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Notation

Here is some common mathematical notation, some of which will be used at various

points in the book.

• Z (the set of integers)

• Q (the set of rational numbers)

• R (the set of real numbers)

• C (the set of complex numbers)

• := or ≡ (defined as)

• ∃ (there exists)

• ∴ (therefore)

• ∀ (for all)

• ∈ (an element of) for example, x ∈ M means x is an element or member of

the set M

• f : X → Y (f is a function from the set X to the set Y ; f is also called a map

or mapping)

• idX : X → X (the identity map from X to X)

• A⇒ B (A implies B)

• A⇐ B (B implies A)

• A⇐⇒ B (A and B are equivalent)

• iff (if and only if)

1
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Part 1

Basics





Chapter 1

Linear Systems & the Gauss
Jordan Method

1.1. Linear Equations

Our entry point into Linear Algebra will be linear equations. Linear equations

appear frequently in such fields as physics, engineering, computer science, and eco-

nomics. Hence, knowing how to solve systems of linear equations and being able

to determine when a system has a unique solution, infinitely many solutions, or

no solution turns out to be quite important. With that said, we begin with the

definition of a linear equation:

Definition 1.1. A linear equation in n variables x1, . . . , xn is any equa-

tion of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, . . . , an, b ∈ R are constants.

Example 1.2. x1 + 4x2 = 12 is a linear equation in 2-variables. Note that

if we are only dealing with 2 variables, we usually use x and y as variables

in place of x1 and x2. The names of the variables are not mportant here.

What is important is the number of variables. Hence, we can also write

x1 + 4x2 = 12 as x+ 4y = 12.

7
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Example 1.3. x + 4y + 0z = 12 is a linear equation in 3-variables. Since

the coefficient of z (i.e., the number multiplying z) is 0, we can abbreviate

this equation as x − 4y = 12 provided that we remember that a solution

to this equation is a triple (a, b, c) which satisfies x + 4y + 0z = 12. For

example, (4, 2, 0) and (4, 2, 10) are both solutions since

4 + 4(2) + 0(0) = 12

4 + 4(2) + 0(10) = 12.

Example 1.4. 3xy + y2 = 1 is not a linear equation. In a linear equation,

the variables are never multiplied together. In other words, a linear equa-

tion is a polynomial of degree 1. An equation which is not linear is called

nonlinear.

At this point, you might be wondering why linear equations are called “linear”? It

turns out that if you plot all solutions to a linear equation in n variables

a1x1 + a2x2 + · · ·+ anxn = b,

the result will be an (n− 1)-dimensional plane and a plane is just a higher dimen-

sional version of a line. At this point, do not worry about the exact meaning of

dimension. Roughly speaking, the dimension refers to the number of degrees of

freedom of the equation. So if you have one equation with n-variables, then n− 1

of the variables can take on any value. However, this fixes the remaining variable

since it has to satisfy the equation. Hence, n−1 degrees of freedom. To make more

sense of this, let’s look at planes in dimension 0, 1, and 2.

Example 1.5. An equation in 1-variable is 2x = 6. There is only one

solution to this equation: x = 3. Hence, the solution is just a single point

located at x = 3 on the real number line.

Example 1.6. An equation in 2-variables is x − y = 0. Rearranging the

equation, we see that the solution is the diagonal line y = x in the xy-plane

which passes through the origin (0, 0) and through the point (1, 1). A line

is a 1-dimensional object. (The dimension is one since one only needs one

parameter or “degree of freedom” to describe it.)
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Example 1.7. An equation in 3-variables is 0x+ 0y+ z = 0. The solution

to this equation is the set {(a, b, 0) | a, b ∈ R}. In other words, the solution

is the entire xy-plane (i.e., a flat, infinitely thin table at z = 0 of infinite

length and width).

From the above examples, the solution to a linear equation in 1-variable is just

a single point; a solution to a linear equation in 2-variables is a straight line; and

a solution to a linear equation in 3-variables is a 2-dimensional plane. In these

examples, the solutions were either a line or some generalization of a line. This

provides some motivation for why linear equations are called “linear”.

1.2. The Gauss Jordan Method

A natural problem in linear algebra is finding the solution to a system of linear

equations. A system of linear equations is just a collection of linear equations where

all the equations use the same set variables. In general, the number of equations

are not equal to the number of variables. For now, we will deal with the case when

the number of equations in the system is equal to the number of variables. As an

example, here is a linear system of two equation in two variables:

5x− 3y = −2

3x+ 2y = 14

This particular system is very easy to solve using basic algebra. In this case, the

system has exactly one solution: x = 2, y = 4. Now suppose that you have to

solve a system with n equations and n variables where n > 2. Naturally, things

are more complicated now. For this reason, we would like to have a systematic

way of solving a system of linear equations. In this section, we will introduce the

famous Gauss Jordan method which provides a very nice way of solving all systems

of linear equations (and not just the ones where the number of equations equals

the number of variables).

The basic idea of the Gauss Jordan method is to use a combination of three

basic transformations to transform a system of linear equations into an equiva-

lent system, one where the solution can be literally read off from the transformed

system. Before we describe what the three transformations are, we need to define

what it means for two linear systems to be equivalent.
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Definition 1.8. Let A and B be two linear systems which use the same set

of variables. A and B are equvialent if every solution of A is a solution of

B and every solution of B is a solution of A.

The three transformations used by the Gauss Jordan method does not alter

the solution set of a linear system. In other words, it preserves the content or

information about a linear system. Here are the three basic transformations of the

Gauss Jordan method:

1. swapping the order of two equations

2. multiplying (or scaling) any equation by a nonzero number

3. adding a multiple of one equation to a different equation

Exercise 1.9. Prove that applying any combination of the three basic trans-

formations to a linear system will not alter the solution set of the original

system.

When we apply the Gauss Jordan method, we express the linear equations as

an augmented matrix. For example, for the linear system

2x+ 4y = 10

−x+ y = −2,

the augmented matrix is

(
2 4 10

−1 1 −2

)
.

Note that the first row is simply the first equation and the second row is the second

equation. The first column are the coefficients of the x-variable; the second column

are the coefficients of the y-variable; and the last column are the numbers appearing

to the right of the equal sign.

Exercise 1.10. A linear system in 3-variables x, y, and z has the following

augmented matrix:  1 4 −3 −8

2 0 −7 2

−3 5 −8 6

 .

Write down the equations for this linear system.
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Since we work with augmented matrices when applying the Gauss Jordan

method, the three basic transformations for a linear system are expressed as three

row operations:

1. swapping any two rows (swapping rows i and j will be denoted as

Ri ↔ Rj)

2. scaling a multiple of a row by a nonzero number (scaling row i by c 6= 0

will be denoted as cRi → Ri)

3. adding a multiple of one row to a different row (adding c times row i

to row j will be denoted as cRi +Rj → Rj)

We now illustrate the Gauss Jordan method with two examples. The first

example is a linear system in 2-variables and 2-equations and the second is a linear

system in 3-variables and 3-equations.

Example 1.11.

4x+ 5y = 6

x+ 4y = −4

The first thing we do is express the above system as an augmented matrix:(
4 5 6

1 4 −4

)
.

The goal is to use a series of basic transformations to transform the above

augmented matrix into one that looks like this:(
1 0 a

0 1 b

)
.

The above matrix is said to be in reduced row echelon formHere is one way

to do this:

1. R1 ↔ R2 (
1 4 −4

4 5 6

)
.

2. We now use the left-most ”1” in the first equation to zero out everything

below it. This “1” is called a pivot. In other words, we apply −4R1 +

R2 → R2 which gives (
1 4 −4

0 −11 22

)
.

3. − 1
11R2 → R2 (

1 4 −4

0 1 −2

)
.
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4. Use the middle “1” in the second equation to zero out everything above

it. This “1” is also a pivot. In other words, we apply −4R2+R1 → R1:(
1 0 4

0 1 −2

)
.

An augmented matrix of the above form is in reduced row echelon form.

The last augmented matrix represents the following linear system:

x+ 0y = 4

0x+ y = −2,

Hence, the solution is x = 4, y = −2.

Example 1.12.

2x+ y + z = 4

x+ y + 4z = 0

3x+ 2y + 3z = 6

As before, we express the system as an augmented matrix 2 1 1 4

1 1 4 0

3 2 3 6

 .

Here is one way to put the augmented matrix in reduced row echelon form:

1. R1 ↔ R2  1 1 4 0

2 1 1 4

3 2 3 6

 .

2. Use the left most “1” in the first row as a pivot: −2R1 +R2 → R2 and

−3R1 +R3 → R3  1 1 4 0

0 −1 −7 4

0 −1 −9 6

 .

2. −R2 → R2  1 1 4 0

0 1 7 −4

0 −1 −9 6

 .



1.2. The Gauss Jordan Method 13

3. Next we use the leftmost “1” in the second row as a pivot to zero out

everything above it and below it. −R2 +R1 → R1 and R2 +R3 → R3 1 0 −3 4

0 1 7 −4

0 0 −2 2

 .

4. − 1
2R3 → R3  1 0 −3 4

0 1 7 −4

0 0 1 −1

 .

5. Use the leftmost “1” in the third row as a pivot. 3R3 +R1 → R1 and

−7R3 +R2 → R2  1 0 0 1

0 1 0 3

0 0 1 −1

 .

We now have the augmented matrix in reduced row echelon form. The

solution is x = −1, y = 3, and z = −1. Note that once we have the

solution we can substitute it back into the original linear system and

check that it actually works.

In Examples 1.11 and 1.12, the augmented matrix in reduced echelon form took

the following forms respectively

(
1 0 a

0 1 b

)
and

 1 0 0 a

0 1 0 b

0 0 1 c

 .

These observations motivate the following definition:

Definition 1.13. The n× n matrix

In =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


is called the identity matrix of size n. (In components, In is the n × n
matrix whose (i, j)-entry is Iij = 0 for i 6= j and whose (i, i)-entry is Iii =

1.)

The reason for calling In the identity matrix will become clear when we discuss

matrix multiplication later on. At this point, we have used the word “matrix” in

reference to the augmented matrix of a linear system and the identity matrix. Let’s
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take a moment to formally define it before continuing:

Definition 1.14. An n ×m matrix is an array of numbers consisting of

n rows and m columns. If n = m, that is, the matrix has the same number

of rows and columns, the matrix is called a square matrix. If m = 1 and

n > 1, then the matrix is called a column vector of size n. If n = 1 and

m > 1, then the matrix is called a row vector of size m.

At this point, do not worry about the meaning of the word “vector” appearing in

Definition 1.14. We will get to vectors soon enough.

Example 1.15.

1. A 2× 3 matrix: (
3 1 −1

5 −2 4

)
2. A 2× 1 matrix (or column vector of size 2):(

−2

3

)

Remark 1.16. It is not always true that a linear system will have a unique

solution. A linear system with n-equations and n-variables will have a unique

solution if and only its augmented matrix can be transformed into a matrix

of the following form: (
In b

)
where b is a column vector of size n.

We conclude this section with a simple example of a linear system whose augmented

matrix cannot be expressed in the form given by Remark 1.16:

Example 1.17.

−3x+ 2y = 2

6x− 4y = 4

The augmented matrix is (
−3 2 2

6 −4 −4

)
.

Let’s try to put it in reduced row echelon form and see what happens.
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We apply the following row operation: 2R1 +R2 → R2(
−3 2 2

0 0 0

)
.

The new augmented matrix shows that the original system is actually de-

fined by one equation: the line −3x + 2y = 2. Hence, every point on the

aforementioned line is a solution to the original system. The solution set is

the infinite set

{(a, 3

2
a+ 1) | a ∈ R}.

1.3. More Gauss-Jordan

In this section, we consider a few examples of linear systems which have infinitely

many solutions or no solution.

Example 1.18.

x+ 2y − 7z = −7

−2x+ y + 4z = −6

−x+ y + z = −5

The augmented matrix is 1 2 −7 −7

−2 1 4 −6

−1 1 1 −5

 .

Let’s put it in reduced echelon form (REF):

1. 2R1 +R2 → R2 and R1 +R3 → R3 1 2 −7 −7

0 5 −10 −20

0 3 −6 −12

 .

2. 1
5R2 → R2  1 2 −7 −7

0 1 −2 −4

0 3 −6 −12

 .

3. −2R2 +R1 → R1 and −3R2 +R3 → R3 1 0 −3 1

0 1 −2 −4

0 0 0 0
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The new system (which is equivalent to the original) has two equations:

x − 3z = 1 and y − 2z = −4. Note that given an arbitrary value for z,

the values of x and y are uniquely given by x = 3z + 1 and y = 2z − 4.

Hence, the solution set for the original system is x = 3a + 1, y = 2a − 4,

z = a where a is any real number. In set notation, the solution set is

{(3a+ 1, 2a− 4, a) | a ∈ R}.

Exercise 1.19. Put the following augmented matrix in reduced echelon form

(REF):  0 0 2 −2 2

3 3 −3 9 12

4 4 −2 11 12

 .

Example 1.20. Consider the linear system

x+ 2y + z = 1

x− y + 2z = −1

2x+ y + 3z = 2.

The augmented matrix for this system is then 1 2 1 1

1 −1 2 −1

2 1 3 2

 .

Let’s try to put the augmented matrix in REF:

1. −R1 +R2 → R3 and −2R1 +R3 → R3 1 2 1 1

0 −3 1 −2

0 −3 1 0

 .

2. −R2 +R3 → R3  1 2 1 1

0 −3 1 −2

0 0 0 2

 .

The last row of the transformed augmented matrix represents the equation

0x+ 0y + 0z = 2 which has no solution. Hence, the original system has no

solution.
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Definition 1.21. A linear system in n-variables x1, . . . , xn is homoge-

neous if every equation is set equal to zero, that is, every equation has the

form

a1x1 + a2x2 + · · ·+ anxn = 0

where a1, . . . , an ∈ R.

Note that every homogenous linear system in n-variables has at least one solution,

namely, x1 = x2 = · · · = xn = 0.

Example 1.22. Let’s find the general solution for the homogenous system

whose augmented matrix is 1 1 1 3 0

0 1 −1 4 0

2 1 0 −1 0

 .

Here is one way to put it in REF:

1. −2R1 +R3 → R3  1 1 1 3 0

0 1 −1 4 0

0 −1 −2 −7 0

 .

2. −R2 +R1 → R1 and R2 +R3 → R3 1 0 2 −1 0

0 1 −1 4 0

0 0 −3 −3 0

 .

3. − 1
3R3 → R3  1 0 2 −1 0

0 1 −1 4 0

0 0 1 1 0

 .

4. −2R3 +R1 → R1 and R3 +R2 → R2 1 0 0 −3 0

0 1 0 5 0

0 0 1 1 0

 .

The augmented matrix is now in REF. The linear system representing the

transformed augmented matrix is

x1 − 3x4 = 0, x2 + 5x4 = 0, x3 + x4 = 0.

Every equation contains x4. Once a value of x4 is chosen, all the other

variables are uniquely determined. So a general solution for this system is

x1 = 3r, x2 = −5r, x3 = −r, x4 = r, ∀ r ∈ R
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Chapter 1 Exercises

Solve the following linear systems by the Gauss-Jordan Method. If a system has

infinitely many solutions, give the general form of the solution. If a system has no

solution, then write no zolution and give a brief explanation why.

1.

5x− y + 2z = 17

2x+ 2y + z = 5

x+ y + 2z = 7

2.

2x1 + 4x2 + 8x3 − 2x4 = −6

3x1 − x2 + 2x3 − x4 = 2

x1 + x2 + x3 + x4 = 2

4x1 + 3x2 + 2x3 + x4 = 3

3.

x+ 2y + 3z = 14

2x− y + z = 3

x− 3y − 2z = 1

4.

x1 + 4x2 − 3x3 − 7x4 = −8

3x1 − x2 − x3 + 2x4 = 5

2x1 + 2x2 − 5x3 + 2x4 = −8

5.

x1 + 2x2 + 3x3 − x4 = 1

x1 + x2 + x3 − x4 = 2

2x1 − 3x2 + 2x3 + x4 = 3

2x1 − 2x2 + 2x3 − x4 = 4

6.

x+ 2y + 3z = 0

x+ 4y + 9z = −4

x+ 16y + 81z = −64
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7.

v + w + x− 5y + 4z = 7

2v + 2w + x− 8y + 5z = 9

v + 2w − x− 2y − z = −4

8.

4x+ 2y + 2z = 0

x+ 2y + z = 0

x− 4y − z = 0

9.

x+ 2y + 2z = 5

3x− 4y + z = −10

x+ y + z = 2

10.

x1 + x2 + x3 − 6x4 − 2x5 = 5

x1 + 2x2 + x3 − 7x4 − 3x5 = 9

x1 + 2x2 + 2x3 − 9x4 − 2x5 = 9

11.

w + x+ y + z = 5

2w + x+ 3y − 4z = −5

w + 2x+ 2y + z = 6

w − x+ y + z = 7

12.

x1 + x3 + x4 = 2

2x1 + x2 + x3 + x4 + x5 = 2

3x2 + x4 + 2x5 = 1

4x3 + x4 + x5 = −4

x1 + 2x4 + x5 = 3

Express each augmented matrix as a system of linear equations.

13.  2 4 1 0 -1

1 -1 1 1 5

0 1 1 -3 6
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14. 
1 −2 3 −4 5

−6 1 2 9 7

0 2 1 4 10

3 0 5 0 1


15.  1 -1 1 2

2 -1 1 5

1 2 1 3


Put each augmented matrix in reduced row echelon form:

16.  1 1 4 -1

2 2 8 -2

3 1 6 -5


17.  1 2 3 2

1 4 9 6

1 16 81 66


18. 

1 2 3 −1 1

3 2 1 −1 1

2 3 1 1 1

2 2 2 −1 1





Chapter 2

Rn as a Vector Space

2.1. Some Motivation

Some quantities in everyday life require only one real number for a complete de-

scription. For example, one number is needed to describe the height or weight of a

person. Some quantities, on the other hand, require more than one real number for

a complete description. One example is the wind. What information is required to

describe the wind? Well, for one thing, you need to know its speed and direction.

For a complete description, you also need to know its location. For the moment, we

will put that third piece of information aside and focus only on the first two pieces

of information which define the wind velocity. In other words,

wind velocity = wind speed + wind direction.

Wind velocity is an example of a vector. If we knew the wind velocity at every

point or location of a space, then we would have a vector field which would provide

a complete description of the wind. Vector fields are objects which you encounter

in a calculus III course or a physics course on electricity (think electromagnetic

field). Since this is a book on linear algebra, we are going to steer clear of vector

fields and just focus on vectors. From our point of view then, we are interested in

what is happening at only one point in space as opposed to worrying about what

is happening at every location of space.

Let’s return to our wind velocity example. To make things even simpler, let’s

suppose that the wind direction is parallel to the ground (this is how the wind is

described in the wind forecast). How might we depict the wind velocity at some

fixed point O in, say, Central Park? One way is to represent the wind velocity as an

arrow in the xy-plane. The length of the arrow will equal the wind speed and the

direction of the arrow will (naturally) represent the wind direction. If we take the

coordinates (0, 0) as representing the point O, then we can indicate that the wind

21
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velocity is at point O by drawing the arrow with its tail at (0, 0). An example of

this representation is given in Figure 1. There the arrow has been labeled as ~u. It

begins at O and terminates at the point P (4, 3). Using the Pythagorean theorem,

the length of the arrow is 5. If we work in units of miles per hour (mph), then

the arrow (or vector) u in the xy-plane represents a 5 mph wind at a point O in

Central Park which is blowing in a north easterly direction (if we take the positive

y-axis as north).

Figure 1. wind velocity at a point O in Central Park represented as an arrow

in the xy-plane

So the take away from this example is that an arrow in the xy-plane whose

tail is located at the origin (0, 0) is an example of an object called a vector. In this

chapter, all vectors are going to be arrows whose tails are located at the origin.

Since the tail of a vector is (0, 0), a vector is completely determined by the location

of the head of the arrow. The xy-plane, the set of all arrows with two components,

is an example of a vector space. However, its not just a set. It has a structure

to it which allows two vectors to be added to produce a new vector. Moreover,

vectors can also be scaled, which has the effect of altering their length. All of this

will be made precise in the next section.

When we talk about the xy-plane as a vector space, its more common to call

it R2. (More formally, R2 is the Cartesisan product of two copies of R.) As a set,

R2 is simply

R2 := R× R = {(a, b) | a, b ∈ R}.
Once again, this is just the xy-plane. R2 is an example of a 2-dimensional vector

space. The set of real numbers R1 := R is an example of a 1-dimensional vector

space and

R3 := R× R× R = {(a, b, c) | a, b, c ∈ R}
is an example of a 3-dimensional vector space (see Figure 2.1). Intuitively, the

dimension of a vector space refers to the number of independent directions of the
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space. In R1, one can only move left-right; in R2, one can move left-right and

up-down; and in R3, one can move left-right, up-down, and front-back. Of course,

having only an intuitive definition (while helpful) is not sufficient from the point of

view of mathematics. We will come to the precise meaning of dimension later in

this chapter.

Since we live in a world of 3-dimensions, it’s very hard, if not impossible, to

visualize more than 3-dimensions. However, from the point of view of algebra, there

is nothing to stop us from adding more components to a vector and considering n-

dimensional vector spaces like Rn for any positive integer n. While we may no longer

Figure 2. xyz-coordinate axis system

be able to visualize these higher dimensional spaces, we can still understand and

work with them using algebra, which is precisely what we will do in this chapter.

2.2. The Vector Space Structure of Rn

Rn, for an integer n ≥ 1, is the Cartesian product of n copies of R. As a set, Rn is

given by

Rn := {(a1, a2, . . . , an) | a1, . . . , an ∈ R}.

If u is a point of Rn and we wish to regard it as an “arrow” which runs from the

origin of Rn to the point u, we will emphasize this view by denoting the u as ~u. This

arrow is an example of what we call a vector and Rn (which contains all vectors

with n components) is an example of a real n-dimensional vector space. (We

will give the precise definition of dimension later.) The vector space structure on

Rn is defined as follows:
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Definition 2.1. Let

~u = (a1, a2, . . . , an), ~v = (b1, b2, . . . , bn)

be vectors in Rn. Rn has two natural operations:

1. vector addition

~u+ ~v := (a1 + b1, a2 + b2, . . . , an + bn)

2. scalar multiplication

r~u := (ra1, ra2, . . . , ran) for r ∈ R.

To develop some geometric intuition, we sketch vector addition and scalar multi-

plication for R2 in Figures 3 and 4. From Figure 3, we see that ~u + ~v is obtained

Figure 3. Vector addition in R2

by moving the tail of ~v (in a parallel manner) to the head of ~u. Of course, one can

also obtain ~u+ ~v by moving the tail of ~u (in a parallel manner) to the head of ~v.

In Figure 4, we see that scaling a vector ~u by a number r > 0 results in a vector

r~u which points in the same direction as ~u, but has a length of rL. On the other

hand, if r < 0, then r~u points in the direction opposite of ~u and has a length of

|r|L.

Definition 2.2. The zero vector of Rn is the element ~0 ∈ Rn defined by
~0 := (0, 0, . . . , 0).

The next result follows easily from the defintion of vector addition and scalar mul-

tiplication in Rn:
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Figure 4. Scalar multiplication in R2

Proposition 2.3. Let ~u, ~v, ~w ∈ Rn and let r, s ∈ R. Then

(1) ~u+ ~v = ~v + ~u (commutativity)

(2) (~u+ ~v) + ~w = ~u+ (~v + ~w) (associativity)

(3) ~u+~0 = ~0 + ~u = ~u (zero property)

(4) ~u+ (−~u) = (−~u) + ~u = ~0 (additive inverse)

(5) r(~u+ ~v) = r~u+ r~v (distributive property 1)

(6) (r + s)~u = r~u+ s~u (distributive property 2)

(7) r(s~u) = (rs)~u (associativity of scalar multiplication)

(8) 0~u = ~0 (scalar multiplicatin by 0)

(9) 1~u = ~u (scalar multiplication by 1)

Remark 2.4. Proposition 2.3 is literally the blueprint for the definition of

an abstract vector space. More formally, a real vector space is a set V with

a zero element 0V and a vector addition operation

V × V → V, (u, v) 7→ u+ v

and a sclar multiplication operation:

R× V → V, (r, u) 7→ ru

which satisfies conditions (1)-(9) in Proposition 2.3. We will return to ab-

stract vector spaces later on.

Definition 2.5. Let ~v ∈ Rn. ~v is a linear combination of vectors

~u1, ~u2, . . . , ~um ∈ Rn if there exists c1, c2, . . . , cm ∈ R such that

~v = c1~u1 + c2~u2 + · · ·+ cm~um.
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Example 2.6. Let ~u = (2,−1, 3), ~v = (−3, 2, 2), and ~w = (−4, 3, 7). Then

~w is a linear combination of ~u and ~v since ~w = ~u+ 2~v.

Exercise 2.7. Let ~u = (1, 0, 0), ~v = (0, 1, 0), and ~w = (1, 3, 7). Show that

~w is not a linear combination of ~u and ~v.

Given a vector ~v ∈ Rn and a set of vectors ~u1, . . . , ~um ∈ Rn, a natural question

to ask is whether ~v is a linear combination of ~u1, . . . , ~um. Answering this question

amounts to solving a system of linear equations in m variables and n equations.

Hence, we can use the Gauss Jordan method to solve these types of problems.

Example 2.8. Determine if ~v = (2,−6, 9) is a linear combination of ~u1 =

(1,−1, 2) and ~u2 = (2, 2,−1). If so, find c1, c2 ∈ R such that ~v = c1~u1+c2~u2.

SOLUTION: If ~v is a linear combination of ~u1 and ~u2, then

(2,−6, 9) = c1(1,−1, 2) + c2(2, 2,−1)

for some c1, c2 ∈ R. Comparing the components of the vectors on the left

and right sides of the equations gives the linear system

c1 + 2c2 = 2

−c1 + 2c2 = −6

2c1 − c2 = 9.

The augmented matrix for this system is 1 2 2

−1 2 −6

2 −1 9

 .

We now put it in reduced row echelon form:

1. R1 +R2 → R2, −2R1 +R3 → R3 1 2 2

0 4 −4

0 −5 5


2. 1

4R2 → R2  1 2 2

0 1 −1

0 −5 5
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3. −2R2 +R1 → R1, 5R2 +R3 → R3 1 0 4

0 1 −1

0 0 0


Hence, the system has a (unique) solution c1 = 4 and c2 = −1 which shows

that ~v is a linear combination of ~u1 and ~u2. Specifically, ~v = 4~u1 − ~u2.

2.3. Subspaces of Rn

Definition 2.9. A subspace of Rn is a subset V of Rn which is closed

under vector addition and scalar multiplication, that is,

(1) ~v + ~w ∈ V for all ~v, ~w ∈ V
(2) r~v ∈ V for all r ∈ R and ~v ∈ V .

Example 2.10. Let V := {(a, b, a + 2b) | a, b ∈ R}. To show that V is a

subspace of R3, we need to check that V is closed under vector addition and

scalar multiplication. So let ~v1 = (a1, b1, a1 +2b1) and ~v2 = (a2, b2, a2 +2b2)

be arbitrary elements of V . Then

~v1 + ~v2 = (a1 + a2, b1 + b2, (a1 + a2) + 2(b1 + b2)).

Setting a = a1 +a2 and b = b1 + b2 in the defintion of V , we see that ~v1 +~v2
is an element of V . Also, for r ∈ R, we have

r~v1 = (ra1, rb1, ra1 + 2rb1).

Setting a = ra1 and b = rb1 in the definition of V , we see that r~v1 ∈ V .

Hence, V is a subspace of R3.

Example 2.11. Let Z be the set of integers. For any integers m,n, we

have m + n ∈ Z. This shows that Z is closed under the vector addition

of R. However, Z is not closed under scalar multiplication. For example,
1
32 = 2

3 /∈ Z. From this, we conclude that Z is not a subspace of R.
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Example 2.12. Let V := {(a, a2) | a ∈ R}. We now verify that V is not

closed under scalar multiplication. To see this, let ~u = (1, 1) ∈ V . It’s easy

to see that 2~u = (2, 2) cannot lie in V . Indeed, if it did, there must exist

exist a number a ∈ R such that

(2, 2) = (a, a2).

The above equation implies a = 2 and a2 = 2 which is ridiculous. Hence,

2~u /∈ V , which shows that V is not a subspace of R2.

Recall that a homogeneous linear system in n-variables x1, x2, . . . , xn is a linear

system where the linear equations are all set to zero. In other words, every linear

equation is of the form

a1x1 + a2x2 + · · ·+ anxn = 0

where a1, . . . , an ∈ R. An equation of this form is called a homogeneous linear

equation. The following result shows that the space of solutions of a homogenoeous

linear system is subspace.

Theorem 2.13. The solution space of a homogeneous linear system in n-

variables is a subspace of Rn.

Proof. Let L be the set of linear equations of a homogeneous linear system in

n-variables x1, . . . , xn. Let S ⊂ Rn be the set of solutions for the homogeneous

linear system L. Note that S is not empty since it contains the zero vector ~0 =

(0, . . . , 0) ∈ Rn. Suppose ~u = (u1, u2, . . . , un) and ~v = (v1, v2, . . . , vn) are solutions

of this system. For S to be a subspace, we need to show that

~u+ ~v ∈ S, r~u ∈ S ∀ r ∈ R.

Let a1x1 + · · · anxn = 0 be any linear equation of the system, that is, it is an

arbitrary element of L. Since ~u and ~v are solutiions to this system, we have

a1u1 + a2u2 + · · ·+ anun = 0

a1v1 + a2v2 + · · ·+ anvn = 0.

Substituting

~u+ ~v = (u1 + v1, u2 + v2, . . . , un + vn)

into the equation a1x1 + · · · anxn = 0 gives

a1(u1 + v1) + · · ·+ an(un + vn) = (a1u1 + · · ·+ anun) + (a1v1 + · · ·+ anvn)

= 0 + 0

= 0.
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Hence, ~u + ~v is a solution to a1x1 + · · · anxn = 0. Since this equation was chosen

arbitrarily from L, it follows that ~u+~v is a solution to every equation in L. Hence

~u+ ~v ∈ S.

In addition, for r ∈ R, we also have

a1(ru1) + · · ·+ an(run) = r[a1u1 + · · ·+ anun]

= r0

= 0.

Hence, r~u is also a solution to a1x1 + · · · anxn = 0 and therefore a solution to every

equation in L. In other words, r~u ∈ S. This completes the proof. �

For convenience and later use, let us also define the “subspace of a subspace”:

Definition 2.14. Let V be a subspace of Rn. A subspace of V is a subset

W of V such that

(i) ~w + ~w′ ∈W for all ~w, ~w′ ∈W
(ii) r ~w ∈W for all r ∈ R, w ∈W .

Exercise 2.15. Show that if W is a subspace of V and V is a subspace of

Rn, then W is also a subspace of Rn.

When we introduce the general definition of a vector space, we will see that there

is really only one definition of a vector subspace.

2.4. Linear Independence, Bases, & Dimension

For the remainder of this chapter, we will use the term “vector space” to mean any

subspace of Rn. Since Rn is also a subspace of itself, the term “vector space” also

includes Rn. Later on in Chapter 5, when we finally give the general definition of

a vector space, we will see that Rn and all its subspaces are simply examples of

vector spaces (albeit important ones). Not every vector space is Rn or one of its

subspaces. This is why linear algebra has a wide range of applicability in so many

areas of mathematics, physics, statistics, and engineering. We can think of Rn

and its subspaces as a concrete “warm-up” for the general theory of vector spaces.

Indeed, all of the key ideas and results about vector spaces are on full display by

working with Rn and its subspaces. For this reason, Chapter 5 will feel very much

like déjà vu as we revisit all the essential definitions and results of the previous

chapters and put them in a more general setting.

Ok, that was a rather long digression! Its time to get back to business. We

begin this section with the idea of linear independence which is fundamental to

general theory of vector spaces.
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Let V be a vector space (i.e. V is a subspace of Rm for some m ≥ 1) and

let ~v1, . . . , ~vn ∈ V . Then ~v1, . . . , ~vn are called linearly independent if

a1~v1 + a2~v2 + · · ·+ an~vn = 0

only when a1 = a2 = · · · = an = 0. Otherwise, ~v1, . . . , ~vn are called

linearly dependent.

Example 2.16. Let ~e1 = (1, 0) and ~e2 = (0, 1). It is easy to see that ~e1 and

~e2 are linearly independent. Indeed, since

a~e1 + b~e2 = (a, b),

it follows that a~e1 + b~e2 = ~0 if and only if a = b = 0. Hence, ~e1 and ~e2 are

linearly independent.

Example 2.17. Let ~v1 = (1, 1, 0), ~v2 = (−1, 1, 0), and ~v3 = (0, 2, 0). Since

~v1 + ~v2 − ~v3 = ~0,

it follows that ~v1, ~v2, and ~v3 are linearly dependent.

Definition 2.18. Let V be a vector space. ~v1, . . . , ~vn is said to span V if

for any ~v ∈ V there exists a1, . . . , an ∈ R such that

a1~v1 + a2~v2 + · · ·+ an~vn = ~v.

In other words, every element of V is a linear combination of ~v1, . . . , ~vn.

When a set of vectors {~v1, . . . , ~vn} span a vector space V , we write

V = span{~v1, . . . , ~vn}.

Example 2.19. The vectors ~e1 and ~e2 in Example 2.16 span R2.

Example 2.20. The vectors ~v1 = (1, 1, 0), ~v2 = (−1, 1, 0), ~v3 = (0, 2, 0),

and ~v4 = (0, 0, 2) span R3. Indeed let ~u = (a, b, c) be an arbitrary vector of

R3. Then
1

2
(a+ b)~v1 +

1

2
(b− a)~v2 + 0~v3 +

c

2
~v4 = ~u

Since we do not actually use ~v3, the following is also true:

V = span{~v1, ~v2, ~v3, ~v4} = span{~v1, ~v2, ~v4}.

For completeness, we also point out the following fact:
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Proposition 2.21. Let ~v1, ~v2, . . . , ~vk be vectors in Rn. Define

S := {a1~v1 + · · ·+ ak~vk | a1, . . . , ak ∈ R}.

Then S is a subspace of Rn. In particular, S = span{~v1, . . . , ~vk}.

Proof. Let ~u,~v ∈ S. By definition of S, we have

~u = a1~v1 + · · ·+ ak~vk

~v = b1~v1 + · · ·+ bk~vk

for some a1, . . . , ak, b1, . . . , bk ∈ R. Then

~u+ ~v = (a1 + b1)~v1 + · · ·+ (ak + bk)~vk ∈ S.

Also, for r ∈ R, we have

r~u = (ra1)~v1 + · · ·+ (rak)~vk ∈ S.

Hence, S is a subspace of Rn. �

Next, we introduce the notion of a vector space basis which is another fundamental

idea in the theory of vector spaces:

Definition 2.22. Let V be a vector space. A basis of V is an ordered set

{~v1, . . . , ~vn} such that

(i) {~v1, . . . , ~vn} is linearly independent

(ii) V = span{~v1, . . . , ~vn}

Proposition 2.23. Let V be a vector space and let {~v1, . . . , ~vn} be a basis

on V . Then every element of V is a unique linear combinaton of the basis

elements {~v1, . . . , ~vn}.

