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Abstract 

One hundred years after the 1918 influenza outbreak, are we ready for the next pandemic? 

This paper addresses the need to identify and develop collaborative, interdisciplinary, and 

cross-sectoral approaches to modelling of infectious diseases including the fields of, not only 

human and veterinary medicine, but also plant epidemiology. Firstly, the paper explains the 

concepts on which the most common epidemiological modelling approaches are based: 

namely the division of a host population into Susceptible, Infected and Removed (SIR) 

classes, and the proportionality of the infection rate to the size of the susceptible and 

infected populations. It then demonstrates how these simple concepts have been developed 

into a vast and successful modelling framework which has been utilised in predicting and 

controlling disease outbreaks for over one hundred years. Secondly, it considers the 

compartmental models based on the SIR paradigm within the broader concept of a ‘disease 

tetrahedron’ (comprised of Host, Pathogen, Environment and Man) and uses it to review the 

similarities and differences amongst the fields comprising the ‘OneHealth’ approach. Finally, 

the paper advocates interactions between all fields and explores the future challenges facing 

modellers. 

Introduction 

Infectious diseases of humans, animals and plants have adversely affected humanity 

throughout recorded history. This was recognised over 3000 years ago in the Bible, which 

identified threats to human, animal and plant health: “Cursed shall be the fruit of thy body 

[human], and the fruit of thy land [plant], the increase of thy kine (cows) [animals], and the 

flocks of thy sheep [animals].” (Deuteronomy 28:18, King James Version).  
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In the wake of World War I, the 1918 influenza epidemic caused approximately 50 million 

deaths and was one of the biggest pandemics in the history of humankind (1). Twenty five 

years later, while another World War was raging, a ‘perfect storm’ (2) of environmental and 

political disasters led to a series of disease outbreaks in India. In October 1942, a fungal 

infection, Cochliobolus miyabeanus (Brown Spot), spread through rice fields in Bengal. The 

impact of the disease was intensified by tropical storms which widely distributed the fungal 

spores, causing estimated yield losses of up to 91% of the key staple crop, rice (3). The local 

population faced severe food shortages which were further magnified by the concurrent 

political situation, leading to massive starvation and a decrease in resistance to diseases. 

Meanwhile, the weather also created conditions conducive to mosquito breeding leading to 

an outbreak of malaria, causing twice as many cases in 1943 than those reported in the 

preceding years (4). In combination with other human diseases like cholera and smallpox, 

which also thrived in an already affected population, an estimated 2-3 million people died as 

a result. More suffering and displacement followed in what became known as the Bengal 

Famine.  

These events, as well as other similar epidemics such as Asian flu (5), Black Death (6), 

Foot-and-mouth (7) and Irish potato famine (8), clearly demonstrate the interconnectedness 

between the health of humans, animals, plants and ecosystems: the underlying principle of 

the OneHealth concept (9).  

If we are to avoid future outbreaks such as the 1918 influenza pandemic or the 1942-43 

Bengal famine, we need to create an approach that is collaborative, interdisciplinary and 

cross-sectoral, which includes human and veterinary medicine, plant epidemiology, as well 

as mathematical modelling. Mathematical models have extensively been used to 

understand, predict and control disease outbreaks with many successes (10,11). However, a 

continuing need exists to facilitate the collaboration between the modellers working across 

these different fields, enabling knowledge exchange and the development of approaches 

that take into account more than one system. 

This paper attempts to facilitate this dialogue by reviewing the ways in which different 

research communities apply the compartmental models based on the Susceptible-Infected-

Removed (SIR) paradigm. Our approach then embeds the SIR framework in the even 

broader concept of a ‘disease tetrahedron’, originating in plant epidemiology. By doing so, 

we show how the SIR model family can be adapted to address particular modelling needs 

which are both specific to the individual areas and generic across all fields of epidemiology. 

Finally, we look at some future directions of further model development. 



This review is necessarily brief, and further detail is available from many books and papers 

that illustrate these developments, from a historical point of view and from mathematical and 

epidemiological angles. For medical epidemiology, the textbook of Anderson & May (10) is 

still one of the best options, with Keeling & Rohani (12) providing a more recent overview. 

Anderson & May (13) and Kao (14) contain additional references for animal diseases, and 

Madden et al. (11) and Gilligan (15) for compartmental models of plant pests. The three 

volumes of the 1993 programme at the Isaac Newton Institute, Cambridge, UK (16,17,18), 

and the follow up in Epidemics a decade later (19), also provide a valuable overview of past, 

current and future challenges. 

