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Abstract 

This study aimed to assess macronutrient-specific energy utilisation efficiency (i.e., protein, 

lipid and carbohydrate) for growth in common carp (an omnivorous species) and barramundi 

(a carnivorous species) and to assess if species-specific differences exist in energy efficiency 

of digestible protein (dCP), digestible fat (dFat) and digestible carbohydrates (dCarb). This 

was achieved by conducting a feeding trial experiment on common carp and by re-analysing 

data of a recent study on barramundi. A total of four diets were formulated following a 2×2 

factorial design with 2 dCP-to-dFat ratios and 2 dCP-to-dCarb ratios. For carp, 2 feeding 

levels were applied such that the overall experimental design was a 2×2×2 factorial design, 

however for barramundi, three feeding levels were applied (satiation, 80% initial satiation and 

60% initial satiation), resulting in a 2×2×3 factorial design. For each fish species, multiple 

regression of retained energy (RE) as a function of dCP, dFat and dCarb (in g.kg-0.8.d-1) was 

applied to estimate the energy utilization efficiency of each digestible macronutrient. For 

carp, dCP, dFat and dCarb show linear relationships to RE, however for barramundi, dCP and 

dFat were linearly related to RE, but dCarb was curvilinearly related to RE. The estimated 

energy efficiencies of dCP, dFat and dCarb (respectively, kNE;dCP, kNE;dFat, and kNE;dCarb) for 

energy retention were 47, 86 and 60%, respectively, showing large degree of similarity with 

Nile tilapia and pigs. Carp and barramundi had similar kNE;dFat (86 vs. 94%), but different 

kNE;dCP (47 vs. 64%) and kNE;dCarb (60 vs. 18%). The net energy equations were NE = 11.2 x 

dCP + 34.1 x dFat + 10.4 x dCarb for carp, and NE = 15.9 x dCP + 35.2 x dFat + 9.4 x dCarb 

– 1.9 x (dCarb)2 for barramundi. 

Key words: Energy evaluation; Energy metabolism; Bioenergetics: Net energy; Energy 

efficiency; Digestible nutrients; Cyprinus carpio; Lates calcarifer.   
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Introduction 

Growth in fish, like other animals, requires amino acids, essential fatty acids and 

minerals, but also energy. Fish needs to consume energy for the accretion of fish biomass 

(i.e., protein, fat and bone structures) and for maintenance processes. Dietary energy is 

provided in the form of lipids, carbohydrates and proteins. Each of these macronutrients is 

metabolised using different biochemical processes to yield energy (NRC, 2011). Differences 

in these metabolic pathways lead to distinct values of efficiency in deriving energy from 

digested proteins, lipids, and carbohydrates. The respective proportions of each dietary 

macronutrient therefore affect the overall energy efficiency of fish feeds. The effect of dietary 

macronutrient composition on the energy utilisation values have been shown in Nile tilapia 

(Schrama et al., 2018), rainbow trout (Saravanan et al., 2012) and barramundi (Glencross et 

al., 2014, Glencross et al., 2017). Observations of the energy utilisation of these 

macronutrients by these fish species for maintenance and growth, appears to be species-

specific and/or trophic level-specific (i.e., herbivorous, omnivorous or carnivorous fish) 

(Schrama et al., 2012).  

In the evaluation of animal feed, various systems have been used to estimate dietary 

energy availability after being ingested, ranging from digestible (DE) and metabolisable (ME) 

to net energy (NE) systems (NRC, 1981). The DE-based factorial approach has been widely 

applied to estimate fish dietary energy requirements (Glencross, 2006, Williams et al., 2003, 

Williams et al., 2006, Glencross, 2008, Glencross and Bermudes, 2012). In such factorial 

approaches (i.e., DE approach), the efficiency of digestible energy utilisation for growth 

(kgDE) is given by the regression slope of retained energy and DE intake. This kgDE is assumed 

to be independent of feed composition and thus the composition of DE (i.e., digested protein, 

fat and carbohydrates). However, the kgDE varies in barramundi (Glencross et al., 2017), Nile 

tilapia (Schrama et al., 2012) and rainbow trout (Rodehutscord and Pfeffer, 1999) when fed 

diets with different macronutrient profiles. This indicates that kgDE is affected by dietary 

macronutrient profile. Moreover, Schrama et al. (2012) found kgDE to be correlated to species’ 

trophic level, although this might be related to variation in dietary nutrient content. This 

variability in kgDE demonstrates the limitation of DE feed evaluation systems. With the 

diversification of ingredients used in fish feeds, also the composition of the digestible 

macronutrient profile will become more variable. Consequently, in practical feed formulation 

using DE evaluations will introduce a potential bias due to this variability in kgDE. Others have 

addressed the necessity for alternative energy evaluation of fish feeds (Glencross et al., 2014, 
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Hua et al., 2010, Azevedo et al., 2005). A NE approach might be such an alternative. NE 

evaluation has been applied for pig feed for several decades. In NE evaluation systems, each 

macronutrient (i.e., protein, lipid and starch) has its own partial efficiency for growth, which 

is estimated by multiple regression between retained energy and digested protein, lipid and 

starch respectively (Noblet et al., 1994). In other words, kgDE is considered to be a function of 

the underlying specific energy utilization efficiencies of each type of digestible 

macronutrients.  

