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A B S T R A C T

Background: Adverse birth outcomes (ABO) such as prematurity and small for gestational age confer a high risk
of mortality and morbidity. ABO have been linked to air pollution; however, relationships with mixtures of
industrial emissions are poorly understood. The exploration of relationships between ABO and mixtures is
complex when hundreds of chemicals are analyzed simultaneously, requiring the use of novel approaches.
Objective: We aimed to generate robust hypotheses spatially linking mixtures and the occurrence of ABO using a
spatial data mining algorithm and subsequent geographical and statistical analysis. The spatial data mining
approach aimed to reduce data dimensionality and efficiently identify spatial associations between multiple
chemicals and ABO.
Methods: We discovered co-location patterns of mixtures and ABO in Alberta, Canada (2006–2012). An ad-hoc
spatial data mining algorithm allowed the extraction of primary co-location patterns of 136 chemicals released
into the air by 6279 industrial facilities (National Pollutant Release Inventory), wind-patterns from 182 stations,
and 333,247 singleton live births at the maternal postal code at delivery (Alberta Perinatal Health Program),
from which we identified cases of preterm birth, small for gestational age, and low birth weight at term. We
selected secondary patterns using a lift ratio metric from ABO and non-ABO impacted by the same mixture. The
relevance of the secondary patterns was estimated using logistic models (adjusted by socioeconomic status and
ABO-related maternal factors) and a geographic-based assignment of maternal exposure to the mixtures as
calculated by kernel density.
Results: From 136 chemicals and three ABO, spatial data mining identified 1700 primary patterns from which five
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secondary patterns of three-chemical mixtures, including particulate matter, methyl-ethyl-ketone, xylene, carbon
monoxide, 2-butoxyethanol, and n-butyl alcohol, were subsequently analyzed. The significance of the associa-
tions (odds ratio > 1) between the five mixtures and ABO provided statistical support for a new set of hy-
potheses.
Conclusion: This study demonstrated that, in complex research settings, spatial data mining followed by pattern
selection and geographic and statistical analyses can catalyze future research on associations between air pol-
lutant mixtures and adverse birth outcomes.

1. Introduction

There is much interest in methods for understanding the adverse
impacts of exposure to mixtures of air pollutants on human health since
ambient air pollution is composed of mixtures of chemicals (Dominici
et al., 2010, Mauderly et al., 2010, SCHER, 2012). Recent evidence
suggests that mixtures of chemicals can have a toxicological behavior
that differs from the toxicity of the individual chemicals. For example,
the effect of ozone (O3) on asthma may be higher when it coexists with
other co-pollutants such as sulphur dioxide (SO2) and particulate matter
(PM) than the effect of ozone alone (Toti et al., 2016). Likewise, clusters
of elevated NO2, NO, and PM2.5 concentrations may increase the odds
of low birth weight relative to the effects of each one separately (Coker
et al., 2016). Thus, findings from mixture studies could guide new en-
vironmental policies based on a multipollutant framework to mitigate
exposure to chemical emissions (Hidy and Pennell, 2010).

Studies considering mixtures of multiple pollutants are difficult to
implement due to a variety of potential limitations. Limitations include
the lack of monitored data for many chemicals, the limited toxicological
information for many of the chemicals produced/emitted worldwide
(SCHER, 2012), difficulties in assessing spatiotemporal variation of
groups of interacting pollutants in the atmosphere to assess human
exposure, and the lack of statistical methods to parsimoniously assess
effects of pollutant mixtures (Mauderly et al., 2010).

Advances in multipollutant approaches in relation to the adverse
health effects of air pollution have been carried out in urban settings,
where a small number of pollutants are regularly monitored (e.g., cri-
teria air pollutants) (Edwards et al., 2015; Wilhelm et al., 2012). In
contrast, few studies have considered alternative sources of data for a
broader set of chemicals emitted by industrial facilities into the en-
vironment (Currie and Schmieder, 2009, Agarwal et al., 2010, Wine
et al., 2014, Willis and Hystad, 2019). The large number of possible
combinations or mixtures is an issue of methodological and theoretical
concern, especially when the toxicity of participating chemicals is un-
known (SCHER, 2012). Expanding the number of chemicals increases
the complexity for identifying hazardous mixtures when no specific
hypothesis drives a study, thus motivating researchers to use novel
methodological approaches as an initial filter of potential mixtures of
health concern.

Recently, data mining algorithms have been used to rapidly scan
large numbers of pollutants and filter the ones that may require a more
formal future study. Frequent itemset mining algorithms were used to
identify common chemical combinations in human populations from a
set of 106 chemicals (Kapraun et al., 2017) and to estimate relation-
ships between chemicals and health biomarkers of diseases (Bell and
Edwards, 2015). Association rule mining algorithms were used to
identify patterns of air pollutant-combinations related to pediatric
asthma exacerbations (Toti et al., 2016), as well as to find significant
spatial co-location patterns of childhood cancer occurrence and che-
micals released into the air by industrial sources in Canada (Li et al.,
2016). More recently, Jabbar et al. (2018) used and modified the al-
gorithm developed by Li et al. (2014) to identify statistically significant
spatial co-location patterns of adverse birth outcomes and mixtures of
industrial chemicals in Canada. They presented hundreds of statistically
significant patterns, suggesting that post-selection tasks are necessary to
select those mixtures of potentially higher health concern.

Adverse birth outcomes (ABO) are an essential health outcome to
assess due to their implications for human development and health
outcomes throughout the lifespan as prioritized by the World Health
Organization under the Sustainable Development Goals (World Health
Organization, 2018). Ample epidemiological research indicates that
babies born before completing their gestational period (preterm birth:
PTB), weighing< 2.5 kg at 37 or more weeks of gestation (low birth
weight at term: LBWT), or weighing less than expected for their sex and
gestational age (small for gestational age: SGA), have lower chances of
survival and higher probabilities of developing chronic diseases
throughout life (Kramer et al., 2001; Kramer, 2003).