Proof. Let ~v ∈ V . Since a basis spans V , we can express ~v as a linear combination

of the basis elements:

~v = a1~v1 + a2~v2 + · · ·+ an~vn

for some a1, a2, . . . , an ∈ R. We must show that the ai’s are in fact unique. So let’s

suppose that ~v can also be expressed as

~v = b1~v1 + b2~v2 + · · ·+ bn~vn

for some b1, b2, . . . , bn ∈ R. We now show that ai = bi for i = 1, . . . , n. Indeed,

from the equation

a1~v1 + a2~v2 + · · ·+ an~vn = ~v = b1~v1 + b2~v2 + · · ·+ bn~vn,

we see that

(a1 − b1)~v1 + · · ·+ (an − bn)~vn = ~0.
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Since a basis in also linearly independent, the only way the left side of the above

equation can sum to zero is if ai − bi = 0 for i = 1, . . . , n. Hence, ai = bi for

i = 1, . . . , n. This completes the proof. �

Example 2.24. The vector space Rn has a natural basis {~e1, ~e2, . . . , ~en}
where ~ei is the vector in Rn whose components are all zero except for trhe

i-th component which is 1. This basis is typically called the standard basis

on Rn.

Exercise 2.25. Verify that the standard basis on Rn is indeed a basis on

Rn, that is, show that it is linearly independent and spans Rn.

Note that a vector space has many different bases (actually infintely many). The

following example provides a simple demonstration of this:

Example 2.26. Consider the vector space R2 and let {~e1, ~e2} denote the

standard basis on R2. Then for any a ∈ R,

{~e1, ~e2 + a~e1}

is also a basis on R2. Note that since a basis is an ordered set, the basis

{~e2, ~e1} is actually different than the basis {~e1, ~e2} (even though both contain

the same basis elements).

While a vector space has many different bases, it turns out that the number of

elements in each basis is always the same. We state this important fact formally

with the following theorem:

Theorem 2.27. Let V be a vector space. Every basis on V has the same

number of basis elements.

We will prove this theorem shortly. In Chapter 1, we gave a vague definition of

vector space dimension as somehow being the number of “independent directions”

(or degrees of freedom) of a vector space. Here, at last, is the precise definition of

vector space dimension:

Definition 2.28. Let V be a vector space. The dimension of V (denoted

as dimV ) is the number of elements in a basis of V (i.e., the cardinarlity

of the basis).

Note that for the definition to make sense (or be well defined), the definition

requires any two bases of V to have the same number of basis elements. This is

why Theorem 2.27 is critical to the definition of vector space dimension. To prove
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Theorem 2.27, we need to introduce a technique of proof called proof by inductiion.

This technique works as follows: let Pn be a property which depends on an integer

n. We wish to prove that this property holds for all integers n ≥ K where K is

some integer (which in practice is typically 0 or 1). The strategy has two steps.

The first step is to prove that PK is true. The second step is to prove that if Pn is

true (for some arbitrary n), then Pn+1 must also be true. The last step is called the

inductive step. In this way, one has proven that Pn holds for all integers n ≥ K.

Indeed, if one completes these two steps, then one has shown that PK+1 is true

which in turn implies that PK+2 is true which in turn implies that PK+3 is true

and so on and so on. The following definitions will prove useful in establishing

Theorem 2.27.

Definition 2.29. Let X := {1, 2, . . . , n}. The set Sn of permutations of X

is the set of all one-to-one and onto maps σ : X → X.

Remark 2.30. Recall that σ : X → X is one-to-one means that if σ(i) =

σ(j) for some i, j ∈ X, then i = j. The statement that σ is onto means that

for any k ∈ X, there exists an i ∈ X such that σ(i) = k.

Definition 2.31. Let V be a vector space and let B := {~v1, . . . , ~vn} be a basis

of V . A reordering of the basis B is a new basis Bσ := {~vσ(1), ~vσ(2), . . . , ~vσ(n)}
where σ is some element of Sn.

Remark 2.32. Note that if Bσ is a reordering of a basis B of a vector space

V , then Bσ and B contains the same set of basis elements, but the order of

those elements are different. Recall that a basis is defined to be an ordered

set. Hence, changing the order of a basis results in a different basis.

Example 2.33. Consider the standard basis {~e1, ~e2, ~e3} of R3. Then

{~e2, ~e3, ~e1} is a reordering of the standard basis. Note that the permuta-

tion σ ∈ S3 associated with this reodering is given by σ(1) = 2, σ(2) = 3,

σ(3) = 1.

Theorem 2.27 is a direct consequence of the following well known theorem:
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Theorem 2.34 (Replacement Theorem). Let V be a vector space. Let

B := {~v1, ~v2, . . . , ~vn} be a basis on V and let U := {~u1, . . . , ~um} be a linearly

independent subset of V . Then m ≤ n and there is a reordering Bσ of B
such that a new basis Bσ,m can be obtained by replacing the first m basis

vectors of Bσ by those of U . In other words,

Bσ,m := {~u1, ~u2, . . . , ~um, ~vσ(m+1), . . . , ~vσ(n)}

is a basis of V .

Proof. We prove this by induction on the cardinality of U . First, consider the case

where U = {~u1}. Since B is a basis, we have

~u1 = a1~v1 + a2~v2 + · · ·+ an~vn

for some (unique) ai ∈ R, i = 1, . . . , n. Since ~u1 6= 0, there must be some ai 6= 0.

Let σ ∈ Sn be any permutation such that σ(1) = i. Then aσ(1) = ai and we can

reorder the above sum as

~u1 = aσ(1)~vσ(1) + aσ(2)~vσ(2) + · · ·+ aσ(n)~vσ(n). (1)

Since aσ(1) = ai 6= 0, we can solve for ~vσ(1):

~vσ(1) =
1

aσ(1)
~u1 −

aσ(2)

aσ(1)
~vσ(2) − · · · −

aσ(n)

aσ(1)
~vσ(n)

Since

Bσ := {~vσ(1), ~vσ(2), . . . , ~vσ(n)}
is a basis of V and ~vσ(1) is a linear combination of ~u1, ~vσ(2), . . . , ~vσ(n), it follows

that

V = span{~u1, ~vσ(2), . . . , ~vσ(n)}.
Let Bσ,1 := {~u1, ~vσ(2), . . . , ~vσ(n)}. We now show that Bσ,1 is linearly independent.

So suppose that

c1~u1 + c2~vσ(2) + · · ·+ cn~vσ(n) = ~0. (2)

Consider first the case where c1 = 0. Then

c2~vσ(2) + · · ·+ cn~vσ(n) = ~0.

Since ~vσ(2), . . . , ~vσ(n) is linearly independent, it follows that c2 = c3 = · · · = cn = 0.

Now suppose that c1 6= 0. Then we can divide both sides of (2) by c1 to obtain

~u1 + c′2~vσ(2) + · · ·+ c′n~vσ(n) = ~0, (3)

where c′k = ck/c1 for k = 2, . . . , n. Now let us substitute (1) into (3):

aσ(1)~vσ(1) + (c′2 + aσ(2))~vσ(2) + · · ·+ (c′n + aσ(n))~vσ(n) = ~0.

Since the vectors in the above sum are linearly indpendent, we have aσ(1) = 0.

However, this is a contradiction since aσ(1) = ai 6= 0. From this, we conclude that

c1 = 0, which in turn implies that c2 = c3 = · · · = cn = 0 by the first case. This

proves that Bσ,1 is linearly indpendent and hence is a basis.
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We have now verified that the Replacement Theorem holds when U has car-

dinarlity 1. Suppose now that the Replacement Theorem holds for all linearly

independent sets of cardinality m where m ≤ n. If m = n, then there are no more

basis vectors to replace and hence nothing to prove. So let us suppose that m < n.

Now let U be a linearly independent set of cardinality m+ 1:

U = {~u1, ~u2, . . . , ~um+1}.

By the induction hypothesis, there exists a permutation σ ∈ Sn such that

Bσ,m := {~u1, . . . , ~um, ~vσ(m+1), . . . , ~vσ(n)}

is a basis on V . Since Bσ,m is a basis, we have

~um+1 = c1~u1 + · · ·+ cm~um + cm+1~vσ(m+1) + · · ·+ cn~vσ(n) (4)

for some (unique) ci ∈ R, i = 1, . . . , n. Since U is a linearly independent set, it

follows that there must be some j ≥ m + 1 such that cj 6= 0. (If not, U would

not be linearly independent!) Choose any permutation τ ∈ Sn such that τ(i) = i

for i ≤ m and τ(m + 1) = j. Let ρ ∈ Sn be defined by ρ = σ ◦ τ . Consider the

reordering

Bρ := {~vρ(1), ~vρ(2), . . . , ~vρ(m), ~vρ(m+1), . . . , ~vρ(n)}.

Observe that

~vρ(i) = ~vσ◦τ(i) = ~vσ(i) for i ≤ m (5)

and

~vρ(i) ∈ {~vσ(m+1), . . . , ~vσ(n)} for i ≥ m+ 1 (6)

where ~vρ(m+1) = ~vσ◦τ(m+1) = ~vσ(j). In other words, the first m vectors of Bσ and

Bρ are exactly the same and the last n−m vectors of Bρ is simply a reshuffling of

the last n−m vectors of Bσ. Using these observations, we can rewrite (4) as

~um+1 = c1~u1 + · · ·+ cm~um + cτ(m+1)~vρ(m+1) + · · ·+ cτ(n)~vρ(n). (7)

Since cτ(m+1) = cj 6= 0, we can express ~vρ(m+1) as a linear combination of the

vectors

Bρ,m+1 := {~u1, . . . , ~um, ~um+1, ~vρ(m+2), . . . , ~vρ(n)}.

Also, note that (5) and (6) imply that the set

{~u1, . . . , ~um, ~vρ(m+1), . . . , ~vρ(n)} (8)

is a basis on V . (This is just Bσ,m with the last n−m vectors reshuffled.) This in

turn implies that

V = span Bρ,m+1.

We now show that Bρ,m+1 is linearly independent. So suppose

α1~u1 + · · ·+ αm+1~um+1 + αm+2~vρ(m+2) + · · ·+ αn~vρ(n) = ~0 (9)
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for some α1, . . . , αn ∈ R. If αm+1 = 0, then the linear independence of (8) implies

that αi = 0 for all i. So suppose that αm+1 6= 0. By dividing (9) by αm+1, we may

assume that αm+1 = 1. Let us now substitute (7) into (9):

(α1 + c1)~u1 + · · ·+ (αm + cm)~um

+ cτ(m+1)~vρ(m+1) + (αm+2 + cτ(m+2))~vρ(m+2) + · · ·+ (αn + cτ(n))~vρ(n) = ~0.

By the linear independence of (8), it follows that all of the coefficients in the above

sum are zero. In particular, cτ(m+1) = 0. However, this is a contradiction since

cτ(m+1) = cj 6= 0. Hence, we must have αm+1 = 0. As we saw earlier, this implies

that αi = 0 for all i in (9) which in turn proves the linear independence of Bρ,m+1.

Hence, Bρ,m+1 is the desired basis. This proves the induction step.

Lastly, we show that if U = {~u1, . . . , ~um} is a linearly independent set of m

vectors, then m ≤ n. Suppose, on the contrary, that m > n. Let U ′ := {~u1, . . . , ~un}.
The above work implies that we can obtain a new basis by replacing the original

basis {~v1, . . . , ~vn} with all the elements of U ′. In other words, U ′ is a basis. Since

U ′ is a basis, this implies that ~un+1 is a linear combination of the elements of U ′,
which contradicts the fact that U is a linearly independent set. Hence, we must

have m ≤ n. This completes the proof. �

The proof of Theorem 2.27 is given below and follows readily from the Replacement

Theorem.

Proof. Let B1 and B2 be two bases on V of cardinalities n1 and n2 respectively.

Since B1 is a basis, Theorem 2.34 implies that n2 ≤ n1. On the other hand, since

B2 is a basis, we also have n2 ≥ n1. This proves that n1 = n2 which completes the

proof. �

Example 2.35. The standard basis on Rn consists of the vectors ~e1, . . . , ~en
where ~ei is the vector whose components are all zero except for the ith com-

ponent which is 1. Hence, the dimension of Rn is n. In particular, any basis

on Rn must consist of exactly n vectors.

Corollary 2.36. Let V be a vector space of dimension n and suppose V =

span{~v1, . . . , ~vn} for some vectors ~vi ∈ V , i = 1, . . . , n. Then {~v1, . . . , ~vn}
must be a basis on V .

Proof. Let S := {~v1, . . . , ~vn}. To prove Corollary 2.36, it only remains to show

that S is linearly independent. We will prove this by contradiction. So let us

suppose that S is linearly dependent. Then there exists a reordering

Sσ := {~vσ(1), . . . , ~vσ(n)}
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such that for some k < n, T := {vσ(1), . . . , vσ(k)} is linearly independent and the

vectors ~vσ(k+1), . . . , ~vσ(n) are all linear combinatiions of the elements of T . However,

this means that V = span T . Since T is also linearly independent, this implies that

T is a basis of V of cardinality k < n. By Theorem 2.27, all bases of a vector

space have the same cardinality and the dimension of a vector space is defined to

be the number of elements in a basis. This implies that dimV = k 6= n, which is a

contradiction. Hence, S must be linearly independent. �

Corollary 2.37. Let V be a vector space of dimension n and suppose

{~v1, . . . , ~vn} is a linearly independent subset of V . Then {~v1, . . . , ~vn} must

be a basis on V .

Proof. This is a direct consequence of the Replacement Theorem (Theorem 2.34).

Since dimV = n, any basis of V must contain precisely n elements. Let B :=

{~x1, . . . , ~xn} be a basis on V . Since {~v1, . . . , ~vn} is linearly independent, the Re-

placement Theorem implies that a new basis can be formed by replacing every

vector of B with all the elements of {~v1, . . . , ~vn}. However, the resulting set after

the replacement is simply {~v1, . . . , ~vn}. Hence, we conlcude that {~v1, . . . , ~vn} is a

basis. �

Let V be a vector space of dimension n and suppose we would like to ver-

ify if a set of n vectors is a basis on V . Corollary 2.37 shows that we only need

to check that the vectors are linearly independent to determine if they form a basis.

Exercise 2.38. Consider the vectors ~v1 = (2, 1,−1), ~v2 = (0, 1, 1), ~v3 =

(1, 0,−1) in R3. Determine if ~v1, ~v2, ~v3 is a basis on R3.

Exercise 2.39. Consider the vectors ~v1 = (2, 1, 1), ~v2 = (1, 4,−1), ~v3 =

(−3, 2,−3) in R3. Determine if ~v1, ~v2, ~v3 is a basis on R3.

We conclude this section with an important example.

Example 2.40. Consider the subset V of Rn consisting only of the zero

vector ~0. Since ~0 + ~0 = ~0 and r~0 = ~0 for all r ∈ R, we see that V is a

subspace of Rn. What is the dimension of V ? Clearly, it must be zero.

Indeed, V (which consists only of ~0) has no linearly independent subsets

since r~0 = ~0 for all r ∈ R. The only nonempty subset of V = {0} is V itself

and 1~0 = ~0. Hence, V has no linearly independent subsets. V is called the

trivial vector space.
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2.5. The Dot Product

The dot product will provide us with a way of computing the angle between two

vectors in Rn. The dot product is formally defined as follows:

Definition 2.41. Let ~u = (u1, . . . , un) and ~v = (v1, . . . , vn) be two vectors

in Rn. The dot product of ~u and ~v is given by

~u · ~v :=

n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.

Proposition 2.42 (Properties of the dot product). Let ~u,~v, ~w ∈ Rn and

c ∈ Rn. Then

(1) ~u · ~v = ~v · ~u
(2) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w
(3) ~w · (~u+ ~v) = ~w · ~u+ ~w · ~v
(4) (c~u) · ~v = c(~u · ~v) = ~u · (c~v)

(5) ~u · ~u ≥ 0 and is 0 if and only if ~u = ~0

Proof. (1): This follows from the commutativity of the multiplication on R:

~u · ~v =

n∑
i=1

uivi =

n∑
i=1

viui = ~v · ~u

(2): This follows from the distributive property on R:

(~u+ ~v) · ~w =

n∑
i=1

(ui + vi)wi

=

n∑
i=1

(uiwi + viwi)

=

n∑
i=1

uiwi +

n∑
i=1

viwi

= ~u · ~w + ~v · ~w.

(3): This follows from (1) and (2) (although we can use an argument to (2) as well):

~w · (~u+ ~v) = (~u+ ~v) · ~w
= ~u · ~w + ~v · ~w
= ~w · ~u+ ~w · ~v,

where the first and third qualities follow from (1) and the second equality follows

from (2).
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(4): The first part follows from the associativity of the multiplication on R:

(c~u) · ~v =

n∑
i=1

(cui)vi =

n∑
i=1

c(uivi) = c

n∑
i=1

uivi = c(~u · ~v)

The proof of the second part is similar:

(c~u) · ~v =

n∑
i=1

(cui)vi =

n∑
i=1

ui(cvi) = ~u · (c~v).

(5): The dot product ~u · ~u is necessarily non-negative since it is a sum of squares

~u · ~u =

n∑
i=1

u2i .

Also, ~u · ~u = 0 if and only if every term in the above sum is zero. This implies that

ui = 0 for i = 1, . . . , n. Hence, ~u = 0. �

Definition 2.43. Let V be a vector space. The norm (or length) of a vector

~v = (v1, . . . , vn) ∈ V is defined by

‖~v‖ :=
√
~v · ~v =

√
v21 + · · ·+ v2n.

The motivation for this definition comes from the fact that if V is a subspace

of R2 or R3, then the norm ‖~v‖ of a vector ~v ∈ V is just the usual Euclidean length

of the arrow ~v. From Figure 5, the length of a vector (a, b) ∈ R2 is easily obtained

by one application of the Pythagorean theorem:

‖(a, b)‖ =
√
a2 + b2.

Similarly, from Figure 6, the norm (or length) of a vector (a, b, c) ∈ R3 can be

computed by using two applications of the Pythagorean theorem:

‖(a, b, c)‖ =
√
u2 + v2 =

√
a2 + b2 + c2.

The above formulas are just special cases of Definition 2.43.

Figure 5. a vector (a, b) in R2 has norm ‖(a, b)‖ =
√
a2 + b2
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Figure 6. a vector (a, b, c) in R3 has norm ‖(a, b, c)‖ =
√
a2 + b2 + c2

Definition 2.44. A vector ~u ∈ Rn is callled a unit vector if it has norm

1, that is, ‖~u‖ = 1.

Let ~v be any nonzero vector. We now show that the vector ~u := ~v/ ‖~v‖ is a unit

vector:

‖~u‖2 = ~u · ~u

=
~v

‖~v‖
· ~v

‖~v‖

=
1

‖~v‖2
~v · ~v

=
1

‖~v‖2
‖~v‖2

= 1.

Definition 2.45. Let ~v be a nonzero vector. Then ~v/ ‖~v‖ is called the

normalized vector associated to ~v. (~v/ ‖~v‖is also called the direction

of ~v since it points in the same direction as ~v.)

Example 2.46. The direction of the vector ~v = (1,−1, 2) is

~v

‖~v‖
=

1√
1 + 1 + 4

(1,−1, 2) = (
1√
6
,
−1√

6
,

2√
6

)
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Let u and v be two points in Rn. How shall we define the distance from the

point u to the point v? For starters, let’s think of u and v as vectors (or arrows) in

Rn. Then we can define the distance from u to v, which we will denote as d(u, v),

as the norm of the vector ~w = ~u− ~v:

d(u, v) := ‖~u− ~v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2 (10)

The above definition agrees with our usual notion of distance when we consider the

distance between points in R2 (or R3) (see Figure 7).

Figure 7. distance between two points u and v in R2

Example 2.47. The distance from the point x = (−1, 1, 2, 0) to the point

y = (0, 1, 0, 1) in R4 is

d(x, y) = ‖~x− ~y‖ =
√

(−1− 0)2 + (1− 1)2 + (2− 0)2 + (0− 1)2 =
√

6.

Next, we will use the dot product to define the angle between two vectors in

Rn. In order to motivate the definition, we first consider how to express the angle

between two vectors in R2 in terms of the dot product. Let 0 ≤ θ ≤ π denote the

angle between the vectors ~u and ~v in Figure 7. Consider the triangle formed by

the vectors ~u, ~v, and ~u− ~v in Figure 7. Using the Law of Cosines, we can relate θ

to the norms (or lengths) of the vectors making up the sides of the aformentioned

triangle:

‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2 ‖~u‖ ‖~v‖ cos θ. (11)

Since the square of the norm of a vector is just the dot product of the vector with

itself, we can rewrite the above expression as

(~u− ~v) · (~u− ~v) = ~u · ~u+ ~v · ~v − 2 ‖~u‖ ‖~v‖ cos θ. (12)
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The left side of the above equation expands as

~u · ~u− 2~u · ~v + ~v · ~v. (13)

Substituting (13) in to (12) and simplifying gives

~u · ~v = ‖~u‖ ‖~v‖ cos θ. (14)

From (14), we obtain

cos θ =
~u · ~v
‖~u‖ ‖~v‖

. (15)

The same argument applied to two vectors in R3 yields the same angle formula as

(15). This motivates the following definition:

Definition 2.48. Let ~u and ~v be two non-zero vectors in Rn. The angle

0 ≤ θ ≤ π between ~u and ~v is defined by the following relation:

cos θ =
~u · ~v
‖~u‖ ‖~v‖

.

Since | cos θ| ≤ 1, Definition 2.48 is sensible only if

−1 ≤ ~u · ~v
‖~u‖ ‖~v‖

≤ 1 (16)

for any vectors ~u,~v ∈ Rn. The inequality (16) is an immediate consequence of the

following result:

Theorem 2.49 (Cauchy-Schwartz Inequality). |~u · ~v| ≤ ‖~u‖ ‖~v‖ for any

vectors ~u,~v ∈ Rn. Moreover, if ~u and ~v are nonzero, then ~u · ~v = ‖~u‖ ‖~v‖ if

and only if ~u = λ~v for some positive λ ∈ R.

Proof. Let ~w and ~z be unit vectors. Then

0 ≤ (~w − ~z) · (~w − ~z)
≤ ~w · ~w − 2~w · ~z + ~z · ~z
≤ 2− 2~w · ~z.

The last inequality implies

~w · ~z ≤ 1.

Similarly, we have

0 ≤ (~w + ~z) · (~w + ~z)

≤ ~w · ~w + 2~w · ~z + ~z · ~z
≤ 2 + 2~w · ~z.

The last inequality implies

−1 ≤ ~w · ~z.
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Combining these two inequalities gives

|~w · ~z| ≤ 1. (17)

We now use (17) to prove the Cauchy-Schwartz inequality. First, note that if ~u = ~0

or ~v = ~0, we see that the Cauchy-Schwartz inequality automatically holds. So let

us assume that ~u and ~v are non-zero vectors. Let ~w = ~u/ ‖~u‖ and ~z = ~v/ ‖~v‖. Then

(17) implies

|~w · ~z| =
∣∣ ~u
‖~u‖
· ~v

‖~v‖
∣∣ ≤ 1.

The above inequality can be rewritten as |~u · ~v| ≤ ‖~u‖ ‖~v‖, which is the Cauchy-

Schwartz inequality.

For the last statement, let ~u and ~v be nonzero vectors. Suppose that ~u = λ~v

for some λ > 0. Then

‖~u‖ ‖~v‖ = ‖λ~v‖ ‖~v‖ = |λ| ‖~v‖2 = λ(~v · ~v) = (λ~v) · ~v = ~u · ~v.

On the other hand, suppose that ~u · ~v = ‖~u‖ ‖~v‖. Let ~w = ~u/ ‖~u‖ and ~z = ~v/ ‖~v‖.
Then ~w and ~z are unit vectors such that ~w ·~z = 1. Snice ~w · ~w = ~z ·~z = 1, it follows

that

~w · (~w − ~z) = ~z · (~w − ~z) = 0.

This in turn implies that (~w− ~z) · (~w− ~z) = 0. From this, we conclude that ~w = ~z.

The definition of ~w and ~z implies that

~u =
‖~u‖
‖~v‖

~v.

Since ‖~u‖‖~v‖ > 0, this completes the proof. �

Definition 2.50. Two (nonzero) vectors ~u,~v ∈ Rn are orthogonal if the

angle between them is 90◦. We will denote this condition with the notation:

~u ⊥ ~v.

Corollary 2.51. Two non-zero vectors ~u,~v ∈ Rn are orthogonal if and only

if ~u · ~v = 0.

Proof. Let 0 ≤ θ ≤ π be the angle formed by ~u and ~v. By Definition 2.48, θ ∈ [0, π]

is uniquely determined by the following equation:

cos θ =
~u · ~v
‖~u‖ ‖~v‖

.

From the above equation, we see that cos θ = 0 if and only if ~u · ~v = 0. Since θ

is restricted to the interval [0, π], the statement that cos θ = 0 is equivalent to the

statement that θ = π/2. This completes the proof. �
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Example 2.52. Let’s calculate the angle between ~u = (1, 0, 1) and ~v =

(1, 0,−1). Using Definition 2.48, we have

cos θ =
~u · ~v
‖~u‖ ‖~v‖

=
1√
2
√

2
=

1

2
,

which implies that θ = π/3.

We conclude this section with a well known result called the triangle inequality :

Theorem 2.53 (Triangle Inequality). Let ~u,~v ∈ Rn. Then

‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖

Proof. Using the properties of the dot product and the Cauchy-Schwartz inequality

(see Theorem 2.49), we have

‖~u+ ~v‖2 = (~u+ ~v) · (~u+ ~v)

= ~u · ~u+ 2~u · ~v + ~v · ~v

= ‖~u‖2 + 2~u · ~v + ‖~v‖2

≤ ‖~u‖2 + 2 ‖~u‖ ‖~v‖+ ‖~v‖2

≤ (‖~u‖+ ‖~v‖)2, (18)

where the second to last line follows from the Cauchy-Schwartz inequality. Taking

the square root of both sides of (18) gives

‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ .

�

Intuitively, the triangle inequality is obvious for vectors in R2 (and R3). How-

ever, since we deal with vectors in Rn for n ≥ 1, it is worthwhile to prove it for the

general case.

The proof of the triangle inequality leads to the generalized pythagorean theo-

rem:

Corollary 2.54 (Generalized Pythagorean Theorem). Let ~u and ~v be or-

thogonal vectors in Rn. Then ‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2.

Proof. By direct calculation, we have

‖~u+ ~v‖2 = (~u+ ~v) · (~u+ ~v)

= ~u · ~u+ 2~u · ~v + ~v · ~v

= ‖~u‖2 + ‖~v‖2
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Figure 8. For vectors ~u,~v ∈ R2, it is intuitively clear that ‖~u + ~v‖ ≤ ‖~u‖ +

‖~v‖. The proof of the triangle inequality shows that this relation holds in

general for vectors in Rn for n ≥ 1.

where the last equality follows from the fact that ~u and ~v are orthogonal which is

equivalent to the statement that ~u · ~v = 0. �

2.6. Orthogonal Projection & the Gram-Schmidt Process

In this section, we continue to explore some of the consequences of the dot product

and the notion of orthogonality. To do this, we need to first introduce several

definitions that are essential to this goal.

Definition 2.55. Let {~v1, . . . , ~vk} be a set of vectors in Rn. {~v1, . . . , ~vk} is

called an orthogonal set if ~vi 6= ~0 for i = 1, . . . , k and ~vi · ~vj = 0 for all

1 ≤ i < j ≤ k.

In other words, a set of vectors in Rn form an orthogonal set if they are all nonzero

and mutually orthogonal to one another.

Example 2.56. The vectors ~v = (1,−1, 1) and ~u = (2, 2, 0) in R3 form an

an orthogonal set.

Proposition 2.57. Let {~v1, . . . , ~vk} be an orthogonal set in Rn. Then

{~v1, . . . , ~vk} is a linearly independent set.

Proof. Suppose that

r1~v1 + · · ·+ rk~vk = ~0.
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Let i ∈ {1, . . . , k} be arbitrary and take the dot product of both sides of the equation

with ~vi:

r1~v1 · ~vi + · · ·+ rk~vk · ~vi = ~0 · ~vi
ri~vi · ~vi = 0

ri ‖~vi‖2 = 0

where the second equality follows from the fact that ~vj · ~vi = 0 for all j 6= i. Since

~vi 6= 0 (by definition of an orthogonal set), we have ri = 0/ ‖~vi‖2 = 0. This

completes the proof. �

Corollary 2.58. Let {~v1, . . . , ~vk} be an orthogonal set in Rn. Then k ≤ n.

Proof. By Proposition 2.57, {~v1, . . . , ~vk} is a linearly independent set. Since

dimRn = n, any linearly independent set contains at most n elements. Hence,

k ≤ n. �

For the remainder of this section, let V be vector space and let n = dimV .

(Recall that in this chapter, vector space means a fixed subspace of Rm for some

m ≥ 1.) As we saw previously, given an arbitrary basis {~v1, . . . , ~vn} on V and an

arbitrary vector ~v ∈ V , one must use the Gauss Jordan method to calculate the

coefficients r1, . . . , rn so that

r1~v1 + r2~v2 + · · ·+ rn~vn = ~v.

If n is large, a good bit of work is needed to compute these coefficients. On the other

hand, if one works with an orthogonal basis (or even better an orthonormal

basis), computing the coefficients r1, . . . , rn is a simple matter. This is one of the

advantages of the notion of orthogonality. Naturally, one defines an orthogonal

basis and an orthonormal basis as follows:

Definition 2.59. Let {~v1, . . . , ~vk} be a set of vectors in Rn. {~v1, . . . , ~vk} is

called an orthonormal set if {~v1, . . . , ~vk} is an orthogonal set and ‖~vi‖ = 1

for i = 1, . . . , k.

Definition 2.60. Let B := {~v1, . . . , ~vn} be a basis of V . If B is an orthogo-

nal set, then B is called an orthogonal basis. If B is an orthonormal set,

then B is called an orthonormal basis.

Example 2.61. The standard basis ~e1, . . . , ~en on Rn is an orthonormal

basis.
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Theorem 2.62. Let {~u1, . . . , ~un} be an orthonormal basis on V . Let ~v ∈ V .

Then

~v = r1~u1 + r2~u2 + · · ·+ rn~un.

where ri = ~v · ~ui for i = 1, . . . , n.

Proof. Since {~u1, . . . , ~un} is a basis, we can express ~v ∈ V as

~v = r1~u1 + r2~u2 + · · ·+ rn~un

for some (unique) ri ∈ R, i = 1, . . . , n. Let i ∈ {1, . . . , n} be arbitrary and take the

dot product of both sides of the above equation with ~ui:

~v · ~ui = r1~u1 · ~ui + r2~u2 · ~ui + · · ·+ rn~un · ~ui
= ri~ui · ~ui
= ri

where the second equality follows from the fact that ~uj · ~ui = 0 for j 6= i and

~ui · ~ui = 1. This completes the proof. �

Example 2.63. Consider the basis

~u1 = (0, 1, 0), ~u2 =
1

13
(5, 0, 12), ~u3 =

1

13
(−12, 0, 5).

of R3. By inspection, we see that this basis is actually orthonormal. Let

~v = (1, 2, 3). Using Theorem 2.62, we have

~v = r1~u1 + r2~u2 + r3~u3

where

r1 = ~v · ~u1 = 2, r2 = ~v · ~u2 =
41

13
, r3 = ~v · ~u3 =

3

13
.

After introducing the idea of an orthonormal basis, the natural question is

how does one actually find an orthonormal basis for V ? The answer is the Gram-

Schmidt process. Central to the Gram-Schmidt process is the idea of orthogonal

projection which we now describe.

Consider two vectors ~v and ~u in Rn. Orthogonal projection addresses the

following question: how “much” of the vector ~v lies in the direction of ~u? More

precisely, we wish to find a decomposition of ~v of the form

~v = ~a+~b

where ~a points in the same direction as ~u and ~b is orthogonal to ~u. The vector ~a

is the component of ~v which lies in the direction of ~u and is called the orthogonal

projection of ~v onto ~u (see Figure 9).

Note that if ~a is known, then ~b = ~v − ~a is uniquely determined. There are two

natural questions here: (1) is ~a unique? (2) if so, how does one actually compute
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Figure 9. The orthogonal projection of ~v onto ~u is the vector ~a

~a? These questions are answered by the following result:

Theorem 2.64. Let ~v and ~u be vectors in Rn with ~u 6= ~0.

(1) There are unique vectors ~a,~b ∈ Rn such that ~v = ~a+~b where ~a points

in the direction of ~u (or −~u) and ~a and ~b are orthogonal.

(2) ~a is given by the following formula:

~a =
~v · ~u
‖~u‖2

~u. (19)

Proof. Suppose there exists vectors ~a and ~b such that

~v = ~a+~b (20)

where ~a points in the same direction as ~u and ~b is orthogonal to ~a. Since ~a points

in the same direction as ~u, ~a must be of the form

~a = k~u

for some k ∈ R. This implies that ~b is orthogonal to ~u. Taking the dot product of

both sides of (20) with ~u gives

~v · ~u = k ‖~u‖2 .

Solving for k gives

k =
~v · ~u
‖~u‖2

.

This shows that ~a (if it exists!) is uniquely given by the formula in statement (2)

of Theorem 2.64:

~a =
~v · ~u
‖~u‖2

~u. (21)
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The uniqueness of ~a then implies that ~b is uniquely given by ~b = ~v−~a. This proves

the uniqueness claim of Theorem 2.64.

To prove the rest of Theorem 2.64, we let ~a be defined by (21) and ~b = ~v − ~a.

Clearly, we have ~v = ~a +~b. Moreover, since ~a is a multiple of ~u, ~a also points in

the direction of ~u (or -~u if k < 0). To complete the proof, it remains to show that

~a and ~b are orthogonal. The following calculation verifies this:

~a ·~b = ~a · (~v − ~a)

= ~a · ~v − ~a · ~a

=
~v · ~u
‖~u‖2

~u · ~v −

(
~v · ~u
‖~u‖2

)2

~u · ~u

=
(~v · ~u)2

‖~u‖2
− (~v · ~u)2

‖~u‖4
‖~u‖2

=
(~v · ~u)2

‖~u‖2
− (~v · ~u)2

‖~u‖2

= 0.

This completes the proof. �

The orthogonal projection of ~v onto ~u will be denoted as follows:

proj~u~v =
~u · ~v
‖~u‖2

~u.

Example 2.65. Let ~v = (v1, v2, . . . , vn) and let ~e1, ~e2, . . . , ~en denote the

standard basis on Rn. For i ≤ n, the orthogonal projection of ~v onto ~ei is

simply

proj~ei~v =
~v · ~ei
‖~ei‖2

~ei = vi~ei,

which agrees nicely with our intuition.

Example 2.66. Let ~v = (1, 2) and let ~u = (1,−1). The orthogonal projec-

tion of ~v onto ~u is

proj~u~v =
~v · ~u
‖~u‖2

~u =
−1

2
(1,−1) = (−1/2, 1/2).

Setting
~b = ~v − proj~u~v = (3/2, 3/2),

we obtain the unique decomposition ~v = proj~u~v +~b where proj~u~v points in

the direction of −~u and proj~u~v and ~b are orthogonal:

proj~u~v ·~b = (−1/2, 1/2) · (3/2, 3/2) = −3/4 + 3/4 = 0.
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Example 2.67. Let ~v be a non-zero vector. The orthogonal projection of ~v

onto ~v is then

proj~v~v =
~v · ~v
‖~v‖2

~v = ~v

as we would expect. On the other hand, if ~u is any non-zero vector which is

orthogonal to ~v, then the orthogonal projection of ~v onto ~u is

proj~u~v =
~u · ~v
‖~u‖2

~u = 0~u = ~0,

which again agrees with our intuition. If ~v and ~u are orthogonal, then we

expect nothing of ~v to lie in the direction of ~u.