Key components of an epidemic 

For both an outbreak to be initiated and the pathogen to spread, a number of conditions 

need to be fulfilled. Van der Plank (20) and Zadoks & Schein (21) summarised these 

conditions in the form of a disease tetrahedron, with corners comprised of Host, Pathogen, 

Environment, and Man (Fig. 1). Firstly, the host and the pathogen need to be in a state that 

is conducive to the disease and able to interact at the same time and in the same location 

(Fig. 1; thick arrows). The host and pathogen states are, in turn, affected by the 

environmental drivers (Fig. 1; thin arrows). All three elements are influenced by human 

actions, including prevention, interference and control (Fig. 1; broken arrows).  

The model 

Compartmental models provide a widely used framework for describing the interaction 

between host and pathogen. The key feature of the generic SIR model is that the population 

of N individuals is split into three classes: susceptible (S), infected and infectious (I), and 

recovered or removed (R), Fig. 2. This reflects the assumption that there are no internal 

dynamics in the status of an infected individual and in its capacity to pass on the infection (a 

microparasite infection as defined in (10)). The models based on this paradigm may have 

different mathematical structures and we review some here, starting with a continuous-time 

and deterministic model, 
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Above, ( ), ,b S I R  represents the influx into the susceptible class, either from births or from a 

transition back from the removed class, minus potential vaccination. The rates, xd (with 

, ,x S I R= ), quantify removal either from natural or disease-induced causes;  g  represents 

the removal of infected individuals into the R class which can be interpreted as removed, 

recovered and immune. The term ( ), ,b S I R  is often constant, linear, or logistic in its 

dependence on the population variables; the death and removal terms are typically linear, 

corresponding to exponentially distributed life span and infectious periods (22). However, 

gamma-distributed infectious periods have been found to characterise the epidemiology of a 

number of diseases more accurately (23,24). The two functions describing the primary or 

vector-based infection, ( ),pf S V , and the secondary or direct infection, ( ),sf S I , are 

discussed below.  

The basic SIR model has been modified to suit many different systems. Other 

compartments, such as a latent class (infectious but asymptomatic) or a detected class 

(25,26,10), have been proposed to provide more fine-grained division. Age-structured 

models have also been introduced, either by utilising sub-classes for the susceptible and 

infected individuals (27) and using a Who-Acquired-Infection-From-Whom matrix (10); or by 

adapting equations (1) into integro-differential equations by separating time and age 

variables (28). 

Other extensions include difference, rather than differential, equations which use discrete 

time steps, rather than continuous time, with time interval often equal to the infectious period 

(29). Discrete time is often assumed for stochastic and network models, and for the purpose 

of parameter estimation (30).  

Different stochastic approaches have existed since the early days of mathematical 

epidemiology (31,32), and their correspondence to the deterministic case was put on firm 

footing by Kurtz and others (33,34). Variation in the infection rate can also be used to 

account for environmental and demographic stochasticity (35,36). 

Hosts and pathogens 

Before the model can be used to describe a real-life system, its key elements must be 

populated. The three host groups (humans, animals and plants) have different requirements 

and hence require different approaches while preserving the basic structure of the SIR family 

of models. 



Hosts. In medical epidemiology, there is only one primary host: the human being. This 

assumption, however, hides a possibility of alternative hosts and living stages of a pathogen, 

as it is now recognised that many human diseases are of zoonotic origin (37). Veterinary 

epidemiology deals with two types of hosts: domestic (livestock and companion animals) and 

wild animals, with only a few species classed as important from a societal standpoint. The 

situation is very different for plants, where there exists a large number of domesticated and 

wild plant genera (both often in proximity to each other). Despite this, most models consider 

only a single host species. 

The basic modelling unit is typically a single individual (human, animal or plant), although in 

the continuous approach summarised in equations (1), S and I are often densities per unit 

area. For animal diseases (14), and even more often for plant diseases (11), S and I can 

represent groups of individuals such as flocks or fields (14). 

Pathogens. The SIR paradigm describes the dynamics of microparasites, as defined by 

Anderson & May (10). An alternative framework describing macroparasitic infection, where 

an individual load of infection is important, has attracted significant attention in medical and 

veterinary epidemiology (10,38), but less so for plant diseases (39); these are not covered in 

this review.  