A variety of individual (Heaman et al., 2013), social (Kim and
Saada, 2013, Auger et al., 2009), and environmental factors, including
air pollution (Stieb et al., 2012, 2015), have been recognized as risk
factors for ABO. The effects of air pollutants on fetal development
throughout the pregnancy period are increasingly studied (e.g., Wang
et al., 2018) since fetal susceptibility to environmental issues varies
over the gestational period.

Although the research on air pollution and perinatal epidemiology
has been extensive, it has mainly focused on studying single pollutants
primarily from traffic sources (Wigle et al., 2008; Stieb et al., 2016).
Consequently, the effects of air pollutant mixtures from industrial ac-
tivities on ABO are poorly understood (Slama et al., 2008). Some re-
lated studies have followed approaches based on the proximity to
specific sources of industrial pollutants (e.g. Walker Whitworth et al.,
2018, Casey et al., 2016). However, a particular concern is to under-
stand the potential consequences of being exposed to a disproportionate
number of recognized hazardous chemicals from different industrial
sources during pregnancy and early development (Slama et al., 2008;
Giudice, 2016; Sutton et al., 2012; Wang et al., 2016). Understanding
the role of a large number of chemicals that have not been extensively
explored may shed light on lesser-known chemicals and possible re-
lationships with ABO. Addressing this gap is challenging due to the
potentially large number of chemical mixtures that could be present in
ambient air, usually where industrial activity is pervasive. In this re-
gard, the Scientific Committee on Health and Environmental Risks of
the European Union has suggested to use some form of initial filter to
allow a focus on mixtures of potential concern (SCHER, 2012). No
specific individual chemicals need to be the target of such a study, but
rather all possible industrial chemicals that have not yet been suspected
or hypothesized of having associations with ABO may be more effi-
ciently identified.

Therefore, we aimed to extract candidate hypotheses linking ABO
with mixtures originating from hundreds of chemicals released by in-
dustry into the air. We used a pruning approach for the spatial data
mining algorithm developed by Jabbar et al. (2018) to identify and
prioritize candidate hypotheses in complex settings. Subsequent spatial
and regression analysis were then conducted to assign statistical ro-
bustness to those hypotheses. This systematic approach could guide
future research on specific mixtures related to ABO.

2. Methods

2.1. Research framework

This study was part of a national research project on Data Mining
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and Neonatal Outcomes (DoMiNO) described elsewhere (Wine et al.,
2019). The primary objective of DoMiNO was to identify spatial co-
location of ABO with multiple combinations of industrial chemicals
emitted to air in Canada, of which the results may serve as a foundation
for future research. The project was built on an ongoing collaboration
among specialists in perinatology, neonatology, computer-sciences,
geography, exposure science, epidemiology, and knowledge users from
government, data-provider agencies, and non-governmental organiza-
tions. A dedicated interdisciplinary collaborative research approach
(i.e. integrated knowledge translation) (CIHR, 2012) supported the
progression of the different phases of this project.

It is essential to state that the scope of DoMiNO was exploratory.
Causal relationships between mixtures of chemicals and ABOs were not
expected. The characteristics of our data sources limit our capacity to
go beyond an exploratory analysis. For example, our source of in-
dustrial chemicals (the National Pollutant Release Inventory) contains
only annual estimations of chemicals emitted into the environment (air,
water, soil) by industrial facilities (see Section 2.4) reducing the ability
to untangle temporary effects of mixtures throughout the pregnancy
period and forcing us to simplify exposure assignment. Assumptions,
simplifications, and limitations are explained across the manuscript.

The study received approval from the University of Alberta Health

Fig. 1. The four steps of the interdisciplinary framework involved spatial data mining, geographical information systems, and bio-statistics to integrate the health and
environmental variables into a geodatabase based on postal codes (PC), extract primary patterns, select secondary patterns, and assess as relevant hypotheses for
associations between mixtures of industrial chemical emissions and adverse birth outcomes (ABO) using odds ratios (OR).
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Research Ethics Board Human Panel (Study ID Pro00039545) and from
the Alberta Perinatal Health Program.

2.2. Study setting

This study focused on the province of Alberta, Canada. Alberta has
had one of the highest rates of ABO in recent years (PHAC, 2013) and
the highest number of emitting facilities in the country (Environment
and Climate Change Canada, 2016). In addition, the province has high-
quality health data.

According to Statistics Canada (2014), between 2005 and 2007 the
prevalence of PTB, SGA, and LBW in Alberta (8.7%, 8.8%, and 6.7%,
respectively) had been consistently higher than the national averages
(7.8%, 8.4%, and 6.0%, respectively). Furthermore, these disorders
related to short gestation and low birth weight are consistently ranked
as the 2nd leading cause of infant mortality (Statistics Canada, 2012).

The project combined five large databases containing: birth out-
comes, industrial emissions, wind speed and direction, area-level so-
cioeconomic status, and area-level NO2 concentrations (summarized in
Supplemental Table S1). Multiple procedures were used to develop the
hypothesis generation framework (outlined in Fig. 1). Datasets and
integration procedures are described in detail below.

2.3. Health data

We included birth and maternal data from all singleton live births in
Alberta that occurred between 2006 and 2012. Another set of birth
data, from 2013 to 2014, was used for additional testing of the resulting
hypotheses from the first data set. Data were extracted from the Alberta
Perinatal Health Program database (Alberta Health Services, 2014),
which covers the entire birth population of children delivered in hos-
pitals, as well as planned home births, and unplanned deliveries outside
a facility. Anonymized data from single live births (> 21weeks of ge-
stational age) were analyzed. The records included maternal age, ma-
ternal residence postal code (a six-character alphanumeric combination
assigned to one or more postal addresses), newborns' birth date, birth
weight, type of labor (spontaneous, induced), and gestational age at
delivery in completed weeks.

In the Alberta Perinatal Health Program database, we identified
cases of PTB (newborns at< 37weeks of gestation), SGA (newborns
with a birth weight below the tenth percentile weight from a sex-age
specific Canadian-population reference: Kramer et al., 2001, Kramer,
2003), and LBWT (newborns weighing<2500 g at 37 or more weeks).