We are now in a position to describe the Gram-Schmidt process:

The Gram-Schmidt process

Let V be a subspace of Rm for some m ≥ 1. The Gram-Schmidt process

generates an orthogonal basis from an existing basis on V . Once one obtains

the orthogonal basis, one can normalize it to obtain an orthonormal basis.

Let B = {~v1, ~v2, . . . , ~vn} be any basis on V . We obtain an orthogonal basis

B′ := {~b1,~b2, . . . ,~bn}

as follows:

1. Define ~b1 := ~v1
2. For k = 2, . . . , n, define

~bk := ~vk −
k−1∑
i=1

proj~bi~vk

The corresponding orthonormal basis is then {~u1, ~u2, . . . , ~un} where

~ui :=
~bi∥∥∥~bi∥∥∥ , i = 1, . . . , n

Theorem 2.68. Let V be a subspace of Rm for some m ≥ 1 and let

B = {~v1, ~v2, . . . , ~vn}

be any basis on V . Then the set B′ := {~b1,~b2, . . . ,~bn} given by the Gram-

Schmidt process is an orthogonal basis for V .

Proof. We will prove Theorem 2.68 by induction on the dimension of V . Suppose

first that dimV = 1, that is, B = {~v1}. It follows from Definition 2.55 that

B is an orthogonal set in a trivial way. Indeed, if B contains only one non-zero

element ~v1, then there are no other vectors in the set for ~v1 to be orthogonal
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to. Consequently, the condition of orthogonality is satisfied by default. (This is

analogous to a basketball game where only one team shows up for the game and

wins by default.) With dimV = 1, the set generated by the Gram-Schmidt process

is B′ = B = {~v1} which is an orthogonal set (albeit in a boring way). Hence, the

result holds for the dimV = 1 case.

Now suppose that the Gram-Schmidt process works for all n-dimensional sub-

spaces and let V be a subspace of dimension n+ 1 with basis

B = {~v1, ~v2, . . . , ~vn, ~vn+1}.

Let U be the subspace spanned by the first n-elements of B. In other words, U has

basis

B1 = {~v1, ~v2, . . . , ~vn}.

Since dimU = n, our induction hypothesis implies that we can apply the Gram-

Schmidt process to the basis B′1 to obtain an orthogonal basis

B′1 = {~b1,~b2, . . . ,~bn},

for U where ~b1 := ~v1 and

~bk := ~vk −
k−1∑
i=1

proj~bi~vk, k = 2, . . . , n.

Let us define

~bn+1 := ~vn+1 −
n∑
i=1

proj~bi~vn+1.

Consider the set

B′ := {~b1,~b2, . . . ,~bn,~bn+1}.

Since B′1 is an orthogonal basis, B′1 is also an orthogonal set. Hence, ~bi 6= 0 for

i = 1, . . . , n and ~bi ·~bj = 0 for 1 ≤ i < j ≤ n. We will now show that B′ is also an

orthogonal set. First, since

U = span B1 = span B′1,

it follows that ~vn+1 /∈ U . Also, since

proj~bi~vn+1 :=

~bi · ~vn+1∥∥∥~bi∥∥∥2
~bi ∈ U

for i = 1, . . . , n, the definition of ~bn+1 implies that ~bn+1 6= ~0. (Indeed, ~bn+1 = ~0

would imply ~vn+1 ∈ U , which is a contradiction.) Next, we show that ~bn+1 is



52 2. Rn as a Vector Space

orthogonal to ~bk for k = 1, . . . , n. This follows by a direct calculation:

~bn+1 ·~bk = (~vn+1 −
n∑
i=1

proj~bi~vn+1) ·~bk

= ~vn+1 ·~bk −
n∑
i=1

[
proj~bi~vn+1

]
·~bk

= ~vn+1 ·~bk −
n∑
i=1

~bi · ~vn+1∥∥∥~bi∥∥∥2
~bi ·~bk

= ~vn+1 ·~bk −

~bk · ~vn+1∥∥∥~bk∥∥∥2
~bk ·~bk

= ~vn+1 ·~bk −

~bk · ~vn+1∥∥∥~bk∥∥∥2
∥∥∥~bk∥∥∥2

= ~vn+1 ·~bk −~bk · ~vn+1

= 0,

where the fourth equality follows from the fact that B′1 is an orthogonal set. Hence,
~bi · ~bk = 0 for i ≤ n and i 6= k. This proves that B′ is an orthogonal set. By

Proposition 2.57, any orthogonal set is also linearly independent. Since B′ has

cardinality n + 1 and dimV = n + 1, it follows that B′ is also a basis for V . This

completes the proof. �

Example 2.69. Let V be the subspace of R4 defined by

V = {(a, a− 2b, b+ c, c) | a, b, c ∈ R}.

Let us find an orthonormal basis for V using the Gram-Schmidt process. To

apply the Gram-Schmidt process, we first need to find a basis on V . This is

easy to do. An arbitrary element of V decomposes as

(a, a− 2b, b+ c, c) = a(1, 1, 0, 0) + b(0,−2, 1, 0) + c(0, 0, 1, 1).

From this, we see that the vectors

~v1 = (1, 1, 0, 0), ~v2 = (0,−2, 1, 0), ~v3 = (0, 0, 1, 1)

span V . In addition, a simple calculation shows that the vectors ~v1, ~v2, and

~v3 are also linearly independent. Hence, {~v1, ~v2, ~v3} is a basis on V . Let us

now apply the Gram-Schmidt process to this basis to obtain the orthogonal

basis {~b1,~b2,~b3}, where
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~b1 = ~v1 = (1, 1, 0, 0)

~b2 = ~v2 − proj~b1~v2 = ~v2 −
~b1 · ~v2∥∥∥~b1∥∥∥2~b1 = (1,−1, 1, 0)

~b3 = ~v3 − proj~b1~v3 − proj~b2~v3 = ~v3 −
~b1 · ~v3∥∥∥~b1∥∥∥3~b1 −

~b2 · ~v3∥∥∥~b2∥∥∥3~b2 =
1

3
(−1, 1, 2, 3)

Normalizing the above basis gives the orthonormal basis:

~u1 =
1∥∥∥~b1∥∥∥~b1 =

1√
2

(1, 1, 0, 0)

~u2 =
1∥∥∥~b2∥∥∥~b2 =

1√
3

(1,−1, 1, 0)

~u3 =
1∥∥∥~b3∥∥∥~b3 =

1√
15

(−1, 1, 2, 3)

Exercise 2.70. Let W be the subspace of R4 defined by

W = {(a+ 2b, a− b, a+ c, 2c) | a, b, c ∈ R}.

Find an orthonormal basis for W .

2.7. Orthogonal Complements & the Direct Sum

Intuitively speaking, when one thinks of the angle between two vectors ~u and ~v in

Rn, one expects ~u and ~v to have nonzero lengths. In other words, our intutition

tells us that ~u and ~v should be nonzero vectors. In fact, the formula defining the

angle between two vectors ~u and ~v (Definition 2.48) only makes sense if ‖~u‖ 6= 0 and

‖~v‖ 6= 0. Even so, it is convenient to define the angle between any vector ~u ∈ Rn

and the zero vector ~0 ∈ Rn to be 90◦ especially in light of Corollary 2.51. Taking

this view, we introduce the following definition:

Definition 2.71. Let W be a subspace of Rn. The orthogonal comple-

ment of W is defined as

W⊥ := {~v ∈ Rn | ~v · ~w = 0, ∀ ~w ∈W}

The meaning of the word “complement” will be justified later on in this chapter.

For now, we have the following simple observation:
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Proposition 2.72. Let W be a subspace of Rn. Then W⊥ is a subspace of

Rn.

Proof. Let ~u,~v ∈W⊥ and let r ∈ R. Then for all ~w ∈W , we have

(~u+ ~v) · ~w = ~u · ~w + ~v · ~w
= 0 + 0

= 0

and

(r~u) · ~w = r(~u · ~w)

= r0

= 0.

This shows that ~u+ ~v ∈W⊥ and r~u ∈W⊥. Hence, W⊥ is a subspace of Rn. �

Example 2.73. Let W be a subspace of R3 which is spanned by the vector

~w = (1, 3, 1). In other words,

W = {r ~w | r ∈ R}.

Let us determine what W⊥ is. By definition of W⊥, a vector ~u = (a, b, c) is

in W⊥ if and only if

~u · (r ~w) = r(~u · ~w) = 0 ∀ r ∈ R.

The above condition is of course equivalent to the requirement that

~u · ~w = a+ 3b+ c = 0.

Hence, to compute W⊥, we only have to find the general solution to the

above linear system. Since the system consists of a single equation, there

really is no need to apply the Gauss Jordan method to solve this system.

We have one equation in the three variables a, b, and c. Hence, two of the

variables are “free” (i.e. they can take on any value) provided that the third

remaining variable is chosen to satisfy the above equation. Let b and c be

free variables and let us solve for a in terms of b and c:
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a = −3b− c.
Hence, W⊥ is given by

W⊥ = {(−3b− c, b, c) | b, c ∈ R}.

An arbitrary element of W⊥ decomposes as

(−3b− c, b, c) = (−3b, b, 0) + (−c, 0, c) = b(−3, 1, 0) + c(−1, 0, 1).

Since b and c are arbitrary real numbers, we see that W⊥ is spanned by the

vectors (−3, 1, 0) and (−1, 0, 1). In addition, its clear that these two vectors

are also linearly independent. Hence, (−3, 1, 0) and (−1, 0, 1) form a basis

for W⊥. From this, we conclude that dimW⊥ = 2.

Observe that in Example 2.73

dimW + dimW⊥ = dimR3 = 1 + 2 = 3.

Also, note that ~w together with the basis vectors (−3, 1, 0) and (−1, 0, 1) of W⊥

form a basis of R3. As you might have guessed, this is far from a coincidence. The

following definitions will prove useful in helping us understand why.

Let V be a vector space. (Recall that in this chapter, this means that V is a

subspace of Rm for some m ≥ 1.)

Definition 2.74. Let W1 and W2 be two subspaces of V (recall Definition

2.14). Define the sum of W1 and W2 by

W1 +W2 := {~w1 + ~w2 | ~w1 ∈W1, ~w2 ∈W2}.

Proposition 2.75. Let W1 and W2 be two subspaces of V . Then W1 +W2

is a subspace of V .

Proof. Let ~u, ~u′ ∈W1 +W2. Then

~u = ~w1 + ~w2

~u′ = ~w′1 + ~w′2

for some ~w1, ~w
′
1 ∈W1 and ~w2, ~w

′
2 ∈W2. Hence,

~u+ ~u′ = (~w1 + ~w′1) + (~w2 + ~w′2).

Since W1 and W2 are subspaces of V , we have ~w1 + ~w′1 ∈ W1 and ~w2 + ~w′2 ∈ W2.

From the definition of W1 +W2, it follows that ~u+~u′ ∈W1 +W2. Lastly, let r ∈ R.

Then

r~u = r ~w1 + r ~w2.

Again, since W1 and W2 are subspaces of V , we have r ~w1 ∈ W1 and r ~w2 ∈ W2

which implies that r~u ∈W1 +W2. �
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The following result will prove useful in a moment:

Lemma 2.76 (Basis Extension Lemma). Let V be a vector space of dimen-

sion n and let W be a subspace of V . Let {~w1, . . . , ~wk} be a basis of W .

Then there exists ~wk+1, . . . , ~wn ∈ V such that

{~w1, . . . , ~wk, ~wk+1, . . . , ~wn}

is a basis of V .

Proof. Let B := {~v1, . . . , ~vn} be any basis on V . By the Replacement Theorem

(Theorem 2.34), there exists a reordering of B,

Bσ = {~vσ(1), . . . , ~vσ(n)},

such that {~w1, . . . , ~wk, ~vσ(k+1), . . . , ~vσ(n)} is a basis of V . Setting ~wj := ~vσ(j) for

j = k + 1, . . . , n proves the lemma. �

The following result is often useful in computing the dimension of a subspace.

Proposition 2.77. Let W1 and W2 be subspaces of V . Then

(i) W1 ∩W2 is also a subspace of V

(ii) dim(W1 +W2) = dimW1 + dimW2 − dimW1 ∩W2

Proof. (i): Let ~x, ~y ∈ W1 ∩W2. Since W1 and W2 are both subspaces, it follows

that ~x+ ~y lies in both W1 and W2. In other words, ~x+ ~y ∈ W1 ∩W2. Likewise, if

r ∈ R, it follows that r~x ∈W1 ∩W2. This proves that W1 ∩W2 is a subspace of V .

(ii): Suppose first that W1 ∩W2 = {~0}. Let

B1 = {~u1, . . . , ~ua}, B2 = {~v1, . . . , ~vb}

be bases on W1 and W2 respectively. Clearly, W1 + W2 = span B1 ∪ B2. To see

that B1 ∪ B2 is linearly independent, suppose that

α1~u1 + · · ·+ αa~ua + β1~v1 + · · ·+ βb~vb = ~0.

We can rewrite this as

α1~u1 + · · ·+ αa~ua = −β1~v1 − · · · − βb~vb. (22)

Let ~x := α1~u1 + · · · + αa~ua. Note that the left side of (22) is an element of W1

while the right side is an element of W2. Hence, ~x ∈ W1 ∩W2 = {0}. Since B1
is linearly indpendent, this impllies that α1 = · · · = αa = 0. Likewise, since B2 is

linearly independent, this implies that β1 = · · · = βb = 0. This shows that B1 ∪ B2
is linearly independent. From this, we conclude that B1∪B2 is a basis for W1 +W2.
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Hence,

dim(W1 +W2) = a+ b

= dimW1 + dimW2

= dimW1 + dimW2 − dimW1 ∩W2,

where in the last equality we use the fact that dimW1 ∩W2 = dim{~0} = 0 (see

Example 2.40).

Now suppose that W1∩W2 6= {0}. Let a := dimW1 and b := dimW2. Also, let

{~w1, . . . , ~wk} be a basis on W1 ∩W2. Since W1 ∩W2 is a subspace of both W1 and

W2, the Basis Extension Lemma (Lemma 2.76) implies that there exists elements

~x1, . . . , ~xa−k of W1 and elements ~y1, . . . , ~yb−k such that

{~w1, . . . , ~wk, ~x1, . . . , ~xa−k}

is a basis on W1 and

{~w1, . . . , ~wk, ~y1, . . . , ~yb−k}

is a basis on W2. Let

B := {~w1, . . . , ~wk, ~x1, . . . , ~xa−k, ~y1, . . . , ~yb−k}.

Note that W1 + W2 = span B. We now show that B is also linearly independent.

So let us suppose that

α1 ~w1 + · · ·+ αk ~wk + β1~x1 + · · ·+ βa−k~xa−k + γ1~y1 + · · ·+ γb−k~yb−k = ~0 (23)

for some αi’s, βi’s, and γi’s in R. Let

~w := α1 ~w1 + · · ·+ αk ~wk ∈W1 ∩W2

~x := β1~x1 + · · ·+ βa−k~xa−k ∈W1

~y := +γ1~y1 + · · ·+ γb−k~yb−k ∈W2.

Then (23) can be rewritten as

~w + ~y = −~x. (24)

Note that the left side of (24) belongs to W1 while the right side belongs to W2. This

implies that −~x (and hence ~x) belongs to W1∩W2. Then there exists r1, . . . , rk ∈ R
such that

r1 ~w1 + · · ·+ rk ~wk = ~x (25)

Expanding ~x in terms of the basis elements ~x1, . . . , ~xa−k, (24) can be rewritten as

r1 ~w1 + · · ·+ rk ~wk − β1~x1 − · · · − βa−k~xa−k = ~0. (26)

Since ~w1, . . . , ~wk, ~x1, . . . , ~xa−k is a basis on W1, it follows that all the ri’s and βi’s

are zero. Using this fact, (23) can be rewritten as

α1 ~w1 + · · ·+ αk ~wk + γ1~y1 + · · ·+ γb−k~yb−k = ~0.
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Since ~w1, . . . , ~wk, ~y1, . . . , ~yb−k is a basis on W2, it follows that all the αi’s and γi’s

are also zero. This proves that B is linearly independent and hence a basis on

W1 +W2. Hence,

dim(W1 +W2) = |B|
= k + (a− k) + (b− k)

= a+ b− k
= dimW1 + dimW2 − dim(W1 ∩W2).

This completes the proof. �

Definition 2.78. Let V be a vector space and let W1 and W2 be subspaces

of V . V is said to be a direct sum of W1 and W2 if the following conditions

are satisfied:

(i) V = W1 +W2

(ii) W1 ∩W2 = {~0}.
When V is a direct sum of W1 and W2, one replaces the “+” symbol with

the direct sum symbol “⊕” and writes V = W1 ⊕W2.

Here are some equivalent characterizations of the direct sum:

Proposition 2.79. Let V be a vector space and let W1 and W2 be subspaces

of V . The following statements are equivalent:

(1) V = W1 ⊕W2

(2) Every ~v ∈ V can be expressed uniquely as ~v = ~w1 + ~w2 for some

~w1 ∈W1 and ~w2 ∈W2

(3) dimV = dimW1 + dimW2 and W1 ∩W2 = {~0}

Proof. (1) ⇒ (2): Suppose that V = W1 ⊕W2 and let ~v ∈ V . By definition of

the direct sum, there exists ~w1 ∈ W1 and ~w2 ∈ W2 such that ~v = ~w1 + ~w2. To

prove this direction, we must show that ~w1 and ~w2 are the only elements in W1

and W2 respectively which sum to ~v. Suppose that we are given another ~x1 ∈ W1

and ~x2 ∈W2 such that ~v = ~x1 + ~x2. This implies that

~w1 + ~w2 = ~x1 + ~x2,

which in turn implies that

~w1 − ~x1 = ~x2 − ~w2.

Since the left side of the above equation is an element of W1 while the right side

is an element of W2, we conclude that ~w1 − ~x1 and ~x2 − ~w2 belong to W1 ∩W2.

However, W1 ∩W2 = {~0}. This implies that ~x1 = ~w2 and ~x2 = ~w2 which proves

the uniqueness claim.
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(1) ⇐ (2): Suppose that statement (2) holds. Then we immediately have

V = W1 + W2. For V to be a direct sum of W1 and W2, it only remains to show

that W1 ∩W2 = {~0}. Let ~w ∈W1 ∩W2. Since ~w is also an element of V , statement

2 says there exists unique ~w1 ∈ W1 and unique ~w2 ∈ W2 such that ~w = ~w1 + ~w2.

Since ~w belongs to both W1 and W2, one can take ~w1 = ~w and ~w2 = ~0 and obtain

~w = ~w1 + ~w2. On the other hand, one can take ~w1 = ~0 and ~w2 = ~w and again

obtain ~w = ~w1 + ~w2. However, statement (2) says there is only one way to express

~w in the form ~w = ~w1 + ~w2 for some ~w1 ∈W1 and ~w2 ∈W . From this, we conclude

that ~w1 = ~0 and ~w2 = ~0, which implies that ~w = ~0. Since ~w was arbitraily chosen

from W1 ∩W2, it follows that W1 ∩W2 = {~0}.
(1)⇒ (3): Suppose that V = W1 ⊕W2. From the definition of the direct sum,

we automatically have W1 ∩W2 = {0}. Using Proposition 2.77, we have

dimV = dim(W1 +W2)

= dimW1 + dimW2 − dimW1 ∩W2

= dimW1 + dimW2

where the last equality follows from the fact that W1 ∩W2 is the zero vector space,

and thus, has dimension zero. This proves (3).

(1) ⇐ (3): Suppose that dimV = dimW1 + dimW2 and W1 ∩W2 = {~0}. Let

~x1, . . . , ~xa be a basis on W1 and let ~y1, . . . , ~yb be a basis on W2. We now show that

B := {~x1, . . . , ~xa, ~y1, . . . , ~yb} (27)

is a linearly independent set. So suppose that

α1~x1 + · · ·+ αa~xa + β1~y1 + · · ·+ βb~yb = ~0.

Let ~x := α1~x1 + · · · + αa~xa and ~y = β1~y1 + · · · + βb~yb. Then the above equation

can be rearranged as

~x = −~y. (28)

Since the left side of (28) belongs to W1 while the right side belongs to W2, it follows

that ~x and −~y belong to W1 ∩W2. Moreover, since W1 ∩W2 is also a subspace by

Proposition 2.77, we also have ~y ∈W1∩W2. However, W1∩W2 = {~0} by hypothesis

which implies that ~x = ~y = ~0. Since ~x1, . . . , ~xa is a basis on W1 (and hence linearly

independent), it follows that α1 = · · · = αa = 0. Similarly, β1 = · · · = βb = 0. This

proves that B is linearly independent. However, the number of elements in B is

equal to a+ b = dimW1 + dimW2 = dimV . The Replacement Theorem (Theorem

2.34) now implies that B is in fact a basis on V . Hence, every element ~v ∈ V is of

the form

~v = r1~x1 + · · ·+ ra~xa + s1~y1 + · · ·+ sb~yb

= ~w1 + ~w2

for some r1, . . . , ra, s1, . . . , sb ∈ R, where ~w1 =1 ~x1 + · · · + ra~xa ∈ W1 and ~w2 =

s1~y1 + · · · + sb~yb ∈ W2. This shows that V = W1 + W2. Since we already have

W1 ∩W2 = {~0}, we see that V = W1 ⊕W2 as required. �
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We conclude this chapter with the following result which will explain the results of

Example 2.73:

Theorem 2.80. Let W be a subspace of Rn and let W⊥ be its orthogonal

complement. Then

(i) Rn = W ⊕W⊥
(ii) dimW⊥ = n− dimW

Proof. (i): Let ~x ∈ W ∩W⊥ be an arbitrary element. Since ~x belongs to W⊥,

we must have (by definition) ~x is orthogonal to every vector in W . In other words,

~x · ~w = 0 for all ~w ∈W . However, ~x also belongs to W , which implies that ~x ·~x = 0.

This in turn implies that ~x = ~0. Since ~x was an arbitrary element of W ∩W⊥,

we conclude that W ∩ W⊥ = {~0}. To prove (i), it only remains to show that

Rn = W + W⊥, that is, every element ~v of Rn can be expressed as ~v = ~x + ~y for

some ~x ∈ W and ~y ∈ W⊥. Using the Gram-Schmidt process, we can construct an

orthogonal basis on W . Let

{~b1, . . . ,~bk}

denote an orthonormal basis on W . For ~v ∈ Rn, define ~x ∈W by

~x = proj~b1~v + proj~b2~v + · · ·+ proj~bk~v.

Note that since proj~bi~v is a multiple of ~bi and ~bi ∈ W for i = 1, . . . , k, it follows

that ~x is indeed an element of W . Now let ~y = ~v − ~x. Clearly, we have ~v = ~x + ~y

where ~x ∈ W . We have to check that ~y ∈ W⊥. Since the ~bi’s form a basis on W ,

every element of W is a linear combination of the ~bi’s. Hence, to show that ~y ∈W⊥
is equivalent to showing that ~y is orthogonal to ~bi for i = 1, . . . , k. The following

calculation verifies this:

~y ·~bi = (~v − ~x) ·~bi
= ~v ·~bi − ~x ·~bi

= ~v ·~bi −
k∑
j=1

(proj~bj~v) ·~bi

= ~v ·~bi − (proj~bi~v) ·~bi

= ~v ·~bi −

 ~v ·~bi∥∥∥~bi∥∥∥2
~bi ·~bi

= ~v ·~bi − ~v ·~bi
= 0.

This shows that ~y ∈W⊥, which in turn proves that Rn = W +W⊥. Since we have

already shown that W ∩W⊥ = {~0}, we have proven that Rn = W
⊕
W⊥.
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(ii): Using part (3) of Proposition 2.79 and the fact that Rn = W
⊕
W⊥, we

have

dimRn = dimW + dimW⊥.

Solving for dimW⊥ and using the fact that dimRn = n gives dimW⊥ = n−dimW

as required. �

Part (i) of Theorem 2.80 and part (2) of Proposition 2.79 immediately imply the

following:

Corollary 2.81. Let W be a subspace of Rn. For every ~v ∈ Rn, there

exists a unique element ~x ∈ W and a unique element ~y ∈ W⊥ such that

~v = ~x+ ~y. This element ~x is called the orthogonal projection of ~v onto

the subspace W and is denoted by projW~v.

The proof of Theorem 2.80 does more than simply prove the existence and unique-

ness of projW~v. It also tells us exactly how to compute it!

Calculating projW~v

Let W be a subspace of Rn and let ~v ∈ V . Also, let ~b1, . . . ,~bk be any

orthogonal basis on W . Then

projW~v = proj~b1~v + proj~b2~v + · · ·+ proj~bk~v.

Example 2.82. Let V be the subspace of R4 defined by

V = {(a, a− 2b, b+ c, c) | a, b, c ∈ R}.

Find the orthogonal projection of ~a = (1, 2, 2, 1) onto V . To compute projV ~a,

we first need an orthogonal basis of V . Fortunately, we already found one

in Example 2.69:

~b1 = (1, 1, 0, 0)

~b2 = (1,−1, 1, 0)

~b3 =
1

3
(−1, 1, 2, 3)

Note that 3~b3 = (−1, 1, 2, 3) is also orthogonal to ~b1 and ~b2. Since any

orthogonal basis will do, let’s use the basis ~b1, ~b2, and 3~b3 instead so we can

avoid that pesky factor of 1/3. From this point forth, we set~b3 = (−1, 1, 2, 3).

The projection of ~a onto V is then given by
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projV ~a = proj~b1~a+ proj~b2~a+ proj~b3~a

=
~b1 · ~a∥∥∥~b1∥∥∥2~b1 +

~b2 · ~a∥∥∥~b2∥∥∥2~b2 +
~b3 · ~a∥∥∥~b3∥∥∥2~b3

= (
3

2
,

3

2
, 0, 0) + (

1

3
,−1

3
,

1

3
, 0) + (− 8

15
,

8

15
,

16

15
,

24

15
)

= (
13

10
,

17

10
,

14

10
,

24

15
)

=
1

10
(13, 17, 14, 16).

At the same time, we compute the element of ~y ∈ V ⊥ such that

~a = projV ~a+ ~y.

This, of course, is simply

~y = ~a− projV ~a =
1

10
(−3, 3, 6,−6)

If our calculation is correct, ~y should be orthogonal to V . This is equivalent

to showing that ~y is orthogonal to any basis of V . Let’s verify this by

computing the dot product of ~y with the basis vectors ~b1, ~b2, and ~b3:

~y ·~b1 = 0

~y ·~b2 = 0

~y ·~b3 = 0.

This shows that ~y ∈ V ⊥ as required.

2.8. Orthogonal Projection & Distance to a Subspace

In Section 2.5, we defined the distance between two points u and v in Rn by

d(u, v) = ‖~u− ~v‖

(Recall our notation: when we regard an element of Rn as a point and not a vector,

we drop the arrow symbol.) As we saw in Section 2.5, the above formula generalizes

the distance between two points in R1, R2, and R3. In this section, we generalize

things even further by considering the distance between a point v of Rn and a

subspace W of Rn. Naturally, this distance should be defined to be the smallest

distance from v to a point in W . In other words, the distance is

d(v,W ) := inf{‖~v − ~w‖ | ~w ∈W}. (29)
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The “inf” in (29) is short for infimum, which is defined as the greatest lower

bound of a set of numbers. As an example, consider the set

S = {an | an := 2 +
1

n
, n = 1, 2, . . . }.

The infimum of S is the largest number κ for which an ≥ κ for n = 1, 2, . . . .

A moment’s thought shows that the infimum of S is inf S = 2.

Naturally, we are interested in computing this distance. In addition, we would

like to know which point in W is closest to v. The answers to these questions is

given by the following result which relies crucially on orthogonal projection:

Theorem 2.83. Let ~v ∈ Rn and let W be a subspace of Rn. Then

d(~v,W ) =

√
‖~v‖2 − ‖projW~v‖

2
.

In addition, d(~v, ~w) = d(~v,W ) if and only if ~w = projW~v.

Proof. By Corollary 2.81, we can decompose the vector ~v (uniquely) as

~v = projW~v + ~y (30)

where ~y ∈ W⊥. Let ~w be an arbitrary element of W . Using (30), we expand the

square of d(v, w) and obtain an upper bound for this quantity:

d(v, w)2 = ‖~v − ~w‖2

= (~v − ~w) · (~v − ~w)

= ~v · ~v − 2~v · ~w + ~w · ~w

= ‖~v‖2 − 2(projW~v + ~y) · ~w + ‖~w‖2

= ‖~v‖2 − 2(projW~v) · ~w + ‖~w‖2

≥ ‖~v‖2 − 2 ‖projW~v‖ ‖~w‖+ ‖~w‖2 , (31)

where the last inequality follows from the Cauchy Schwartz Theorem (Theorem

2.49). Since ~v is a fixed vector, the right side of (30) only depends on the value

of ‖~w‖. What value of ‖~w‖ will minimize the right side of (30)? To answer this

question, let

f(t) = ‖~v‖2 − 2 ‖projW~v‖ t+ t2.

The graph of f(t) is a quadratic which attains an absolute minimum value at

t = ‖projW~v‖ . (32)

Hence, the absolute minimum value of f is

f(‖projW~v‖) = ‖~v‖2 − ‖projW~v‖
2
. (33)
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Using (31) and (33), it follows that for any w ∈W , we have

d(v, w)2 ≥ ‖~v‖2 − ‖projW~v‖
2

(34)

From the calculation for (31) and (32), we see that w ∈W satisfies

d(v, w)2 = ‖~v‖2 − ‖projW~v‖
2

if and only if (projW~v) · ~w = ‖projW~v‖ ‖~w‖ and ‖~w‖ = ‖projW~v‖. The Cauchy

Schwartz Theorem implies that ~w = projW~v is the only element of W which satisfies

both of these conditions. Hence,

d(v,projW~v) =

√
‖~v‖2 − ‖projW~v‖

2
.

From the inequality (34) and the above discussion, we see that if ~w ∈ W and

~w 6= projW~v, we have d(v, w) > d(v,projW~v). From this, we conclude that projW~v

is the element of W closest to v and

d(v,W ) =

√
‖~v‖2 − ‖projW~v‖

2
.

This completes the proof. �

Example 2.84. Let V be the subspace of R4 defined by

V = {(a, a− 2b, b+ c, c) | a, b, c ∈ R}.

Let ~a = (1, 2, 2, 1). From Example 2.82,

projV ~a =
1

10
(13, 17, 14, 16).

By Theorem 2.83, projV ~a is the element of V closest to ~a. The distance

from ~a to V is

d(~a, V ) =

√
‖~a‖2 −

∥∥∥ ~projV ~a
∥∥∥2 ≈ 0.949.
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Chapter 2 Exercises

1. Determine if ~w = (−4, 6, 1) is a linear combination of ~u = (1, 0,−1) and

~v = (1,−11, 3) . If so, then express ~w as a linear combination of ~u and ~v .

2. Determine if the vectors (3, 2, 0) , (−3, 0, 1) , and (1, 1,−9) span all of R3 . Do

these vectors form a basis?

3. Let ~u = (1, 1,−1) and ~v = (2, 1, 3). Determine if ~w = (7, 6, 3) is a linear

combination of ~u and ~v. If so, express ~w as a linear combination of ~u and ~v.

4. Let

~x1 = (2,−1, 3, 1), ~x2 = (1, 0,−1, 1), ~x3 = (0, 1, 4, 2).

(i) Determine if ~x1, ~x2, and ~x3 are linearly independent. Justify your answer.

(ii) Determine if ~v = (2,−1, 3, 1) is a linear combination of ~x1, ~x2, and ~x3.

If so, express ~v as a linear combination of ~x1, ~x2, and ~x3. If not, justify

your answer.

(iii) Determine if ~u = (1, 0, 0, 1) is a linear combination of ~x1, ~x2, and ~x3. If

so, express ~u as a linear combination of ~x1, ~x2, and ~x3. If not, justify

your answer.

5. Consider the following subset of R4:

W := {(a− b, 4a, 2b+ 3c, b− c) | a, b, c ∈ R}.

Determine if W is a subspace of R4. If W is a subspace, find a basis for W

and state its dimension. If W is not a subspace, explain why.

6. Consider the following subset of R3:

U := {(a+ b, 4b, a+ b− 1) | a, b ∈ R}.

Determine if U is a subspace of R3. If U is a subspace, find a basis for U and

state its dimension. If U is not a subspace, explain why.

7. Solve the following homogeneous linear system in 3-variables:

x+ y − z = 0

x+ 3y + 2z = 0

−3x− y + 6z = 0.

Let W ⊂ R3 denote the solution space for the above homogenous system.

What is the dimension of W as a subspace of R3? Find a basis for W .
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8. Solve the following homogeneous linear system in 5-variables:

x1 + 2x2 − 2x3 − 6x4 + 3x5 = 0

2x1 + 5x2 − x3 − 4x4 + 2x5 = 0

−x1 − x2 + 6x3 + 17x4 − 4x5 = 0.

Let U ⊂ R5 denote the solution space for the above homogenous system.

What is the dimension of U as a subspace of R5? Find a basis for U .

9. Let ~u = (1,−1, 0) and ~v = (1, 2, 1).

(i) Verify that ~u and ~v are linearly independent.

(ii) Extend the set {~u,~v} to a basis on R3 (i.e. find a vector ~w ∈ R3 such

that {~u,~v, ~w} is a basis of R3).

10. Let ~u = (1, 0,−1, 1) ∈ R4. Extend ~u to a basis of R4, that is, find vectors

~x1, ~x2, ~x3 ∈ R4 such that

{~u, ~x1, ~x2, ~x3}

is a basis of R4.

11. Determine if the following set of vectors form a basis of R3.

{(1, 1,−1), (0, 2, 1), (1,−3,−3)}.

12. Normalize the following vectors:

(a) ~v = (1,−1)

(b) ~u = (1, 2, 2)

(c) ~w = (1,−1, 1,−1)

13. Find the distance between the following vectors:

(a) ~u1 = (1, 0,−1) and ~u2 = (1, 2, 1)

(b) ~v1 = (1, 1,−1,−1) and ~v2 = (0, 1, 0,−1)

14. Give an equation for a sphere in R3 centered at the origin and with radius r.

15. To the nearest hundredth in radians, calculate the angle between the following

pairs of vectors:

(a) (1, 1) and (2, 5)

(b) (1, 2,−1) and (1, 1, 1)

(c) (1, 0,−1, 2) and (−1, 1, 2, 2)

16. Let ai, bi ∈ R be positive numbers for i = 1, 2, . . . , n. Is the following equality

true? (
n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
If so, explain why. If not, give a counterexample.
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17. Are the two vectors orthogonal? 2

3

−5

 ,

 2

−1

3


18. Show that ~u = (2,−4) and ~v = (8, 4) is an orthogonal basis of R2 . Express

(−3, 1) as a linear combination of ~u and ~v .

19. Determine t such that the two vectors
−3

t

4

−1

 ,


1

−3

t

5


are orthogonal.

20. Consider the vector ~v = (1, 1, 2,−1).

(a) Let W be the subspace of R4 consisting of all vectors orthogonal to ~v.

(b) Give a basis for W .

(c) What is the dimension of W?

21. Compute the orthogonal projection proj~u~v for each case:

(a) ~u = (1,−1), ~v = (2, 3)

(b) ~u = (1, 2, 1), ~v = (0, 1, 1)

(c) ~u = (2, 1, 1, 1), ~v = (1,−1,−1, 1)

22. Apply the Gram-Schmidt Process to the following basis of R3:

{(1, 1, 1), (−1, 1,−1), (0, 1, 2)}

23. Consider the subspace V of R4 given by

V = {(a+ 2c, a+ b− 3c, c− a, a+ 4c) | a, b, c ∈ R}.