The first steps to develop a NE evaluation for fish feed were recently undertaken for 

Nile tilapia and rainbow trout using a meta-analysis approach (Schrama et al., 2018). The 

estimated energy utilisation efficiencies for growth of digestible protein (dCP; kNE;dCP), 

digestible fat (dFat; kNE;dFat) and digestible carbohydrate (dCarb; kNE;dCarb) were respectively, 

49%, 91%, 66% for Nile tilapia and 64%, 89% and 70% for rainbow trout (Schrama et al., 

2018). Digestible protein was utilised for energy retention more efficiently in rainbow trout 

(64%)  than in Nile tilapia (49%) suggesting that the energy efficiency of digestible protein 

(kNE;dCP) is also dependent on the trophic level in the NE approach (Schrama et al., 2018). 

Species-specific effect of individual macronutrient inclusion level was also shown by the 

curvilinear relationship found between retained energy and digestible carbohydrate intake in 

rainbow trout (Schrama et al., 2018). 

Aims of this study were: (1) to assess macronutrient-specific energy utilisation 

efficiency (i.e., protein, lipid and carbohydrate) for growth in common carp (an omnivorous 

species) and barramundi (a carnivorous species); and (2) to assess if species-specific 

differences exist in energy efficiency of dCP, dFat and dCarb. This was achieved by 

conducting a feed trial experiment on common carp and by re-analysing data of a recent study 

on barramundi (Glencross et al., 2017), which had the similar setup but different data analysis 

method from that of the study on common carp. 

 

Materials and methods  

Carp experiment 

Experimental diets. A total of four diets were used in the carp feed trial, with different 

proportions of crude protein (28.5 – 52.9%), crude lipid (7.1 -25.8%) and carbohydrates (23.4 

-52.8%). This large variability in dietary macronutrient composition was created using a wide 

range of ingredients (Table 1). Despite this large variability, diets were formulated to meet 

requirements for vitamins, minerals, essential fatty acids and amino acids of common carp.  
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Despite the differing levels of dietary protein, amino acid ratios were kept constant meeting 

the ideal ratios based on the available knowledge (NRC, 2011). The analysed amino acid 

composition of the experimental diets are given in Supplementary Table S1.   

The triangle approach (Raubenheimer, 2011) was applied to create a wide range of 

macronutrient (i.e., crude protein, lipid and total carbohydrates) inclusion levels in the four 

experimental diets (Table 1). Diets were formulated following a 2×2 factorial design with 2 

dCP-to-dFat ratios and 2 dCP-to-dCarb ratios. For each diet, 2 feeding levels were applied 

such that the overall experimental design was a 2×2×2 factorial design with a total of 8 

treatments. This design was required to achieve large contrasts in digestible macronutrient 

intake among the 4 diets. This facilitated multiple regression analysis of energy retention (i.e., 

growth response) as a function of dCP, dFat and dCarb intake. 

Fish handling. The experiment started December 2014. It was approved by the Ethical 

Committee judging Animal Experiments of Wageningen University, The Netherlands (DECnr 

2014109b) and carried out according to the Dutch law on animal experiments. 

A total of 840 common carps (Cyprinus carpio), with a mean body weight (BW) of 28.9 g 

(SE 0.25) were obtained from the carp population (Strain: R3R8 F12, Breed: FxM, mixed 

sex) of Wageningen Aquatic Research Facility (CARUS-ARF, Wageningen, the 

Netherlands). The experiment was conducted at the aquatic respiration unit of Wageningen 

Aquatic Research Facility (CARUS-ARF, Wageningen, the Netherlands), which includes a 

total of twelve 200-L tanks with a water flow of 7 L/min. Water temperature was maintained 

at 23 ± 0.5oC and the dissolved oxygen level of inlet water ranged from 8 to 11 ppm. At the 

start of the experiment, groups of thirty five fish were batch-weighed and randomly assigned 

to one of the twelve tanks.  

Carp were hand-fed one of the four diets and one of the two feeding levels of 

approximately 12 and 20 g.kg-0.8.d-1. Fish were fed twice daily for 28 days from 09:00 to 

10:00 hours and from 16:00 to 17:00 hours. To obtain 3 replicates per treatment (i.e., 24 tanks 

in total), 2 consecutive trials were run in the 12 tanks aquatic respiration unit under identical 

conditions.  

Sample preparation and chemical analysis. At the beginning of each trial, ten fish from the 

initial population were euthanized by overdose of 2-phenoxyethanol for the analysis of initial 

body composition. At the end of each trial, ten fish from each tank were euthanized in the 

same way to determine final body composition. The fish were then frozen at -20oC. The 
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samples were prepared for chemical analysis according to the methods reported by Saravanan 

et al. (2012). 

After sample collection, fish were sawn into slices and minced to ensure sample 

homogeneity. Fresh fish samples were used for dry matter (DM), ash and crude protein (CP) 

analysis whereas fish samples for fat and gross energy (GE) analyses were first freeze dried. 

Diet and oven-dried (70 oC) faecal samples were analysed for DM, yttrium, Ca, P, CP, fat, 

starch and gross energy contents. 

Proximate composition of fish, feed and faeces were determined according to ISO-standard 

analysis for determination of dry matter (DM; ISO 6496, 1983), crude ash (ISO 5984, 1978), 

crude fat (ISO 6492, 1999), crude protein (ISO 5983, 1997, crude protein = Kjeldahl-N × 

6.25), energy (ISO 9831,1998), and starch (NEN/ISO 15914) (Meriac et al., 2014). Total 

carbohydrates content of feed and faeces was calculated as DM minus crude protein minus 

crude ash minus crude fat. 

Nutrient digestibility measurement. Yttrium oxide was added as an inert marker to 

experimental diets at 0.02% (as-is). Each of the twelve tanks was connected to a separate 

faeces settling unit. Settling columns were equipped with an ice-cooled glass bottle at the 

bottom to prevent bacterial degradation of faecal nutrients. Faeces settled in the column 

overnight were collected daily prior to the morning feeding during the last 2 weeks of the 

experiment and pooled per tank. The procedure of faeces collection was identical to the study 

of Meriac et al. (2014).   