The Alberta Perinatal Health Program included obstetrical, pre-
pregnancy and during-pregnancy variables from medical records,
which were identified as risk factors for ABO based on other studies
(Tough et al., 2001; Serrano-Lomelin, 2017). The obstetrical factors
included past-preterm, past-SGA, and parity. The pregnancy-related
factors included mothers' weight < 45 kg and other medical disorders.
The during-pregnancy factors included gestational hypertension, ge-
stational diabetes, smoking, substance use, and bleeding anytime
during pregnancy (before or after the 20th week). All definitions are
included in the Supplemental Table S2.

2.4. Industrial emissions

Chemicals released to the air, as reported annually by industrial
facilities, were extracted from the National Pollutant Release Inventory.
The Canada-wide database included the releases (above specific-che-
mical thresholds) of 342 chemicals to air, water, and land, and the
geolocation of the facilities (i.e. longitude and latitude coordinates)
(Environment and Climate Change Canada, 2015). We selected only the
chemicals released into the air in Alberta during 2006–2012 (n=136),
and for the subsequent assessment for the years 2013–2014. The
emissions reported in kilograms (kg) and grams (g) were converted to
tonnes. We calculated the average of each chemical emitted by each

facility over the entire time periods for subsequent analysis.

2.5. Wind data

We acquired wind data from 182 stations in Alberta Agriculture's
AgroClimatic Information System (ACIS, 2010) for 2006–2012. We
calculated the mean wind speed overall seven years and interpolated
the mean wind direction (Williams, 1999) using the spline function in
ArcGIS Desktop (Esri, 2016). We interpolated raster surfaces from 156
points representing the trigonometric X and Y dimensions of the
average wind direction angle using a two-dimensional curvature spline
technique. Specifically, the regularized spline was based on the defaults
0.1 for the weight and 12 for the number of points. The mean values
were assigned to the facility locations for input to the data mining al-
gorithm.

2.6. Area-level socioeconomic status index

We used a small area-level Canadian socioeconomic status index
(SES-index) developed by Chan et al. (2015). This index uses data from
the 2006 National Census. It incorporates, in a single index, census data
on education level, employment status, income, marital status, home
ownership, transport mode, year of home-construction, and the abori-
ginal status or human developmental index of the individuals' country-
origin, among other variables. Thus, the SES-index captures relevant
information for ABO. The index value was originally assigned to each
dissemination area and reported in quintiles. A low SES-index quintile
indicates low socioeconomic status. Dissemination Areas (DA) are
census geographic areas with a population of 400 to 700 persons
(Statistic Canada, 2008), which group postal codes. The maternal postal
codes at delivery were assigned to DA using boundary file identifiers
(Statistic Canada, 2007) and a vector overlay (point in polygon). Each
birth record was linked to the corresponding SES-index based on the
geographic link between postal codes and DA.

2.7. Area-level concentrations of NO2

We used area-level nitrogen dioxide (NO2) concentrations derived
from a national land use regression model (Hystad et al., 2011) as a
surrogate for the contribution of other pollutant sources (e.g., traffic-
related). NO2 concentrations were used as a covariate in the statistical
models (see Section 2.13). Variation in regional and local-scale pollu-
tion was captured in multiple regression models, which incorporated
satellite-based estimates, fixed-site monitoring measurements, and
geographic predictor variables for the year 2006. As done for the SES
values, we used vector overlay to assign the dissemination area-level
measures to the postal codes of the birth records.

2.8. Data analysis

The analysis consisted of four major steps: (1) data integration
linking health outcomes and environmental data at the postal code level
into a geodatabase; (2) extraction of significant spatial co-location
patterns of chemicals and ABO or non-ABO cases, named primary pat-
terns, using spatial data mining; (3) selection of secondary patterns for
mixtures of chemicals using a pruning metric, and; (4) the exposure
assignment and statistical assessment of the secondary patterns using GIS
methods and regression analysis (Fig. 1).

2.9. Data integration

The geo-database consisted of the attributed maternal postal codes
(the birth data table) and the National Pollutant Release Inventory lo-
cations (the facility locations table). For the birth data, each 6-character
postal code of the maternal residence at the time of birth, from the
Alberta Perinatal Health Program, was linked to the longitude and
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latitude coordinates from Digital Mapping Technology Inc. (DMTI)
Spatial's Postal Code Suite (DMTI, 2014). The birth data table contained
the individual birth and maternal variables and merged with the area-
level SES-index and NO2 values at the postal code level. The facility
locations table contained the chemical emission and wind variables.
Those two tables were used, independently, for data mining and GIS
and regression analysis.

2.10. Data mining extraction of primary patterns

We applied the spatial co-location pattern mining algorithm AGT-
Fisher (Aggregated Grid Transactionalization in conjunction with the
Fisher's test-based and Kingfisher dependency rule search technique;
Jabbar et al., 2018). The primary goal of this spatial algorithm was to
find relevant primary co-location patterns based on the spatial overlap
of air pollutant emission regions and maternal mobility regions during
pregnancy. Such patterns explained which individual or combinations
of industrial air pollutants were co-located, or in near proximity, with
live births, including ABO and non-ABO. The AGT-Fisher consisted of
two major processes: grid transactionalization and pattern discovery.