Many human diseases (e.g., Ebola (40)) and animal diseases (e.g., bovine tuberculosis (41)) 

involve alternative hosts whose dynamics could be incorporated into the models. Malaria 

and dengue are examples of vector-borne diseases of humans (10,42), whereas bluetongue 

is an example of a vector-borne disease of animals (43). Others, such as a measles virus 

(44), are confined to one host and directly transmitted. Few human and animal fungal 

disease outbreaks have been described by the SIR paradigm (45,46); in contrast, the UK 

Plant Health Risk Register (47) currently lists 180 fungal pathogens and related species, but 

only 57 bacteria and 116 viruses. It is the sheer number of plant pathogens, many of which 

have a broad range of hosts, e.g., Xylella spp. (48), which makes their impact difficult to 

model. Despite this, compartmental models have been successfully used to describe the 

spread and control of plant and forest pathogens (11,49,50). 

Host-pathogen axis 

The functions ( ),pf S V  and ( ),sf S I  capture different aspects of host-pathogen 

interactions. The term ( ),pf S V  describes an external source of infection, with V 

representing the external force of infection coming either from the wider environment (e.g., 

primary inoculum for soil- or water-borne plant diseases (39)), from alternative hosts (e.g., 

bats (37)), or an indirect transmission mediated by vectors (e.g., mosquitoes (29)). There will 



often be a separate equation describing the dynamics of V and its link to the infectious 

population, I (13). 

The ( ),sf S I  term describes the direct transmission component that depends upon the 

number of currently infected individuals. Different forms have been proposed which attempt 

to capture various aspects of the interaction. The most common approach (51,52)  assumes 

that the rate at which new infections are produced is proportional to (i) the number of existing 

susceptible individuals, ( )S t ; (ii) the proportion of existing infectious individuals, ( )I t N ;  

(iii) a factor capturing the rate of contacts between individuals, ( )C N , which is often 

dependent on the total population size, N; and (iv) a per-contact probability of infection, β . 

This results in  

 
  
fs S , I( ) I = βC N( ) I

N
S  , (2) 

with ( )C N N= for density-dependent transmission, and ( )C N  independent of N for the 

frequency-dependent transmission (27,53,49).  

The simplest SIR model removes the birth, death and primary infection terms from equations 

(1), and assumes a fixed population size, N, and a linear secondary infection term, equation 

(2). The resultant model describes the characteristic rise-and-fall, bell-shaped curve for ( )I t  

often seen in medical and veterinary science (44,54). When there is no discerning recovery 

or removal, the basic SIR model with frequency-dependent transmission can be rewritten as 

an SI model equivalent to a logistic growth model; this is often used in plant epidemiology 

(55). 

The effective and basic reproduction rates  

Another way of applying an SIR model uses the idea of an effective (or apparent) 

reproduction rate, tR  (20). It is defined as the number of newly infected individuals produced 

by a single infected individual during its infectious period, at a given time t during the 

epidemic (56). The rate tR  typically decreases as the susceptible individuals are removed 

from the population; its maximum value is denoted by 0R and forms one of the most important 

concepts in epidemiology (10,51). Surprisingly, for the 1918 influenza pandemic, the 0R  

value estimate was only in the range of 2-3 (57), but it can be much higher for other 

diseases, e.g. 10-18 for measles (10). 



The main advantage of characterising an epidemic by the basic reproduction rate lies in 

simplicity and predictive power of 0R . The number of infected individuals will never increase 

if 0 1R < , and so the outbreak can be prevented or stopped by lowering the value of 0R . This 

condition is the foundation of many successful vaccination and control programmes (58). 

The threshold dependence of the disease dynamics is well known in demography and 

ecology and has been applied to vector-borne diseases (29), to directly transmitted human 

diseases (54), and to plant-pathogen systems (20,59). The pathogen’s evolutionary history 

has also been linked to the value of the reproduction rate (60). 

Parameter estimation 

Although qualitative results, like the threshold behaviour, can be obtained from studying the 

mathematical structure of the SIR equations, any potential to predict the size of the new 

epidemic, or impact of control measures, requires estimation of parameters (61). In practice, 

it is often necessary to attempt to construct a predictive model based on insufficient and 

noisy data which limits the capacity of models to capture all details of the real world 

processes (14). Among the parameters, the infection functions, ( ),pf S V  and ( ),sf S I  are 

most difficult to identify as they attempt to capture many complex processes (62). Two broad 

approaches can be distinguished, with estimation based directly upon the outbreak data 

using different proxies (56) including observed cases (63); or through secondary data, e.g., 

serological studies for estimating the proportion of individuals having a contact with disease 

in the past (64,65), or sociological studies yielding the contact patterns between individuals 

(66). The two methods often produce different results, as the observation of cases can be 

biased by under-reporting (30). 

Different statistical and modelling techniques (62) can be employed to estimate parameters 

in presence of considerable within- and between-sample variation and to augment data, and 

can reveal different aspects of the disease dynamics (cf. (55) for least-squares method, (32) 

for a maximum likelihood method, and (67) for a full Bayesian treatment of the same data 

set). 