Apparent nutrient digestibility coefficients (ADCnutrient) of the diets were calculated using 

the following equation:  

ADCnutrient = (1- (Ydiet/ Yfaeces) × (Nutrientfaeces/Nutrientdiet)) × 100%, 

where Ydiet and Yfaeces are the yttrium oxide concentration of the diet and faeces, respectively, 

and Nutrientdiet and Nutrientfaeces are the  DM, protein, fat, carbohydrates or energy content of 

diet and faeces, respectively. 

Nutrient balances calculations. To standardise for differences in body weight and 

digestible macronutrient intake, nitrogen and energy balance parameters were expressed per 

unit of metabolic body weight.  Metabolic body weight was calculated as the average of initial 

and final metabolic body weight (calculated as BW/1000)0.8)). The calculations of energy and 

nitrogen balances were based on those described by Saravanan et al. (2012). Intake of each 
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nutrient on a gross basis was determined by multiplying the averaged feed intake for each 

treatment by the nutrient inclusion level in the diet.  Digestible nutrient intake was determined 

by multiplying gross nutrient intake with the diet-specific nutrient digestibility coefficient. 

Energy and nutrient retention rates were determined from net gain, calculated by difference 

between initial and final whole-body content. Branchial and urinary N losses (BUN) were 

calculated based on difference between digestible N intake N and N retention. Branchial and 

urinary energy (BUE) was measured by multiplying BUN by 24.85, which is the energy 

content (in kJ) of 1 g excreted nitrogen with the assumption that NH3-N is the only form of 

this excretion (Bureau et al., 2003). Metabolisable energy intake was determined by 

difference between digestible energy intake and BUE. Heat production was measured by 

deducting ME from retained energy. 

Barramundi data set 

The barramundi data set was derived from a study by Glencross et al. (2017), which 

assessed the impact of dietary macronutrient composition on energy, nitrogen and fat balances 

in juvenile barramundi weighing 69.6 g (SD 0.75). The unit and measurement of body weight, 

digestible macronutrient intake, nitrogen and energy balance parameters in the barramundi 

dataset are identical to those employed in the analysis of the carp experiment. The design of 

the barramundi study was similar to the study on carp, where four diets were formulated 

having contrasting protein, fat and starch levels. However, in the barramundi study, three 

feeding levels were applied (satiation, 80% initial satiation and 60% initial satiation), 

resulting in a 2x2×3 factorial design. All treatments were duplicated using 24 tanks 

(Glencross et al., 2017). Digestibility measurements were based on faeces collected after the 

growth experiment. Only fish fed to satiation during the growth experiment (8 tanks) were 

used to collect faeces. Faecal collection was conducted by manual stripping once a day at 

about 6 hours post-feeding (Glencross et al., 2017). Since crude ash content was not measured 

in faeces, the carbohydrates content of both feed and faeces was calculated from the measured 

energy, crude protein and crude fat content as described by Schrama et al. (2018). In this 

calculation, 23.6, 39.5 and 17.2 kJ.g-1 were used as the combustible energy content of CP, fat 

and carbohydrates, respectively (NRC, 2011).  

Data analysis 

Statistical analysis systems (SAS Institute) statistical software package version 9.1 was 

used to conduct data analysis. For carp, the effect of diet, feeding level and their interaction 
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on digestibility, growth performance, nitrogen and energy balances data were tested by two-

way ANOVA. For the barramundi dataset, no ANOVA analyses were done as the data are 

published elsewhere (Glencross et al., 2017).  

For each fish species, multiple regression of retained energy (RE) as a function of dCP, 

dFat and dCarb (in g.kg-0.8.d-1) was applied to estimate the energy utilization efficiency of 

each digestible macronutrient using the following model: 

REi= µ +β1 x dCPi + β2 x dFati + β3 x dCarbi + ei  (Eq. 1) 

where µ isthe intercept, being an estimate for fasting heat production (FHP); β1, β2, β3 are the 

energy utilisation efficiencies of dCP (kNE;dCP), dFat (kNE;dFat) and dCarb (kNE;dCarb); ei is error 

term and i =1,..., n with n = 24 for both carp and barramundi data. The linearity and curve-

linearity were checked in the relationship of RE with dCP, dFat and dCarb. Analyses were 

implemented separately for each species. To assess differences in β1, β2 and β3 (i.e., kNE;dCP, 

kNE;dFat, kNE;dCarb) between carp and barramundi, a combined mixed model was used with the 

inclusion of a fixed effect of species and 2-way interaction of species with each type of 

digestible macronutrient intake (dCP, dFat or dCarb). Significance was set at P<0.05.  

 

Results 

Carp experiment 

Overall growth performance was good in the carp experiment with daily weight gain 

ranging from 9.9 to 22.4 g.kg-0.8.d-1 (Supplementary Table S2). Both feeding level and diet 

significantly (P<0.001) influenced daily digestible nutrient intake (Table 2 and 

Supplementary table S3) and ultimately final BW and daily body weight gain (Supplementary 

Table S2). Information on the impact of feeding level and diet on N balance parameters and 

body composition is given in Supplementary Table S4 and S5. 