(a) Construct an orthonormal basis of V .

(b) Express the orthogonal complement V ⊥ as a set. Also, give a basis for

V ⊥.

24. Use the Gram-Schmidt process to find an orthogonal basis of the subspace of

R3 spanned by the vectors: (1, 3,−2) and (1, 5, 1).

25. Use the Gram-Schmidt process to find an orthogonal basis of the subspace of

R4 spanned by the vectors:

{(1,−2, 1, 1), (0,−1,−3, 1)}.

26. Show that ~u = (−2, 5, 2) and ~v = (2, 2 − 3) are orthogonal. Find a third

vector ~w that together with ~u and ~v make an orthogonal basis of R3 . Express

(−1,−3, 1) as a linear combination of ~u, ~v and ~w .

27. Consider the subspace W of R4 given by

V = {(a, a+ 2b, b, a) | a, b ∈ R}.

(a) Construct an orthonormal basis of W .
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(b) Express the orthogonal complement W⊥ as a set. Also, give a basis for

W⊥.

28. Suppose that W is the subspace spanned by

{(5, 1, 4), (1, 3,−2)}.

Find a basis of W⊥ .

29. Let W1 and W2 be subspaces of R4 given by

W1 := {(a, 2b, a+ c, c) | a, b, c ∈ R}

and

W2 := {(a, 2a, b, a) | a, b ∈ R}
(a) Does W1 +W2 = R4. Justify your answer.

(b) Does W1 ⊕W2 = R4. Justify your answer.

30. Let U1 and U2 be subspaces of R3 given by

U1 := {(a, b, a+ 2b) | a, b ∈ R}

and

U2 := {(a, a, 2a) | a ∈ R}.
(a) Does U1 + U2 = R3. Justify your answer.

(b) Does U1 ⊕ U2 = R3. Justify your answer.

31. Find the orthogonal projection of (−2, 5, 1) into the subspace of R3 defined

by

W := span {(−1, 1, 2), (−1, 2, 4)}.
32. Let W be the subspace of R3 given by

W := {(a, a+ b, b) | a, b ∈ R}

(a) Find the projection of ~v = (1, 0, 2) onto W .

(b) Calculate the distance from ~v to W .

33. Let W be the subspace of R4 given by

W := {(a, a, a+ b, b) | a, b ∈ R}.

(a) Find the projection of ~v = (1, 2, 0, 1) onto W .

(b) Calculate the distance from ~v to W .

34. Find the distance of (−1, 2, 4) to the subspace of R3 spanned by the vectors

(−2,−4, 1) and (−3, 2, 0).

35. Find the distance of (−2, 1, 0) to the plane 3x− y + z = 0 .



Chapter 3

Matrices

3.1. Basic Definitions

As we saw in Chapter 1, a matrix is simply an array of numbers arranged in rows

and columns. Recall that a matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


with m rows and n columns is said to be of size m × n. The matrix A is then

called an m× n matrix. The individual numbers making up the matrix are called

the entries or elements of A.

Example 3.1. The matrix shown below is an example of a 2× 3 matrix:(
11 2 5

1 15 −10

)
.

The individual numbers making up the matrix are called the entries or ele-

ments of the matrix. For an m× n matrix A, the element in the ith row and jth

column is called the (i, j)-th element or (i, j)-the entry and is typically denoted in

one of the following ways:

aij , ai,j , Aij , Ai,j .

In this book, we will typically denote the (i, j)-th element of a matrix A as aij or

Aij .

69
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Example 3.2. The matrix A shown below has size 3× 4:

A =

 9 7 4 0

−4 27 12 8

2 2 −4 1

,
The number in red is its (1, 3)-entry, which we can write as

a13 = 4.

To further simplify notation, an m×n matrix A is sometimes denoted as (aij) with

the understanding that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Naturally, a matrix whose entries are elements of R is called a real matrix while

a matrix whose entries are elements of C is called a complex matrix.

Example 3.3. For instance, the matrix in Example 3.1 is a real matrix

while the following is a complex one of size 3× 2: 7 + i 2i

−9− 5i 5

6 + i −10i

.

Remark 3.4. So far, every matrix in this book has been enclosed with paren-

theses. For the sake of completeness, we also point out that another common

notation is to use square brackets in place of parentheses.

For example, the 2× 3 matrix from Example 3.1 would be written as[
11 2 5

1 15 −10

]
.

In this book, we primarily use parentheses to enclose matrices.

From Chapter 2, we recall the following definition:

Definition 3.5. A matrix with exactly one row is called a row vector while

a matrix with exactly one column is called a column vector.
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Example 3.6. A (real) row vector of size 1× 3:(
2 9 6

)
∈ R3

A (complex) column vector of size 4× 1:
3 + 2i

−3i

2− 7i

10

 ∈ C4

Whether one depicts the elements of Rn (or Cn) as row vectors or column

vectors is a matter of taste. However, once we introduce the idea of linear

transformations, it becomes more natural to express vectors as column

vectors.

As we saw in the previous two chapters, we denote row vectors and column

vectors typically as lower case letters with a little arrow overheard (e.g., ~u,

~v). We typically denote matrices which are neither row or column vectors

with capital letters.

Definition 3.7. A matrix with the same number of rows and columns is

called a square matrix. A square matrix of size n × n is said to have

order n.

Example 3.8. A square matrix of order 4:
2 1 −12 π

10 2
√

2 8

6 −1 4 −15

2 2 e −3



3.2. Matrix Addition and Scalar Multiplication

The goal of the next few sections is to generalize the four basic operations of ad-

dition, subtraction, multiplication, and division to matrices. We begin this section

with the definition of matrix addition:
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Definition 3.9. Let A and B be two matrices m× n matrices. The sum of

A and B is the m× n matrix A+B whose (i, j)-element is given via

(A+B)ij := Aij +Bij .

Example 3.10. Let

A =

(
−2 1 0

4 −3 2

)
, B =

(
5 3 1

2 6 −1

)
Then

A+B =

(
−2 + 5 1 + 3 0 + 1

4 + 2 −3 + 6 2− 1

)
=

(
3 4 1

6 3 1

)
.

The definition of matrix addition is quite natural. We just add the matrices

component wise. However, we stress that matrix addition is only defined for ma-

trices of the same size. We now introduce the natural idea of the zero matrix:

Definition 3.11. The m×n zero matrix is defined to be the m×n matrix

whose entires are all zero. We denote this matrix as 0m×n.

To simplify notation, we will drop the indices m,n from 0m×n and denote the

zero matrix as 0. The size of the matrix will be clear from the context in which

it is used. For example, if A is an m × n matrix, then the statement A + 0 only

makes sense if 0 denotes the m × n zero matrix. Observe that for a matrix A, we

have the following identity: A+ 0 = A.

The next operation we introduce is the notion of scalar multiplication for ma-

trices. The definition is quite obvious, but let’s state it formally anyway:

Definition 3.12. Let A be an m × n matrix and c a scalar (if A is real,

then c ∈ R; if A is complex, then c ∈ C). The scalar multiplication of c

on A is the m× n matrix cA whose (i, j)-entry is given by

(cA)ij := cAij .

Example 3.13. Consider the square matrix of order 2:

A =

(
4 −1

2 3

)
. (35)

Then

2A =

(
8 −2

4 6

)
. (36)
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In light of the zero matrix, we make the following definition:

Definition 3.14. The additive inverse of a matrix A is the matrix

−A := (−1)A.

The name additive inverse comes from the simple fact that A+ (−A) = 0. Armed

with the additive inverse, we define the difference between two matrices A and B

of the same size to be

A−B := A+ (−B).

Of course, this is exactly how we define the difference of two real (or complex)

numbers.

Example 3.15.

4

 5 −2

−1 −2

1 0

− 3

 2 −2

5 1

4 −1

 =

 14 −2

−19 −11

−8 3


We conclude this brief section with a summary of the basic properties of matrix

addition and scalar multiplication. All of these properties follow mmediately from

the associativity, commutativity, and distributive properties of real and complex

numbers.

Basic Properties of Matrix Addition & Scalar Multiplication

Let A,B, and C be m× n matrices and let c be a scalar.

• (A+B) + C = A+ (B + C) (Associativity)

• A+B = B +A (Commutativity)

• A+ 0 = A (Additive Identity)

• A+ (−A) = 0 (Additive inverse)

• c(A+B) = cA+ cB (Distributivity of the scalar)

3.3. The Transpose

By definition, a matrix is a rectangular array of numbers. This fact leads to the

idea of the transpose:
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Definition 3.16. The transpose of an m×n matrix A is the n×m matrix

AT formed by interchanging the rows and columns of A. In other words, AT

is the m× n matrix defined via

(AT )ij = Aji.

Example 3.17. (
1 2 3

4 5 6

)T
=

1 4

2 5

3 6


The following result summarizes the basic properties of the transpose as it relates

to matrix addition and scalar multiplication. This result is very straightforward,

but lets work it out anyway since it provides practice with the definitions of matrix

addition, scalar multiplication, and the transpose.

Proposition 3.18. Let A and B be m × n matrices and let c be a scalar.

Then

(i)
(
A+B

)T
= AT +BT

(ii) (cA)T = cAT

(iii)
(
AT
)T

= A

Proof. For (i), we have [
(A+B)T

]
ij

= (A+B)ji

= Aji +Bji

= (AT )ij + (BT )ij .

This in turn implies (A+B)T = AT +BT . Likewise for (ii), we have[
(cA)T

]
ij

= (cA)ji

= cAji

= c(AT )ij

= (cAT )ij .

This gives (cA)T = cAT . Lastly, for (iii), we have[
(AT )T

]
ij

= (AT )ji

= Aij .

Hence, (AT )T = A. �
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The transpose applies to both real and complex matrices alike. However, in the

case of complex matrices, there is a variation of the transpose that has greater use.

This variation is called the conjugate transpose. First, let us recall that the

conjugate of a complex number z = a+ ib is defined by

z̄ := a− ib.

The conjugate transpose is then defined as follows:

Definition 3.19. Let A be an m × n matrix. The conjugate transpose is

the n×m matrix A∗ whose (i, j)-element is given by

(A∗)ij := Aji.

In other words, to obtain the conjugate transpose of a complex matrix A, we first

conjugate every element of A, and then take the transpose of the resulting matrix.

Example 3.20. Consider the 2× 3 matrix

A =

(
2 + 3i 1− i 4 + 2i

2i 3 3 + 4i

)
.

Then

A∗ =

 2− 3i −2i

1 + i 3

4− 2i 3− 4i

 .

Example 3.21. Of course, if A is a real matrix, then the conjugate trans-

pose and the ordinary transpose coincide:

A∗ = AT

In fact, a matrix A is real if and only if the above condition is satisfied.

We will give some motivation for the transpose and the conjugate transpose when

we get to matrix multiplication in the next section. For now, here is the complex

version of Proposition 3.18:

Proposition 3.22. Let A and B be m × n matrices and let c be a scalar.

Then

(i) (A+B)∗ = A∗ +B∗

(ii) (cA)∗ = cA∗

(iii) (A∗)∗ = A
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Proof. The proof is very similar to the proof of Proposition 3.18. In proving

Proposition 3.22, one has to remember the following conjugation identities:

z1 + z2 = z1 + z2, z1z2 = z1z2, ∀ z1, z2 ∈ C.

�

By definition, the transpose takes an m×n matrix and transforms it into an n×m
matrix. Hence, in general, the transpose alters the size of the matrix. On the other

hand, if A is an n×n matrix, then AT is still an n×n matrix. We can take things

one step further by considering matrices which are left completely unchanged by

the transpose. This idea leads to the following definition:

Definition 3.23. Let A be an n×n matrix. The matrix A is a symmetric

matrix if AT = A.

Example 3.24. Let

A =

 4 −1 2

−1 3 5

2 5 0

 .

Then AT = A. Hence, A is a (real) symmetric matrix.

For complex matrices, one has the following variation of a symmetric matrix which

has greater use:

Definition 3.25. Let A be an n×n matrix. The matrix A is a Hermitian

matrix if A∗ = A.

Example 3.26. Let

A =

(
1 2 + 3i

2− 3i 5

)
.

Then AT = A. Hence, A is a Hermitian matrix.

At this point, we are going to introduce a very important type of matrix:
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Definition 3.27. Let A be an n×n matrix. A is called a diagonal matrix

if Aij = 0 for all i 6= j. The elements Aii for i = 1, . . . , n are called the

diagonal elements of A. The set of diagonal elements

A11, A22, . . . , Ann

is called the main diagonal of A.

Example 3.28. The 3× 3 matrix

A =

 2 0 0

0 1 0

0 1 −3


is a diagonal matrix.

Proposition 3.29. Let A be a Hermitian matrix. Then its diagonal ele-

ments are all real numbers.

Proof. Consider the diagonal element Aii. Since A∗ = A, we have

(A∗)ii = Aii = Aii.

The above equality implies that the imaginary part of Aii is zero. In other words,

Aii is real. �

For the sake of completeness, we will introduce other types of symmetries associ-

ated to the transpose and the conjugate transpose:

Definition 3.30. Let A be an n× n matrix.

1. A is a skew-symmetric matrix if AT = −A.

2. A is a skew-Hermitian matrix if A∗ = −A.

Proposition 3.31. Let A be an n× n matrix.

(1) If A is a skew-symmetric matrix, then its diagonal elements are all

zero.

(2) If A is a skew-Hermitian matrix, then its diagonal elements are all

imaginary.

Proof. (1): Let A be a skew-symmetric matrix. Since AT = −A, we have

Aji = −Aij .

In particular, Aii = −Aii for all i.
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(2): Let A be a skew-Hermitian matrix. Since A∗ = −A, we have

Aji = −Aij .

In particular, Aii = −Aii. Write Aii = a + b
√
−1. Then the aforementioned

condition implies that

a− b
√
−1 = −a− b

√
−1.

From this, we see that a = 0. Hence, Aii is imaginary. �

Example 3.32.

• Symmetric Matrix:

 1 7 3

7 4 −5

3 −5 6


• Skew-symmetric Matrix:

 0 2 −1

−2 0 −4

1 4 0


• Hermitian Matrix:

 2 2 + i 4

2− i 3 i

4 −i 1


• Skew-Hermitian Matrix:

 3 1 + 2i 2− 3i

1− 2i 2 3 + 4i

2 + 3i 3− 4i 1



Exercise 3.33. Identify each of the following as symmetric, skew symmet-

ric, or neither.

(a)

 1 −3 3

−3 4 −3

3 3 0


(b)

 0 −3 −3

3 0 1

3 −1 0


(c)

(
1 2 0

2 1 0

)

3.4. Matrix Multiplication

In this section, we define matrix multiplication and study its properties. It will

become apparent right away that matrix multiplication does not behave like the

usual multiplication of real or complex numbers in one key respect.
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Definition 3.34. Let A be an m × n matrix and let B be a n × p matrix.

Then the product of A and B is the m× p matrix AB whose (i, j)-entry is

given by

(AB)ij =

n∑
k=1

AikBkj = Ai1B1j +Ai2b2j + · · ·+AinBnj .

From the above definition, the product AB is only defined if the number of

columns of A is equal to the number of rows of B. Hence, if AB is defined,

then it is not necessarily true that BA is defined. This is one key difference between

matrix multiplication and the usual multiplication of real and complex numbers.

Remark 3.35. Definition 3.34 may seem a little mysterious at this point.

The reader may be wondering why matrix multiplication is not defined com-

ponentwise like matrix addition. The reason why matrix multiplication is

defined the way it is has to do with a type of map called a linear map

which will be defined in Chapter 5. In Chapter 6, we will see that these

linear maps can be represented as matrices! Moreover, we will see that ma-

trix multiplication, as defined in Definition 3.34, is exactly what is needed

to represent the composition of two linear maps! However, all of this will

have to wait for Chapter 6.

At this point, its time to look at some examples:

Example 3.36. Let

A =
(
−2 3 4

)
, B =

 3

−2

1

 .

Then

AB =
(

2 5 4
) 3

7

1

 = (2)(3) + (5)(7) + (4)(1) = 45.

As expected, since A is a 1 × 3 matrix and B is a 3 × 1 matrix, AB is a

1× 1 matrix, i.e. a number.

Note also that BA is also defined. The end result is a 3× 3 matrix:

BA =

 3

7

1

( 2 5 4
)

=

 6 15 12

14 35 28

2 5 4

 .
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Example 3.36 demonstrates that even when one has two matrices A and B for which

AB and BA are defined, one in general, has

AB 6= BA.

This result is a far cry from the usual multiplication of numbers! The technical

term for this is to say that matrix multiplication is noncommutative. In other

words, when it comes to matrix multiplication, order matters. Interestingly, this

feature of noncommutativity of matrices enters prominently in quantum mechanics

and leads to the famous Heisenberg Uncertainty Principle, which says that it is

impossible to measure both the position and velocity of a particle simultaneously

with arbitrary accuracy.

Here’s a few more examples:

Example 3.37. Let

A =

(
1 2 3

−2 −1 5

)
, B =

 0 4

5 −1

3 2

 .

Let’s compute, for example, the (2, 2)-entry of AB:

(AB)22 = (−2)(4) + (−1)(−1) + (5)(2) = 3.

Here is the full calculation for AB:

AB =

(
1 2 3

−2 −1 5

) 0 4

5 −1

3 2

 =

(
19 2

10 3

)
.

Example 3.38. Let

A =

(
1 + i 2i

3 2 + 3i

)
, B =

(
4i 2

1− i −2i

)
.

Then

AB =

(
1 + i 2i

3 2 + 3i

)(
4i 2

1− i −2i

)
=

(
−2 + 6i 6 + 2i

5 + 13i 12− 4i

)

The following example is a very convenient result to keep in mind:
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Example 3.39. Let ~u,~v ∈ Rn be column vectors. Then the dot product of ~u

and ~v can be expressed in terms of matrix multiplication and the transpose:

~u · ~v = u1v1 + u2v2 + · · ·+ unvn

=
(
u1 u2 · · · un

)


v1
v2
...

vn


= ~uT~v.

We now look at some of the basic properties of matrix multiplication. We begin by

proving the associativity of matrix multiplication:

Theorem 3.40. Let A, B, and C be matrices such that AB and BC are

defined. Then

(AB)C = A(BC). (37)

Proof. Let A be an m× n matrix, B an n× p matrix, and C a p× q matrix. Lets

compute the (i, j)-element of the left side of (37) and see what happens:

[
(AB)C

]
ij

=

p∑
k=1

(AB)ikCkj

=

p∑
k=1

(
n∑
r=1

AirBrk

)
Ckj

=

n∑
r=1

p∑
k=1

AirBrkCkj

=

n∑
r=1

Air

(
p∑
k=1

BrkCkj

)

=

n∑
r=1

Air(BC)rj

=
[
A(BC)

]
ij
.

From this, we conclude that (AB)C = A(BC). �

Next we verify that matrix multiplication is distributive with respect to matrix

addition and scalar multiplication:
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Theorem 3.41. Let B and C be matrices of the same size and let A and

D be matrices such that AB, AC, BD, and CD are all defined. Also, let α

be any scalar. Then

(a) A(B + C) = AB +AC

(b) (B + C)D = BD + CD

(c) α(AB) = (αA)B = A(αB).

Proof. Let B and C be m × n matrices and let A and D be l × m and n × p

matrices respectively. Then

[A(B + C)]ij =

m∑
k=1

Aik(B + C)kj

=

m∑
k=1

Aik(Bkj + Ckj)

=

m∑
k=1

AikBkj +AikCkj

= (AB)ij + (AC)ij

= (AB +AC)ij .

Hence, A(B + C) = AB +AC. This proves (a).

The proof of (b) is entirely similar to (a) so we omit it and leave it as exercise

for the reader.

For (c), we have[
α(AB)

]
ij

= α(AB)ij

= c

(
n∑
k=1

AikBkj

)

=

(
n∑
k=1

(αAik)Bkj

)
=

(
n∑
k=1

Aik(αBkj)

)

=

(
n∑
k=1

(αA)ikBkj

)
=

(
n∑
k=1

Aik(αB)kj

)
=
[
(αA)B

]
ij

=
[
A(αB)]ij .

�

At this point, lets check the above results against some examples:
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Example 3.42. Let

A =

(
3 1 −2

1 4 3

)
,

 5 −2

3 4

−1 −4

 ,

(
0 2

−1 3

)
.

Then

(AB)C =

( 3 1 −2

1 4 3

) 5 −2

3 4

−1 −4

( 0 2

−1 3

)

=

(
20 6

14 2

)(
0 2

−1 3

)
=

(
−6 58

−2 34

)
and

A(BC) =

(
3 1 −2

1 4 3

) 5 −2

3 4

−1 −4

( 0 2

−1 3

)
=

(
3 1 −2

1 4 3

) 2 4

−4 18

4 −14


=

(
−6 58

−2 34

)

Example 3.43. Let

A =

(
6 3

−2 5

)
, B =

(
−1 1 4

−2 3 −2

)
, C =

(
3 −2 4

4 −2 3

)
Then

A(B + C) =

(
6 3

−2 5

)[(
−1 1 4

−2 3 −2

)
+

(
3 −2 4

4 −2 3

)]
=

(
6 3

−2 5

)(
2 −1 8

2 1 1

)
=

(
18 −3 51

6 7 −11

)
and

AB +AC =

(
6 3

−2 5

)(
−1 1 4

−2 3 −2

)
+

(
6 3

−2 5

)(
3 −2 4

4 −2 3

)
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=

(
−12 15 18

−8 13 −18

)
+

(
30 −18 33

14 −6 7

)
=

(
18 −3 51

6 7 −11

)

The next result is used numerous times during the course of the book.

Proposition 3.44. Let A be an m×n matrix and let B be an n×p matrix.

Let ~bj denote the jth column of B. Then

AB =
(
A~b1 A~b2 · · · A~bn

)
.

Proof. The (i, j)-entry of AB is

(AB)ij =

n∑
k=1

aikbkj = (A~bj)i,

where (A~bj)i denotes the ith element of A~bj . Hence, the jth column of AB is

A~bj . �

We now look at the relationship between matrix multiplication and the transpose

and the conjugate transpose.

Proposition 3.45. Let A and B be matrices such that AB are defined.

Then

(a) (AB)T = BTAT

(b) (AB)∗ = B∗A∗

Proof. Let A be an m× n matrix and B be an n× p matrix. For (a), we have[
(AB)T

]
ij

= (AB)ji

=

n∑
k=1

AjkBki

=

n∑
k=1

BkiAjk

=

n∑
k=1

[
BT
]
ik

[
AT ]kj

=
[
BTAT

]
ij
,
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which implies (AB)T = BTAT . The proof of (b) is similar so we leave it to the

reader as an exercise. �

Example 3.46. Let

A =

(
2 3

−1 4

)
, B =

(
0 −1

2 5

)
.

Then

(AB)T =

(
2 3

−1 4

)(
0 −1

2 5

)
=

(
6 13

8 21

)T
=

(
6 8

13 21

)
and

BTAT =

(
0 2

−1 5

)(
2 −1

3 4

)
=

(
6 8

13 21

)
.

At this point, we now introduce the matrix-equivalent of the number 1:

Definition 3.47. The identity matrix of order n is the n × n diagonal

matrix whose diagonal elements are all 1, that is,

In :=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

The name “identity matrix” is justified by the following result:

Proposition 3.48. Let A be an m× n matrix. Then ImA = AIn = A.

Proof. By direct calculation, we have

(ImA)ij =

m∑
k=1

(Im)ikAkj

=
∑
k 6=i

(Im)ikAkj + IiiAij

=
∑
k 6=i

0Akj + 1Aij

= Aij .
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Hence, ImA = A. Likewise, we have

(AIn)ij =

n∑
k=1

Aik(In)kj

=
∑
k 6=j

Aik(Im)kj +Aij(In)jj

=
∑
k 6=j

Aik0 +Aij1

= Aij .

�

Exercise 3.49. Let A be a square matrix. Show that ATA and AAT are

both symmetric.

Some Motivation for the Conjugate Transpose

Consider a complex number z = a + ib ∈ C. Since a complex number has

two components, a real and an imaginary part, we can identify C with R2.

Explicitly, we regard the complex number z = a+ ib with the real vector

~z = (a, b) ∈ R2.

The square of the length of this vector is conveniently given by the dot

product: ~z · ~z. However, this same quantity can also be computed using

conjugation:

zz = ~z · ~z = a2 + b2.

From Example 3.39, the dot product of two real column vectors ~u,~v ∈ Rn

(can be expressed in terms of the transpose via

~u · ~v = ~uT~v.

Recall that one of the properties of the dot product is that ~u · ~u ≥ 0 for all

real vectors ~u and zero precisely when ~u = ~0. Geometrically, ~u ·~u represents

the square of the length of the vector ~u. Suppose now that we wanted to

construct a “complex dot product” and we want our “complex dot product”

to have properties similar to the real dot product. In particular, we would

like our “complex dot product” to satisfy the condition ~u · ~u ≥ 0 for all

~u ∈ Cn and to be zero only when ~u = ~0. Naively, we might define our

complex dot product in terms of the ordinary transpose (just like the real

case). However, this does not work. In fact, it does not even yield a real

number.
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At this point, you probably know exactly how to fix this problem. We simply

replace the ordinary transpose with the conjugate transpose.

~u · ~v = (~u)∗~v.

Its a simple exercise to see that (~u)∗~u ≥ 0 for all ~u ∈ Cn and zero precisely

when ~u = ~0. The above dot product is called the standard Hermitian

inner product on Cn. This is an idea we will cover later in this book.

3.5. The Inverse of a Matrix

In the last section, we introduced the identity matrix In (of order n), which plays

the same role as the number 1 for R and C with regard to multiplication. If a is a

nonzero number, then there exists a number a−1 such that

aa−1 = a−1a = 1.

Given a matrix A, we would like to know where there exists a matrix A−1 such

that

AA−1 = A−1A = In. (38)

Equation (38) implies that A and A−1 are both square matrices of order n. The

matrix A−1 (if it exists) is called the inverse of A. Before we consider how to

compute the matrix inverse, we first prove a basic result about A−1.

Proposition 3.50. Let A be an n× n matrix.

(i) The matrix inverse of A (if it exists) is unique.

(ii) If A−1 exists, then (A−1)−1 = A.

Proof. (i): Suppose that A−11 and A−12 are both inverses of A. Then

A−11 = A−11 In

= A−11 (AA−12 )

= (A−11 A)A−12

= InA
−1
2

= A−12 .

(ii): This is immediate. If A−1 exists, then AA−1 = A−1A = In. Hence, A is

an inverse of A−1. Moreover, by statement (i), this is the only inverse of A−1. This

proves (ii). �

For the sake of concreteness, we are going to assume that all matrices in this section

are real. However, we point out that all the arguments given in this section work

equally well for complex matrices. The question of when the inverse of a square
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matrix exists is answered by the following result:

Theorem 3.51. Let A be a square matrix of order n. Let ~ai denote the ith

column of A. Then A−1 exists if and only if

{~a1, . . . ,~an}

is a basis of Rn.

Proof. (⇒) Suppose A−1 exists. Let ~αi denote the ith column of A−1. Then

AA−1 = A
(
~α1 ~α2 · · · ~αn

)
=
(
A~α1 A~α2 · · · A~αn

)
Let ~ei denote the ith standard basis of Rn (expressed as a column vector). Observe

that

In =
(
~e1 ~e2 · · · ~en

)
.

Since AA−1 = In, it follows that

A~αi = ~ei. (39)

Since A~αi is a linear combination of the columns of A, it follows from (39) that

Rn = span {A~α1, . . . , A~αn}
= span {~a1, . . . ,~an}. (40)

Since dimRn = n, it follows from (40) that {~a1, . . . ,~an} is a basis of Rn.

(⇐) Suppose that the columns of A form a basis of Rn. Hence, for any vector

~v ∈ Rn, there exists (unique) c1, . . . , cn ∈ R such that

c1~a1 + c2~a2 + · · ·+ cn~an = ~v. (41)

Let ~c ∈ Rn be the column vector whose ith component is ci, (41) is equivalent to

the matrix equation

A~c = ~v. (42)

In particular, for each standard basis vector ~ei, there exists a vector ~bi such that

A~bi~ei. (43)

Let B be the n× n matrix whose ith column is ~bi. Then (43) implies

AB = In.

We now show that we also have BA = In. To do this, note that

A = InA = (AB)A = A(BA). (44)

(44) implies that

A(In −BA) = 0. (45)

Let ~ci denote the ith column of In −BA. Then (45) implies that

A~ci = ~0 (46)
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for i = 1, . . . , n. Since the columns of A are a basis of Rn (and hence linearly

independent), it follows that ~ci = ~0 for i = 1, . . . , n. This proves that In−BA = 0.

In other words, BA = In. We have thus constructed a matrix B satisfying AB =

BA = In. By definition, B is the (unique) inverse of A. �

Definition 3.52. A matrix whose inverse exists is said to be invertible

(or nonsingular).

The following result will prove useful:

Corollary 3.53. Let A be an n× n matrix. If there exists an n× n matrix

B such that AB = In, then A is invertible and A−1 = B.

Proof. Suppose there exists a square matrix B of order n such that AB = In.

Let ~bi denote the ith column of B. As we saw in the proof of Theorem 3.51, the

equation AB = In implies that

{A~b1, . . . , A~bn}

is a basis of Rn. This in turn implies that the columns of A form a basis of Rn. By

Theorem 3.51, A−1 exists. Hence,

A−1 = A−1In = A−1AB = InB = B.

�

Corollary 3.53 (and the proof of Theorem 3.51) give us a strategy for computing

the inverse of an n × n matrix A (assuming it exists). To find the inverse of A, it

suffices to find an n× n matrix B satisfying

AB = In.

Let ~bi be the ith column of B. The above equation amounts to solving the following

n matrix equations:

A~bi = ~ei, for i = 1, 2, . . . , n.

Each matrix equation is just a linear system of n equations in n variables. Hence,

we can use the Gauss-Jordan method to solve for each column ~bi. The good news

is that we can solve all n matrix equations simultaneously. To do this, we form the

augmented n× 2n matrix:

A′ :=
(
A In

)
.

The idea now is to put the first n columns of A′ in reduced echelon form. If we can

transform A′ into the following form(
In B

)
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via row operations, then A has an inverse and the inverse is A−1 = B. Let’s put

this strategy to the test with a simple example:

Example 3.54. Let

A =

(
2 1

3 2

)
.

Now we form the augmented matrix

A′ =

(
2 1 1 0

3 2 0 1

)
.

Now apply Gauss Jordan to A′

1. −R1 +R2 → R2:

A′ =

(
2 1 1 0

1 1 −1 1

)
2. R1 ↔ R2

A′ =

(
1 1 −1 1

2 1 1 0

)

3. −2R1 +R2 → R2

A′ =

(
1 1 −1 1

0 −1 3 −2

)
4. R2 +R1 → R1

A′ =

(
1 0 2 −1

0 −1 3 −2

)
5. −R2 → R2

A′ =

(
1 0 2 −1

0 1 −3 2

)
.

From this, we conclude that

A−1 =

(
2 −1

−3 2

)
.

Let’s check that AA−1 = A−1A = I2:

AA−1 =

(
2 1

3 2

)(
2 −1

−3 2

)
=

(
1 0

0 1

)
.

A−1A =

(
2 −1

−3 2

)(
2 1

3 2

)
=

(
1 0

0 1

)
.

The need to calculate the inverse of a 2 × 2 matrix happens quite often. For this

reason, the following result is convenient to keep in mind:
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Proposition 3.55. Let

A =

(
a b

c d

)
.

Then A is invertible if and only if ad− bc 6= 0 and

A =
1

ad− bc

(
d −b
−c a

)
.

Exercise 3.56. Check Proposition 3.55.

The quantity ad − bc in Proposition 3.55 is called the determinant of the 2 × 2

matrix A. The determinant is an extremely important idea in linear algebra. We

will study determinants in more detail in Chapter 4.

Example 3.57. Let

A =

 0 2 0

4 0 −2

2 0 0

 .

As before, form the augmented matrix A′:

A′ =

 0 2 0 1 0 0

4 0 −2 0 1 0

2 0 0 0 0 1

 .

Now apply Gauss-Jordan to A′:

1. −2R1 +R2 → R2:

A′ =

 0 2 0 1 0 0

0 0 −2 0 1 −2

2 0 0 0 0 1


2. R1 → R2:

A′ =

 0 0 −2 0 1 −2

0 2 0 1 0 0

2 0 0 0 0 1


3. R1 → R3 :

A′ =

 2 0 0 0 0 1

0 2 0 1 0 0

0 0 −2 0 1 −2


4. 1

2R1 → R1, 1
2R2 → R2, − 1

2R3 → R3:

A′ =

 1 0 0 0 0 1/2

0 1 0 1/2 0 0

0 0 1 0 1 1/2
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Hence,

A−1

 0 0 1/2

1/2 0 0

0 1 1/2

 .

We leave it to the reader to check that the above matrix is indeed the inverse

of A.

Example 3.58. Let

A =

 1 −1 1

−1 −1 1

1 1 1

 .

The augmented matrix is

A′ =

 1 −1 1 1 0 0

−1 −1 1 0 1 0

1 1 1 0 0 1

 .

Now we apply Gauss-Jordan to A′:

1. R1 +R2 → R2, −R1 +R3 → R3: 1 −1 1 1 0 0

0 −2 2 1 1 0

0 2 0 −1 0 1


2. R3 +R2 → R2:  1 −1 1 1 0 0

0 0 2 0 1 1

0 2 0 −1 0 1


3. R2 ↔ R3:  1 −1 1 1 0 0

0 2 0 −1 0 1

0 0 2 0 1 1


4. 1/2R2 +R1 → R1, −1/2R3 +R1 → R1: 1 0 0 1/2 −1/2 0

0 2 0 −1 0 1

0 0 2 0 1 1


5. 1/2R2 → R2, 1/2R3 → R3 1 0 0 1/2 −1/2 0

0 1 0 −1/2 0 1/2

0 0 1 0 1/2 1/2
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Hence,

A−1 =

 1/2 −1/2 0

−1/2 0 1/2

0 1/2 1/2

 .

We conclude this section by revisiting systems of linear equations. Consider

the following system of n equations and n variables:

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...

an1x1 + · · ·+ annxn = bn

One of the nice features of matrices is that we can use them to transform a system

of linear equations into a single concise matrix equation (as we saw earlier). In this

case, let A be the n×n matrix whose (i, j)-element is aij , let ~x be the column vector

whose ith component is xi, and let ~b be the column vector whose ith component

is bi. Then the above linear system is completely encapsulated by the following

matrix equation:

A~x = ~b. (47)

From here, we obtain the following result:

Theorem 3.59. Let A be an n × n matrix and let ~b ∈ Rn be any column

vector. Then the matrix equation A~x = ~b has a unique solution if and only

if A is invertible. Moreover, the solution is ~x = A−1~b.

Proof. If A is invertible, then multiplying both sides of (47) from the left by A−1

gives

~x = A−1~b.

Now suppose that (47) has a unique solution. In particular, A~x = ~0 has a

unique solution. This implies that the columns of A are linearly independent.

Since A has n columns, the columns of A must form a basis of Rn. By Theorem

3.51, A is invertible. �
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Example 3.60. Consider the linear system

x− y + z = 5

− x− y + z = 2

x+ y + z = 4.

Setting

A =

 1 −1 1

−1 −1 1

1 1 1

 .

We already encountered the matrix A in Example 3.58. Its inverse was found

to be

A−1 =

 1/2 −1/2 0

−1/2 0 1/2

0 1/2 1/2

 .

