theoretical studies, which treat crystalline MoS2. The catalytic activity of sulphur-

enriched MoS2 clusters [TM-MoS2+x] in HER should be further improved by TM- MoS2+x 

hybrid clusters.  

Au nanoparticles have proved to be good catalysts with genuine potential in technological 

applications, however, a major issue hindering their implementation is their rapid sintering. 

Here, we explored the stabilisation of supported Au clusters against sintering by alloying with 

Ti. Size-selected Au2057 clusters and similar mass Au/Ti nanoalloy clusters (400, 000 amu) 
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were produced by cluster beam deposition onto silica films. XPS and LEIS measurements were 

conducted on both as-deposited clusters and the clusters treated with a simulative catalytic 

reaction condition (O2:CO=4:1, 100°C). The chemical characterization shows that the surface 

composition of the Au/Ti clusters was changed by a segregation process, but both Au and Ti 

were still visible on the surface of the clusters. This is in good agreement with the DFT 

calculations on model bimetallic clusters (Au10Ti10). 

A strong anchoring effect was found in the case of Au/Ti clusters by HAADF-STEM study 

and confirmed by DFT calculation. Different sintering mechanisms were revealed between 

Au2057 cluster dimers and Au/Ti cluster dimers. In the case of Au2057 clusters, the two 

neighbouring clusters in a dimer first migrate quickly and then coalesce with each other in a 

second slower phase. In contrast, due to the presence of the reactive Ti atoms, Au/Ti dimers 

were strongly stabilised against sintering by stopping cluster migration, most notably when the 

gap between them exceeded 0.60 nm. Sintering can still happen if two Au/Ti clusters are 

extremely close to each other, but this is due to the physical connection built by the atom 

diffusion between the two clusters. Sintering is expected to be exceedingly slow if the distance 

between the Au/Ti clusters is large enough so that the diffusing atoms cannot “build a bridge” 

in between. 

Preliminary CO oxidation measurements on Au and Au/Ti clusters indicates Au/Ti clusters are 

promising as catalysts. However, there were problems with steady catalytic performance due 

to technical issues in the micro-reactor set-up. Future tests of the catalytic activity could be 

carried on once these technical issues are solved. CO oxidation measurement could also be 

performed with the conventional method (e.g. the plug flow reactor). Instead of clusters ~ 4.0 

nm in diameter, smaller clusters may be used for future investigations, since they are more 

active and can generate stronger production signals. 
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In general, cluster beam deposition has been demonstrated as a versatile technique for cluster 

fabrication and modification for different applications. In this work, MoS2 clusters have been 

fabricated and tested for HER. Beyond that, the sulphur-enriched MoS2 clusters with crystalline 

structure can provide a tunable band gap for visible-light harvesting and abundant active 

sulphur-saturated edges, which can be studied as photocatalysts for hydrogen production, 

photosynthesis and etc. Moreover, crystalline MoS2 can provide suitable interlayer spacing for 

ion accommodation, which can be used for battery studies. The Au/Ti binary clusters utilised 

in this work can also be tested as catalysts for other reactions (e.g. isomerization of epoxides 

into allylic alcohols), and the Au clusters can also be alloyed with other elements to catalyse 

corresponding reactions (e.g. Au/Si for benzylation of aromatics). 

 