Overall average ADCs (i.e., regardless of treatment)  were 86% for DM, 90% for energy, 

95% for CP, 91% for fat, 81% for carbohydrates, 99% for starch, 49% for NSP and 33% for 

ash. The carbohydrates fraction showed the largest between-diets variability with ADCs 

ranging from 68 to 91% in diets 1 (high FL) and 4 (low FL) respectively. Averaged over both 

feeding levels, protein ADC was lowest for the 2 carbohydrates-supplemented diets (Diet 2 

and 4), while fat ADC was lowest for the 2 fat-supplemented diets (Diet 3 and 4). Total 

carbohydrates ADC was highest in the 2 carbohydrates-supplemented diets (Diet 2 and 4) 
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(Table 3). Except for ash and total phosphorus, all nutrient ADCs were affected by both diet, 

feeding level and their interaction (P<0.001; Table 3). Overall, nutrients ADC declined when 

the feeding level was raised. However, the significant interaction effect between diet and 

feeding level indicated that this decline with feeding level differed between diets. The decline 

in protein, total carbohydrates and starch ADC with feeding level was largest for Diet 1 (high 

protein content, no starch neither fat supplementation). In contrast, the decline in fat ADC 

with feeding level was largest for Diet 3 (fat-supplemented diet) (Table 3).  

NE equations 

The main aim of this paper was to assess differences in energy utilisation efficiency 

for growth (i.e., quantifying NE equations) among digested macronutrients (i.e., protein, lipid 

and carbohydrates). Energy and nitrogen balances were calculated based on digestible nutrient 

intake (dCP, dFat and dCarb) for both the carp and barramundi experiments. Energy and 

nitrogen balances are reported for the carp experiment in Supplementary table 2 and 3 

respectively. These were reported by Glencross et al. (2017) for the barramundi dataset. The 

mean as well as the range of dCP and dFat daily intake (in g.kg-0.8.d-1) were comparable 

between carp and barramundi. However, the mean daily dCarb intake was much lower in 

barramundi compared to carp (0.94 vs. 4.22 g.kg-0.8.d-1). For both species, the large variability 

in digestible nutrient intake resulted in a large range in energy retention (RE). RE ranged from 

86 to 207 kJ.kg-0.8.d-1 in carp and from 45 to 209 kJ.kg-0.8.d-1 in barramundi (Table 2).  

The relationship between DE intake and RE in carp is given in Supplementary Fig. S1 

and by Glencross et al. (2017) for barramundi. The average energy utilisation efficiency of 

DE for growth (kgDE) was lower in carp (0.62), ranging from 0.59 to 0.66 than in barramundi 

(0.68), ranging from 0.55 to 0.79 (Supplementary Fig S1).   

Multiple linear regression of RE (i.e., NE) as a function of dCP, dFat and dCarb yielded 

the following equations for carp:  

RE = - 22 (SE 5) + 11.2 (SE 0.8) dCP + 34.1 (SE 1.2) dFat + 10.4 (SE 0.5) dCarb  (Eq. 2) 

and for barramundi: 

RE = - 18 (SE 3) + 15.2 (SE 0.9) dCP + 37.1 (SE 3.4) dFat +   3.1 (SE 1.2) dCarb  (Eq. 3). 

The energy utilisation efficiencies of dCP, dFat and dCarb (respectively, kNE;dCP, kNE;dFat, and 

kNE;dCarb) were 15.2 kJ.g-1 (64%), 37.1 kJ.g-1 (94%) and 3.1 kJ.g-1 (18%) for barramundi and 

11.2 kJ.g-1 (47%), 34.1 kJ.g-1 (86%), 10.4 kJ.g-1 (60%) for carp, respectively. Barramundi had 

a 36% higher energy utilization efficiency of dCP for growth than carp (P=0.002). 

Conversely, carp had a 235% higher energy utilization efficiency of dCarb for growth than 
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barramundi (P<0.001). The energy utilisation efficiency of dFat (kNE;dFat) did not differ 

between the two species (P>0.05). 

In carp, dCP, dFat and dCarb were all linearly related to RE (i.e., no significant 

polynomial effect, P>0.05). Conversely, in barramundi, a significant quadratic component 

was found for dCarb (P<0.01), but not for dCP and dFat. Inclusion of the quadratic 

component for dCarb for barramundi resulted in the following relationship between RE and 

digestible nutrient intake:  

RE = - 22 (SE 3) + 15.9 (SE 0.87) dCP + 35.2 (SE 3.11) dFat + 9.4 (SE 2.71) dCarb – 1.9 

(SE 0.74) (dCarb)2     (Eq. 4) 

Inclusion of the quadratic component for dCarb into the equation had only a minor impact on 

the absolute values of kNE;dCP and kNE;dFat (Eq. 3 and 4; Table 4). 

In Fig. 1, the relationship between NE (corrected to zero dCP and dFat intake) and 

dCarb intake is given. For barramundi, inclusion of dCarb into the diet raised NE, but the 

increase in NE started to level off when dCarb intakes reached about 1.5 to 2.0 g.kg-0.8.d-1. For 

common carp, NE increased linearly over the full range of increasing dCarb from 2 to 8 g.kg-

0.8.d-1. The linear relationships between NE and dFat and between NE and dCP in both 

common carp and barramundi are shown in Supplementary Fig. S2.  

Discussion 

Feed formulation in aquaculture is currently based on the energy requirements of fish 

species and requires information on (1) nutrient digestibility of ingredients, (2) energy 

requirements for maintenance and (3) utilization efficiency of digestible energy (DE) or 

metabolizable energy (ME) for growth (kgDE and kgME respectively). Factors which can 

influence the evaluation of dietary energy are environmental conditions, choices of 

ingredients, nutrient digestibility and utilisation of digested nutrients. In this study, 

environmental conditions were identical across treatments for each species, therefore, this did 

not affect the feed evaluation.  

The nutrient digestibility of raw materials are commonly used in feed formulation, assuming 

that these are additive. However, all macronutrient ADCs observed in the carp study (except 

ash and phosphorus) were affected by the interaction effect between diet and feeding level. 