Hence, the (unique) solution to the above system is

~x = A−1~b =

 1/2 −1/2 0

−1/2 0 1/2

0 1/2 1/2

 5

2

4

 =

 3/2

−1/2

3



3.6. Elementary Matrices

Back in Chapter 1, we introduced the following three elementary row operations:

1. Ri ↔ Rj

2. cRi → Ri (c 6= 0)

3. cRi +Rj → Rj (i 6= j)

It turns out each of these row operations can be achieved by matrix multiplication.

The matrices that are associated to these basic row operations are called elemen-

tary matices:

Definition 3.61. An elementary matrix of order n is a matrix E which

differs from the identity matrix In by a single elementary row operation.
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Example 3.62. Here are some examples of elementary matrices:

1. (
0 1

1 0

)
2.  1 0 0

0 1 5

0 0 1


3. 

1 0 0 0

0 −4 0 0

0 0 1 0

0 0 0 1


The following result shows how elementary matrices induce elementary row opera-

tions:

Theorem 3.63. Let A be an n × n matrix and let E be an elementary

matrix obtained by applying row operation X to In. Then EA is the matrix

obtained by applying row operation X to A.

Proof. Let ~e1, . . . , ~en be the standard basis on Rn expressed as columns vectors.

Then

In =

 ~eT1
...

~eTn


Lets consider each of the three basic row operations one by one.

case 1: X is Ri ↔ Rj . If i = j, then the row operation X leaves the matrix

unchanged. With i = j, we have E = In and EA = InA = A. Now let us suppose

i < j. Then

E =



~eT1
...

~eTj
...

~eTi
...

~eTn
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and

EA =



~eT1 A
...

~eTj A
...

~eTi A
...

~eTnA


.

Since ~eTkA is the kth row of A, we see that EA is A with rows i and j swapped.

case 2: X is cRi → Ri with c 6= 0. In this case,

E =



~eT1
...

c~eTi
...

~eTn


.

Then

EA =



~eT1 A
...

c~eTi A
...

~eTnA


.

This is almost A with the one difference being that the ith row has been scaled by

c. This proves case 2.

case 3: cRi +Rj → Rj . Without loss of generality, take i < j. Then

E =



~eT1
...

~eTi
...

c~eTi + ~eTi
...

~eTn
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and

EA =



~eT1 A
...

~eTi A
...

c~eTi A+ ~eTj A
...

~eTn


.

Once again, since ~eTkA is just the kth row of A, it follows that EA is the matrix

obtained by applying the row operation cRi +Rj → Rj to A. �

Example 3.64. Let

A =

 1 2 3

4 5 6

7 8 9


and let

E =

 1 0 0

0 0 1

0 10

 .

Then

EA =

 1 0 0

0 0 1

0 1 0

 1 2 3

4 5 6

7 8 9

 =

 1 2 3

7 8 9

4 5 6

 .

In light of Theorem 3.63, it is a very simple matter to calculate the inverse

of an elementary matrix. Think about it. Suppose E1 is an elementary matrix of

order n. For concreteness, take E1 to be the elementary matrix associated to the

row operation cRi + Rj → Rj . Then what is the inverse of E1? The answer, of

course, is that it must be the elementary matrix associated to the row operation

which undoes cRi +Rj → Rj . In this case, the inverse is the elementary matrix E2

associated to the row operation −cRi+Rj → Rj . Undoing the single row operation

associated to E1 yields In. So by Theorem Theorem 3.63, we have

E2E1 = In.

Corollary 3.53 implies E1 = E−12 , or equivalently, E−11 = E2. In this way, we have

proved the following:

Corollary 3.65. Let E1 be an elementary matrix of order n associated to

a row operation X1. Let X2 be the row operation which undoes X1. Then

E−11 = E2, where E2 is the elementary matrix of order n associated to X2.
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Example 3.66. Consider the elementary matrix

E1 =

 1 0 5

0 1 0

0 0 1

 .

The row operation associated to E1 is 5R3 + R1 → R1. The row operation

which undoes this is −5R3 +R1 → R1. Hence, the inverse of E1 is

E2 =

 1 0 −5

0 1 0

0 0 1

 .

By direct calculation, we find E1E2 = E2E1 = I3.

Example 3.67. Consider the elementary matrix

E1 =

 0 0 1

0 1 0

1 0 0

 .

The row operation associated to E1 is R1 ↔ R3. The row operation which

undoes this is again R1 ↔ R3. Hence, the inverse of E1 is itself: E2 = E1.

By direct calculation, we have

E2
1 =

 0 0 1

0 1 0

1 0 0

2

=

 0 0 1

0 1 0

1 0 0

 0 0 1

0 1 0

1 0 0

 =

 1 0 0

0 1 0

0 0 1

 .

We conclude this section with the following definition, which turns out to be

relevant to the existence of the matrix inverse (as well as the notion of the deter-

minant as we will see in Chapter 4):

Definition 3.68. Two square matrices A and B of order n are said to

be row equivalent if there exists a finite number of elementary matrices

E1, . . . , Ek of order n such that

A = E1E2 · · ·EkB.

Of course, using Theorem 3.63, Definition 3.68 simply means that B can be trans-

formed into A via a series of row operations. So what does this have to do with the

matrix inverse? Well, lets recall how we compute the inverse of a square matrix A

of order n. The first step is to form the augmented matrix

A′ =
(
A In

)
.
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Then we apply the Gauss-Jordan method to A′ to transform A′ into the following

form: (
In B

)
.

The inverse of A is then B. In other words, the inverse of A exists if and only if

A can be transformed into In via row operations. We have thus proven the following:

Corollary 3.69. An n × n matrix A is invertible if and only if it is row

equivalent to In.

3.7. The Trace of a Matrix

In linear algebra, there are two well-known operations which transform a square

matrix into a single number. The first, and most important of the two, is the

determinant (which we will cover in Chapter 4). The second is the trace of a

matrix. In fact, one can actually use the determinant to compute the trace of a

matrix. We will see how part of the story behind this in Chapter 4.

We will not do much with the trace in this book. However, for the sake of com-

pleteness, we are going to define it and prove some of its basic properties. Formally,

the trace of a matrix is defined as follows:

Definition 3.70. Let A be a square matrix of order n. The trace of A is

then Tr(A) :=
∑n
i=1Aii.

Example 3.71. Let

A =

 1 −4 3

5 −2 0

4 7 6

 .

Then Tr(A) = 1 + (−2) + 6 = 5.

Example 3.72. In the case of the identity matrix In, we have Tr(In) = n.

Proposition 3.73. Let A and B be an n× n matrix and let c be a scalar.

Then

(i) Tr(cA) = cTr(A)

(ii) Tr(A+B) = Tr(A) + Tr(B).

(iii) Tr(AB) = Tr(BA).
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Proof. We will prove statement (iii) only. Statements (i) and (ii) are left to the

reader as a very simple exercise.

From the definition of the trace, we have

Tr(AB) =

n∑
i=1

(AB)ii

=

n∑
i=1

n∑
k=1

AikBki

=

n∑
i=1

n∑
k=1

BkiAik

=

n∑
k=1

n∑
i=1

BkiAik

=

n∑
k=1

(BA)kk

= Tr(BA).

�

Chapter 3 Exercises

1. Let

A =

(
3 1 8

2 −1 −2

)
, B =

(
−2 0 5

9 5 9

)
, C =

(
10 3 2

−5 1 4

)
.

Compute the following:

(a) 2A+ 5B − C
(b) −B − 4C

(c) −3A+ 5B + C

2. Calculate the sum/difference of matrices

(a) (
1 2 3

4 5 6

)
−
(

4 5 6

1 2 3

)
(b) (

1 + i i 3

−2 3 + 3i 2− 4i

)
+

(
0 5− i 1 + i

2 −3i −4i

)
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3. Let

A =

(
2 −1 0

1 3 −1

)
, B =

(
2 3

−2 5

)
C =

(
2 −1 4

)
, D =

(
2

−4

)
.

(a) Which of the following matrix multiplications make sense?

AB, BA, AC, ACT , BD, CD, DC, DTA, DTB, ATB

(b) Compute all the matrix multiplications in (a) whose multiplication is de-

fined.

4. Calculate the product of matrices

(a)  −2 2 4

−1 6 0

5 1 7

 3 8 2

4 −1 −3

5 −2 −4


(b) (

1 1

0 1

)n
(c)  a 1 0

0 a 1

0 0 a

n

5. Let

A =

(
2 + 3i 1

2 5i

)
, B =

(
1 1 + 2i

1− 2i 2

)
.

(a) Compute AB.

(b) Compute B∗B.

(c) Compute B∗A∗.

6. If A is a 2× 2 matrix, find all possible A such that

A2 = A

7. Suppose A is an n × n real symmetric matrix such that A2 = 0. Show that

A = 0.
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8. Let A be an n × n matrix and suppose that A commutes with every n × n
matrix B, that is, AB = BA. Show that A = kIn where k is a scalar.

9. Recall that two matrices A and B are called commutative if AB = BA. Let

A =

(
1 0

1 1

)
.

Find all matrices which commute with A.

10. Let ~u1, ~u2, . . . , ~uk be any set of k orthonormal column vectors in Rn. Let Q

be the n× k matrix whose ith column is ~ui. What is QTQ?

11. Let A be a square matrix.

(a) Show that A+AT is symmetric and A−AT is skew symmetric.

(b) Prove that there is one and only one way to write A as the sum of a

symmetric matrix and a skew-symmetric matrix.

12. What is the inverse of the following matrix (if it exists):

A =

(
2 −1

3 4

)
.

13. Use the Gauss-Jordan method to compute the inverse of the following matrix

(if it exists):

A =

 1 −1 1

−1 −1 1

0 2 4

 .

14. Use the Gauss-Jordan method to compute the inverse of the following matrix

(if it exists):

A =

 2 2 1

4 1 0

−2 1 1

 .

15. Use the Gauss-Jordan method to compute the inverse of the following matrix

(if it exists):

A =


1 0 1 −1

0 −1 2 1

2 2 0 1

0 1 −1 1

 .
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16. Let A be an invertible matrix.

(a) Prove that the inverse of AT is the transpose of A−1. In other words,

show that

(AT )−1 = (A−1)T .

(Due to this result, one often denotes the inverse of AT by A−T .)

(b) Show that if A is also symmetric, then A−1 is also symmetric.

(c) Let n be a positive integer. Prove that the inverse of An is (A−1)n.

17. Let A be a n×n matrix. Show that if Ak = 0, then In−A is invertible. Then

find its inverse.

18. Let A, B, and C be n×n matrices satisfying Tr(A+B) = 4, Tr(A+ 2C) = 3,

and Tr(A−B + C) = 1. Find Tr(A), Tr(B), and Tr(C).

19. Let

A =

 1 −1 1

0 2 3

3 1 −2

 .

Let E be an elementary matrix and suppose that

EA =

 1 −1 1

5 −3 8

3 1 −2

 .

(a) What is E? What elementary row operation does it correspond to?

(b) What is E−1? What elementary row operation does it correspond to?

20. Consider the following linear system:

x1 + x3 − x4 = 2

−x2 + 2x3 + x4 = 5

2x1 + 2x2 + x4 = −1

x2 − x3 + x4 = 1

(a) Express the above system as a matrix equation of the form A~x = ~b.

Specifically, specify A and ~b.

(b) Use your calculation from Problem 15. to solve the above system.
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21. Use the matrix inverse to solve the following linear system

x1 − x2 + 2x3 = 1

x1 − 2x2 = 1

−x1 + x2 + x3 = 2

22. Let In denote the n × n identity matrix. Does there exist a pair of n × n

matrices X and Y such that

XY − Y X = In?

If so, find such a pair. If not, then prove that there are no n× n matrices X

and Y satisfying the above relation.



Chapter 4

The Determinant,
Eigenvalues, and Eigenvectors

4.1. The Determinant

In Chapter 3, we alluded to the determinant as an operation which takes a square

matrix and transforms it into a scalar. In this way, the determinant is similar to the

trace of a matrix. Like the trace, there is an explicit formula for the determinant.

However, the formula for the determinant is much more complicated than that of

the trace. Fortunately, one can define the determinant recursively and this turns

out to be a good deal simpler than the explicit formula and much more practical

from a computational standpoint. We will give an alternate view of the determi-

nant in Chapter 10 which leads to a proof of the equivalence between the recursive

definition and the explicit formula for the determinant. We begin with some nota-

tion:

Notation 4.1. Let A be an n×n matrix. Let A[i, j] be the (n−1)× (n−1)

matrix obtained by deleting the ith row and jth column of A.

105



106 4. The Determinant, Eigenvalues, and Eigenvectors

Example 4.2. Let

A =

 1 2 3

4 5 6

7 8 9

 .

Then

A[1, 3] =

(
4 5

7 8

)
, A[3, 2] =

(
1 3

4 6

)
.

We are now in a position to define the determinant.

Definition 4.3. Let A be an n× n matrix whose (i, j)-element is aij. The

determinant of an 1× 1 matrix A = (a11) is just itself:

det(A) = a11.

For n ≥ 2, the determinant of an n× n matrix is

det(A) =

n∑
j=1

(−1)j+1a1j det(A[1, j])

Definition 4.3 tells us that we can compute the determinant of an n× n matrix by

knowing how to compute the determinant of an (n − 1) × (n − 1) matrix. Since

the determinant of a 1× 1 matrix has been explicitly defined in Definition 4.3, we

know how to compute the determinant of a 2× 2 matrix which in turn means that

we can compute the determinant of a 3 × 3 matrix and so on and so on. Before

we do any examples, it will prove convenient to introduce the following terminology:

Definition 4.4. Let A be an n× n matrix.

1. The (i, j)-minor of A is defined to be

Mij := det(A[i, j])

2. The (i, j)-cofactor is defined to be

Cij = (−1)i+jMij .

We can now express the definition of the determinant a little more concisely using

the above terminology:

det(A) = a11M11 − a12M12 + a13M13 − a14M14 + · · ·+ (−1)n+1M1n

and

det(A) = a11C11 + a12C12 + a13C13 + a14C14 + · · ·+ C1n.
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Example 4.5. Consider the 2× 2 matrix

A =

(
a b

c d

)
.

The determinant of A is then

det(A) = a11M11 − bM12

= a det(d)− bdet(c)

= ad− bc.

In other words, to compute the determinant of a 2× 2 matrix, we just cross

multiply and take the difference. This is a simple formula that is used re-

peatedly and is easily memorized.

Example 4.6. Consider the 2× 2 matrix

A =

(
1 −2

3 4

)
.

Then det(A) = (1)(4)− (−2)(3) = 4− (−6) = 10.

Example 4.7. Consider the 3× 3 matrix

A =

 2 3 −1

−1 3 1

3 1 −2

 .

Then

det(A) = a11M11 − a12M12 + a13M13

= 2 det

(
3 1

1 −2

)
− 3 det

(
−1 1

3 −2

)
+ (−1) det

(
−1 3

3 1

)
= 2(−7)− 3(−1) + (−1)(−10)

= −1.

From the above examples, we see that its not hard to actually compute the deter-

minant, but it does get progressively more tedious to compute it as the size of the

matrix increases. Lets try one more example:
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Example 4.8. Consider the 3× 3 matrix

A =

 −1 2 1

2 5 2

4 1 1

 .

Then

det(A) = a11M11 − a12M12 + a13M13

= (−1) det

(
5 2

1 1

)
− 2 det

(
2 2

4 1

)
+ (1) det

(
2 5

4 1

)
= (−1)(3)− 2(−6) + (1)(−18)

= −9.

We conclude this section with the following observation:

Proposition 4.9. det(In) = 1.

Proof. We prove this by induction on n. For the n = 1 case, In = 1 and det(In) =

1. Now suppose that the result holds for In for some n ≥ 1. Consider the identity

matrix of order n+ 1:

In+1 =

(
1 0

0 In

)
,

where 0 is an n × 1 matrix consisting entirely of zeroes. Since the first row of

In+1 is entirely zero except for the first element, Definition 4.3 and the induction

hypothesis implies

det(In+1) = 1 det(In) = 1(1) = 1.

�

4.2. Properties of the Determinant

In this section, we familiarize ourselves with the properties of the determinant. We

postpone the proofs for Chapter 10. For the time being, we settle for “proof” by

example. The first result is quite useful from a practical standpoint:

Theorem 4.10 (Cofactor Expansion Theorem). Let A be an n×n matrix.

Then for any i, j ∈ {1, . . . , n}
(1) det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin
(2) det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj
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The expression (1) in Theorem 4.10 is called the cofactor expansion of det(A)

along the ith row while (2) is called cofactor expansion of det(A) along the

jth column.

Example 4.11. Consider the 3× 3 matrix

A =

 −1 2 1

2 5 2

4 1 1

 .

In Example 4.8, we calculated det(A) = −9. Let’s compute the cofactor

expansion along the second row and see what happens:

det(A) = a21C21 + a22C22 + a23C23

= −(2) det

(
2 1

1 1

)
+ 5 det

(
−1 1

4 1

)
− (2) det

(
−1 2

4 1

)
= −2(1) + 5(−5)− (2)(−9)

= −9.

Let’s now try a cofactor expansion along the the third column:

det(A) = a13C13 + a23C23 + a33C33

= (1) det

(
2 5

4 1

)
− 2 det

(
−1 2

4 1

)
+ (1) det

(
−1 2

2 5

)
= (1)(−18)− 2(−9) + (1)(−9)

= −9.

One immediate application of Theorem 4.10 concerns the determinant of upper

triangular matrices, whose definition is given as follows:

Definition 4.12. A matrix A is said to be upper triangular if it takes

the following form:

A =


a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

 .

In other words, A = (aij) is upper triangular if aij = 0 whenever i > j. A

is said to be strictly upper triangular if A is upper triangular and all of

its diagonal elements are zero. In other words, aij = 0 whenever i ≥ j.
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The next result shows that the determinant of an upper triangular matrix is in-

credibly easy to calculate.

Corollary 4.13. Let A be an n × n upper triangular matrix whose (i, j)-

element is aij. Then the determinant of A is the product of its diagonal

elements:

det(A) = a11a22 · · · ann.

Proof. We prove this by induction on n. For n = 1, we have det(A) = det(a11) =

a11 by Definition 4.3. Hence, the result holds for n = 1. Let us suppose that the

result holds for all n× n upper triangular matrices A for some n ≥ 1. Let A be an

(n+ 1)× (n+ 1) upper triangular matrix:

A =


a11 a12 a13 · · · a1,n+1

0 a22 a23 · · · a2,n+1

0 0 a33 · · · a3,n+1

...
...

...
. . .

...

0 0 0 · · · an+1,n+1

 .

If we compute det(A) via cofactor expansion along the first column, we obtain:

det(A) = a11C11

= a11 det


a22 a23 · · · a2,n+1

0 a33 · · · a3,n+1

...
...

. . .
...

0 0 · · · an+1,n+1


= a11a22 · · · an+1,n+1,

where the last equality follows from the induction hypothesis. �

Example 4.14. Let

A =


1 3 4 −6

0 4 2 0

0 0 2 1

0 0 0 3

 .

Then det(A) = (1)(4)(2)(3) = 24.

The next result shows how the determinant behaves under row and column opera-

tions:
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Theorem 4.15. Let A be an n×n matrix and let Ri and Ci denote the ith

row and column of A respectively.

(1) Let A1 be the matrix obtained from A under Ri ↔ Rj or Ci ↔ Cj for

i 6= j. Then det(A1) = −det(A).

(2) Let A2 be the matrix obtained from A under cRi → Ri or cCi → Ci
for any scalar c. Then det(A2) = cdet(A).

(3) Let A3 be the matrix obtained from A under cRi +Rj → Rj or cCi +

Cj → Cj for i 6= j. Then det(A3) = det(A).

Theorem 4.15 now implies the following:

Corollary 4.16. Let A be an n × n matrix and let Ri and Ci denote the

ith row and column of A respectively.

(a) If Rj = cRi or Cj = cCi for some i 6= j and scalar c, then det(A) = 0.

(b) det(cA) = cn det(A).

Proof. (a): Suppose that Rj = cRi for some i 6= j. Let A1 be the matrix whose

kth row for k 6= j is equal to Rk and whose jth row is Ri. Then one obtains A from

A1 by scaling the j row of A1 by c. Statement (2) of Theorem 4.15 implies that

det(A) = cdet(A1).

Since the ith and jth rows of A1 are equal, swapping these two rows does not alter

A1. Statement (1) of f Theorem 4.15 now implies

det(A1) = −det(A1)⇔ det(A1) = 0.

From this, we conclude that det(A) = 0. The case when Cj = cCi is proved

similarly.

(b): In the matrix cA, all n rows of A have been scaled by c. Statement (2) of

Theorem 4.15 applied to det(cA) n times gives

det(cA) = cn det(A).

�
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Example 4.17. Let

A =

 −1 2 1

2 5 2

4 1 1

 .

From Example 4.8, det(A) = −9. Let A1 be the matrix obtained from the

row operation R1 ↔ R3.

A1 =

 4 1 1

2 5 2

−1 2 1

 .

According to Theorem 4.15, we should have det(A1) = 9. Lets check this:

det(A1) = a11C11 + a12C12 + a13C13

= (4) det

(
5 2

2 1

)
− (1) det

(
2 2

−1 1

)
+ (1) det

(
2 5

−1 2

)
= (4)(1)− (1)(4) + (1)(9)

= 9.

Let A2 be the matrix obtained from A via the column operation 2C2 → C2

A2 =

 −1 4 1

2 10 2

4 2 1

 .

From Theorem 4.15, we should have det(A2) = −18. Lets verify this:

det(A) = a11C11 + a12C12 + a13C13

= (−1) det

(
10 2

2 1

)
− 4 det

(
2 2

4 1

)
+ (1) det

(
2 10

4 2

)
= (−1)(6)− 4(−6) + (1)(−36)

= −18.

Lastly, let A3 be the matrix obtained from A by applying the row operation

R2 +R3 → R3:

A3 =

 −1 2 1

2 5 2

6 6 3

 .

By Theorem 4.15, there should be no change, that is, det(A3) = det(A) =

−9. By direct calculation, we have

det(A) = a11C11 + a12C12 + a13C13

= (−1) det

(
5 2

6 3

)
− 2 det

(
2 2

6 3

)
+ (1) det

(
2 5

6 6

)
= (−1)(3)− 2(−6) + (1)(−18)

= −9.
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Theorem 4.15 also provides an efficient way of computing determinants of larger

matrices. Given an n × n matrix A, the idea is to apply row operations to A to

transform A into an upper triangular matrix in such a way that the determinant of

the new matrix at each stage is det(A). Lets consider an example:

Example 4.18. Let

A =


7 10 4 6

1 5 4 3

5 3 2 5

7 6 5 7

 .

1. −7R2 +R1 → R1, −5R2 +R3 → R3, −7R2 +R4 → R4

A =


0 −25 −24 −15

1 5 4 3

0 −22 −18 −10

0 −29 −23 −14

 .

2. R1 ↔ R2, −R1 → R1

A =


−1 −5 −4 −3

0 −25 −24 −15

0 −22 −18 −10

0 −29 −23 −14

 .

3. −22/25R2 +R3 → R3, −29/25R2 +R4 → R4

A =


−1 −5 −4 −3

0 −25 −24 −15

0 0 78/25 16/5

0 0 121/25 17/5

 .

4. −121/78R3 +R4 → R4

A =


−1 −5 −4 −3

0 −25 −24 −15

0 0 78/25 16/5

0 0 0 −61/39

 .

Using Corollary 4.13, we obtain

det(A) = (−1)(−25)(78/25)(−61/39) = −122.

Perhaps the most remarkable property of the determinant is the fact that the de-

terminant is multiplicative:

Theorem 4.19. Let A and B be n × n matrices. Then det(AB) =

det(A) det(B).
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Example 4.20. Let

A =

(
3 −1

1 2

)
, B =

(
2 5

1 2

)
.

Then

AB =

(
3 −1

1 2

)(
2 5

1 2

)
=

(
5 13

4 9

)
.

Hence, det(AB) = 45− 52 = −7. On the other hand,

det(A) det(B) = (7)(−1) = −7.

Example 4.21. Let

A =

 −1 2 1

2 5 2

4 1 1

 .

From Example 4.8, det(A) = −9. By direct calculation, we have

A2 =

 −1 2 1

2 5 2

4 1 1

 −1 2 1

2 5 2

4 1 1

 =

 9 9 4

16 31 14

2 14 7

 .

Then

det(A2) = 9 det

(
31 14

14 7

)
− 9 det

(
16 14

2 7

)
+ 4 det

(
16 31

2 14

)
= 9(21)− 9(84) + 4(162)

= 81

= det(A)2.

We conclude this section with the following results:

Proposition 4.22. Let A be an invertible n× n matrix. Then det(A−1) =

1/ det(A).

Proof. Using the multiplicative property of the determinant, we have

1 = det(In) = det(A−1A) = det(A−1) det(A).

From this, we have det(A−1) = 1/ det(A). �

Theorem 4.23. Let A be an n× n matrix. Then det(AT ) = det(A).
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Proof. We prove this by induction on n. For n = 1, we have AT = A which

immediately gives det(AT ) = det(A). So let us suppose that the result holds for

(n− 1)× (n− 1) matrices for some n ≥ 2.

Let A be an n× n matrix and let B = AT and let bij denote the (i, j)-element

of B. Observe that

B[i, j] = AT [i, j] = A[j, i]T . (48)

Using (48) and the induction hypothesis, we have

det(B) = b11 det(B[1, 1])− b12 det(B[1, 2]) + · · ·+ (−1)nb1n det(B[1, n])

= a11 det(A[1, 1]T )− a21 det(A[2, 1]T ) + · · ·+ (−1)nan1 det(A[n, 1]T )

= a11 det(A[1, 1])− a21 det(A[2, 1]) + · · ·+ (−1)nan1 det(A[n, 1])

= det(A),

where we note that the second to last equality is the cofactor expansion of det(A)

along the first column. �

Example 4.24. Let

A =

 −1 2 1

2 5 2

4 1 1

 .

From Example 4.8, det(A) = −9. The transpose of A is then

AT =

 −1 2 4

2 5 1

1 2 1

 .

Lets compute the transpose of AT by applying row operations to AT to bring

it to upper triangular form without changing det(AT ) in the process. By

Theorem 4.23, we should find det(AT ) = −9.

1. 2R1 +R2 → R2, R1 +R3 → R3

AT =

 −1 2 4

0 9 9

0 4 5


2. −4/9R2 +R3 → R3

AT =

 −1 2 4

0 9 9

0 0 1

 .

Hence, det(AT ) = (−1)(9)(1) = −9.
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4.3. The Determinant and the Matrix Inverse

Now that we know how to compute the determinant, its well past time to ask the

following question: what does the determinant do? This is the question that we

will answer in this section. We begin with the following definition:

Definition 4.25. Let A be an n× n matrix. Let

Cij := (−1)i+j det(A[i, j])

be the (i, j)-cofactor of A. Let C be the n×n matrix whose (i, j)-element is

Cij. C is called the cofactor matrix . Let adj(A) := CT . adj(A) is called

the adjugate matrix.

The first clue that the determinant is linked to the matrix inverse is the following

result:

Proposition 4.26. Let A be an n× n matrix. Then

A adj(A) = adj(A) A =


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...

0 0 · · · det(A)

 .

Proof. Let B = Aadj(A). For i = 1, 2, . . . , n, we have

(Aadj(A))ii =

n∑
k=1

aik
[
adj(A)

]
ki

=

n∑
k=1

aikCik

= det(A),

since the second equality is just the cofactor expansion of det(A) along row i.

Let i, j ∈ {1, 2, . . . , n} with i 6= j. Then

(Aadj(A))ij =

n∑
k=1

aik
[
adj(A)

]
kj

=

n∑
k=1

aikCjk

=

n∑
k=1

(−1)j+kaik det(A[j, k]). (49)
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We now show that the above sum is actually zero. Let Rk denote the kth row of A

for k = 1, 2, . . . , n. Let Â be the matrix obtained from A by replacing the jth row of

A with Ri. Since Â has two identical rows, Corollary 4.16 implies that det(Â) = 0.

Let âkl denote the (k, l)-entry of Â. Note that

âkl = akl if k 6= j

and

âjl = ail.

Also, note that

Â[j, k] = A[j, k].

Let us compute the cofactor expansion of det(Â) = 0 along the jth row of Â:

0 = det(Â)

=

n∑
k=1

(−1)j+kâjk det(Â[j, k])

=

n∑
k=1

(−1)j+kaik det(A[j, k]). (50)

Comparing (49) with (50), we conclude that (Aadj(A))ij = 0 for i 6= j. Hence,

Aadj(A) is a diagonal matrix whose diagonal elements are all equal to det(A).

The proof that adj(A) A is also a diagonal matrix whose diagonal elements are

all equal to det(A) is extremely similar to the above proof. We leave the minor

modifications to the above proof to the reader. �

Exercise 4.27. Modify the proof of Proposition 4.26 to show that adj(A) A

is a diagonal matrix whose diagonal elements are all equal to det(A).

The following result provides an answer to the question posed at the beginning of

this section:

Theorem 4.28. Let A be an n× n matrix. Then A−1 exists if and only if

det(A) 6= 0. Moreover, if A−1 exists, then

A−1 =
1

det(A)
adj(A).

Proof. Suppose A−1 exists, then using Theorem 4.19 and Proposition 4.9, we have

1 = det(In) = det(AA−1) = det(A) det(A−1), (51)

which implies that det(A) 6= 0.
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Now suppose that det(A) 6= 0. Let

B =
1

det(A)
adj(A).

Proposition 4.26 now implies

AB =
1

det(A)
Aadj(A)

=
1

det(A)


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...

0 0 · · · det(A)



=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

From this, we conclude that A−1 = B. �

Example 4.29. Let

A =

(
a b

c d

)
.

In Proposition 3.55, we introduced the formula for the inverse of a 2×2 ma-

trix. Lets derive that formula using the more general result of Theorem 4.28.

First, lets compute the cofactor matrix:

C11 = d, C12 = −c, C21 = −b, C22 = a

Hence, the adjugate matrix is

adj(A) = CT =

(
d −b
−c a

)
The inverse of A is then

A−1 =
1

det(A)
adj(A) =

1

ad− bc

(
d −b
−c a

)
.

Example 4.30. Let

A =

 −1 2 1

2 −1 2

0 1 2

 .

Lets calculate the adjugate of A and then the inverse (if it exists).
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To calculate adj(A), we first need to calculate the cofactor matrix:

C =

 −4 −4 2

−3 −2 1

5 4 −3

 .

The adjugate of A is then

adj(A) = CT =

 −4 −3 5

−4 −2 4

2 1 −3

 .

Taking a cofactor expansion along column 1, we compute the determinant

of A:

det(A) = (−1) det(A[1, 1])− 2 det(A[2, 1]) = (−1)(−4)− 2(3) = −2.

Hence, the inverse of A exists. By Theorem 4.28, we have

A−1 =

 2 3/2 −5/2

2 1 −2

−1 −1/2 3/2


We conclude this section with Cramer’s rule.

Corollary 4.31 (Cramer’s rule). Let A be an n × n invertible matrix and

let ~b ∈ Rn be any column vector. Let Bi be the matrix obtained from A by

replacing the ith column of A with ~b. Then the unique solution to A~x = ~b is

given by

xi =
det(Bi)

det(A)

where xi is the ith component of ~x for i = 1, 2, . . . , n.

Proof. Since A−1 exists, we have

~x = A−1~b.

By Theorem 4.28,

A−1 =
1

det(A)
adj(A) =

1

det(A)
CT ,

where C is the cofactor matrix. From this, it follows that the ith component of ~x

is

xi =
1

det(A)

n∑
k=1

(CT )ikbk =
1

det(A)

n∑
k=1

bkCki =
1

det(A)

n∑
k=1

(−1)k+ibk det(A[k, i]).

(52)
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Let Bi be the matrix obtained from A by replacing the ith column of A with ~bi.

Then

Bi[k, i] = A[k, i].

Hence, (52) can be rewritten as

xi =
1

det(A)

n∑
k=1

(−1)k+ibk det(Bi[k, i]) (53)

However, the summation appearing in (53) is simply the cofactor expansion of the

determinant of Bi along column i. Hence,

xi =
det(Bi)

det(A)
. (54)

�

Example 4.32. Consider the matrix equation A~x = ~b, where

A =

(
2 −1

3 5

)
and

~b =

(
3

−5

)
.

To solve this system using Cramer’s rule, we form the matrices

B1 =

(
3 −1

−5 5

)
, B2 =

(
2 3

3 −5

)
.

From Cramer’s rule, we have

x1 =
det(B1)

det(A)
=

10

13
, x1 =

det(B2)

det(A)
=
−19

13
.

4.4. Linear Transformations

The idea of a linear transformation is essentially the model or prototype for the

general notion of a linear map (or linear homomorphism) which we will intro-

duce in Chapter 5. In what follows, all vectors in Rn and Cn are always expressed

as column vectors unless stated otherwise.
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Definition 4.33. Let A be an m× n matrix.

(i) If A is a real matrix, then associated to A is the map

TA : Rn → Rm

given by TA(~v) := A~v for ~v ∈ Rn.

(ii) If A is a complex matrix, then associated to A is the map

TA : Cn → Cm

given by TA(~v) := A~v for ~v ∈ Cn.

The map TA is called a linear transformation associated to A.

For the sake of simplicity, we will assume all matrices to be real unless stated

otherwise. All of the results we discuss in this section apply equally well to linear

transformations associated to complex matrices.

Proposition 4.34. Let A be an m × n matrix. Then the linear transfor-

mation TA : Rn → Rm satisfies the following properties:

(i) TA(c~v) = cTA(~v)

(ii) TA(~v + ~u) = TA(~v) + TA(~u)

for all c ∈ R, ~v, ~u ∈ Rn. Moreover, if B is a p×m matrix, then TB ◦ TA =

TBA.

Proof. Properties (i) and (ii) follow immediately from the basic properties of ma-

trix multiplication that were discussed in Chapter 3. For the last property, let

~v ∈ Rn. Then

TB ◦ TA(~v) = TB(A~v)

= B(A~v)

= (BA)~v

= TBA(~v).

Hence, TB ◦ TA = TBA. �

From Definition 4.33, an m× n matrix A acts naturally as a map from Rn to Rm.

At this point, we are going to consider a few very simple transformations from R2

to itself.
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I. Reflections

Lets find a matrix A whose linear transformation maps a vector ~v ∈ R2 to its

reflection across the x-axis (see Figure 1). This type of linear transformation

is called a reflection across the x-axis. More precisely, given a vector

~v =

(
a

b

)
,

we seek a matrix A such that

A~v =

(
a

−b

)
This is very easy. Its quite clear that the matrix which accomplishes this is

A =

(
1 0

0 −1

)
.

Likewise, to reflect a matrix across the y-axis, we use the matrix

B =

(
−1 0

0 1

)
.

The linear transformation associated to B sends ~v to

~v =

(
−a
b

)
.

Figure 1. Reflection of a vector across the x-axis
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II. Contractions\Dilations

Given a vector ~v ∈ Rn and a scalar r > 0, we seek a linear transformation

which simply sends ~v to r~v. Of course, the matrix which accomplishes this

is

rIn.

If 0 < r < 1, then the associated linear transformation is called a contrac-

tion. If r > 1, then the linear transformation is called a dilation.

III. Rotations

Given a vector ~v ∈ R2, we seek a linear transformation TA which rotates ~v

by an angle θ without changing its length. Lets find the matrix A which

accomplishes this. Let

A =

(
a b

c d

)
.

Let ~v = (v1, v2)T . Then the transformed vector is

TA(~v) = A~v =

(
av1 + bv2
cv1 + dv2

)
.

This vector should satisfy two conditions. The first is that its length or

norm is the same as ~v. Hence, we require

‖A~v‖2 = ‖~v‖2 .