Environment: temporal heterogeneity 

The functions ( ),pf S V  and ( ),sf S I  can depend on temperature, humidity and hence on 

time (35), thus making 0R temporally variable (65,68). This variation can be short-term 

(e.g., weather-driven) or long-term (e.g., climate-driven). Models have successfully been 

used to study the effect of environment on cholera outbreaks in humans (69,70). The 

periodicity of school holidays has been shown to lead to complex dynamics in, for example, 



measles epidemics (71). Less attention has been given to short-term weather effects on 

animal diseases (65). Plant pathogens often have complex life cycles driven by 

environmental conditions (e.g., temperature, rainfall); this can be captured in compartmental 

models by varying rates in space and time (72,73). 

The effects of climate change can be captured by variations in compartmental model 

parameters on a time-scale longer than the epidemic itself (74,69). Vector-borne diseases 

have received particular attention due to their dependence on insect populations which are 

characterised by narrower ranges of environmental factors that are conducive to their 

survival and spread (75). 

Environment: spatial heterogeneity 

Basic compartmental models effectively assume that each susceptible individual can be 

equally affected by any infected individual in the population, a property often called 

‘homogeneous mixing’ (51). This is often not true as some individuals can be separated by 

great distance. While humans and animals can travel large distances, their movements are 

often geographically and socially stratified, concentrated around schools, work and 

transportation routes. This is even more important for plants which generally do not move (if 

we ignore trade), although the pathogens and their spores can travel large distances, either 

from wind or vectors. Mathematical epidemiologists have approached this problem in 

different ways, with some approaches more common in different areas. 

Some plant epidemiologists (20,11) concentrate on independent pathogen movement (e.g., 

spores transported by wind or water) and thus convert the SIR differential equations into 

integro-differential ones (11), allowing transmission rates to be dependent on spatial 

distance (76).  

Alternatively, by assuming that susceptible and/or infected individuals move randomly, the 

SIR model turns into reaction-diffusion equations, such as those describing spread of rabies 

(77) or plant pathogens (78). Again, stochastic versions of the model have been developed, 

dealing with some artefacts of the continuous model (79).  

Another solution, a metapopulation model, splits a geographic space into sub-compartments 

then assumes that individuals fully mix within each compartment. The additional force of 

infection comes from other compartments, either from the nearest neighbours or with some 

distance-dependence (80,73).  

In the early 1980s a new paradigm was proposed, first by physicists (81,82) and later by 

epidemiologists (83). Individuals are represented by vertices of a graph (network), and 

transmission is only possible if two vertices are connected by an edge. These network SIR 



models are currently at the forefront of epidemiological modelling for human diseases (12), 

animal diseases (84) and plant pathogens (85,86,87).  

In the late 1990s, an approximation to network models was developed which captured some 

of the contact structure by measuring not only the average values of epidemiological 

variables (first moments), but also correlations between them (higher moments) (88). This 

leads to modified SIR equations which may be easier to analyse than the spatially-structured 

models. 

 

Adding a human factor 

The simple model shown above, equations (1) and (2), effectively ignores various ways in 

which our actions affect the infection dynamics and, conversely, the impact of disease on our 

behaviour. However, these feedbacks are an essential factor determining our ability to 

predict and control outbreaks (7,89,90). Accordingly, models are continually being adapted 

to include the impact of human influence on disease transmission. Firstly, different groups of 

individuals can behave in different ways and hence experience different forces of infection. 

Thus, the division into SIR compartments can be expanded to capture different behaviours, 

such as hospitalisation or avoidance of contacts (possibly due to fear or spread of rumours) 

(91). The SIR compartments can also be subdivided into components representing location, 

social status or different risk groups (e.g., for sexually transmitted diseases). The infection 

term, here ( ),sf S I , can be modified accordingly through the inclusion of, for example, a 

simple spatial structure (92), a city-satellites model (30) or various household models (93).   

Secondly, the assumption that the combined infection term, ( ),sf S I I , is linear in the 

number of susceptible and infected individuals can be relaxed (27). The power function is 

often used in this context (94,95,96), e.g., to account for the heterogeneity of contacts 

between hosts and was found to capture the dynamics of measles (94) and Ebola (95). 

Conclusions: from genes to the globe 

So, are we prepared for the next pandemic (97)? Like the 1918 influenza, and many other 

outbreaks, any future epidemics would most likely be associated with a 'perfect storm' of 

events. A combination of genetic (host and pathogen), environmental, economic and socio-

political factors must be studied to understand how a pathogen can emerge and spread 

globally (9). 