This suggests that respective ingredients’ nutrient ADCs are not additive, which is in contrast 

to Cho and Kaushik (1990). This is possibly due to the higher quality of fish diets used in the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
 
 

past (e.g., fishmeal-rich), which may have diminished the effects of feeding level on nutrient 

ADCs.  

The protein-rich diet (Diet 1) for carp was diluted with maize starch and/or a vegetable oil 

blend, both containing minimal protein. If ingredient nutrient ADC were additive, the ADC of 

protein in all 4 diets would be equal. However, ADC of protein differed among diets (Table 

3). At the low feeding level, the negative effect of dietary carbohydrate level on ADC of 

protein is in line with a previous study (Takeuchi et al., 1979). This was also found in African 

catfish possibly due to the increased chyme viscosity in the stomach (Harter et al., 2015). 

Averaged over all diets, raising feeding level declined the protein ADC in carp (Table 3), 

which was in agreement with studies on African catfish (Henken et al., 1985) and Nile tilapia 

(Haidar et al., 2016). Decreasing dietary protein significantly increased protein digestibility 

only at the high feeding level, which was also observed at high feeding levels on mirror carp 

(Ufodike and Matty, 1983). In the current study, the largest protein ADC decline in the 

protein-rich diet may reflect an upper limit for protein digestion but may also be due to a 

larger fraction of the endogenous faecal nitrogen loss.  

In the present study, the negative effect of dietary fat level on fat digestibility (Table 

3) is in agreement with a previous finding on common carp (Yamamoto et al., 2007). 

However it is in contrast to previous findings in various fish species such as Nile tilapia 

(Schrama et al., 2012), African catfish (Harter et al., 2015) and Atlantic salmon (Bendiksen et 

al., 2003). This might reflect a lower capacity for fat digestion in common carp compared to 

other fish species. The lowered fat digestibility observed at the high feeding level in the 

present study, especially in fat-rich diet, indicating carp maximal fat digestion capacity 

reached. 

Increasing crude fibre in the carbohydrate fraction reduced total carbohydrates 

digestibility while increasing the starch contribution leads to the opposite (Kirchgessner et al., 

1986). This is illustrated by the low NSP and high starch digestibility observed in the present 

study. Digestibility of NSP was increased by the addition of starch to Diet 2, but not by the 

addition of both starch and lipids to Diet 4. Digestion of NSP is assumed to result mainly 

from intestinal bacterial fermentation, as was suggested for Nile tilapia (Haidar et al., 2016). 

The high digestibility of NSP in starch-rich diet (Diet 2) was thus most likely caused by a 

higher intestinal fermentation activity (Yamamoto et al., 2007). However, NSP ADC did not 
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improve in Diet 4 rich in starch and fat. Dietary fat inhibits intestinal microbial activities, 

which could have led to reduced NSP digestibility (Heinritz et al., 2016). 

The utilization efficiency of DE or ME for growth (kgDE and kgME) are commonly 

based on linear regression of RE with DE or ME intake (i.e., the slope of the linear 

regression). This approach does not account for the possible effect of dietary macronutrient 

composition on kgDE and kgME. In NE approach (i.e., multiple regression between RE and 

intake of digested macronutrients including dCP, dFat, dCarb), a differentiation in energy 

utilization efficiency of digested protein (kNE,dCP), fat (kNE,dFat) and carbohydrates (kNE,dCarb) is 

made. In the current study, such a NE approach was applied in two experiments with common 

carp and barramundi. The large contrast among digestible nutrients intake created in both 

experiments (Table 2) facilitated the multiple regression between RE and dCP, dFat and 

dCarb intake. This allowed to assess energy utilisation efficiencies for growth for each type of 

digested macronutrient (respectively, kNE;dCP, kNE;dFat, and kNE;dCarb). In Table 4, a species 

comparison of NE formulas (i.e., kNE;dCP, kNE;dFat, and kNE;dCarb) is made among barramundi 

and carp (this study), Nile tilapia and trout (Schrama et al., 2018) and pigs (CVB, 1993; 

Noblet et al., 1994). Table 4 shows that for all fish species studied, of all the nutrients 

digested, fat has the highest energy efficiency (kNE;dFat), in line with results obtained for pigs. 

When considering the linear regression equations only, kNE;dFat ranged from 86 to 94%, while 

kNE;dCP ranged from 46 to 64% and kNE;dCarb from 18 to 84%. This also shows that the 

variability in energy efficiency was lowest for dFat and highest for dCarb. The lowest kNE;dFat 

was observed for carp (this study), which is in line with the general statement that carp are 

less able to utilise dietary fat (NRC, 2011). However, although lower, the energy efficiency of 

fat did not decrease with increasing fat intake (linear relationship between NE and dFat 

(Supplementary Fig. S2). Even at high dietary fat levels (> 28%, Diet 3 and 4), RE was not 

reduced with increased dFat intake. This suggests that carps are not less able to handle fat at 

high dietary levels but that their overall efficiency of fat utilisation is lower than that of other 

fish species. However, the smaller variability in kNE;dFat between fish species (Table 4) seems 

to demonstrate that the energy efficiency of dFat is more conserved among fish species than 

that of dCP and dCarb.   