The transactionalization process consisted of transforming spatial
data into transactions (Li et al., 2014; Jabbar et al., 2018). For this, we
overlaid the region of interest (map) with a set of uniformly distributed
grid points (1-km grid). Each grid point recorded the occurrence or
absence (binary true/false) of each event (ABO or non-ABO) and each
industrial chemical at its location. Each grid point was added to the
transactional database that was subsequently mined with the Kingfisher
algorithm. An example grid point transaction is {SGA=True,
LBW=False, …, benzene=True, chlorine= False, PM=True, …}. In
such a dataset, each record was considered as a transaction where it
contained a set of co-occurring events or items. For our research, the
items consisted of overlapping regions. To determine the overlapping
regions, we generated the dispersion region of an air pollutant from an
emission point (facility) as a circular buffer where the center was the
emission point, and the radius was defined based on the chemical's
amount released. Then, we altered the circular region into an elliptical
buffer region based on the period's average wind speed and direction to
better approximate the actual chemical dispersion and the area of ex-
posure to chemicals. The lengths of the major- and minor-axis (a and b,
respectively) were computed as follows: a= r+ γ |ν|; b= r2/a; where r
was the radius of the initial circle, and it was equal to the natural
logarithm of the amount of chemical released at a given location [r= ln
(amounts)]; ν was the wind speed, and γ was the stretching coefficient
(=0.3). Detailed information about this process has been published by
Jabbar et al. (2018). For the birth data, we generated mobility regions
as 5 km radius circles centered on the postal code location of the ma-
ternal residence, as a surrogate of the maternal mobility range during
pregnancy. Finally, by overlaying a 1-km grid, we computed the
transactions required for identifying primary patterns (Fig. 2). The
transformed dataset enabled us to utilize the Kingfisher algorithm
(Hamalainen, 2012) to discover nonspurious co-location patterns. Our
previous work (Jabbar et al., 2018) demonstrated that the Kingfisher
algorithm was statistically efficient for finding non-redundant statisti-
cally significant co-location patterns between chemical mixtures and
ABO. Kingfisher judged the statistical significance of the association
between chemical mixtures and ABO using Fisher's exact test. The al-
gorithm used enumeration trees to search and prune the co-location
patterns, thereby discovering likely patterns in a computationally effi-
cient manner. The AGT-Fisher algorithm discovered a set of co-location
patterns of the form chemical→ABO or chemical→ non-ABO, where the
pattern satisfied a p-value threshold. We used a p-value cut-off of 0.05,
which is a standard cut-off commonly used in data mining algorithms.

2.11. Secondary patterns of mixtures

Although AGT-Fisher narrowed the scope of the spatial associations

between chemical mixtures and birth outcomes, in such a high-di-
mensional dataset the list of such associations was still very large (i.e.,
hundreds). Moreover, it was highly likely that only a small subset of
these patterns would be of interest to knowledge users. So, in order to
reduce the set of discovered patterns to a more focused interesting
subset, we further utilized the standard data mining metric called lift
(Park et al., 2014). Given a co-location pattern X→ Y, lift measured the
statistical dependency between the occurrences of X (i.e. chemical
mixtures) and the occurrences of Y (i.e. ABO). In other words, the lift of
the rule chemical→ABO related the probability of the chemical and the
ABO occurring together to the probability of the chemical and the ABO
occurring separately (independence condition). The lift of an associa-
tion X→ Y, lift (X, Y), ranges from zero to infinity, where a lift of 1
indicates independence and a lift greater than one indicates a positive
spatial dependence (Park et al., 2014).

Since the intent was to identify co-location of a group of chemicals
within the overlapping regions (called mixtures in our study), we fo-
cused on searching for patterns with the highest lifts that had two or
more chemicals in the pattern. For those patterns, we calculated the lift
ratio (LR), which is the ratio of the lift of exposure to the chemical
mixture and having the ABO over the lift of exposure to the chemical
mixture and not having the ABO (non-ABO): LR= {lift (mixture→

Fig. 2. The spatial data mining algorithm extended the maternal residences and
chemical emission sources, and the overlap of these spatial objects were
counted at grid points to create the transactions required to identify each sta-
tistically significant/prevalent association pattern where a pollutant mixture for
two chemicals (chemical 1=C1 and chemical 2=C2) was co-located with an
adverse birth outcome (ABO).
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ABO) / lift (mixture→ non-ABO)}.
That means LR takes the ABO occurrence and ABO nonoccurrence

possibilities from the same chemical(s). By following this metric, we are
assured that, under the data mining framework, the spatial dependency
of the mixture→ABO is greater than the spatial dependency of the
mixture→ non-ABO. These secondary co-location patterns provide a list
of strong potential hypotheses to be researched by domain experts, i.e.
geographic information systems techniques and regression analysis for
confirmation.

2.12. Assignment of spatial exposure-areas to secondary patterns

Since the spatial data mining algorithm worked with transactions
instead of individuals (cases and no cases), we used geographic in-
formation systems (GIS) to delineate coexisting areas of mothers with
live births and mixtures where exposure may have occurred. The area
of potential exposure to industrial chemicals of those mothers during
pregnancy was calculated by applying kernel density (Silverman,
1997). We estimated the spread of industrial emissions from their point
sources as mean tonnes/km2 using ArcGIS Desktop (Esri, 2016; Nielsen
et al., 2017). We parameterized the kernel density maps for each che-
mical using a 1000-m cell size and a 10-km radius (based on the mean
distance determined by the data mining algorithm in Jabbar et al.,
2018). We reclassified the kernel density maps into binaries

(1= exposed [any amount], 0= not exposed) and multiplied the
number of chemicals as informed by the top association patterns. Then,
we assigned the pattern overlays to the maternal postal codes (Fig. 3).
Additional data from the years 2013–2014 were used in the same
manner for post-hoc independent assessment.

2.13. Assessment of the statistical support of the secondary patterns

From the previous step, we classified each birth having an ABO or
non-ABO (1= yes, 0=no) and whether the mother was exposed or not
to the mixture (1= yes, 0= no). Given the binary nature of the out-
come, we applied multiple logistic regression models to evaluate the
statistical significance of the pattern mixture→ ABO. We conducted
regression models specified for each ABO and the chemical mixture
identified in the previous step after adjusting by specific ABO-related
maternal factors, NO2 concentrations, area-level SES, and main effects
of single chemicals (as binary variables). We used previously selected
maternal variables associated with each ABO (Serrano-Lomelin, 2017)
as listed in Tables 1 and 2. Given the exploratory nature of the study,
we exclusively interpreted the statistical significance of the ORs of the
patterns as the means to add statistical support to hypotheses, to inspire
future research. Logistic models were done using Stata 12 (StataCorp,
2011).