The world is now faced with new challenges which can combine again into a 'perfect storm' 

associated with issues such as climate change, the rise of antimicrobial resistance (AMR), 

and globalisation which allows hosts and pathogens to travel long distances quickly. 

The call to epidemiology is to bridge all scales, from a genetic to a global level. The catalyst 

for this interdisciplinary approach is the application of mathematical modelling. Here we have 

argued that compartmental models can be, and indeed have been, used successfully to 

capture the complexities of the host-pathogen-environment interactions. However, we still 

need to improve our ability to work across different disciplines and fields comprising the 

OneHealth approach. 

Three major opportunities are identified here as immediate areas for development. Firstly, 

we are now equipped with an unprecedented capacity to gather and analyse ‘big data’. 

Advances in data collection and computing power allow modellers to carry out simulations in 

which agents are traced as they move and interact, as vectors fly, or spores move with the 

wind. These individual-based models have been used, e.g., to predict the threat posed by 

influenza in SE Asia (98), and the spread of sudden oak death in the USA (73). Much 

attention in recent years has been given to social networks which explicitly incorporate the 

granularity of individual interactions and the heterogeneity of their behaviour, including 

animal and plant movements by trade (80,84). We can now include the detailed genetic 

information about hosts and pathogens to augment modelling techniques to improve 

traceability of the progress of epidemics (99). Linking detailed weather and climate change 

models with epidemic models allows us to predict any future outbreaks in more detail (69). 

Secondly, human, animal and plant pathogens are in a constant race with their hosts, with 

evolution driving the resistance to any treatments or immunological responses. AMR is a 

rapidly rising problem which has the potential to enable epidemics not experienced since the 

pre-antibiotic era (100). The environment is known to act as a ‘mixing bowl’ for water 

(containing antimicrobials) from humans, agriculture, plants and aquaculture (101). However, 

it is still not known to what extent AMR genes transfer between species (e.g., livestock and 

humans) via the environment (102). An SIR framework has been used to model AMR either 

at a host/patient level (103) or even at a cellular/within-host level (101). The novelty of the 

latter approach is that S  represents the antibiotic-sensitive bacterial cells, and I   represents 

the antibiotic-resistant bacterial cells (‘infected’ with a resistant gene). Resistance has also 

been a major problem in plant diseases, leading to significant advances in modelling (104); 

this is one area where cross-fertilisation between plant and human/animal epidemiology can 

be very beneficial. 



Thirdly, epidemiological models increasingly need to be merged with an economic and 

behavioural framework (105). Epi- or bio-economic models (106) capture the individual or 

the corporate decision to engage in particular actions, such as changing the contact 

structure (107,108), engaging with prevention (e.g., vaccination) (109), or control by culling 

(25). Recently, it has been argued that compartmental models can be extended to explicitly 

include adaptive behavioural responses to disease risk (110). Thus, instead of a priori 

specifying the infection term ( ),sf S I  in terms of S and I, the new approach uses explicit 

behavioural models describing how individuals formulate predictions on the effects of their 

decision whether to engage in a contact that might lead to infection. This prediction then 

informs their decision-making process which often involves maximisation of their profit or 

utility (110); the infection process emerges from such considerations. Such models (108) can 

be used to explain the multiple waves of the 1918 influenza pandemic (111).  

So, are we equipped to deal with the next pandemic? According to Blackburn et al. (97), the 

answer currently is a qualified “no”. However, the tools and processes may already be 

available to allow a more emphatic “yes” to be the answer. Our future success in preventing 

and combating pandemics requires close collaboration across disciplines and systems. As 

demonstrated by their long and successful history, the SIR paradigm and the disease 

tetrahedron concept are essential tools facilitating such an approach.  
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Figure captions 

Fig. 1: Disease tetrahedron; modified, after Zadoks and Schein (21). Nodes correspond to 

the main determinants of a disease outbreak: Host, Pathogen, Environment and Man. The 

thick double arrow represents the host-pathogen axis. Thin solid arrows indicate the 

influence of environment on the host-pathogen combination. Broken arrows represent the 

human factor affecting all components. 

Fig. 2: A basic SIR model with primary and secondary infections, births, deaths, culling and 

natural- and disease-induced death, as represented in equations (1). Solid arrows represent 

the flows of individuals between classes within the population (Susceptible, S; Infected, I; 

Removed/recovered, R). Dashed lines represent the dependence of the infection rate on 

external and internal factors. Vaccination at birth effectively removes a proportion of 

individuals before they enter the population.  