Schrama et al. (2018) reported that the estimated energy efficiency of protein (kNE;dCP) 

in rainbow trout was reduced when the quadratic component of dCarb was included in the 

multiple regression analysis. The estimated kNE;dCP was then closer to that observed in Nile 

tilapia and pigs. In the current study, the relation of dCarb with NE was curvilinear for 
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barramundi. Inclusion of the quadratic component in the NE formula (Eq. 3 and 4; Table 4) 

for barramundi did not strongly affect the estimated kNE;dFat (35.2 vs. 37.1 kJ.g-1) and kNE, dCP 

(15.9 vs. 15.2 kJ.g-1) . This absence of inference is probably due to the low value of kNE;dCarb 

and the relatively low dCarb intake.  When including the quadratic component into the 

equation for both barramundi and trout, it appears that the estimated kNE, dCP is higher than the 

estimates for kNE;dCP in
 common carp and Nile tilapia. This suggests that the energy efficiency 

of digested protein might be different between fish species. This might suggest a higher 

kNE;dCP for fish having a higher trophic level (barramundi and trout vs. common carp and Nile 

tilapia). Among carnivorous species, there seems to be a difference in kNE;dCP as the efficiency 

was higher for barramundi than for rainbow trout (64 vs. 57%). This difference could be 

related to differences in glucose tolerance among carnivorous fish. Barramundi appeared to be 

less capable of handling hyperglycaemia than rainbow trout (Palmer and Ryman, 1972, Stone, 

2003), although both of them are glucose intolerant. The limited capacity of barramundi to 

handle digested dietary glucose is confirmed by the extremely lower kNE;dCarb, compared to 

other fish species (carp, trout, tilapia) and pigs (Table 4). This may cause protein and lipid to 

be used more efficiently by barramundi to compensate for the low energy efficiency of 

carbohydrate in this study. Estimation of NE equations in other carnivorous fish species with 

low glucose tolerance would help better understanding the potential influence that glucose 

tolerance has on the estimation of kNE;dCP in carnivorous fish.  

The linearity in the pig NE evaluation system facilitates estimation of diets NE value 

since feeding level does not affect the energy efficiency of macronutrients. This also applies 

to evaluation of dietary NE values for Nile tilapia (Schrama et al., 2018) and carp (present 

study).  Conversely, estimation of diet NE value for barramundi is feeding level-dependent 

because of the curvilinear relation observed between dCarb intake and diet NE value. 

Curvilinearity in relationship between retained energy and dCarb shows that raising 

carbohydrate intake decreases the potential retention of energy (i.e., NE value of diet), which 

illustrates that carnivorous fish have difficulties to handle carbohydrates (Glencross et al., 

2017). The potential use of carbohydrates, of which only sugars and starch are nutritionally 

available to fish (Stone, 2003, Kaushik, 2001), is dependent on the key enzymes involved in 

digesting starch, metabolising (Enes et al., 2009, Krogdahl et al., 2005) and transporting 

glucose (Krasnov et al., 2001, Planas et al., 2000, Teerijoki et al., 2000) and inducible 

glucokinase (Panserat et al., 2001a). Fish can efficiently absorb starch-derived glucose 

through the intestine (Furuichi and Yone, 1981). As a consequence of increasing dCarb 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
 
 

intake, glucose levels increase in the blood stream in most species (Furuichi and Yone, 1981, 

Bergot, 1979a). If carbohydrate utilisation efficiency is assessed based on the rate of glucose 

distribution from absorption in digestive system to clearance in blood stream, carnivorous fish 

seems to be poor carbohydrate users (NRC, 2011). The rate of delivering glucose, its peak 

concentration in blood and clearing rate depend on species as well as carbohydrate sources 

and dietary inclusion levels (Stone, 2003, Bergot, 1979b, Hemre and Hansen, 1998, Wilson 

and Poe, 1987). In vertebrates, the role of liver in monitoring glucose homeostasis by being 

both consumer and producer of glucose is important. Several enzymes can be either turned on 

or off to dispose glucose, synthesize glycogen and lipid from glucose when the blood glucose 

pool increases, or to initiate de novo glucose synthesis and release glucose from glycogen 

when blood glucose decreases in order to meet fish glucose demand (Kamalam et al., 2017). 

In fish, when blood glucose levels are over the threshold of glycaemia, glucose is released 

through urine and gills (Deng et al., 2001, Hemre and Kahrs, 1997). Therefore, blood glucose 

concentration is dependent on the glucose flux as a result of producing and removing glucose 

simultaneously (Pilkis and Granner, 1992, Postic et al., 2004). In carnivorous species, like 

rainbow trout, the liver is not able to downregulate the production of glucose in response to 

high dietary carbohydrates levels (Panserat et al., 2001b). This contrasts with herbivorous and 

omnivorous species like carp and seabream (Panserat et al., 2002). In the present study, carp 

also did not indicate any problems to handle dCarb. Barramundi on the other hand seems to 

be unable to handle any excess amount of digestible carbohydrate over 1.5 – 2.0 g.kg-0.8.d-1, 

which is lower than that of rainbow trout (3.0 – 3.5 g.kg-0.8.d-1) (Schrama et al., 2018). This 

can be because the peak concentration of blood glucose when challenged with glucose input is 

lower in barramundi than in rainbow trout, indicating that barramundi is less tolerant to 

glucose than rainbow trout (Stone, 2003, Legate et al., 2001). This observation validates that 

carnivorous fish have difficulties to handle carbohydrate-rich feeds. Carbohydrates were used 

less efficiently in carp (60%) than in tilapia (66%) (Schrama et al., 2018). These kNE,dCarb were 

lower than that of dStarch in pigs using either French NE approach (84%) (Noblet et al., 

1994) or Dutch NE approach (78%) (CVB, 1993). 

By using DE approach, the energy utilisation efficiency of barramundi and carp were 

determined based on the slope in the linear regression of RE as a function of DE intake. 