If we expand the above equation, we have

(a2 + c2)v21 + 2(ab+ cd)v1v2 + (b2 + d2)v22 = v21 + v22 .

The above equation must hold for all vectors ~v ∈ R2. Hence, by replacing ~v

with (1, 0)T and (0, 1)T , we arrive at the following identities:

a2 + c2 = b2 + d2 = 1.

This in turn implies that

ab+ cd = 0.

The second requirement is that the angle between A~v and ~v must be θ.

Hence, we require

(A~v) · ~v = ‖A~v‖ ‖~v‖ cos θ = ‖~v‖2 cos θ.

Expanding the above equation gives

av21 + (b+ c)v1v2 + dv22 = v21 cos θ + v22 cos θ.

Once again, this must hold for all vectors in R2. By substituting ~v = (1, 0)T

and ~v = (0, 1)T , we arrive at the following identities:

a = d = cos θ.
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Combining this with the above identities implies b = −c and one of the

following possibilities:

b = − sin θ, c = sin θ, or b = sin θ, c = − sin θ

The matrix which does not alter the length of ~v and gives a counterclock-

wise rotation for θ > 0 is

Aθ :=

(
cos θ − sin θ

sin θ cos θ

)
.

Using the other choice for b and c would not have altered the length of ~v

also, but would have given a clockwise rotation for θ > 0.

Example 4.35. Let us find a matrix A for a linear transformation from

R2 to itself which first reflects a vector across the x-axis, then rotates it by

30◦, and finally scales it by a factor of 2.

Let us consider the respective matrices which accomplishes each transfor-

mation.

For the reflection, we take

A1 =

(
1 0

0 −1

)
.

For the rotation, we take θ = π/6 and the rotation matrix is

Aθ =

(
cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

)
=

( √
3/2 −1/2

1/2
√

3/2

)
.

For the dilation by a factor of 2, the corresponding matrix is

2I2 =

(
2 0

0 2

)
.

Hence, the desired linear transformation is

TA = T2I2TAθTA1
= T2I2AθA1

= T2AθA1
,

where

A = 2AθA1 = 2

( √
3/2 −1/2

1/2
√

3/2

)(
1 0

0 −1

)
=

( √
3 1

1 −
√

3

)
.

Exercise 4.36. Let Aθ be matrix associated to the linear transformation

which rotates a vector by 20◦ without changing its length. Calculate (Aθ)
9.

(Hint: think geometrically.)
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Example 4.37. Let θ1 and θ2 be two angles and let Aθ1 and Aθ2 be the

matrices associated to the linear transformations which rotate vectors by an

angle of θ1 and θ2 respectively without altering their norms. Of course, if

one applies these linear transformations one after the other, we obtain a

rotation of θ1 + θ2. This implies that

Aθ1+θ2 = Aθ1Aθ2 = Aθ2Aθ1 .

Using the formula for the rotation matrix, we have(
cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

)
=

(
cos(θ1) − sin(θ1)

sin(θ1) cos(θ1)

)(
cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

)
.

Comparing the matrix entries on the left and right gives the following

trigonometric identities:

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2).

The matrix

Aθ :=

(
cos θ − sin θ

sin θ cos θ

)
which rotates a vector by an angle θ without changing its length satisfies the fol-

lowing condition:

ATθ Aθ =

(
cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=

(
cos2 θ + sin2 θ − cos θ sin θ + cos θ sin θ

− cos θ sin θ + cos θ sin θ cos2 θ + sin2 θ

)
=

(
1 0

0 1

)
.

Likewise, AθA
T
θ = I2. Hence, A−1θ = ATθ . This observation leads us naturally to

the next definition:

Definition 4.38. Let A be a real n× n matrix. A is called an orthogonal

matrix if A−1 = AT .

Theorem 4.39. Let A be an n×n matrix. Then A is an orthogonal matrix

if and only if the columns of A form an orthonormal basis on Rn.
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Proof. Let ~ai denote the ith column of A. Then the (i, j)-element of ATA is

(ATA)ij = ~aTi ~aj = ~ai · ~aj . (55)

If A is an orthogonal matrix, then (55) implies

~ai · ~aj =

{
1 if i = j

0 if i 6= j
. (56)

This in turn implies that {~a1,~a2, . . . ,~an} is an orthonormal basis on Rn.

On other hand, if {~a1,~a2, . . . ,~an} is an orthonormal basis on Rn, then (55)

implies that ATA = In. Corollary 3.53 mplies that (AT )−1 = A which in turn

implies that A−1 = AT . �

Here is the complex version of Definition 4.38:

Definition 4.40. Let A be a complex n× n matrix. A is called a unitary

matrix if A−1 = A∗.

Here is the complex version of Theorem 4.39:

Theorem 4.41. Let A be an n × n matrix. Let {~a1,~a2, . . . ,~an} be the

columns of A. Then A is a unitary matrix if and only if

(~ai)
∗~aj =

{
1 if i = j

0 if i 6= j
. (57)

for all i, j = 1, 2, . . . , n.

Proof. The proof of Theorem 4.41 is very similar to Theorem 4.39. Essentially

one simply swaps out the ordinary transpose in the proof of Theorem 4.39 and the

proof still works as before. �

Example 4.42. The matrix

A =


√

3/3
√

6/3 0

−
√

3/3
√

6/6
√

2/2√
3/3 −

√
6/6

√
2/2


is orthogonal.
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Example 4.43. The matrix

A =

 1+i√
3
− (1+i)√

6

1√
3

√
2
3


is unitary.

4.5. Eigenvalues and Eigenvectors

In this section, we introduce the idea of eigenvalues and eigenvectors which ap-

pear in such areas as ordinary differential equations and quantum mechanics. Here

is the formal definition:

Definition 4.44. Let A be a real (complex) n×n matrix. An eigenvector

of A is a nonzero vector ~v ∈ Rn (~v ∈ Cn) which satisfies an equation of the

form

A~v = λ~v (58)

for some scalar λ ∈ R (λ ∈ C).

The scalar λ appearing in (58) is called an eigenvalue of A. To be more

precise, the nonzero vector ~v in (58) is called an eigenvector of A asso-

ciated to the eigenvalue λ.

Given the above definition, the following question is quite natural: How does one

go about finding these eigenvalues and eigenvectors? The following definition will

prove key to this question:

Definition 4.45. Let A be an n× n matrix. The characteristic polyno-

mial of A is the degree n monic polynomial

pA(x) := det(xIn −A).

Here is the relevance of this definition to our question:

Theorem 4.46. Let A be an n×n matrix. The eigenvalues of A are precisely

the roots or zeroes of its characteristic polynomial.

Proof. Let λ be an eigenvalue of A. By definition, there exists a nonzero vector ~v

such that A~v = λv. This equation can be rewritten as

(λIn −A)~v = ~0.
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Since ~v 6= ~0, it follows that the columns of A−λIn are linearly dependent. Theorem

3.51 now implies that the inverse of λIn − A does not exist. From Theorem 4.28,

we conclude that

pA(λ) := det(λIn −A) = 0. (59)

Hence, λ is a root of pA(x).

On the other hand, suppose λ is a root of pA(x). Then pA(λ) = det(λIn−A) =

0. By Theorem 4.28, λIn − A is not invertible. This implies that the columns

of λIn − A are linearly dependent by Theorem 3.51. Hence, there must be some

nonzero ~v for which (λIn − A)~v = ~0. This implies that ~v is an eigenvector of A.

Hence, λ is an eigenvalue of A. �

Before we consider some examples, we introduce the following related definition:

Definition 4.47. Let A be an n × n matrix and let λ be an eigenvalue of

A. Define Eλ to be the set of all vectors ~v satisfying A~v = λ~v. Eλ is called

the eigenspace of A associated to λ.

Note that ~0 (which is not an eigenvector) also belongs to Eλ since A~0 = ~0 = λ~0.

Exercise 4.48. Show that Eλ is a subspace.

Example 4.49. Let

A =

(
1 2

2 1

)
.

Lets find all the eigenvalues and the corresponding eigenspaces for each

eigenvalue.

By definition, the characteristic polynomial is given by

pA(x) = det(xI2 −A)

= det

(
x− 1 −2

−2 x− 1

)
= (x− 1)2 − 4

= x2 − 2x− 3

= (x+ 1)(x− 3).

Hence, the eigenvalues of A are −1 and 3. To find E−1, we have to solve

the matrix equation
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A~v = −~v.
We can rewrite this equation as

(A+ I2)~v =

(
2 2

2 2

)(
a

b

)
=

(
0

0

)
.

The above matrix equation is just a homogeneous linear system of two equa-

tions in two variables. The general solution to this system is clearly

E−1 = {(a,−a)T | a ∈ R}.

For E3, we solve the matrix equation

(A− 3I2)~v =

(
−2 2

2 −2

)(
a

b

)
=

(
0

0

)
.

The general solution is clearly

E3 = {(a, a)T | a ∈ R}.

Example 4.50.

A =

(
0 1

−1 0

)
.

Lets find all the eigenvalues and the corresponding eigenspaces for each

eigenvalue.

The characteristic polynomial is

pA(x) = det(xI2 −A) = det

(
x −1

1 x

)
= x2 + 1.

If we regard A strictly as a real matrix, then A has no eigenvalues and we

are done.

However, since R ⊂ C, we can make things more interesting by viewing A

as a complex matrix. The roots of pA(x) are then i and −i.

To find Ei, we solve the matrix equation:

(A− iI2)~v =

(
−i 1

−1 −i

)(
a

b

)
=

(
0

0

)
,

where a, b ∈ C now. From this, we conclude that

Ei = {(iz,−z)T | z ∈ C}.

For E−i, we solve



130 4. The Determinant, Eigenvalues, and Eigenvectors

(A+ iI2)~v =

(
i 1

−1 i

)(
a

b

)
=

(
0

0

)
and obtain

E−i = {(iz, z)T | z ∈ C}.

Example 4.51. Let

A =

 7/2 1/2 −1

1/2 7/2 1

−3/2 −1/2 3

 .

The characteristic polynomial of A is

pA(x) = det(xI3 −A)

= det

 x− 7/2 −1/2 1

−1/2 x− 7/2 −1

3/2 1/2 x− 3


= (x− 7/2)((x− 7/2)(x− 3) + 1/2) + 1/2(−1/2(x− 3) + 3/2)

+ (−1/4− 3/2(x− 7/2))

= x3 − 10x2 + 32x− 32

= (x− 4)2(x− 2).

Hence, the eigenvalues of A are 4 and 2. Lets find a basis for E4 and E2.

For E4, we consider the matrix equation

(A− 4I3)~v =

 −1/2 1/2 −1

1/2 −1/2 1

−3/2 −1/2 −5

 a

b

c

 =

 0

0

0

 .

Using Gauss-Jordan, we find a general solution

E4 = {(−3r,−r, r)T | r ∈ R}.

Hence, a basis for E4 is {(−3,−1, 1)T }. For E2, we consider the matrix

equation

(A− 2I3)~v =

 3/2 1/2 −1

1/2 3/2 1

−3/2 −1/2 1

 a

b

c

 =

 0

0

0

 .

In this case, E2 = {(r,−r, r)T | r ∈ R}. Hence, a basis for E2 is

{(1,−1, 1)T }.
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Example 4.52. Here is a small application of eigenvectors and eigenvalues.

Consider the first order system of ordinary differential equations.

x1(t) + 2x2(t) = x′1(t)

2x1(t) + x2(t) = x′2(t).

The first thing we can do here is rewrite the above system as a (differential)

matrix equation: (
1 2

2 1

)(
x1(t)

x2(t)

)
=

(
x′1(t)

x′2(t)

)
.

One way to make progress with differential equations is to guess the form

of the solution and see where it leads. In this case, we guess

x1(t) = aeλt, x2(t) = beλt,

Substituting this into the above matrix equation and simplifying gives(
1 2

2 1

)(
a

b

)
= λ

(
a

b

)
.

In other words, finding a solution to the above first order system amounts

to finding an eigenvalue and eigenvector of the matrix

A =

(
1 2

2 1

)
.

We calculated the eigenvalues and eigenspaces of this matrix in Example

4.49. Using the calculation from Example 4.49, we obtain two sets of solu-

tions (one for each eigenvalue):

x1(t) = C1e
−t, x2(t) = −C1e

−t

and

x1(t) = C2e
3t, x2(t) = C2e

3t,

for any C1, C2 ∈ R. With a little bit of thought, it becomes clear that we

can simply add the two sets of solutions together to produce a more general

solution:

x1(t) = C1e
−t + C2e

3t, x2(t) = −C1e
−t + C2e

3t

We conclude this section by introducing an important idea which we will make use

of in the next section.

Definition 4.53. Let A and B be n × n matrices. A and B are similar

matrices if there exists an invertible matrix P such that

B = P−1AP.
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The significance of similar matrices is summarized by the following result:

Theorem 4.54. Let A and B be similar n×n matrices. Let P be the matrix

relating A and B, that is, B = P−1AP . Then

(i) Tr(A) = Tr(B)

(ii) det(A) = det(B)

(iii) pA(x) = pB(x). In particular, A and B have the same eigenvalues.

(iv) If λ is an eigenvalue of A (and hence of B) and ~v is an eigenvector of

A associated to λ, then P−1~v is an eigenvector of B associated to λ.

Proof. (i): Using Proposition 3.73, we have

Tr(B) = Tr(P−1AP )

= Tr(APP−1)

= Tr(A).

(ii): Using the multiplicative property of the determinant, we have

det(B) = det(P−1AP )

= det(P−1) det(A) det(P )

=
1

det(P )
det(A) det(P )

= det(A),

where the third equality follows from Proposition 4.22.

(iii): From the definition of the characteristic polynomial, we have

pB(x) = det(xIn −B)

= det(xIn − P−1AP )

= det(P−1(xIn)P − P−1AP )

= det(P−1(xIn −A)P )

= det(P−1) det(xIn −A) det(P )

= det(xIn −A)

= pA(x).

(iv): Suppose A~v = λ~v. Then

B(P−1~v) = (P−1AP )(P−1~v)

= P−1A~v

= P−1(λ~v)

= λP−1~v.
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Hence, P−1~v is an eigenvector of B associated to λ. �

4.6. Diagonalizable Matrices

We begin this section by collecting some elementary facts about diagonal matrices:

Proposition 4.55. Let D be an n × n diagonal matrix with diagonal ele-

ments Dii := λi for i = 1, 2, . . . , n.

(i) pD(x) = (x− λ1)(x− λ2) · · · (x− λn).

(ii) The eigenvalues of D are λ1, λ2, . . . , λn.

(iii) D~ei = λi~ei where ~ei is the ith standard basis vector.

Proof. (i): By definition,

pD(x) := det(xIn −D)

= det


x− λ1 0 · · · 0

0 x− λ2 · · · 0
...

...
. . .

...

0 0 · · · x− λn


= (x− λ1)(x− λ2) · · · (x− λn),

where the last equality follows from Corollary 4.13.

(ii): This follows immediately from (i).

(iii): Immediate. �

Here is the main definition for this section:

Definition 4.56. Let A be an n× n matrix. A is called a diagonalizable

matrix if it is similar to a diagonal matrix, that is, P−1AP = D for some

diagonal matrix D and some invertible matrix P .

The following result provides one answer to the question of when a matrix is diag-

onalizable.
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Theorem 4.57. Let A be a real (complex) n×n matrix. Let P be an n×n
invertible matrix and let ~pi be the ith column of P .

(i) P−1AP is a diagonal matrix if and only if ~pi is an eigenvector of A for

i = 1, 2, . . . , n. In other words, A is diagonalizable if and only if there

exists a basis of Rn (Cn) such that each basis vector is an eigenvector

of A.

(ii) If P−1AP is a diagonal matrix whose ith diagonal element is λi, then

A~pi = λi~pi.

Proof. (i) and (ii): Suppose

P−1AP = D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 . (60)

Let {~e1, ~e2, . . . , ~en} denote the standard basis. Then D can be rewritten as

D =
(
λ1~e1 λ2~e2 · · · λn~en

)
.

Multiplying both sides of (60) by P gives

AP = PD(
A~p1 A~p2 · · · A~pn

)
=
(
λ1P~e1 λ2P~e2 · · · λnP~en

)(
A~p1 A~p2 · · · A~pn

)
=
(
λ1~p1 λ2~p2 · · · λn~pn

)
. (61)

Since the columns on both sides of (61) must match, we conclude that A~pi = λi~pi
for i = 1, 2, . . . , n. Hence, each column of P is an eigenvector of A.

On the other hand, if each column ~pi of P is an eigenvector of A, then the above

calculation implies that P−1AP is a diagonal matrix whose ith diagonal element is

the eigenvalue of A corresponding to ~pi. �
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Example 4.58. Consider the matrix A from Example 4.49:

A =

(
1 2

2 1

)
.

From Example 4.49, A has eigenvalues −1 and 3.

From Theorem 4.57, A is diagonalizable if and only if R2 has a basis which

consists entirely of eigenvectors of A. Example 4.49 shows this to be the

case with basis

~p1 = (1,−1)T , ~p2 = (1, 1)T ,

where ~p1 is an eigenvector associated to −1 and ~p2 is an eigenvector

associated to 3.

By Theorem 4.57, the matrix

P =

(
1 1

−1 1

)
will transform A into a diagonal matrix. Lets verify this:

P−1AP =

(
1/2 −1/2

1/2 1/2

)(
1 2

2 1

)(
1 1

−1 1

)
=

(
−1 0

0 3

)

Example 4.59. Consider the matrix A from Example 4.50:

A =

(
0 1

−1 0

)
.

As in Example 4.50, we will regard A as a complex matrix. The eigenvalues

of A are i and −i. In this case, we have a basis of C2 made up of the

eigenvectors of A:

~p1 = (i,−1)T , ~p2 = (i, 1)T ,

where ~p1 is associated to i and ~p2 is associated to −i. The matrix which

transforms A into a diagonal matrix is

P =

(
i i

−1 1

)
.

Lets verify this:

P−1AP =

(
−i/2 −1/2

−i/2 1/2

)(
0 1

−1 0

)(
i i

−1 1

)
=

(
i 0

0 −i

)
.
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There are two special classes of matrices which are always diagonalizable: real sym-

metric matrices and Hermitian matrices. We will work out the details for the real

symmetric case explicitly. The results and proofs for the Hermitian case are similar.

We will comment on this briefly.

Proposition 4.60. Let A be a real symmetric matrix.

(i) All eigenvalues of A are real.

(ii) If λ1 and λ2 are distinct eigenvalues of A and ~vi ∈ Eλi for i = 1, 2,

then ~v1 · ~v2 = 0.

Proof. (i): Since R ⊂ C, lets regard A as a complex matrix. Suppose λ is an

eigenvalue of A. Let ~v be an associated eigenvector. Then

~v∗A~v = ~v∗(λ~v)

= λ~v∗~v. (62)

On the other hand, since A is real and symmetric, we have A∗ = AT = A. Hence,

~v∗A~v = ~v∗A∗~v

= (A~v)∗~v

= (λ~v)∗~v

= λ~v∗~v. (63)

Since ~v 6= ~0, we have ~v∗~v > 0. Comparing (62) and (63), we conclude that λ = λ.

This implies that λ is real.

(ii): Suppose λ1 and λ2 are distinct eigenvalues. Let ~v1 and ~v2 be eigenvectors

associated to λ1 and λ2 respectively. Since λ1 and λ2 are real, ~v1 and ~v2 can be

taken to be real vectors. Then

~vT1 A~v2 = ~vT1 (λ2~v2)

= λ2~v
T
1 ~v2. (64)

Using the symmetry of A, we also have

~vT1 A~v2 = ~vT1 A
T~v2

= (A~v1)T~v2

= λ1~v
T
1 ~v2. (65)

Since λ1 6= λ2, (64) and (65) imply that ~vT1 ~v2 = 0. Of course, the latter can be

rewritten as ~v1 · ~v2 = 0. �

Corollary 4.61. Let A be a real symmetric matrix. Then A has at least

one eigenvalue.
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Proof. Let pA(x) be the characteristic polynomial of A. Clearly, pA(x) is a real

polynomial, that is, its coefficients are all real numbers. Since R ⊂ C, we pA(x) is

also a complex polynomial. There is a famous result from abstract algebra called

the Fundamental Theorem of Algebra (which we will formally state in Chapter 5)

which says that any complex polynomial always has a root. In particular, pA(x) has

a root. However, from Proposition 4.60, any eigenvalue of A is always real. Since

the roots of pA(x) and the eigenvalues of A are one and the same, we conclude that

A has at least one eigenvalue. �

Theorem 4.62. Let A be a real n × n matrix. Then A is a symmetric

matrix if and only if there exists a real orthogonal matrix Q such that QTAQ

is a diagonal matrix. In particular, A is diagonalizable and Rn has an

orthonormal basis which is made up of the eigenvectors of A.

Proof. (⇐) Suppose there exists a real orthogonal matrix Q such that QTAQ is

diagonal. Let D = QTAQ. Then A = QDQT and

AT = (QDQT )T

= (QT )TDTQT

= QDQT

= A.

(⇒) Now suppose that A is a real n × n symmetric matrix. We show by

induction on n that there exists a real orthogonal matrix Q such that QTAQ is a

diagonal matrix. For n = 1, A is both symmetric and diagonal. Moreover, there

are only two real 1 × 1 orthogonal matrices: 1 and −1. Taking Q = 1 or −1, we

have QTAQ = A which proves the result for n = 1. Now let us suppose that the

result holds for all real (n− 1)× (n− 1) symmetric matrices for some n ≥ 2.

Let A be a real n×n symmetric matrix. By Corollary 4.61, A has at least one

eigenvalue (which must be real by Proposition 4.60). Let λ1 be any eigenvalue of

A. Let ~q1 ∈ Rn be any normalized eigenvector of A associated to λ1. Using the

Gram-Schmidt process, extend ~q1 to an orthonormal basis on Rn

~q1, ~v2, . . . , ~vn.

Let P be the n× n matrix defined by

P :=
(
~q1 ~v2 · · · ~vn

)
and let P1 be the n× (n− 1) matrix given by

P1 :=
(
~v2 · · · ~vn

)
.
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Note that

~qT1 A~q1 = ~qT1 A
T ~q1

= (A~q1)T ~q1

= λ1~q
T
1 ~q1

= λ1 (66)

and

~vTk (A~q1) = ~vTk (λ1~q1)

= λ1~v
T
k ~q1

= λ1~vk · ~q1
= 0 (67)

for k = 2, . . . , n. Using (66) and (67), we expand the matrix PTAP :

PTAP =


~qT1
~vT2
...

~vTn

( A~q1 A~v2 · · · A~vn
)

=


λ1 0 · · · 0

0
... PT1 AP1

0

 . (68)

Note that the (n− 1)× (n− 1) real matrix PT1 AP1 is symmetric. Indeed,

(PT1 AP1)T = PT1 A
T (PT1 )T = PT1 AP1.

By the induction hypothesis, there exist an orthogonal matrix Q1 such that

QT1 (PT1 AP1)Q1 = D1 (69)

for some (n− 1)× (n− 1) diagonal matrix D1. We can rewrite (69) as

(P1Q1)TA(P1Q1) = D1. (70)

The matrix P1Q1 is of size n× (n− 1). Let ~q2, . . . , ~qn denote the n− 1 columns of

P1Q1. Let

Q =
(
~q1 ~q2 · · · ~qn

)
. (71)

Since the columns of P1 are orthogonal to ~q1, it follows that

~qT1 P1Q1 =
(

0 · · · 0
)
.

Hence,

~qT1 ~qk = 0, for k = 2, . . . , n. (72)

Also, note that

(P1Q1)TP1Q1 = QT1 (PT1 P1)Q1 = QT1 In−1Q1 = QT1Q1 = In−1. (73)
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This implies that

~qTk ~qk = 1, for k = 2, . . . , n (74)

~qTk ~qj = 0, for k 6= j (75)

From this, it follows that QTQ = In, that is, Q is an orthogonal matrix.

Lastly, let us compute QTAQ. From (72), we have

~qT1 A~qk = (A~q1)T ~qk = λ1~q
T
1 ~qk = 0 for k = 2, . . . , n. (76)

Using (76), we have

QTAQ =


~qT1
~qT2
...

~qTn

( A~q1 A~q2 · · · A~qn
)

=


λ1 0 · · · 0

0
... (P1Q1)TA(P1Q1)

0



=


λ1 0 · · · 0

0
... D1

0

 ,

where the last equality follows from (70). Since D1 is an (n− 1)× (n− 1) diagonal

matrix, we conclude that QTAQ is a diagonal matrix. This completes the induction

step. �

Theorem 4.62 shows that any real symmetric matrix A is not only diagonalizable,

but diagonalizable by an orthogonal matrix. Here is the general strategy for con-

structing the orthogonal matrix Q in Theorem 4.62 for a real symmetric matrix A:

1. Find all the eigenvalues of A. Let λ1, λ2, . . . , λk denote the distinct

eigenvalues of A.

2. Find the corresponding eigenspace Eλi for i = 1, 2, . . . , k.

3. Using Gram-Schmidt, construct an orthonormal basis Bi of Eλi for

i = 1, 2, . . . , k.

4. By Proposition 4.60, any element of Bi is orthogonal to any element of

Bj for i 6= j.

5. The set B := B1 ∪ · · · ∪ Bk is an orthonormal basis of Rn made up of

the eigenvectors of A.
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6. The desired orthogonal matrix Q is the n × n matrix whose columns

are the elements of B.

Example 4.63. Let

A =

 2 1 −1

1 2 1

−1 1 2

 .

The characteristic polynomial of A is pA(x) = x(x− 3)2. Hence, the eigen-

values of A are 0 and 3. The eigenspace of A associated to 0 is

E0 := {(r,−r, r)T | r ∈ R}.

The eigenspace of A associated to 3 is

E3 := {(r + s, s,−r)T | r, s ∈ R}.

An orthonormal basis of E0 is

B0 = {(1/
√

3,−1/
√

3, 1/
√

3)T }

and an orthonormal basis of E3 is

B3 = {(1/
√

2, 0,−1/
√

2)T . (1/
√

6, 2/
√

6, 1/
√

6)T }.

The orthogonal matrix Q is

Q =


1√
3

1√
2

1√
6

− 1√
3

0 2√
6

1√
3
− 1√

2
1√
6

 .

Then

QTAQ =
1√
3
− 1√

3
1√
3

1√
2

0 − 1√
2

1√
6

2√
6

1√
6


 2 1 −1

1 2 1

−1 1 2




1√
3

1√
2

1√
6

− 1√
3

0 2√
6

1√
3
− 1√

2
1√
6


=

 0 0 0

0 3 0

0 0 3

 .

Here is the complex version of the above story:

Proposition 4.64. Let A be a Hermitian matrix.

(i) All eigenvalues of A are real.

(ii) If λ1 and λ2 are distinct eigenvalues of A and ~vi ∈ Eλi for i = 1, 2,

then (~v1)∗~v2 = 0.
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Theorem 4.65. Let A be a complex n× n matrix. Then A is a Hermitian

matrix if and only if there exists a unitary matrix U such that U∗AU is a di-

agonal matrix. In particular, A is diagonalizable and Cn has an orthonormal

basis which is made up of the eigenvectors of A.

The key point here is that for Cn and its subspaces, two vectors ~u and ~v in Cn are

said to be orthogonal if (~u)∗~v = 0. With this notion, the Gram-Schmidt process

can be generalized to Cn and its subspaces. Unlike the real case, (~u)∗~v 6= (~v)∗~u

for ~u,~v ∈ Cn. Hence, some care has to be used in extending the Gram-Schmidt

process to the complex case. The proofs of Proposition 4.64 and Theorem 4.65 are

very similar to the real case given above. We leave the proofs as an exercise for the

reader.

In Chapter 9, we will give alternate proofs of the diagonalizability of real sym-

metric matrices and Hermitian matrices in the general setting of inner product

spaces. We conclude this section with the following observation:

Proposition 4.66. Let A be an n × n diagonalizable matrix and let

λ1, λ2, . . . , λn be the eigenvalues of A with multiplicities. Then Tr(A) =∑n
i=1 λi.

Proof. By definition, there exists an invertible matrix P such that D := P−1AP is

a diagonal matrix. Let λ1, λ2, . . . , λn be the diagonal elements of D. By Proposition

4.55, these are the eigenvalues of D. Since D and A are similar matrices, it follows

from Theorem 4.54 that the eigenvalues of A are also λ1, λ2, . . . , λn (counted with

multiplicity). Once again, by Theorem 4.54, we have

Tr(A) = Tr(D) =

n∑
i=1

λi.

�

It turns out that the above result holds for all complex n × n matrices. We will

prove this fact in Chapter 13.

Chapter 4 Exercises

1. Let

A =


1 −2 3 1

−1 4 2 1

0 6 8 1

0 0 −2 5

 .

(a) Compute det(A) by transforming A into upper triangular form using a

suitable choice of elementary row operations.



142 4. The Determinant, Eigenvalues, and Eigenvectors

(b) Compute det(A) by doing a cofactor expansion.

2. Let

A =

 1 −1 2

3 2 1

0 1 4


Calculate

(a) det(A)

(b) det(AT )

(c) det(A−1)

3. Let A, B, and C be 3×3 matrices such that det(AB) = 50, det(−2B) = −80,

and det(−AC) = 15. Find det(A), det(B), and det(C).

4. Find the adjugate matrix of

A =

 1 −3 3

2 3 1

1 1 1


Does the inverse of A exist? If so, compute it using adj(A).

5. Find the adjugate for each of the following matrices. Also, determine if the

matrix is invertible. If so, compute it using the adjugate.

(a)  0 1 2

1 −5 4

2 −1 0


(b) 

1 2 3 4

2 3 1 2

1 −2 2 −1

0 3 −2 −1



6. Find a matrix A for a linear transformation from R2 to itself which first re-

flects a vector across the x-axis, then rotates it by 135◦ (counterclockwsie),

and finally scales it by a factor of
√

2/2.

7. Find the matrix A associated to a linear transformation from R2 to itself which

rotates a vector by 30◦ (counterclockwise) and then scales it by a factor of 2.



Chapter 4 Exercises 143

Also, what is A6? (Hint: think geometrically.)

8. Let

A =

 3 −15 15

−18 10 −22

−3 7 −19

 .

Find the eigenvalues of A and their corresponding eigenspaces.

9. Let A be an n× n matrix and let λ be an eigenvalue of A. Let c be a scalar.

(a) Show that cλ is an eigenvalue of cA.

(b) Show that if ~v is an eigenvector of A associated to λ, then ~v is also an

eigenvector of cA associated to the eigenvalue cλ.

10. Let A be an n× n invertible matrix.

(a) Show that if λ is an eigenvalue of A, then λ 6= 0.

(b) Show that if λ is an eigenvalue of A, then 1/λ is an eigenvalue of A−1.

(c) Show that if ~v is an eigenvector of A associated to λ, then ~v is also an

eigenvector of A−1 associated to 1/λ.

11. Let

A =

 3 −1 −1

0 2 0

−1 1 3

 .

(a) Find the eigenvalues of A and their corresponding eigenspaces.

(b) Determine if A is diagonalizable. If so, find a matrix P for which P−1AP

is a diagonal matrix.

12. Suppose A is a nonzero n × n matrix such that Ak = 0 for some positive

integer k. Show that A is not diagonalizable. (Hint: consider the eigenvalues

of A.)

13. Consider the symmetric matrix

A =

 1 3 0

3 1 0

0 0 −2

 .

(a) Find the eigenvalues of A and their corresponding eigenspaces.

(b) Find an orthogonal matrix Q for which QTAQ is a diagonal matrix.

14. Consider the symmetric matrix

A =

 −7 1 0

1 −3 2

0 2 −7

 .
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(a) Find all the eigenvalues of A and their corresponding eigenspaces.

(b) Find an orthogonal matrix Q which diagonalizes A.

15. Suppose

A =

a 1 0

b 0 1

c 1 0


has three eigenvalues 0, 1, 2. Find a, b, c.

16. Determine the values of λ for which the linear system

(1− λ)x+ y = 0

x+ (2− λ)y = 0

has nontrivial solutions, that is, solutions other than x = 0 and y = 0. What

is the significance of these values?

17. The matrix (
2c2 − 1 2cd

2cd 2d2 − 1

)
is reflection of R2 about the line through (c, d) and (0, 0) where

c2 + d2 = 1.

Find the eigenvalues and corresponding eigenspaces of the above matrix.

18. Let M be a square matrix.

(a) Show M and its transpose MT have the same characteristic polynomial.

Conclude that M and MT have the same eigenvalues.

(b) Let λ be an eigenvalue of M (and hence also of MT ). Let Eλ and E′λ
be the eigenspace of M and MT associated to λ respectively. Show that

dimEλ = dimE′λ. Give an example to show that in general Eλ 6= E′λ.



Chapter 5

The General View

In this chapter, we give the general definition of vector spaces and linear maps and

recast the results of the previous chapters in this more general light. Hence, much

of this chapter will feel like déjà vu and rightly so. Of course, several important

concepts will be introduced along the way (so pay attention!). As discussed in

Chapter 2, Rn and its subspaces are merely examples of vector spaces. In other

words, not every vector space is Rn or one of its subspaces. This is the reason

why linear algebra has numerous applications in science and engineering. Roughly

speaking, a vector space is a set with an addition operation and a scalar multiplica-

tion whose algebraic properties are identical to those of Rn and its subspaces. We

can think of general vector spaces as algebraic objects which have been modeled

after the algebraic properties of Rn and its subspaces. Unlike Rn and its subspaces,

general vector spaces do not come with a natural dot product. The dot product,

as we recall, provides Rn and its subspaces with a geometric structure in the sense

that one can compute the lengths of vectors, the distance between points, and the

angle between pairs of vectors. For a general vector space to have its own geometric

structure, one must supply the vector space with its own generalized dot product.

This generalized dot product is called an inner product and will be discussed in

Chapter 9.

5.1. A word on scalars

Before we give the general definition of a vector space, we need to comment on the

scalars of a vector space. For Rn and its subspaces, the set of scalars is R. R is an

example of an algebraic object called a field.

145
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Definition 5.1. A field is a set F with an addition operation and a multi-

plication operation. Let a, b ∈ F and let a+ b denote the sum of a and b and

ab denote the product of a and b. Then these operations satisfy the following

conditions for all a, b, c ∈ F:

• a+ b = b+ a (additive commutativity)

• (a+ b) + c = a+ (b+ c) (additive associativity)

• ab = ba (multiplicative commutativity)

• (ab)c = a(bc) (multiplicative associativity)

• a(b+ c) = ab+ ac (distributivity)

In addition, F contains a zero element (which we denote as 0) and a unit

element (which we denote as 1) such that

• a+ 0 = 0 + a = a (additive identity)

• 1a = a1 = a (multiplicative identity)

Also, for every a ∈ F, there exists an element b ∈ F such that a+b = b+a =

0. This element b is denoted −a and is called the additive inverse of a. If

a is nonzero, then there also exists an element x ∈ F such that xa = ax = 1.

The element x is denoted as a−1 or 1/a and is called the multiplicative

inverse of a.

In linear algebra, there are two primary examples of fields: the field R of real

numbers and the field C of complex numbers. Recall that

C := {a+ ib | a, b ∈ R},

where i =
√
−1. The addition and multiplication on C are the obvious ones:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc).

The zero element of C is obviously 0 + i0 which we denote simply as 0 and the unit

element is 1 + i0 which we denote as 1. Following this simplified notation, the field

R can be naturally regarded as a subset (or, to be more precise, a subfield) of C
by identifying an element a ∈ R with the complex number a+ i0 ∈ C.