Fig. 3. The geographic information systems calculated each chemical emission as a density in tonnes/km2 reclassified to binary, and then multiplied the three
chemicals (C1, C2, C3) into the combined mixture patterns and assigned the potential exposure to the postal code of the maternal residences.
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3. Results

3.1. Descriptive statistics

The total number of births registered in Alberta from 2006 to 2012
was 349,762. Ninety-six percent (n= 336,588) were singleton live
births with a gestational age between 22 and 42 completed weeks.
Around 1% of these births (n=3341) had an erroneous postal code and
were excluded from the analysis. Therefore, we included a total of
333,247 singleton live births for spatial data mining analysis (Fig. 4).
The total number of births from 2013 to 2014 was 108,547, and after
applying the same criteria mentioned above, 103,551 were included in
the subsequent assessment.

We extracted from the National Pollutant Release Inventory 62,641
entries of pollutants released to air in Alberta between 2006 and 2012.
They included over six thousand facilities (n= 6279), geographically
dispersed across the province (Fig. 5) that reported more than seven
million tonnes of 136 different chemicals released into the air. The
reported emissions of SO2, NO2, CO, and PM (either PM10 or PM2.5)
accounted for ≈97% of the total mass (tonnes) of air pollutant emis-
sions, and the remaining 3% was composed of inorganics (≈1.4%),
volatile organic compounds (VOCs) (≈1.3%), other organics
(≈0.01%), metals (≈0.009%), nitrosamines/ethers/alcohols
(≈0.004%), and polycyclic aromatic hydrocarbons (PAHs) (≈0.003%).
For the subsequent assessment of the years 2013 to 2014, we extracted
10,615 entries of the seven pollutants identified in our top five sec-
ondary pattern (mixtures) emitted by 3249 facilities.

3.2. Primary and secondary co-location patterns

The AGT-Fisher algorithm discovered 1700 primary patterns (in-
cluding chemical→ ABO and mixture→ABO) from which we identified

Table 1
Odds Ratios for the industrial air pollutant mixtures of three chemicals and preterm birth (PTB), small for gestational age (SGA), and low birth weight at term
(LBWT), as selected from spatial data mining patterns according to lift ratio. 2006–2012.

Patterns PTB SGA LBWT

Chemical Lift PTB Lift non-
PTB

LR Adj-ORa

[95%CI]
Lift SGA Lift non-

SGA
LR Adj-ORb

[95%CI]
Lift LBWT Lift non-

LBWT
LR Adj-ORb

[95%CI]

Mixture 1 9.02 7.48 1.21 1.20 [1.14, 1.27] 8.83 7.41 1.19 1.27 [1.21, 1.33] 12.09 7.44 1.63 1.26 [1.12, 1.40]
PMc 1.22 1.21 1.01 1.08 [1.03, 1.14] 1.22 1.21 1.01 1.22 [1.17, 1.28] 1.35 1.21 1.12 1.19 [1.07, 1.32]
Methyl ethyl ketone 7.77 6.46 1.2 1.17 [1.13, 1.20] 7.61 6.38 1.19 1.07 [1.04, 1.10] 10.15 6.42 1.58 1.08 [1.02, 1.15]
Xylene 2.22 2.16 1.03 1.08 [1.05, 1.12] 2.22 2.15 1.03 1.10 [1.08, 1.13] 2.77 2.15 1.29 1.16 [1.10, 1.23]

Mixture 2 9.11 7.55 1.21 1.20 [1.13, 1.26] 12.36 7.51 1.65 1.25 [1.12, 1.40]
PMc 1.22 1.21 1.01 1.08 [1.03, 1.14] 1.35 1.21 1.12 1.19 [1.07, 1.32]
Methyl ethyl ketone 7.77 6.46 1.2 1.17 [1.13, 1.20] 10.15 6.42 1.58 1.08 [1.02, 1.15]
Toluene 1.86 1.78 1.04 1.14 [1.11, 1.18] 2.34 1.77 1.32 1.14 [1.08, 1.21]

Mixture 3 8.55 7.04 1.22 1.24 [1.13, 1.35] 8.6 7.02 1.22 1.23 [1.13, 1.33] 11.38 7 1.63 1.28 [1.06, 1.53]
COd

PMc 1.22 1.21 1.01 1.08 [1.03, 1.14] 1.22 1.21 1.01 1.22 [1.17, 1.28] 1.35 1.21 1.12 1.19 [1.07, 1.32]
2-Butoxyethanol 8.38 6.92 1.21 1.14 [1.11, 1.18] 8.43 6.91 1.22 1.08 [1.05, 1.11] 10.99 6.89 1.6 1.09 [1.03, 1.16]

Mixture 4 8.62 7.11 1.21 1.15 [1.08, 1.23] 8.66 7.09 1.22 1.42 [1.34, 1.50]
PMc 1.22 1.21 1.01 1.08 [1.03, 1.14] 1.22 1.21 1.01 1.22 [1.17, 1.28]
Xylene 2.22 2.16 1.03 1.08 [1.05, 1.12] 2.22 2.15 1.03 1.10 [1.08, 1.13]
n-Butyl alcohol 8.56 7.05 1.21 1.07 [1.02, 1.12] 8.59 7.04 1.22 1.19 [1.14, 1.23]

Mixture 5 8.69 7.14 1.22 1.19 [1.08, 1.30] 8.72 7.12 1.22 1.36 [1.25, 1.48]
PMc 1.22 1.21 1.01 1.08 [1.03, 1.14] 1.22 1.21 1.01 1.22 [1.17, 1.28]
COd

n-Butyl alcohol 8.56 7.05 1.21 1.07 [1.02, 1.12] 8.59 7.04 1.22 1.19 [1.14, 1.23]

Empty table cells indicate that the mixture did not spatially co-locate with that particular ABO.
a Odds ratio adjusted for maternal age, past-preterm, bleeding anytime, gestational hypertension, gestational diabetes, smoking during pregnancy, substance use

during pregnancy, SES-index, multiparity, NO2, and main effects of single chemicals.
b Odds ratio adjusted for maternal age, past-SGA, gestational hypertension, pre-pregnancy maternal weight < 45 kg, smoking during pregnancy, substance use

during pregnancy, SES-index, multiparity, NO2.
c PM=PM2.5 or PM10 since the odds ratios were the same for both; therefore, the table has been simplified as PM to indicate either type.
d CO alone did not spatially co-locate with ABO cases.