Though variations appeared in the slopes among diets between two species (Supplementary 

Fig S1) partly because of  the diversification in protein, lipid and carbohydrates sources 

included in the feed formulation, the DE approach (i.e., factorial approach) is unable to 
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specify the differences and quantify energy efficiency values of digested protein (kNE,dCP), fat 

(kNE,dFat) and carbohydrates (kNE,dCarb). By using the NE approach (i.e., the multiple regression 

between RE and digested macronutrients), these values however can be assessed for each 

species and significant differences in the energy utilisation efficiency of digested protein and 

carbohydrates between these two species can be clarified.   

Conclusion  

This study proves that the dietary energy utilisation efficiency of fish is affected by the 

relative composition of dietary digestible macronutrients, which are dCP, dFat and dCarb. 

This effect on the energy utilisation efficiency was distinct between carp and barramundi. For 

carp, dCP, dFat and dCarb show linear relationships to the energy retention. The estimated 

energy efficiencies of dCP, dFat and dCarb for energy retention were 47, 86 and 60%, 

respectively, showing large degree of similarity with Nile tilapia and pigs. However, for 

barramundi, dCP and dFat were linearly related to NE, but dCarb was curvilinearly related to 

NE. Increasing dCarb intake results in an inflexion of dietary NE towards a plateau, 

illustrating the limited capacity of barramundi, a carnivorous, glucose-intolerant fish, to 

handle dietary starch/glucose. In this study, NE equations for carp and barramundi c were 

estimated to predict the potential for energy retention of diets/ingredients. The linearity in 

relationship between RE and intake of dCP, dFat and dCarb in carp implies that assessing the 

feed NE value for carp is applicable, regardless of feed intake. Conversely, the curvilinear 

relationship found between dCarb and NE in barramundi indicates that barramundi diet NE 

value depends on daily carbohydrate intake. Therefore, NE evaluation of barramundi feeds 

requires estimates of the feed intake, dietary carbohydrate content and digestibility. 

 

Supplementary data to this article can be found online at ... 
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Table 1 

Formulation and composition in each of four experimental diets for carp 

 
Diet 1 Diet 2     Diet 3 Diet 4 

 “Protein” “Protein” “Protein” “Protein” 

  + Carb + Fat         +Carb +Fat 

Diet formulation (g.kg
-1

, as-is)     

Gelatinised Maize Starch - 342.9 -  300 

Oil blend
* 

- - 178.6  125 

Fish meal (CP>680) 156.5 102.9 128.6    90 

Wheat gluten 156.5 102.9 128.6    90 

Pea protein concentrate 156.5 102.9 128.6    90 

Soya protein concentrate 156.5 102.9 128.6    90 

Wheat  234.8 154.3 192.9  135 

Fish oil 34.8 22.9 28.6    20 

Soy oil 34.8 22.9 28.6    20 

Monocalciumphosphate 34.8 22.9 28.6    20 

Lime (CaCO3) 8.7 5.7 7.1 5 

L-Lysine sulphate 3.68 1.79 3.00 2.05 

DL-Methionine  4.69 2.89 3.92 2.90 

Premix 17.4 11.4 14.3 10 

Yttrium oxide 0.2 0.2 0.2     0.2 

    Nutrient composition (g.kg
-1

, DM)    

DM 926 887 940 918 

Crude protein 529 339 430 285 

Digestible protein 506 319 412 273 

Total lipid 110 71 258 186 

Digestible lipid 103 65 231 168 

Total carbohydrate 265 528 234 474 

Digestible carbohydrate 191 471 172 428 

Total starch 152 330 126 391 

Digestible starch 149 329 125 390 

Gross energy (kJ.g
-1

) 21.20 19.64 24.92 22.39 

Digestible energy (kJ.g
-1

) 19.06 17.92 22.24 20.46 

Ash  96       62.4 78.7 54.8 

Phosphorus (total) 16.8      10.9 13.5  9.3 

Diet 1, high protein diet; Diet 2, supplemental starch diet; Diet 3, supplemental lipid diet; Diet 4, 
supplemental starch and lipid diet; Carb, Carbohydrates. DM, dry matter. 
*
Equal amount of rapeseed, soya and palm oil. 
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Table 2  
Digestible nutrient intake and energy balance of carp (n =3) and barramundi (n=2), fed 4 different diets (mean values and standard 
deviations) 

Variables 

Carp  Barramundi 

Mean SD Min Max  Mean SD Min Max 

Digestible nutrient intake (g.kg
-0.8

.d
-1

)        

dCP 4.95 1.56 2.82 7.96 

 

5.08 2.56 2.59         9.63 

dFat 1.86 0.93 0.66 3.59  1.12 0.65 0.39 2.60 

dCarb 4.22 2.24 1.71 7.88  0.94 1.15 0.04 4.16 

Energy balance parameters (kJ.kg
-0.8

.d
-1

)         

GE intake 291 71 204 399  224 113 120 407 

DE intake 263 62 186 352  180 90 98 328 

Branchial urinary energy losses 11.4 3.8 6.4 19.2  9.9 4.8 5.1    19.3 

ME intake 251 60 178 341  170 86 92 309 

Heat production 111 21 86 139  67 28 43 137 

Energy retention (total) 140 41 86 207  103 61 45 209 

Energy retention as protein 49 15 27 79  61 33 29 115 

Energy retention as fat 91 35 37 152  44 29 12   98 
Fat retention efficiency  
(% of digestible intake) 1.27 0.5 0.77 2.35 

 
0.94 0.31 0.45     1.59 

Min, minimum; Max, maximum; dCP, digestible protein intake; dFat, digestible fat intake; dCarb, digestible carbohydrate intake; 
GE, gross energy; DE, digestible energy; ME, metabolisable energy. 
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Table  3 

Apparent digestibility coefficient (ADC) (%) of dietary nutrients in carp (n=3) fed 4 diets at 2 feeding levels (FL) over 28 
days 