Exercise 5.2. Check that R and C satisfy all the conditions of Definition

5.1.

In this book, the only fields we work with are R or C. Hence, the symbol F
will always be understood to mean R or C. As you might have guessed, there

are other fields besides R and C. For instance, there are fields with only a finite

number of elements. A more detailed discussion of fields would take us into the

realm of abstract algebra, and last we checked, this is a linear algebra book. For

more on fields and other algebraic objects, we refer the curious reader to the classic

reference [1].
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We conclude this section by recalling an important result from abstract algebra

which we will need later. The proof of this result is beyond the scope of this book

so we omit it.

Theorem 5.3 (Fundamental Theorem of Algebra). Any polynomial in one

variable with complex coefficients whose degree is at least 1 always has a root

in C.

5.2. General Vector Spaces

Here at last is the general definition of a vector space.

Definition 5.4. A vector space over a field F is a set V equipped with

two operations: an addition operation

+ : V × V → V, (u, v) 7→ u+ v

and a scalar multiplication

F× V → V, (r, v) 7→ rv

which satisfy the following conditions:

(1) u+ v = v + u for all u, v ∈ V (commutativity of addition)

(2) (u+ v) +w = u+ (v+w) for all u, v, w ∈ V (associativity of addition)

(3) there exists an element 0 ∈ V called the zero vector such that v+0 = v

for all v ∈ V (identity element of addition)

(4) for all u ∈ V , there exists an element −u such that u + (−u) = 0

(existence of the additive inverse of a vector)

(5) (r + s)u = ru + su for all r, s ∈ F and u ∈ V (distributivity of scalar

multiplication with respect to field addition)

(6) r(u + v) = ru + rv for all r ∈ F and u, v ∈ V (distributivity of scalar

multiplication with respect to vector addition)

(7) (rs)u = r(su) for all r, s ∈ F and u ∈ V (compatibility of scalar

multiplication with field multiplication)

(8) 1u = u for all u ∈ V (identity element of scalar multiplication)

The elements of V are called vectors and the elements of F are called

scalars. A vector space over R is called real vector space and a vector

space over C is called a complex vector space.



148 5. The General View

Remark 5.5. The astutue reader will notice that the properties (or axioms)

of a general vector space in Definition 5.4 are virtually identical to the vector

space properties of Rn in Proposition 2.3. As we stated previously, this is

not accidental. The definition of a general vector space is modeled after the

algebraic properties of Rn.

Notation 5.6. For a point v ∈ Rn, we used the arrow symbol ~v when we

wanted to emphasize that v was to be regarded as a vector, that is, as an

arrow in Rn whose tail was located at the origin and whose head was located

at v. We will reserve this notation only for the vector space Rn and its

subspaces.

Notation 5.7. The only special notation that we use for a general vector

space V is with regard to its zero element which we denote as 0 to distinguish

it from the zero element of the field of scalars F. More advanced books do

not bother with this additional notation and simply refer to the zero element

of the vector space and the zero element of the field by the same symbol:

0. One determines whether 0 is an element of V or the field F by context

alone. For example, if v ∈ V , then the zero in the expression v + 0 must

be the zero vector since a vector and a scalar cannot be added together. On

the other hand, the zero in the expression 0v must be the zero scalar since

vectors cannot be multiplied together.

Before giving examples of vector spaces which are different than Rn or its subspaces,

we first prove some basic results about general vector spaces.

Proposition 5.8. Let V be a vector space over F. Then

(i) the zero vector 0 ∈ V is unique, that is, if u ∈ V and u+ v = v for all

v ∈ V , then u = 0.

(ii) 0v = 0

(iii) −v = −1v

(iv) c 0 = 0

for all v ∈ V and c ∈ F.

Proof. (i): Suppose u is an element of V with the property that u+ v = v for all

v ∈ V . Setting v = 0, we have u + 0 = 0. However, from axiom (3) of Definition

5.4, we also have u+ 0 = u. From this, we conclude that u = 0.

(ii): Let v ∈ V be arbitrary. Using axiom (5) of Definition 5.4, we have

0v = (0 + 0)v = 0v + 0v. (77)



5.2. General Vector Spaces 149

Adding the additive inverse of 0v to both sides of (77) and using axioms (2), (3),

and (4) of Definition 5.4 gives

0v + (−0v) = (0v + 0v) + (−0v)

0 = 0v + (0v + (−0v))

0 = 0v + 0

0 = 0v,

which proves (ii).

(iii): Using axioms (3), (5), and (8) of Definition 5.4 and part (ii) of Proposition

5.8, we have

v + (−1v) = 1v + (−1v)

= (1 + (−1))v

= 0v

= 0.

Since we also have v + (−v) = 0 by axiom (4) of Definition 5.4, we have

v + (−1v) = v + (−v)

(−v) + (v + (−1v)) = (−v) + (v + (−v))

((−v) + v) + (−1v) = ((−v) + v) + (−v)

0 + (−1v) = 0 + (−v)

−1v = −v

as required, where the third equality follows from axiom (2) of Definition 5.4 and

the fourth and fifth equalities follow from axioms (4) and (3) of Definition 5.4

respectively.

(iv): Let c ∈ F. If c = 0, then c0 = 0 by part (ii) of Proposition 5.8. So let us

suppose that c 6= 0. Let u = c0 and let v ∈ V be arbitrary. Then

u+ v = c0 + v

= c0 + 1v

= c0 + (cc−1)v

= c0 + c(c−1v)

= c(0 + c−1v)

= c(c−1v)

= (cc−1)v

= 1v

= v

where the second and last equality follow from axiom (8) of Definition 5.4, the third

equality follows from the fact that c 6= 0, the fourth and seventh equalities follow
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from axiom (7), the fifth equality follows from axiom (6), and the sixth equality

follows from axiom (3). Hence, we have shown that u+v = c0+v = v for all v ∈ V .

Part (i) of Proposition 5.8 now implies that c0 = 0. This completes the proof. �

At last, here are a few examples of vector spaces which are not Rn or one of its

subspaces.

Example 5.9. Let X be an arbitrary non-empty set and let F = R or C.

(Choose a field and fix it!) Let F(X) be the set of all F-valued functions

on X. In other words, an element of F(X) is a map f : X → F. F(X) is

naturally a vector space over F. For vector addition, let f, g ∈ F(X). We

define f + g ∈ F(X) pointwise:

(f + g)(x) := f(x) + g(x) ∈ F, ∀ x ∈ X.

For scalar multiplication, let c ∈ F. Then cf ∈ F(X) is defined again

pointwise:

(cf)(x) := cf(x) ∈ F, ∀ x ∈ X.
The zero vector 0 ∈ F(X) is the zero function, that is, the function 0 :=

f0 : X → F defined by f0(x) := 0 for all x ∈ X. The additive inverse

of an arbitrary element f ∈ F(X) is the function −f : X → F defined by

−f := −1f . (See Proposition 5.8-(iii)).

Exercise 5.10. Verify that the set F(X) with vector addition and scalar

multiplication as defined in Example 5.9 is truly a vector space over F, that

is, it satisfies axioms (1)-(8) of Definition 5.4.

Example 5.11. Let Mm,n(F) be the set of m × n matrices whose entries

lie in F. Then Mm,n(F) equipped with the usual addition of matrices and

scalar multiplication of matrices turns Mm,n(F) into a vector space over F.

The zero vector 0 is just the m×n zero matrix. The additive inverse of A ∈
Mm,n(F) is just −A = −1A. Note that the real vector space Rn = M1,n(R)

and the complex vector space Cn = M1,n(C) are special cases of this.

Exercise 5.12. Verify that Mm,n(F) in Example 5.11 is truly a vector space

over F, that is, it satisfies axioms (1)-(8) of Definition 5.4.
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Example 5.13. Let F[x] be the set of all polynomials in the variable x whose

coefficients lie in F. In other words, an element of F[x] is a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where ai ∈ F for i = 0, 1, . . . , n. F[x] is naturally a vector space over F
with vector addition given by the usual addition of polynomials and scalar

multiplication given naturally by

cp(x) = (can)xn + (can−1)xn−1 + · · ·+ (ca1)x+ ca0

for c ∈ F. The zero vector is the constant polynomial 0 ∈ F. The additive

inverse of p(x) is just −p(x) = −1p(x).

Exercise 5.14. Verify that F[x] in Example 5.13 is truly a vector space over

F, that is, it satisfies axioms (1)-(8) of Definition 5.4.

The following definition will no doubt be quite familiar to you. (As stated above,

F is always understood to be R or C.)

Definition 5.15. Let V be a vector space over F. A subspace of V is a

non-empty subset W of V such that

(a) w + w′ ∈W for all w,w′ ∈W
(b) cw ∈W for all c ∈ F, w ∈W .

Proposition 5.16. Let V be a vector space over F. A subspace W of V is

necessarily a vector space in its own right with vector addition and scalar

multiplication inherited from V .

Proof. Equip W with the vector addition and scalar multiplication from V . We

now verify that W satisfies axioms (1)-(8) of Definition 5.4. Let w,w′, w′′ ∈ W

be arbitrary. Axioms (1) and (2) (the commutativity and associativity of vector

addition) follows immediately from the fact that these axioms hold for V , the fact

that W ⊂ V , and the fact that vector addition is closed on W (i.e. condition (a)

of Definition 5.15).

For axioms (3) and (4) of Definition 5.4, let w ∈W be arbitrary. By condition

(b) of Definition 5.15, 0w ∈W and −1w ∈W . However, by Proposition 5.8, 0w = 0

and −1w = −w. Hence, W contains the zero vector and the additive inverse of all

of its elements. This implies that W satisfies axioms (3) and (4) of Definition 5.4.

Axioms (5)-(8) follow immediately from the fact that these axioms hold for V ,

the fact that W ⊂ V , and from conditions (a) and (b) of Definition 5.15. �
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Example 5.17. Let F[x]d be the set of polynomials of degree d or less. Then

F[x]d is a subspace of the vector space of polynomials F[x] (see Example

5.13). Indeed, adding two polynomials of degree d or less gives another

polynomial of degree d or less. In addition, multiplying a polynomial of

degree d or less by a constant leaves the degree of the polynomial unchanged

(unless the constant is zero in which case one obtains the zero polynomial).

By Definition 5.15, F[x]d is a subspace of F[x].

Example 5.18. Let sl(n;F) be the set of all n × n matrices whose entries

belong to F and have trace zero. Then sl(n;F) is a subspace of the vector

space Mn,n(F) (see Example 5.11). Indeed, if A,B ∈ sl(n;F), then

Tr(A+B) = Tr(A) + Tr(B) = 0 + 0 = 0.

Also, for c ∈ F, we have Tr(cA) = cTr(A) = c0 = 0. By Definition 5.15,

sl(n;F) is a subspace of Mn,n(F).

To make things a bit more concrete, we are going to work with real

vector spaces until stated otherwise. Hence, when we say “V is a vector space

...”, we understand this to be a vector space over R. (We will be forced to work with

complex vector spaces later in Chapter 9.) Even though we will be working with

real vector spaces for much of this chapter, all of the definitions and results of

this chapter apply equally well to complex vector spaces.

5.3. Linear Independence, Bases, & Dimension revisited

The notions of linear independence, bases, and dimension generalize quite naturally

to general vector spaces. All of the definitions and results that we state in this

section are essentially identical to those of Section 2.4. More than that, the

proofs given in Section 2.4 carry over to general vector spaces without

modification! The reason for this is that the proofs of Section 2.4 never relied on

the fact that the vectors were elements of Rn. They only relied on axioms (1)-(8)

of Definition 5.4 (which are of course satisfied by the vector space structure on Rn

given in Chapter 2). Hence, in this section, we will merely restate the definitions and

results of Section 2.4 for general vector spaces. Some of the results (especially the

lengthier ones) will be stated without proofs since the proofs can be found in Section

2.4. We will point this out when we do it. As usual, we will provide a number of

examples along the way. We begin with the following (familiar) definition:

Definition 5.19. Let V be a vector space. A vector v ∈ V is a linear

combination of vectors v1, . . . , vk ∈ V if there exists a1, . . . , ak ∈ R such

that

v = a1v1 + · · ·+ akvk.
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Example 5.20. Consider the vector space of real polynomials R[x] and let

f = x2−2x+1, g = 2x2+1, and h = x2+2x. Then f is a linear combination

of g and h since f = g − h.

Example 5.21. Consider the vector space of real polynomials R[x] and let

f = −10x+ 1, g = x2 − 2x+ 1, and h = 3x2 + 4x+ 2. Let us determine if

f is a linear combination of g and h. Suppose then that

f = ag + bh

for some a, b ∈ R. Since two polynomials are equal if and only if their

coefficients are equal, the above equation implies the following system of

linear equations:

a+ 3b = 0

−2a+ 4b = −10

a+ 2b = 1

We express the above system as an augmented matrix and use the Gauss-

Jordan method to solve it:  1 3 0

-2 4 -10

1 2 1


Using Gauss Jordan, we solve the above system:

1. 2R1 +R2 → R2, −R1 +R3 → R3 1 3 0

0 10 -10

0 -1 1


2. 1

10R2 → R2  1 3 0

0 1 -1

0 -1 1


3. −3R2 +R1 → R1, R2 +R3 → R3 1 0 3

0 1 -1

0 0 0


Hence, a = 3 and b = −1. From this, we have f = 3g − h.
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Example 5.22. Let

A1 =

(
1 2

0 −1

)
, A2 =

(
1 1

3 4

)
, A3 =

(
−1 2

2 1

)
Let us determine if

A =

(
−2 9

3 −3

)
is a linear combination of A1, A2, and A3. So suppose then that

A = c1A1 + c2A3 + c3A3.

Equating components on the left and right sides of the above equation we

arrive at the following system of linear equations:

c1 + c2 − c3 = −2

2c1 + c2 + 2c3 = 9

3c2 + 2c3 = 3

−c1 + 4c2 + c3 = −3

We can solve the above system using the Gauss Jordan method. The aug-

mented matrix is 
1 1 −1 −2

2 1 2 9

0 3 2 3

−1 4 1 −3


1. −2R1 +R2 → R2,R1 +R4 → R4

1 1 −1 −2

0 −1 4 13

0 3 2 3

0 5 0 −5


2. −R2 → R2 

1 1 −1 −2

0 1 −4 −13

0 3 2 3

0 5 0 −5


3. −R2 +R1 → R1, −3R2 +R3 → R3, −5R2 +R4 → R4

1 0 3 11

0 1 −4 −13

0 0 14 42

0 0 20 60
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4. 1
14R3 → R3, 1

20R4 → R4
1 0 3 11

0 1 −4 −13

0 0 1 3

0 0 1 3


5. −3R3 +R1 → R1, 4R3 +R2 → R2, −R3 +R4 → R4

1 0 0 2

0 1 0 −1

0 0 1 3

0 0 0 0


Hence, c1 = 2, c2 = −1, and c3 = 3. From this, we conclude that A =

2A1 −A2 + 3A3.

Definition 5.23. Let V be a vector space. Vectors v1, . . . , vm ∈ V span V

if for all v ∈ V , there exists c1, . . . , cm ∈ R such that

v = c1v1 + · · ·+ cmvm

The set {v1, . . . , vm} is called a spanning set of V .

If {v1, . . . , vm} is a spanning set of V , one often denotes this by

V = span {v1, . . . , vm}.

Proposition 5.24. Let V be a vector space and let v1, . . . , vm be any vectors

in V . Define

W = {c1v1 + · · ·+ cmvm | c1, . . . , cm ∈ R}

Then W is a subspace of V and W = span {v1, . . . , vm}.

Proof. Let w1, w2 ∈ W . We need to show that w1 + w2 ∈ W and rw1 ∈ W for

r ∈ R. By definition of W , w1 and w2 can be expressed as

w1 = c1v1 + · · ·+ cmvm

and

w2 = d1v1 + · · ·+ dmvm

for some ci, dj ∈ R, 1 ≤ i, j ≤ m. From this, we have

w1 + w2 = (c1 + d1)v1 + · · ·+ (cm + dm)vm

which is clearly in W . Likewise for r ∈ R, we have

rw1 = (rc1)v1 + · · ·+ (rcm)vm
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which is again in W . Lastly, from the definition of W , every element of W is a

linear combination of v1, . . . , vm and every linear combination of v1, . . . , vm is in

W . Hence, W = span {v1, . . . , vm}. This completes the proof. �

Here is the definition of linear independence (which is exactly the same as it was

for Rn and its subspaces):

Definition 5.25. Let V be a vector space. A set of vectors v1, . . . , vk ∈ V
are linearly independent if the condition

c1v1 + · · ·+ ckvk = 0

is satisfied only if c1 = c2 = · · · = ck = 0. If this condition is not satisfied,

v1, . . . , vk ∈ V is said to be linearly dependent.

Example 5.26. Let us determine if the polynomials 2x2 + 1, 5x+ 2, x+ 1

are linearly independent. So let us suppose that

c1(2x2 + 1) + c2(5x+ 2) + c3(x+ 1) = 0

for some c1, c2, c3 ∈ R. We need to show that c1, c2, and c3 must be zero.

The above equation implies the following system of linear equations

2c1 = 0, 5c2 + c3 = 0, c1 + 2c2 + c3 = 0

The above system has only one solution (as the reader can easily check):

c1 = c2 = c3 = 0. Hence, we conclude that 2x2 +1, 5x+2, x+1 are linearly

independent.

Exercise 5.27. Show that the polynomials 2x2 + 1, 5x + 2, x + 1, and x2

are linearly dependent.

Example 5.28. Let V be a vector space and suppose v1, v2 are linearly

independent. Let u1 := v1 + v2 and u2 := v1− v2. Let us show that u1, u2 is

also linearly independent. Again, suppose that

c1u1 + c2u2 = 0

for some c1, c2 ∈ R. We must show that c1 and c2 are necessarily 0. From

the definitions of u1 and u2, we have

c1(v1 + v2) + c2(v1 − v2) = (c1 + c2)v1 + (c1 − c2)v2 = 0.

Since v1 and v2 are linearly independent, we must have c1 + c2 = 0 and

c1−c2 = 0. The only solution to this system of linear equations is c1 = c2 =

0. This shows that u1 and u2 are linearly independent.

At this point, we can now give the definition of basis for general vector spaces:
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Definition 5.29. Let V be a vector space. A set {v1, . . . , vn} is a basis for

V if the following two conditions are satisfied:

(a) {v1, . . . , vn} is linearly independent

(b) V = span {v1, . . . , vn}

Exercise 5.30. Let Mm,n(R) be the vector space of m×n real matrices. Let

Eij be the m× n matrix whose entries are all zero except for its (i, j)-entry

which is 1. Show that {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis on Mm,n(R).

Proposition 5.31. Let V be a vector space and let {v1, . . . , vn} be a subset

of V . The following statements are equivalent:

(a) {v1, . . . , vn} is a basis on V .

(b) Every v ∈ V can be expressed as a unique linear combination of

{v1, . . . , vn}.

Proof. (a) ⇒ (b). Suppose {v1, . . . , vn} is a basis on V and let v ∈ V . Since

{v1, . . . , vn} is a basis, v can be expressed as a linear combination of these elements:

v = c1v1 + · · ·+ cnvn

for some c1, . . . , cn ∈ R. We would like to show that the above expression is unique.

So let us suppose that we can also express v as

v = d1v1 + · · ·+ dnvn

for some d1, . . . , dn ∈ R. Equating these two expressions, we arrive at the following:

(c1 − d1)v1 + · · ·+ (cn − dn)vn = 0.

Since {v1, . . . , vn} is linearly independent, we must have ci−di = 0 for i = 1, . . . , n.

Hence, ci = di for i = 1, . . . , n, which shows that the expression for v is unique.

(a)⇐ (b). Condition (b) implies that V = span {v1, . . . , vn}. We only need to

show that {v1, . . . , vn} is linearly independent. Suppose then that

c1v1 + · · ·+ cnvn = 0.

Since we also have 0v1 + · · ·+ 0vn = 0 and condition (b) implies that every element

of V (including 0) can be expressed as a unique linear combination of {v1, . . . , vn},
we conclude that c1 = c2 = · · · = cn = 0. �

You might recall that the Replacement Theorem (Theorem 2.34) was one of

the main theorems of Section 2.4. The theorem for the general case is virtually

identical. The only difference is that the vector space is no longer limited to being

Rn or one of its subspaces of Rn. Without further adieu, here is the Replacement

Theorem for general vector spaces:
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Theorem 5.32 (Replacement Theorem). Let V be a vector space and let

B = {v1, . . . , vn} be a basis on V . Let U = {u1, . . . , um} be a linearly inde-

pendent set on V . Then m ≤ n and there is a permutation σ of {1, 2, . . . , n}
so that the set

Bσ,m := {u1, . . . , um, vσ(m+1), . . . , vσ(n)}

is also a basis of V .

Proof. The proof is identical to the proof of Theorem 2.34. �

As in Section 2.4, the Replacement Theorem leads to the following important result:

Theorem 5.33. Let V be a vector space. Then every basis on V has the

same number of elements.

Proof. The proof is identical to the proof of Theorem 2.27 given in Section 2.4. �

The above theorem implies that the following definition is well defined:

Definition 5.34. Let V be a vector space. The dimension of V is the

number of elements in a basis of V . The dimension of V is denoted as

dim V .

Example 5.35. Let Mm,n(R) be the vector space of m × n real matrices.

Exercise 5.30 implies that dim Mm,n(R) = mn.

Corollary 5.36. Let V be a vector space of dimension n and let

{v1, . . . , vm} be any set of m vectors of V where m > n. Then {v1, . . . , vm}
must be linearly dependent.

Proof. Suppose (for a moment) that {v1, . . . , vm} is linearly independent. Then

certainly the subset {v1, . . . , vn} is also linearly independent. Let B := {x1, . . . , xn}
be any basis on V . By the Replacement Theorem, one can obtain a new basis by

replacing n elements of B with {v1, . . . , vn}. Since B has n elements, the new basis

is simply {v1, . . . , vn}. However, this means that vn+1 is a linear combination of

{v1, . . . , vn} which is a contradiction. Hence, {v1, . . . , vm} must be linearly depen-

dent. �



5.3. Linear Independence, Bases, & Dimension revisited 159

Exercise 5.37. Let Symn(R) be the set of n×n symmetric matrices. Recall

that an n× n matrix A is symmetric if AT = A.

(i) Show that Symn(R) is a subspace of Mn,n(R).

(ii) Find the dimension of Symn(R).

Theorem 5.38 (The Extension Theorem). Let V be a vector space

of dimension n and let {v1, . . . , vk} be a linearly independent set of V

with k < n. Then there exists vectors vk+1, . . . , vn of V such that

{v1, . . . , vk, vk+1, . . . , vn} is a basis on V .

Proof. Let B := {x1, . . . , xn} be any basis on V . By the Replacement Theorem

(Theorem 5.32), there is a reordering of B

Bσ := {xσ(1), . . . , xσ(n)}

where σ is some permutation of {1, 2, . . . , n} such that a new basis can be formed

by replacing the first k elements of Bσ with v1, . . . , vk. In other words,

{v1, . . . , vk, xσ(k+1), . . . , xσ(n)}

is a basis on V . Setting vi := xσ(i) for i = k + 1, . . . , n completes the proof. �

Example 5.39. Let R[x]3 be the vector space of polynomials of degree 3

or less. Consider the elements p1(x) = x + 1 and p2(x) = 5x + 3. It is

easy to see that p1(x) and p2(x) are linearly independent. By the Extension

Theorem (Theorem 5.38), there exists a basis of R[x]3 which contains p1(x)

and p2(x) as its first two elements. Let us find such a basis. Using the

proof of Theorem 5.38 as a guide, let us start by choosing a basis of R[x]3.

Clearly, {1, x, x2, x3} is a basis on R[x]3. Since p1(x) and p2(x) are degree

1 polynomials, our intuition suggests that we should replace 1 and x with

p1(x) and p2(x) to obtain a new basis. We leave it to the reader to verify

that

{p1(x), p2(x), x2, x3}
is also a basis on R[x]3.

We conclude this section with the following result:

Corollary 5.40. Let V be a vector space of dimension n > 0 and let

{v1, v2, . . . , vn} be a subset of V which spans V . Then {v1, v2, . . . , vn} is

a basis of V .

Proof. Let S := {v1, v2, . . . , vn}. We need to show that S is linearly independent.

Let’s suppose (for a moment) that S is not linearly independent and let’s observe
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what happens. Let k be the maximum number of linearly independent elements in

S. Since 1 ≤ dimV = n and V = span S, we have 1 ≤ k < n. Let us reorder the

elements of S so that the first k elements of the reordering are linearly independent.

In other words, we choose a permutation σ of {1, 2, . . . , n} such that

S1 := {vσ(1), . . . , vσ(k)}

is linearly independent. Consider the set S1 ∪ {vσ(i)} where i > k. Since k is the

maximum number of linearly independent elements in S, this set of k+ 1 elements

cannot be linearly independent. Hence, there exists c1, . . . , ck+1 ∈ R (which are

not all zero) such that

c1vσ(1) + · · ·+ ckvσ(k) + ck+1vσ(i) = 0.

If ck+1 = 0, then the linear independence of S1 implies that c1, . . . , ck are zero

as well. Hence, ck+1 6= 0. This implies that vσ(i) can be expressed as a linear

combination of the elements of S1 for i > k. Now let V1 := span S1. Then V1
is a subspace of V by Proposition 5.24. We have just seen that vσ(i) ∈ V1 for

i > k. Since vσ(i) ∈ S1 for i ≤ k, we actually have vj ∈ V1 for j = 1, . . . , n. Since

V = span S, it follows that V1 = V . Hence, S1 is a linearly independent set which

spans V . In other words, S1 is a basis of V . By Theorem 5.33, every basis of V has

the same number of elements and the dimension of V is simply the cardinality of any

basis. Since dim V = n and S1 has k < n elements, we have a clear contradiction.

This contradiction arose from our assumption that S was linearly dependent. From

this, we conclude that S is actually linearly independent. �

5.4. Linear Maps

In Chapter 3, we considered maps from Rn to Rm that were defined in terms of

matrix multiplication. Specifically, given an m × n matrix A, we expressed the

vectors of Rn and Rm as column vectors (as opposed to the more usual row vectors

as we did in Chapter 2). With this point of view, we obtain a map A : Rn → Rm

which takes a (column) vector ~v ∈ Rn to a (column) vector A~v ∈ Rm by multiplying

the m × n matrix A by the n × 1 matrix ~v. We called this type of map a linear

transformation and it has the following two properties:

(i) A(~u+ ~v) = A~u+A~v for all ~u,~v ∈ Rn

(ii) A(c~v) = cA~v for all c ∈ R and ~v ∈ Rn

Properties (i) and (ii) above motivate the more general notion of a linear map

between general vector spaces.
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Definition 5.41. Let V and W be vector spaces. A linear map (or linear

homomorphism) is a map ϕ : V → W which satisfies the following two

conditions:

(i) ϕ(u+ v) = ϕ(u) + ϕ(v) for all u, v ∈ V
(ii) ϕ(cv) = cϕ(v) for all c ∈ R

Example 5.42. A linear transformation from Rn to Rm is just a special

case of a linear map.

Example 5.43. Let R[x] be the vector space of polynomials with real coef-

ficients. Define ϕ : R[x]→ R[x] be the map defined by differentiation:

ϕ(p(x)) :=
d

dx
p(x).

Then for any p(x), q(x) ∈ R[x] we have

ϕ(p(x) + q(x)) =
d

dx
(p(x) + q(x))

=
d

dx
p(x) +

d

dx
q(x)

= ϕ(p(x)) + ϕ(q(x)).

Also, for c ∈ R, we have

ϕ(cp(x)) =
d

dx
cp(x)

= c
d

dx
p(x)

= cϕ(p(x)).

Hence, ϕ is a linear map.

Notation 5.44. Given two vector spaces V and W , we will denote the zero

vector in V and W using the same symbol: 0. Technically, one should use

different symbols to denote the zero vectors of V and W . For example, one

can denote the zero vector of V by 0V and the zero vector of W by 0W .

However, to keep the notation simple, we will avoid doing this. In fact,

virtually all linear algebra books (and abstract algebra books) do not bother

to use additional notation to distinguish the zero vector of one vector space

from the zero vector of another. The reason for this is that the reader can

easily distinguish the zero vector of one vector space from the zero vector of

another by context alone.
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Proposition 5.45. Let ϕ : V →W be a linear map. Then ϕ(0) = 0.

Proof. Using the linearity of ϕ, we have

ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0) = 2ϕ(0).

The above equation implies that ϕ(0) = 0. �

The following result is intuitively clear, but we prove it anyway for completeness.

Proposition 5.46. Let ϕ : V → W be a linear map. Let v1, . . . , vk ∈ V be

a finite collection of vectors. Then

ϕ(v1 + · · ·+ vk) = ϕ(v1) + · · ·+ ϕ(vk).

Proof. We prove this by induction on k. When k = 2, the result holds from the

definition of a linear map. Suppose then that the result holds for a sum of k vectors.

We now show that it holds for a sum of k+ 1 vectors. Let v1, . . . , vk, vk+1 ∈ V and

let v = v1 + · · ·+ vk. Then

ϕ(v1 + · · ·+ vk+1) = ϕ(v + vk+1)

= ϕ(v) + ϕ(vk+1)

= ϕ(v1 + · · ·+ vk) + ϕ(vk+1)

= ϕ(v1) + · · ·+ ϕ(vk) + ϕ(vk+1),

where the second equality follows from the definition of a linear map and the last

equality follows from the induction hypothesis. This completes the proof. �

Exercise 5.47. Let R[x] be the vector space of polynomials of real coef-

ficients. Fix a polynomial g(x). Define ϕ : R[x] → R[x] by ϕ(p(x)) =

g(x)p(x). Show that ϕ is a linear map.

The definition of a linear map implies that a linear map is completely deter-

mined once one specifies the values of the map on a basis of the domain. Specifically,

one has the following:

Proposition 5.48. Let V and W be vector spaces. Let {v1, . . . , vn} be a

basis on V and let {w1, . . . , wn} be any vectors on W . Then there exists a

unique linear map ϕ : V →W such that ϕ(vi) = wi for i = 1, 2, . . . , n.

Proof. Let v ∈ V . Then v can be expressed as a unique linear combination of the

basis {v1, . . . , vn}:
v = c1v1 + c2v2 + · · ·+ cnvn.
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Define

ϕ(v) :=

n∑
i=1

ciwi.

From the above definition, it follows that ϕ(vj) = wj for j = 1, . . . , n since xj =∑n
i=1 civi where ci = 0 for i 6= j and cj = 1. Now we verify that ϕ satisfies the

conditions of a linear map. With v ∈ V as before, let u ∈ V and express u as a

linear combination of {v1, . . . , vn}:

u = d1v1 + d2v2 + · · ·+ dnvn.

Then

ϕ(u) :=

n∑
i=1

diwi.

Since

v + u = (c1 + d1)v1 + · · ·+ (cn + dn)vn,

we have

ϕ(v + u) =

n∑
i=1

(ci + di)wi

=

n∑
i=1

ciwi +

n∑
i=1

diwi

= ϕ(v) + ϕ(u).

Also, since rv =
∑n
i=1(rci)vi for r ∈ R, we have

ϕ(rv) =

n∑
i=1

(rci)wi

= r

(
n∑
i=1

ciwi

)
= rϕ(v).

This proves that ϕ is a linear map.

For the uniqueness part, suppose ψ : V → W is another linear map such that

ψ(vi) = wi for i = 1, . . . , n. Let v ∈ V . Then v =
∑n
i=1 civi for some ci ∈ R. Since
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ψ is linear, we have

ψ(v) = ψ

(
n∑
i=1

civi

)

=

n∑
i=1

ψ(civi)

=

n∑
i=1

ciψ(vi)

=

n∑
i=1

ciwi

= ϕ(v).

Hence, ψ = ϕ. This proves that there is exactly one linear map from V to W which

maps the basis element vi of V to an element wi of W for i = 1, . . . , n. �

Exercise 5.49. Suppose one replaces basis in Proposition 5.48 by span-

ning set. Explain why the conclusion of Proposition 5.48 will fail in general.

The condition of linearity is quite strong. Proposition 5.48 shows that given a

basis B := {v1, . . . , vn} of V and a map ϕ : B → W , there is only way to extend it

to a linear map on all of V . From now on, when we have a map ϕ : B → W and

use the words extend by linearity, we are referring to the unique linear map from

V to W whose restriction to the basis B is precisely the map ϕ : B → W . We will

denote this unique linear map with the same symbol: ϕ : V →W .

Example 5.50. Let R[x]d be the vector space of polynomials of degree d or

less. Then {xd, xd−1, . . . , x, 1} is a basis of R[x]d. Let ~v1, . . . , ~vd+1 ∈ Rn.

By Proposition 5.48, there exists a unique linear map ϕ : R[x]d → Rn such

that

ϕ(xd+1−i) = ~vi

for i = 1, 2, . . . , d+ 1.

Next we introduce two natural subspaces associated to a linear map.

Definition 5.51. Let ϕ : V →W be a linear map.

(i) The kernel (or null space) of ϕ is the subspace of V defined by

ker ϕ := {v ∈ V | ϕ(v) = 0}.

(ii) The image (or range) of ϕ is the subspace of W defined by

im ϕ := {w ∈W | ∃ v ∈ V such that ϕ(v) = w}.
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The image of ϕ : V →W is also denoted as ϕ(V ) since

im ϕ = {ϕ(v) | v ∈ V }.

The next result shows that ker ϕ and im ϕ are indeed subspaces.

Proposition 5.52. Let ϕ : V →W be a linear map. Then ker ϕ and im ϕ

are subspaces.

Proof. Let v, v′ ∈ ker ϕ and let c ∈ R. Then

ϕ(v + v′) = ϕ(v) + ϕ(v′) = 0 + 0 = 0

and

ϕ(cv) = cϕ(v) = c0 = 0.

From the definition of ker ϕ, we conclude that v + v′ and cv are both elements of

ker ϕ. This shows that ker ϕ is a subspace of V .

Next let w,w′ ∈ im ϕ. By definition of im ϕ, there exists v, v′ ∈ im ϕ such

that ϕ(v) = w and ϕ(v′) = w′. Hence,

w + w′ = ϕ(v) + ϕ(v′) = ϕ(v + v′) ∈ im ϕ.

Also, for c ∈ R, we have

cw = cϕ(v) = ϕ(cv) ∈ im ϕ.

From this, we see that im ϕ is a subspace of W . �

For completeness, we also make the following definitions:

Definition 5.53. Let ϕ : V →W be a linear map. Let V1 be any subset of

V and let W1 be any subset of W . The image of V1 under ϕ is the set

ϕ(V1) := {ϕ(v) | v ∈ V1}.

The preimage (or inverse image) of W1 under ϕ is the set

ϕ−1(W1) := {v ∈ V | ϕ(v) ∈W1}.

In Definition 5.53, note that ϕ(V1) is a subset of W and ϕ−1(W1) is a subset of V .

Exercise 5.54. Let ϕ : V → W be a linear map. Show that if V1 is

subspace of V and W1 is a subspace of W , then ϕ(V1) is a subspace of W

and ϕ−1(W1) is a subspace of V .
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Example 5.55. Let π : R2 → R be the map defined by π(x, y) = x. It’s

easy to see that π is actually a linear map. The preimage of π−1(1) is the

set of all (x, y) ∈ R2 such that π(x, y) = 1. From the definition of π, it’s

clear that

π−1(1) := {(1, y) | y ∈ R}.

Example 5.56. Let R[x] be the vector space of polynomials and let ϕ :

R[x]→ R[x] be the linear map defined by ϕ := d
dx (see Example 5.43). The

kernel of ϕ are all the polynomials p(x) such that

ϕ(p(x)) :=
d

dx
p(x) = 0.