Table 2
Odds Ratios for the industrial air pollutant mixtures of three chemicals and
preterm birth (PTB), small for gestational age (SGA), and low birth weight at
term (LBWT), using data from 2013 to 2014.

Patterns PTB SGA LBWT

Chemicals Adj-ORa

[95%CI]
Adj-ORb

[95%CI]
Adj-ORb

[95%CI]

Mixture 1
(PMc, methyl ethyl
ketone, xylene)

1.04 [0.93,
1.17]

1.09 [0.99,
1.20]

1.32 [1.06,
1.64]

Mixture 2
(PMc, methyl ethyl
ketone, toluene)

1.11 [0.98,
1.24]

1.37 [1.10,
1.71]

Mixture 3
(CO, PMc, 2-
butoxyethanol)

1.00 [0.87,
1.16]

1.26 [1.12,
1.42]

1.40 [1.06,
1.85]

Mixture 4
(PMc, xylene, n-butyl
alcohol)

1.00 [0.89,
1.14]

1.24 [1.12,
1.37]

Mixture 5
(PMc, CO, n-butyl alcohol)

1.05 [0.91,
1.20]

1.13 [1.16,
1.45]

Empty table cells indicate that the mixture did not spatially co-locate with that
particular ABO.

a Odds ratio adjusted for maternal age, past-preterm, bleeding anytime, ge-
stational hypertension, gestational diabetes, smoking during pregnancy, sub-
stance use during pregnancy, SES-index, multiparity, NO2, and main effects of
single chemicals.

b Odds ratio adjusted for maternal age, past-SGA, gestational hypertension,
pre-pregnancy maternal weight < 45 kg, smoking during pregnancy, sub-
stance use during pregnancy, SES-index, multiparity, NO2, and main effects of
single chemicals.

c PM=PM2.5 or PM10.
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the mixture→ABO patterns with the highest lift. A set of five secondary
patterns with the highest LR criteria were selected for further analysis
(Table 1). Their LRs were around 1.2 for PTB and SGA, and 1.6 for
LBWT. One pattern did not apply to SGA, and two other patterns did not
apply to LBWT and therefore were not included in the further statistical
analysis assessment for those adverse birth outcomes (see Section 3.4).

3.3. Spatial exposure-areas to the five secondary patterns

Maps were instrumental for both visualization and analyses.
Supplemental Figs. S1 and S2 present the following maps and de-
scriptions: (i) contextual maps, including the SES-index and NO2-land
use regression model; and (ii) kernel densities of the chemicals identi-
fied in the five patterns. Supplemental Fig. S3 shows the location of the
five pattern overlays used for assigning exposure to the maternal postal
codes.

3.4. Statistical support to secondary patterns

Table 1 shows the lifts, LR, and adjusted ORs (with 95% CI) for the
chemicals and mixtures of the five top lift mixtures. In all cases, the LR

were higher than the lift of the single chemicals participating in these
mixtures. The selected patterns were statistically significant after ad-
justing for the main effects of the single chemicals and other relevant
covariates. The general term PM is used to simplify the presentation of
the results by indicating either PM10 or PM2.5 since the spatial co-lo-
cation (exposure), and ORs were identical for the patterns including PM
(i.e., the OR for PM10/methyl ethyl ketone/xylene= PM2.5/methyl
ethyl ketone/xylene).

Overall, all mixtures showed significant statistical association with
at least one ABO. We summarize the results for each mixture indicating
the adjusted OR (adj-OR) and the number of cases (n) per ABO that
were exposed to the mixture. Mixture 1 (PM+methyl ethyl ke-
tone+ xylene) was positively associated with PTB (adj-OR=1.20,
n=8102), SGA (adj-OR=1.27, n=10,466), and LBWT (adj-
OR=1.26, n=1966). Mixture 2 (PM+methyl ethyl ketone+ to-
luene) was positively associated with PTB (adj-OR=1.20, n=8297)
and LBWT (adj-OR=1.25, n= 1993). Mixture 3 (CO+ PM+2-bu-
toxyethanol) was positively associated with PTB (adj-OR=1.24;
n=6950), SGA (adj-OR=1.23, n= 9163), and LBWT (adj-
OR=1.28, n= 1717). Mixture 4 (PM+xylene+n-butyl alcohol) was
positively associated with PTB (adj-OR=1.15, n=2499) and SGA

Fig. 4. The health outcome data were provided by the Alberta Perinatal Health Program, and the birth records were classified according to adverse birth outcome
(ABO). The 2006–2012 data were used in the spatial data mining, and the 2013–2014 data were used to independently assess the patterns generated from the first set.
ABO prevalence in the 2006–2012 and 2013–2014 periods was, respectively, as follows: PTB, 6.8% and 6.7%; SGA, 8.9% and 10%; LBWT, 1.7% and 1.9%.
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(adj-OR=1.42, n= 3677). Mixture 5 (PM+CO+n-butyl alcohol)
was positively associated with PTB (adj-OR=1.19, n= 2485) and SGA
(adj-OR=1.36, n=3665).

We subsequently assessed the odds ratios for mixtures 1 to 5 using
data from 2013 to 2014, yielding similar results for SGA and LBWT
(Table 2). For PTB, none of the mixtures were associated with it in
2013–2014.

4. Discussion

Assessing the impact of exposures to chemical mixtures of pollutants
on human health represents a challenge (Feron et al., 2002). The
scarcity of measured data and of appropriate methodological ap-
proaches remain as two of the principal obstacles. The availability of
pollutant release and transfer registries or chemical biomonitoring
programs has opened the door to simultaneously analyze hundreds of
chemicals using data mining as a step forward (Bell and Edwards, 2015;
Bellinger et al., 2017). In this study, we used a novel approach to
generate new research hypotheses focusing on potential associations

between ABO and hazardous mixtures of chemicals emitted by in-
dustrial sources. Our research findings were enabled by the iterative
participation and contribution of researchers from different disciplines
and knowledge users, and the integration of three different methodol-
ogies (data mining, GIS, and regression analysis).