 
 

Diet 1 Diet 2 Diet 3 Diet 4   
P 
values  

Nutrient 
FL 

“protein” “protein” “protein” “protein” SEM Diet FL 
Diet x 
FL 

   +Carb +Fat +Carb+Fat     

DM  

        

 

Low 85.2
bcd

 88.0
ab

 84.7
cd

 89.0
a
 0.625 <.0001 <.0001 <.0001 

 

High 81.4
e
 87.6

abc
 83.3

de
 88.6

a
 

    Energy   
       

 

Low 91.7
a
 91.6

a
 90.2

ab
 91.7

a
 0.423 0.0002 0.0002 0.0002 

 

High 88.1
c
 90.9

a
 88.2

bc
 91.0

a
 

    Protein   
       

 

Low 96.4
a
 94.3

cd
 96.3

a
 95.5

abc
 0.255 <.0001 <.0001 <.0001 

 

High 94.7
bcd

 94
d
 95.3

abc
 95.7

ab
 

    Fat  

        

 

Low 95.1
a
 92.2

ab
 91.5

bc
 91.4

bc
 0.616 <.0001 <.0001 <.0001 

 

High 92.9
ab

 91.3
bc

 87.8
d
 88.8

cd
 

    Carbohydrates  

        

 

Low 76.4
b
 89.7

a
 73.6

b
 90.5

a
 0.942 <.0001 <.0001 <.0001 

 

High 67.9
c
 88.8

a
 73.2

b
 90.3

a
 

    Starch   
       

 

Low 99.6
a
 99.7

a
 99.5

a
 99.9

a
 0.258 <.0001 <.0001 <.0001 

 

High 96.7
b
 99.3

a
 98.6

a
 99.8

a
 

    NSP          

 Low 45.3
b
 73.0

a
 43.5

bc
 45.8

b
 2.988 <.0001 0.0457 0.0474 

 High 29.3
c
 71.1

a
 43.6

bc
 45.3

b
     

Ash  

        

 

Low 36.6 33.8 31.6 33.9 2.631 0.532 0.532 0.532 

 

High 32.0 38.2 32.8 36.3 
    Phosphorus   

       

 

Low 47.5 46.3 48.5 49.8 2.203 0.1255 0.1255 0.126 

 

High 42.9 49.8 49.5 51.7 

    Diet 1, high protein diet; Diet 2, supplemental starch diet; Diet 3, supplemental lipid diet; Diet 4, supplemental starch and 

lipid diet; carb, carbohydrates; DM, dry matter; NSP, non-starch polysaccharides 
 abc

If interaction effect is significant, means lacking a common superscript differ significantly (P<0.05) 
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Table 4  

Estimated net energy equations in common carp, barramundi, Nile tilapia, rainbow trout and pigs 

Species Equation* R
2
 References  

Carp NE = 11.2 dCP + 34.1 dFat + 10.4 dCarb                            0.99 Present study (2) 

Barramundi NE = 15.2 dCP + 37.1 dFat +   3.1 dCarb 0.99 Present study (3) 

Barramundi NE = 15.9 dCP + 35.2 dFat +   9.4 dCarb – 1.9 (dCarb)
2
     0.99 Present study (4) 

Trout NE = 15.1 dCP + 35.0 dFat + 12.1 dCarb                                   0.91 Schrama et al. (5) 

Trout NE = 13.5 dCP + 33.0 dFat + 34.0 dCarb – 3.64 (dCarb)
2
 0.92 Schrama et al. (6) 

Tilapia NE = 11.5 dCP + 35.8 dFat + 11.3 dCarb 0.99 Schrama et al. (7) 

Pig NE = 11.3 dCp + 35.0 dFat + 14.4 ST + 12.1 dRest  Noblet et al. (8) 

Pig NE = 10.8 dCp + 36.1 dFat + 13.5 dSTe + 9.5 dSTf + 9.5 dNSP  CVB (9) 

NE, net energy; RE, retained energy; dCP, digestible protein; dFat, digestible fat; dCarb , digestible carbohydrates (comprising of starch, 

sugars and NSP); dRest, the remaining dietary fraction being digestible (dRest = DM – dCP – dFat – ST – digestible ash) (see Noblet et al.); 

dSTe, enzymatically digestible starch; dSTf, the amount of starch that is digested after microbial fermentation; ST, starch (both enzymatically 

and fermentable degradable); dNSP, dgestible NSP. 

*In the estimated equation of the present study, NE is expressed in kJ.kg
-0.8

.d
-1

 and digestible nutrient intakes (dCP, dFat and dCarb) in g.kg
-

0.8
.d

-1
. In the NE equations for pigs, NE is expressed in MJ.kg

-1
 feed and digestible nutrients in g.kg

-1
 feed. 
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Fig. 1 

 

Fig 1. Relationship between net energy (NE) and digestible carbohydrate (dCarb) intake for carp 

(a) and barramundi (b). The NE values are corrected for variation in digestible protein (dCP) and 

digestible fat (dFat). This was performed as follows: the measured retained energy value for each 

data point in the data set was increased with the estimated fasting heat production to obtain the 

NE value, which was then corrected towards zero dCP and dFat intake in order to have only the 

effect of dCarb on NE. This was conducted using Equation (2) for Carp and Equation (4) for 

Barramundi  (Table 4).  
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Highlights 

Formulating balanced fish diets requires a precise energy evaluation system. 

Net energy equations were estimated for common carp and barramundi.  

Energy utilisation efficiency differs between digested macronutrients. 

Especially energy utilisation efficiency of carbohydrate  differs between carp and barramundi 
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