4.1. Summarizing the process

The spatial data mining algorithm provided an initial and efficient
search of the patterns from an enormous data space based on co-loca-
tion of chemical mixtures and ABO (Jabbar et al., 2018). Since our
primary interest was to identify mixtures, we focused on searching
patterns with more than two chemicals. The primary patterns involving
three chemicals, were those with the highest lift. Patterns, including
four or more chemicals were rare (data not shown). We used the LR as
the pruning criterion for selecting the secondary patterns assuming that
any pregnant woman in a population is exposed to the mixture, but the
lift was more likely to be higher when there was an adverse outcome.
Finally, exposure assignment using geographic methods and statistical

Fig. 5. The Alberta study area showing the distribution of the industrial facilities (red dots) and density of births, 2006–2012. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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evaluation of the patterns gave additional support to the candidate
hypotheses.

4.2. The spatial data mining algorithm

Traditional data mining algorithms are designed to find associations
in transaction datasets (Agrawal and Srikant, 1994). However, they do
not have a temporal or geospatial component. Our algorithm was sui-
table to discover co-location patterns of spatial features, such as the
mother's location and the existence of specific airborne chemicals,
whose instances were often located together in spatial proximity. The
robustness of our algorithm relies on the use of transactionalization in
conjunction with the Kingfisher algorithm and Fisher's exact test.
Transactionalization enables the use of robust methods such as the
Kingfisher search method (a method that uses enumeration trees to find
significant rules) in combination with the Fisher's exact test; the latter
ensures that the antecedents (mixtures) and consequents (ABO) are
statistically dependent (and not resulting by chance). The combination
of these three methods reduced the number of spurious associations,
even when a conventional p-value of 0.05 is used for extracting the
initial patterns. However, establishing a p-value in data mining to find
only theoretically-sound patterns is particularly difficult in the ex-
ploratory analysis focused on finding “new discoveries,” which was the
main objective of this research. For this reason, we introduced the use
of the lift ratio as a theoretically-driven post-pruning process adding
meaningful context to the patterns (secondary patterns). A complete
discussion of the robustness (and other issues: e.g., the use of a 1 km
grid points) of our spatial data mining approach have been recently
published (Jabbar et al., 2018). Moreover, we went beyond the data
mining approach by testing the significance of some of the secondary
patterns using GIS (to assign exposure) and logistic models (which in-
corporated relevant risk factors to ABO: maternal variables and the SES-
index) in two independent datasets (2006–2012 and 2013–2014).

4.3. From transactions to individuals

Once we selected the candidate hypotheses, the use of kernel den-
sities identified the location (the maternal postal codes) where it was
more probable that exposure during pregnancy occurred, allowing us to
remove the obstacle of working with transactions. Kernel density has
been proven as a useful method for estimating source-based exposures.
It accounts for emission amounts and distance decay weighting for all
point sources to spread the exposure in the 2-dimensional space (Jerrett
et al., 2005; Wu et al., 2011; Stieb et al., 2016; Nielsen et al., 2017).
Essentially, the tonnes emitted (i.e., because concentrations were not
reported) within 10 km shaped the kernels, and the overlay of the three
chemicals defined the exposure patterns. The exposure areas delineated
by kernel densities, and assuming a mobility radius of 10 km of women
during pregnancy, are prone to misclassification of exposure, an issue
that is commented in the section of limitations.

The use of the LR was introduced, as we have mentioned, to add
meaningful context to the patterns. LR is an objective measure that uses
the familiar concept of ratio to compare the association mixture→ABO
cases in relation to the association mixture→ non-ABO cases. Thus, a LR
value above 1, points to an association pattern and may serve as an
effective measure for extracting good candidate hypotheses in trans-
actional datasets. In fact, the lift ratio was found to be relevant for team
members by its similarities with the odds ratio (OR) criteria, commonly
used in environmental epidemiology. However, by using LR, it is pos-
sible to miss potentially relevant mixtures that co-locate only with cases
(mixture→ABO cases) and not with non-cases. Thus, it is important to
recognize that using other measures to objectively select association
patterns may result in different top patterns. Some researchers using
non-spatial data mining algorithms have estimated OR directly from the
data mining algorithm (Toti et al., 2016), whereas others have selected
patterns combining high values of lift and significant OR for pruning

patterns (Park et al., 2014). Recently, Vu et al. (2019) undertook an
empirical and theoretical examination of the relations between lift and
odds ratio, founding a positive correlation. In our case, direct estima-
tion of OR was not possible because the spatial data mining algorithm
worked with transactions rather than cases. Thus, while the transac-
tionalization improved the spatial approach, it limited the estimation of
other relevant metrics such as the odds ratio (Jabbar et al., 2018).

4.4. The significance of the mixtures

The allocation of births to areas of exposure allowed testing asso-
ciations using logistic regression. Interestingly, all of the five mixture
patterns identified included particulate matter (PM). Of all routinely
monitored ambient air pollutants, PM is one of the most commonly
linked to PTB, SGA, and LBW (Malley et al., 2017; Lamichhane et al.,
2015; Shah and Balkhair, 2011; Stieb et al., 2015). Our results extended
these findings to industrial sources of PM. Two-mixture patterns in-
cluded carbon monoxide, which had also previously been identified as
associated with ABO in studies using monitored data (Stieb et al., 2012;
Qian et al., 2016). The volatile organic compounds (VOCs), toluene,
and xylene, included in the mixture patterns, have previously exhibited
associations with ABO as members of the benzene, toluene, ethylben-
zene, xylene (BTEX) group (Aguilera et al., 2010; Ghosh et al., 2012).
Volatile organic compounds, as a group, have also been associated with
ABO (Chang et al., 2017), but we are not aware of direct evidence
explicitly linking the other three VOCs found in our mixture patterns, 2-
butoxyethanol, n-butyl alcohol and methyl ethyl ketone with ABO. In-
terestingly, all, but n-butyl alcohol, represent recognized or suspected
developmental toxicants (Office of Environmental Health Hazard
Assessment: Resolution 65, 2018). When exploring for existing tox-
icological evidence on mixtures involving the seven chemicals of in-
terest, Kim et al. reported toxicity potentiation when methyl ethyl ke-
tone and toluene were combined (Kim et al., 2014). However, to our
knowledge, this is the first time these chemicals were identified as part
of patterns or mixtures in relation to ABO. The evidence cited here
substantiates the value of the five hypotheses associating chemical
mixtures with ABO described in this paper. Our subsequent assessment
using data from another period also supports, except for PTB, the re-
producibility of the findings. Differences in the amounts emitted for
those chemicals between the two periods may account for the latter
results (Supplemental Table S3). We corroborated that they were
emitted and reported for the 2013–2014 period and that there were no
changes in the NPRI's reporting requirements between the two periods
(Environment and Climate Change Canada, 2019).

Our results support the idea that studying the health effects of
mixtures may further our understanding of the relationships between
air pollution and health. First, we observed that some chemicals were
ubiquitous in the air and were often accompanied by other co-pollu-
tants. For example, the spatial association of ABO and non-ABO with
CO was statistically significant only when other chemicals accompanied
CO. This observation suggests that the existing evidence linking in-
dividual monitored pollutants (e.g., PM, CO) with ABO, may be acting
as proxies of more complex chemical mixtures, showing just the tip of
the iceberg. Second, the mixtures could be conceptualized as entities
with entirely different toxicity from the one derived by just adding the
toxicity of the participating individual chemicals in the mix. Thus, the
products of the reaction could represent a different toxic entity. A re-
cent comprehensive review of the effects of ambient air pollution on
pregnancy outcomes has pointed out inconsistencies in the effects de-
scribed in related epidemiological studies (Klepac et al., 2018). These
discrepancies could be related to variations in the toxicity derived from
the conditions of the local mixtures of air pollutants. It has been shown,
experimentally, that the interplay between PM-composition and PM-
concentration results in a non-linear relation with PM-induced biolo-
gical outcomes (Manzano-León et al., 2016). Finally, we want to em-
phasize that the significance of the chemical interactions within the
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mixtures were not further analyzed as it would have required a different
approach beyond the scope of this paper. The statistical analysis of the
association rules tested here only provides statistical support as a way
to advance them as robust hypotheses.

4.5. Limitations

Limitations of this study are mainly related to the assumptions and
simplifications we made during the research process and to model bias.

Assumptions and simplifications were made based on the available
data. The use of yearly estimations of chemical emissions limited our
capacity to assign individual exposure to the mixtures better. Therefore,
some misclassification bias in exposure is expected. The data on in-
dustrial air emissions from the National Pollutant Release Inventory are
annual estimates and not monitored releases, which forces us to assume
that they were equally present throughout the pregnancy period and
years. This source of data is, however, the only industrial emission data
available for a large number of chemicals emitted to the air. Other
studies have shown the potential of using these data in health research
(Wine et al., 2014). Besides, working with averaged annual exposures
precludes the exploration of time-related windows of susceptibility
during pregnancy, an important issue that should be taken into account,
when possible, in perinatal and air-pollution epidemiology (Wang et al.,
2018). Concerning this point, the use of spatial-temporal data mining
algorithms may provide better insights. The algorithm we used can
incorporate the temporal dimension when temporal data are available
(e.g., using data from air monitoring stations), which is one of our
targets for future research.

Another limitation is the spatial inaccuracy expected in rural areas:
although we had access to all births for the study, we were limited to
using the six-character postal codes, which tend to be vast areas in rural
Alberta.

4.6. Model bias

We acknowledge that the discrepancy between spatial data mining
and GIS methods when assigning exposures to the mothers may produce
biased results. The 10 km circular buffer used in the GIS approximation
only captured the area but not the directionality included in the spatial
data mining. As a result, the estimated exposure areas, from both
methods, did not match exactly. It is known that the propagation of the
uncertainty from using different methods with different con-
ceptualizations and model parameters may introduce bias in the results
(Tasdighi et al., 2018). In order to reduce this bias, we used an in-
dependent data set (2013–2014) to tests the significance of the mixtures
derived from the original data set (2006–2012). All mixtures showed
significance with at least one ABO.

For all of the above, we want to emphasize that this study cannot
imply causation, but rather provides a framework to effectively search
through all combinations of chemicals to discover statistically sup-
ported patterns for further assessment. The spatial data mining algo-
rithm can be applied to any health outcome that has potential spatial
relationships with exposures.

5. Conclusions

We identified potentially hazardous mixtures of industrial pollu-
tants spatially related to the occurrence of ABO in Alberta. The colla-
borative integration facilitated three outputs: (i) tools – the spatial data
mining algorithm, filtering process to reduce all patterns to a more
manageable number of patterns, and GIS methods to assign exposures;
(ii) patterns – the associations of chemical mixtures and ABO; and (iii)
hypotheses – selected subset of patterns for evaluation with conven-
tional epidemiological methods. We extracted interesting association
patterns (candidate hypotheses) from the spatial data mining, then
performed geographic and statistical analyses to assign a measure of

robustness to the selected hypotheses to further validate them as sui-
table research hypotheses. Data science is an exploratory process in
which the significance of the discoveries improves when users interact
with and explore the discovered patterns. Thus, we were able to test the
plausibility of hypotheses derived from spatial data mining on the as-
sociations between industrial air pollutant mixtures and ABO, using an
interdisciplinary methodological framework.

Pregnant mothers may be at higher risk for ABO when exposed to
industrial chemical emissions in mixtures of PM, CO, xylene, toluene,
methyl ethyl ketone, 2-butoxyethanol and n-butyl alcohol.

Future research in basic science (i.e., toxicological studies using
cell-models or animal models) and observational studies using biomo-
nitoring -to corroborate the presence of those chemicals in the body- is
encouraged to test these hypotheses. Those studies can complement our
understanding of the relationships between chemical mixtures and
adverse birth outcomes.
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