As we know from the Mean Value Theorem from calculus, a function which

is differentiable on (−∞,∞) differentiates to zero if and only if the function

is a constant. Hence, the kernel of ϕ consists of the constant polynomials,

that is,

ker ϕ = {p(x) ∈ R[x] | p(x) = c ∈ R}.
The image of ϕ is the subspace

im ϕ := { d
dx
p(x) | p(x) ∈ R[x]} ⊂ R[x].

Actually, from calculus, its quite clear that im ϕ = R[x]. Indeed, let p(x) be

any polynomial of x and let

q(x) =

∫
p(x)dx

which is again a polynomial in x (the constant of integration is not impor-

tant). Then

ϕ(q(x)) =
d

dx
q(x) = p(x).

This shows that p(x) ∈ im ϕ. Since p(x) was an arbitrary polynomial, it

follows that im ϕ ⊃ R[x], which in turn implies that im ϕ = R[x].

Hence, ϕ := d
dx is a linear map which is surjective, but not injective.

Example 5.57. Let T : R3 → R3 be the linear map defined by

T (x, y, z) := (x− y, y − z, x− z).

Let’s find the kernel and the image of T . The kernel of T is the set of all

vectors (x, y, z) ∈ R3 such that T (x, y, z) = ~0. In other words, the kernel is

the solution to the linear system

x− y = 0, y − z = 0, x− z = 0.

The solution to this system is easily found to be
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ker T = {(a, a, a) | a ∈ R}.
From the definition of T , the image (or range) of T is

im T = {(x− y, y − z, x− z) | x, y, z ∈ R}.

However, we can simplify the above expression by noting that T (x, y, z)

decomposes as

T (x, y, z) = x(1, 0, 1) + y(−1, 1, 0) + z(0,−1,−1).

Hence, im T is the span of the vectors ~u1 = (1, 0, 1), ~u2 = (−1, 1, 0), and

~u3 = (0,−1,−1). Note that ~u1 and ~u2 are linearly independent and ~u3 is a

linear combination of ~u1 and ~u2 (explicitly ~u3 = −~u1 − ~u2). Hence, im T is

the span of ~u1 and ~u2. More precisely, ~u1, and ~u2 is a basis for im T . This

in turn implies that

im T = {(x− y, y, x) | x, y ∈ R}.

In Example 5.57, we have the following relationship between the domain of T

(i.e. R3), ker T , and im T :

dimR3 = dim ker T + dim im T

where we observe that dim ker T = 1 and dim im T = 2. This is not a coincidence,

but a consequence of a result called the Rank-Nullity Theorem, which we will state

and prove in a moment. First, we need to define the terms rank and nullity.

Definition 5.58. Let ϕ : V →W be a linear map. The nullity of ϕ is

Nullity(ϕ) := dim ker ϕ

and the rank of ϕ is

Rank(ϕ) := dim im ϕ.

For convenience, we also prove the following result which we will use in the proof

of the Rank-Nullity Theorem:

Proposition 5.59. Let ϕ : V → W be a linear map. If V =

span{v1, . . . , vm}, then

im ϕ = span{ϕ(v1), . . . , ϕ(vm)}.

Proof. By definition, im ϕ := {ϕ(v) | v ∈ V }. Since V is spanned by the vectors

v1, . . . , vm and ϕ is linear, it follows that

im ϕ = {ϕ(a1v1 + · · ·+ amvm) | a1, . . . , am ∈ R}
= {a1ϕ(v1) + · · ·+ amϕ(vm) | a1, . . . , am ∈ R}.



168 5. The General View

The last equality means that im ϕ is spanned by the vectors ϕ(v1), . . . , ϕ(vm),

which completes the proof. �

Theorem 5.60 (Rank-Nullity Theorem). Let ϕ : V →W be a linear map.

Then

dimV = Nullity(ϕ) + Rank(ϕ).

Proof. By Proposition 5.52, ker ϕ and im ϕ are subspaces of V and W respectively.

Let

n := dimV, k := dim ker ϕ.

Let v1, . . . , vk be a basis of ker ϕ. By the Extension Theorem, we extend v1, . . . , vk
to a basis v1, . . . , vk, vk+1, . . . , vn on V . By Proposition 5.59, im ϕ is spanned by

the vectors

ϕ(v1), . . . , ϕ(vk), ϕ(vk+1), . . . , ϕ(vn).

Since v1, . . . , vk ∈ ker ϕ, we have ϕ(v1) = · · · = ϕ(vk) = 0. Hence, the spanning

set of im ϕ can be reduced to

ϕ(vk+1), . . . , ϕ(vn).

We now show that these n− k vectors is actually a basis on im ϕ. So suppose that

c1ϕ(vk+1) + · · ·+ cn−kϕ(vn) = 0

for some c1, . . . , cn−k ∈ R. By the linearity of ϕ, we can rewrite this as

ϕ(c1vk+1 + · · ·+ cn−kvn) = 0.

This implies that c1vk+1 + · · · + cn−kvn ∈ ker ϕ. Let v = c1vk+1 + · · · + cn−kvn.

Since v ∈ kerϕ and v1, . . . , vk is a basis on kerϕ, we can express v as a linear

combination of these vectors:

v = d1v1 + · · ·+ dkvk.

Subtracting the two expressions for v gives

d1v1 + · · ·+ dkvk − c1vk+1 − · · · − cn−kvn = 0.

Since v1, . . . , vk, vk+1, . . . , vn is a basis on V , it follows that

d1 = · · · = dk = c1 = · · · = cn−k = 0,

which in turn proves that ϕ(vk+1), . . . , ϕ(vn) is a basis on im ϕ. In particular, this

implies that

dim im ϕ = n− k = dim V − dim! kerϕ.

Rewriting this expression gives

dimV = dim ker ϕ+ dim im ϕ = Nullity(ϕ) + Rank(ϕ).

This completes the proof. �
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5.5. Linear Isomorphisms

When are two vector spaces essentially the “same”? This is the question we will

give a precise answer to in this section. We begin with the following definitions:

Definition 5.61. Let ϕ : V →W be a linear map.

(i) ϕ is injective if it is one-to-one, that is, if ϕ(v1) = ϕ(v2) for some

v1, v2 ∈ V , then v1 = v2.

(ii) ϕ is surjective if it is onto, that is, for any w ∈W , there exists v ∈ V
such that ϕ(v) = w

(iii) ϕ is bijective if it is both injective and surjective.

Proposition 5.62. Let ϕ : V →W be a linear map.

(i) ϕ is injective if and only if kerϕ = {0}.
(ii) ϕ is surjective if and only if imϕ = W .

Proof. (i). Suppose ϕ is injective. Let v ∈ kerϕ. Then ϕ(v) = 0. However, since

ϕ is linear, we also have ϕ(0) = 0. Hence, ϕ(v) = ϕ(0). The definition of injective

map now implies that v = 0.

On the other hand, suppose that kerϕ = {0}. If ϕ(v1) = ϕ(v2) for some

v1, v2 ∈ V , then

0 = ϕ(v1)− ϕ(v2)

= ϕ(v1 − v2).

Hence, v1 − v2 ∈ kerϕ and since kerϕ = {0}, we have v1 − v2 = 0, which in turn

implies that v1 = v2. This shows that ϕ is injective.

(ii). Immediate from the definition of surjective and imϕ. �

The notion of an “identity map” is ubiquitous in mathematics. We will need

this notion shortly in order to define when two vector spaces are “equivalent”.

Definition 5.63. Let X be a set. The identity map on X is the map

idX : X → X defined by idX(x) := x for all x ∈ X.

Let X, Y , and Z be any sets and let f : X → Y and g : Y → Z be any maps. We

denote the composition of g and f by g ◦ f , that is, g ◦ f is the map from X to Z

which sends x ∈ X first to f(x) ∈ Y and then sends f(x) to g(f(x)) ∈ Z. As a

diagram, one expresses g ◦ f as follows:

X
f→ Y

g→ Z
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Exercise 5.64. Let f : X → Y be any map between two sets. Verify that

idY ◦f = f and f ◦ idX = f where idY ◦f (f ◦ idX) denotes the composition

of idY and f (f and idX).

Exercise 5.65. Let V be a vector space. Show that the identity map on V ,

idV : V → V , is a bijective linear map.

The following two definitions gives the precise meaning of what it means for two

vector spaces to be the “same”.

Definition 5.66. A linear map ϕ : V → W is a linear isomorphism if

there exists a map ψ : W → V such that ψ ◦ϕ = idV and ϕ ◦ψ = idW . The

map ψ is called the inverse of ϕ and is typically denoted by ϕ−1.

To emphasize that ϕ : V →W is a linear isomorphism, one often uses the following

notaton:

ϕ : V
∼→W.

Definition 5.67. Two vector spaces V and W are said to be isomorphic

if there exists a linear isomorphism from V to W . The condition that V and

W are isomorphic is denoted as V 'W .

From the point of view of linear algebra, two vector spaces are the “same”

if they are isomorphic. Naturally, this leads to the following question: when are

two vector spaces isomorphic? The answer is actually quite simple. But before we

answer this question, we take a moment to collect some basic facts about linear

isomorphisms.

Proposition 5.68. Let ϕ : V → W be a linear map. Then ϕ is a linear

isomorphism if and only if ϕ is bijective.

Proof. Suppose ϕ is a linear isomorphism. Let ϕ−1 : W → V denote the inverse

of ϕ. Suppose v1, v2 ∈ V such that ϕ(v1) = ϕ(v2). This implies that

ϕ−1 ◦ ϕ(v1) = ϕ−1 ◦ ϕ(v2)

idV (v1) = idV (v2)

v1 = v2.

Hence, ϕ is injective. Now let w ∈W and let v = ϕ−1(w). Then

ϕ(v) = ϕ ◦ ϕ−1(w) = idW (w) = w,

which shows that ϕ is also surjective. Hence, ϕ is bijective.
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Conversely, suppose that ϕ is bijective. Define ψ : W → V as follows. Let

w ∈ W . Since ϕ is both injective and surjective, there exists a unique element of

V , which we will denote as vw, such that ϕ(vw) = w. Define ψ(w) := vw. From the

definition of ψ, we have

ϕ ◦ ψ(w) = ϕ(vw)

= w.

From this, we conclude that ϕ ◦ ψ = idW .

Now let v ∈ V and let w := ϕ(v). Then

ψ ◦ ϕ(v) = ψ(w)

= vw

In order to show that ψ ◦ ϕ = idV , we need to show that vw = v. To do this,

recall that vw ∈ V is the unique element of V which is defined by the condition

ϕ(vw) = w. At the same time, we also have w = ϕ(v). Since ϕ is injective, we

conclude that vw = v, which proves that ψ ◦ ϕ = idV . By Definition 5.66, ϕ is a

linear isomorphism. �

Proposition 5.69. Let ϕ : V → W be a linear isomorphism. The inverse

map ϕ−1 : W → V is unique and linear. In particular, ϕ−1 is also a linear

isomorphism and the inverse of ϕ−1 is ϕ. In other words, (ϕ−1)−1 = ϕ.

Proof. Suppose that ψ1 : W → V and ψ2 : W → V are both inverses to ϕ. Then

ψ1 = idV ◦ ψ1

= (ψ2 ◦ ϕ) ◦ ψ1

= ψ2 ◦ (ϕ ◦ ψ1)

= ψ2 ◦ idW
= ψ2.

This shows that inverse map is unique.

Next we show that ϕ−1 : W → V is linear. Let w1, w2 ∈ W . First, we show

that

ϕ−1(w1 + w2) = ϕ−1(w1) + ϕ−1(w2).

To do this, let v1 = ϕ−1(w1) and v2 = ϕ−1(w2). Since ϕ is linear, we have

ϕ(v1 + v2) = ϕ(v1) + ϕ(v2)

= ϕ ◦ ϕ−1(w1) + ϕ ◦ ϕ−1(w2)

= idW (w1) + idW (w2)

= idW (w1 + w2)

= ϕ ◦ ϕ−1(w1 + w2).
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Since ϕ is bijective (in particular injective) by Proposition 5.68, the above equality

implies that

ϕ−1(w1 + w2) = v1 + v2

= ϕ−1(w1) + ϕ−1(w2)

where we use the definition of v1 and v2 in the last equality. Now let c ∈ R and let

w ∈W . To complete the proof that ϕ−1 is linear, it remains to show that

ϕ−1(cw) = cϕ−1(w).

Since ϕ is linear, we have

ϕ(cϕ−1(w)) = cϕ ◦ ϕ−1(w)

= cidW (w)

= idW (cw)

= ϕ ◦ ϕ−1(cw).

Again, using the fact that ϕ is bijective, the above equality implies that ϕ−1(cw) =

cϕ−1(w). This completes the proof that ϕ−1 is linear.

Since ϕ−1 : W → V is a linear map and ϕ : V → W is a map which satisfies

ϕ−1 ◦ϕ = idV and ϕ ◦ϕ−1 = idW , it follows by Definition 5.66 that ϕ−1 is a linear

isomorphism with inverse ϕ. This completes the proof. �

Exercise 5.70. Recall that we write V 'W if there exists a linear isomor-

phism from V to W . Use Proposition 5.69 to show that V 'W is equivalent

to W ' V .

Here is the answer to the question posed above: when are two vector spaces iso-

morphic?

Theorem 5.71. Two vector spaces are isomorphic if and only they have

the same dimension.

Proof. Let V and W be isomorphic vector spaces. By definiton, there exists a

linear isomorphism from V to W (or equivalently from W to V ). Let ϕ : V
∼→ W

be any linear isomorphism. By Proposition 5.68, ϕ is bijective. Hence, ker ϕ = {0}
and im ϕ = W . Let n = dimV and let v1, . . . , vn be a basis on V . Since v1, . . . , vn
spans V , Proposition 5.59 implies that

span{ϕ(v1), . . . , ϕ(vn)} = im ϕ = W.

Now suppose that

c1ϕ(v1) + · · ·+ cnϕ(vn) = 0

for some c1, . . . , cn ∈ R. Since ϕ is linear, the above equality can be rewritten as

ϕ(c1v1 + · · ·+ cnvn) = 0.
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Hence, c1v1 + · · · + cnvn ∈ ker ϕ. Since ker ϕ = {0} and v1, . . . , vn is linearly

independent, we conclude that c1 = · · · = cn = 0. This shows that ϕ(v1), . . . , ϕ(vn)

is also linearly independent. Since these vectors also span W , it follows that they

form a basis on W . Hence, dimW = n = dimV .

Conversely, suppose that dimV = dimW = n. Let B := {v1, . . . , vn} be a basis

on V and let {w1, . . . , wn} be a basis on W . Define a map

ϕ : B →W

by ϕ(vi) := wi for i = 1, . . . , n. By Proposition 5.48, we can extend ϕ by linearity

to a linear map from V to W . We now show that ϕ is bijective. Let v ∈ ker ϕ and

express v in terms of the basis B:

v = c1v1 + · · ·+ cnvn.

Then

ϕ(v) = c1ϕ(v1) + · · ·+ cnϕ(vn)

= c1w1 + · · ·+ cnwn.

Since ϕ(v) = 0 and w1, . . . , wn is a basis on W , it follows that c1 = · · · = cn = 0.

This shows that v = 0, which implies that ker ϕ = {0}. Proposition 5.62 implies

that ϕ is injective.

Now let w ∈W and express w in terms of the basis w1, . . . , wn:

w = d1w1 + · · ·+ dnwn.

Define v ∈ V by

v = d1v1 + · · ·+ dnvn.

Then

ϕ(v) = d1ϕ(v1) + · · ·+ dnϕ(vn)

= d1w1 + · · ·+ dnwn

= w.

This shows that ϕ is surjective. We have now shown that ϕ is bijective. Proposition

5.68 implies that ϕ is a linear isomorphism. Hence, V ' W . This completes the

proof. �

The following result follows directly from the proof of Theorem 5.71.

Corollary 5.72. Let V and W be vector spaces of dimension n. A linear

map from V to W is a linear isomorphism if and only if it maps a basis of V

to a basis of W . In particular, if v1, . . . , vn is a basis on V and w1, . . . , wn
is a basis on W , then the linear map ϕ : V →W which is (uniquely) deter-

mined by the conditions ϕ(vi) = wi for i = 1, . . . , n, is a linear isomorphism.
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Given two vector spaces V and W of the same dimension, Corollary 5.72 implies

that there are infinitely many isomorphisms between V and W . An isomorphism

between two arbitrary vector spaces V and W of the same dimension is determined

by choosing a basis on both V and W and then pairing up each basis element of V

with a basis element of W . In general, one does not have a natural or canonical

isomorphism between two vector spaces of the same dimension. A canonical iso-

morphism between two vector spaces is one that does not depend on an arbitrary

choices of bases.

On the other hand, if one has two vector spaces which are not arbitrary, but

are related to one another in some way, one usually has a canonical (i.e. natural)

linear map between the vector spaces. Moreover, if the vector spaces are related

and of the same dimension, the canonical linear map is usually an isomorphism. We

will study a special class of vector spaces called quotient vector spaces later in

Chapter 11 which will provide us with some of the most common (and important)

examples of canonical isomorphisms between vector spaces.

5.6. The Direct Sum Revisited

We conclude this chapter by generalizing the notion of the direct sum to arbitrary

real vector spaces of finite dimension. At the same time, we stress that everything

discussed in this chapter works equally well for complex vector spaces. The proof

of every result in this section is identical to the proofs given in Section 2.7 for

the vector space Rn and its subspaces. For this reason, we omit all proofs in this

section. The only difference between Section 2.7 and the current one is that we

make no mention of orthogonal complements. The reason for this, of course, is that

in order to define the orthogonal complement of a subspace W of a vector space V ,

one requires that V has its own “dot product”. An arbitrary vector space does not

come equipped with a natural dot product. One must specify one first. Only then

can one define orthogonal complements. A dot product for a general vector space

is called an inner product and is the subject of Chapter 9.

Throughout this section, let V be a real vector space of dimension n ≥ 1. We

begin this section with the following definition:

Definition 5.73. Let W1 and W2 be subspaces of V . The sum of W1 and

W2 is the subspace of V defined by

W1 +W2 := {w1 + w2 | w1 ∈W1, w2 ∈W2}.

Exercise 5.74. Show that W1 +W2 is indeed a subspace of V .
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Proposition 5.75. Let W1 and W2 be subspaces of V . Then

(i) W1 ∩W2 is also a subspace of V

(ii) dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Proof. See the proof of Proposition 2.77. �

Definition 5.76. Let W1 and W2 be subspaces of V . V is a direct sum

of W1 and W2 if the following conditions hold:

(i) V = W1 +W2

(ii) W1 ∩W2 = {0}
When V is a direct sum of W1 and W2, one replaces the “+” symbol with

the direct sum symbol “⊕” and writes V = W1 ⊕W2.

Proposition 5.77. Let W1 and W2 be subspaces of V . The following state-

ments are equivalent:

(1) V = W1 ⊕W2

(2) Every v ∈ V can be expressed uniquely as v = w1 + w2 for some

w1 ∈W1 and w2 ∈W2

(3) dimV = dimW1 + dimW2 and W1 ∩W2 = {0}

Proof. See the proof of Proposition 2.79. �

Example 5.78. Let M2(R) denote the vector space of 2× 2 matrices whose

entires are real numbers. Let sl2(R) be the subspace of M2(R) consisting of

all 2× 2 real matrices whose trace is zero. Let

E :=

(
0 1

0 0

)
, F :=

(
0 0

1 0

)
, H :=

(
1 0

0 −1

)
.

Then {E,F,H} is a basis on sl2(R). Indeed, an arbitrary element of sl2(R)

decomposes uniquely as(
c a

b −c

)
= aE + bF + cH.

Hence, dim sl2(R) = 3. Let I2 denote the 2 × 2 identity element and let

D := span {I2}. Then dimD = 1 and sl2(R) ∩D = {0}. Since

dim M2(R) = 4 = dim sl2(R) + dimD,

Proposition 5.77 implies that M2(R) = sl2(R)⊕D.
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Chapter 5 Exercises

1. Let R[x]2 be the vector space of all real polynomials of degree 2 or less. De-

termine if the set

{ 1 + x+ x2, 3− x2, 2x+ x2 }

is a basis of R[x]2.

2. Determine if the set of polynomials

{ 1, x, 1− 2x2,−3x+ 2x3 }

is a basis of R[x]3 (the vector space of real polynomials of degree 3 or less).

3. Let Mn(R) be the vector space of n × n matrices. Let An(R) ⊂ Mn(R) be

the subset of all skew-symmetric matrices. Recall than a matrix A is called

skew-symmetric if AT = −A.

(a) Show that An(R) is a subspace of Mn(R).

(b) Find dim An(R).

4. Find a basis for the subspace of all skew-symmetric 3 × 3 real matrices as a

subspace of all real 3× 3 matrices.

5. Express the polynomial p(x) = x3 + 3x2 + 2x + 1 as a linear combination of

the polynomials

x3 + 2, x2 + x, 3x+ 1, 2x+ 1.

6. Let M3(R) be the vector space of real 3× 3 matrices. Let S3(R) ⊂M3(R) be

the subset consisting of all symmetric matrices.

(a) Show that S3(R) is a subspace of M3(R).

(b) Give a basis for S3(R). What is the dimension of S3(R)?

(c) Extend the basis in part (b) to a basis on M3(R).

7. Let Mn(R) be the vector space of real n × n matrices. Let p(x) ∈ R[x] be a

real polynomial of degree k:

p(x) = cnx
k + ck−1x

k−1 + · · ·+ c1x+ c0.

For a matrix A ∈Mn(R), define a matrix p(A) ∈Mn(R) by

p(A) = cnA
k + ck−1A

k−1 + · · ·+ c1A+ c0In.

Show that for any A ∈Mn(R), there exists a nonzero real polynomial p(x) ∈
R[x] such that p(A) = 0. (Hint: consider dimMn(R).)
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8. Show that the subset

{real polynomials f(x) of degree ≤ 3 | f(2) = 0}

is a subspace of R[x]4, the vector space of real polynomials of degree 4 or less.

Find a basis of this subspace and determine its dimension.

9. Is the line y = 3x− 4 a subspace of R2 ? Is the unit disk {(x, y) | x2 + y2 ≤ 1}
a subspace of R2 ? Justify your answers.

10. Let sl2(R) denote the subspace of all 2 × 2 real matrices whose trace is zero.

Let

E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
.

Let ϕ : sl2(R) → sl2(R) be a linear map which satisfies the following condi-

tions:

ϕ(E − 2F ) = H, ϕ(E +H) = F, ϕ(F −H) = E + F.

(a) Find ϕ(E), ϕ(F ), and ϕ(H).

(b) Find kerϕ.

(c) Find im ϕ.

(d) Based on (b) and (c), is ϕ an isomorphism?

11. Let

A =

(
1 2 −1

1 −4 2

)
and let TA : R3 → R2 be the linear transformation associated to A, that is,

TA(~v) := A~v.

(a) Find kerTA and give its dimension.

(b) Find im TA and give its dimension.

(c) Verify the Rank-Nullity Theorem (Theorem 5.60) for TA, that is, check

that

dimR3 = dim kerTA + dim im TA.

12. Find the nullity and rank of the linear map T : R3 → R2 given by

T (a1, a2, a3) = (a1 + a2,−a3).

13. Let

A =

 2 1 2

2 −3 1

−2 −5 −3


and let TA : R3 → R3 be the linear transformation associated to A.

(a) Find kerTA and give its dimension.

(b) Find im TA and give its dimension.

(c) Verify the Rank-Nullity Theorem (Theorem 5.60) for TA.
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(d) Is TA is an isomorphism?

14. Suppose that T : R2 → R2 is a linear transformation such that T (−1, 0) =

(1, 4) and T (1, 2) = (2, 5) . Determine T (3, 4) . Is T one-to-one?

15. Let Mn(R) be the vector space of all real n× n matrices.

(a) Show that the trace

Tr : Mn(R)→ R

is a linear map.

(b) The kernel of Tr is simply the subspace of Mn(R) consisting of all real

n × n matrices with zero trace. This subspace is typically denoted as

sln(R). Apply the Rank-Nullity Theorem (Theorem 5.60) to determine

the dimension of sln(R).

16. Let Mn(R) be the vector space of all real n×n matrices and let sln(R) be the

subspace of all real n× n matrices with zero trace. Suppose W is a subspace

of Mn(R) of dimension n such that

Mn(R) = sln(R) +W.

Find dimW ∩ sln(R).

17. Let Mn(R) be the vector space of all real n× n matrices and let

F : Mn(R)→Mn(R)

be the map defined by

F (A) =
1

2
(A+AT ).

(a) Show that F is linear.

(b) Find im F and give its dimension. What type of matrices make up im F?

(c) Find kerF and give its dimension. What type of matrices make up kerF?

18. Let Mn(R) be the vector space of all real n×n matrices. Let Sn(R) and An(R)

denote the subspaces of real n × n symmetric and skew-symmetric matrices

respectively. Determine if

Mn(R) = Sn(R)⊕An(R).

Justify your answer.

19. Let V be a vector space and let ϕ : V → V be a linear map. A subspace W of

V is called ϕ-invariant if ϕ(W ) ⊂W . Show kerϕ and im ϕ are ϕ-invariant.
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Return to Rn. . . Sort of

After Chapter 5, you might be nostalgic for the days when a vector was just an

element of Rn (expressed either as a row or column vector) and a linear map was

just a matrix which mapped column vectors of Rn to column vectors of Rm by

matrix multiplication. It was so much simpler back then!

Well, it turns out that any (real) n-dimensional vector space can be regarded

as the vector space Rn and any linear map between (finite dimensional) vector

spaces can be regarded as a matrix. However, there’s a catch. Before explaining

what the catch is, let me explain what is meant by the word regarded here. Saying

that we can regard any n-dimensional vector space V as Rn means that we have

a way of representing each vector in V as a unique vector in Rn. More precisely,

we have a one-to-one correspondence between V and Rn. Likewise, we have a

way of representing any linear map between finite dimensional vector spaces as

a matrix. The catch is that this representation is very far from being unique.

The representation depends on a choice of basis or bases. Even so, the idea of

representing general vectors as vectors in Rn or linear maps as matrices turns out

to be mathematically fruitful. For example, the matrix representations of a linear

map ϕ : V → V with respect to two different bases turn out to be related to

one another in a very simple way. As we will see later, this simple form allows

one to extend the idea of the determinant from square matrices to any linear map

ϕ : V → V in a manner which is completely independent of a choice of basis on

V . In addition, there is also a computational benefit from being able to express

vectors as column vectors of Rn and linear maps as matrices.

For the sake of concreteness, we work with real vector spaces throughout this

chapter. However, if we replace Rn with Cn and all real vector spaces by complex

ones, all the definitions, results, and proofs of this chapter work exactly as before.

In short, everything in this chapter applies equally well to the complex case.

179
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6.1. Coordinate Vectors

Let V be a vector space of dimension n. For concreteness, we will also take V to

be a real vector space, but we could just as easily take V to be a complex vector

space. For the rest of this chapter, we will always regard the vectors of

Rn as column vectors. We begin with the main definition of this section:

Definition 6.1. Let B = {v1, . . . , vn} be a basis on V . The coordinate

vector of a vector v ∈ V with respect to B is the unique column vector

[v]B := (a1, a2, . . . , an)T ∈ Rn

where a1, a2, . . . , an are defined by the condition

v = a1v1 + a2v2 + · · ·+ anvn.

Example 6.2. Consider the vector space V = R2. Let B = {~v1, ~v2} be the

basis on V with ~v1 := (1, 1)T and ~v2 = (0, 1)T . Let ~v = (2, 3)T ∈ V . Let

us compute the coordinate vector [~v]B of ~v with respect to B. By definition,

[~v]B is the column vector

[~v]B :=

(
a1
a2

)
where a1 and a2 are uniquely defined by the condition

~v = a1~v1 + a2~v2.

The above equation is equivalent to the following linear system:

a1 = 2

a1 + a2 = 3.

The solution to the above system is a1 = 2 and a2 = 1. Hence, ~v = 2~v1 +~v2.

From this, we conclude that

[~v]B :=

(
2

1

)
.

It is important to remember that a basis is an ordered set. Hence, changing

the order of the vectors in a basis will result in a new basis. For instance,

let B′ = {~v2, ~v1}. Then B′ 6= B and the coordinate vector of ~v with respect

to B′ is

[~v]B′ =

(
1

2

)
6= [~v]B.

The following result follows directly from the definition of the coordinate vector:
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Proposition 6.3. Let V be a vector space of dimension n and let B =

{u1, . . . , un} be a basis on V . Then the coordinate vector of ui with respect

to B is [ui]B = ~ei where ~ei is the ith standard basis vector on Rn.

Proof. Let uj ∈ B. Then uj , as a linear combination of the basis B, is (of course)

uj =

n∑
i=1

cijui

where cij = 0 for all i 6= j and cjj = 1. By definition, we have

[uj ]B = (c1j , c2j , . . . , cnj)
T = ~ej .

�

Proposition 6.4. Let S := {~e1, . . . , ~en} denote the standard basis on Rn.

For any vector ~v ∈ Rn, the coordinate vector of ~v with respect to S is simply

itself, that is, [~v]S = ~v.

Proof. Recall that ~ei ∈ Rn is the vector whose components are all zero except for

the ith component which is 1. Let ~v = (v1, . . . , vn)T ∈ Rn. With respect to S, ~v

decomposes as

~v = v1~e1 + v2~e2 + · · ·+ vn~en.

It follows from this that the coordinate vector of ~v with respect to S is

[~v]S = (v1, . . . , vn)T = ~v.

�
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Example 6.5. Let R[x]2 denote the vector space of polynomials of degree

less than or equal to 2 whose coefficients are real numbers. A basis for R[x]2
is B = {x2, x, 1}. Hence, for a real polynomial p = a2x

2 + a1x + a0, the

associated coordinate vector with respect to B is

[p]B = (a2, a1, a0)T .

Another basis on R[x]2 is

C = {x2 − 1, x+ 1, x− 1}.

Let us compute the coordinate vector of p with respect to C. This amounts

to solving the following equation

p = b1(x2 − 1) + b2(x+ 1) + b3(x− 1)

for b1, b2, b3 ∈ R. The above equation is equivalent to the linear system:

b1 = a2

b2 + b3 = a1

b2 − b3 − b1 = a0.

The solution to this system is easily found to be

b1 = a2, b2 =
a0 + a1 + a2

2
, b3 =

a1 − a0 − a2
2

.

Hence,

[p]C = (a2,
a0 + a1 + a2

2
,
a1 − a0 − a2

2
)T .

Example 6.6. Consider the vector space R3 and let B = {~u1, ~u2, ~u3} be the

orthonormal basis on R3 defined by

~u1 := (1, 0, 0)T , ~u2 := (0, 5/13, 12/13)T , ~u3 := (0, 12/13,−5/13)T .

Let ~v = (1, 2, 3)T ∈ R3. Since B is an orthonormal basis, it follows from

Theorem 2.62 that

~v = (~v · ~u1)~u1 + (~v · ~u2)~u2 + (~v · ~u3)~u3

= ~u1 +
46

13
~u2 +

9

13
~u3.

Hence, [~v]B = (1, 46/13, 9/13)T .

We conclude this section with another (basic) observation:
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Proposition 6.7. Let V be a vector space of dimension n and let B =

{u1, . . . , un} be a basis on V . Let v, w ∈ V and c ∈ R. Then the following

identities hold:

(i) [v + w]B = [v]B + [w]B
(ii) [cv]B = c[v]B

Proof. Suppose that

[v]B = (a1, . . . , an)T

and

[w]B = (b1, . . . , bn)T .

From the definition of the coordinate vector, we have

v = a1u1 + a2u2 + · · ·+ anun

and

w = b1u1 + b2u2 + · · ·+ bnun.

This in turn implies that

v + w = (a1 + b1)u1 + (a2 + b2)u2 + · · ·+ (an + bn)un.

Hence,

[v + w]B = (a1 + b1, a2 + b2, . . . , an + bn)T = [v]B + [w]B.

This proves (i). For (ii), we have

cv = (ca1)u1 + (ca2)u2 + · · ·+ (can)un,

which in turn implies that

[cv]B = (ca1, ca2, . . . , can)T = c[v]B.

This completes the proof. �

6.2. The Transition Matrix

Let

B = {u1, . . . , un}, B′ = {v1, . . . , vn}

be bases on V . Given any vector v ∈ V , we would like to determine how ~vB and

~vB′ are related to one another. This will lead us to the notion of a transition

matrix. Since B′ is a basis, we can express every element of B as a (unique) linear

combination of the elements of B′:

uj =

n∑
i=1

cijvi, for j = 1, . . . , n. (78)
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Let PB′B be the n× n matrix

PB′B =

 c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 (79)

The matrix PB′B is called the transition matrix or change of basis matrix

from B to B′. The motivation for this name will become clear in a moment. Now

let v ∈ V and suppose that

[v]B = (a1, . . . , an)T , [v]B′ = (b1, . . . , bn)T .

By definition, this means that

v =

n∑
i=1

aiui (80)

and

v =

n∑
i=1

bivi. (81)

Substituting (78) into (80) gives

v =

n∑
j=1

aj

(
n∑
i=1

cijvi

)
=

n∑
i=1

 n∑
j=1

cijaj

 vi. (82)

Since B′ is a basis, the scalars appearing in (81) are unique. Hence, by comparing

(81) and (82), we see that

bi =

n∑
j=1

cijaj . (83)

However, the right side of (83) is simply the ith component of the column vector

PB′B[v]B. In other words, we have proven the following:

Theorem 6.8. Let V be a vector space and let B and B′ be any bases on

V . For any v ∈ V , the coordinate vectors [v]B and [v]B′ are related by the

following equation:

[v]B′ = PB′B[v]B.

Theorem 6.8 justifies the name transition matrix (or change of base matrix) for

the matrix PB′B. Indeed, the transition matrix PB′B tells one how to transform a

coordinate vector in the B-coordinates to one in the B′-coordinates.

The following result shows that the transition matrix can be conveniently ex-

pressed in terms of coordinate vectors:
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Proposition 6.9. Let V be a vector space of dimension n and let

B = {u1, . . . , un} and B′ = {v1, . . . , vn}

be bases on V . Then the ithcolumn of the transition matrix PB′B is the

coordinate vector of ui with respect to the basis B′. In other words,

PB′B = ([u1]B′ , [u2]B′ , . . . , [un]B′) (84)

Proof. For j = 1, . . . , n, let us express the basis vector uj as a linear combination

of the basis B′:

uj =
n∑
i=1

cijvi. (85)

Equation (85) implies that the coordinate vector of uj with respect to B′ is

[uj ]B′ =


c1j
c2j
...

cnj

 . (86)

On the other hand, from the definition of the transition matrix (equations (78) and

(79)), we have

PB′B =

 c11 · · · c1n
...

. . .
...

cn1 · · · cnn

 (87)

Comparing (86) and (87), we see that the jth column of PB′B is precisely [uj ]B′ .

Hence, we can rewrite PB′B as

PB′B = ([u1]B′ , [u2]B′ , . . . , [un]B′).

This completes the proof. �

Proposition 6.10. Let B = {~v1, . . . , ~vn} be any basis on Rn and let S =

{~e1, . . . , ~en} denote the standard basis on Rn. Then

PSB = (~v1, ~v2, . . . , ~vn).

Proof. From Proposition 6.4, we have [~v]S = ~v for any vector ~v ∈ Rn. By Propo-

sition 6.9, we have

PSB = ([~v1]S , [~v2]S , . . . , [~vn]S)

= (~v1, ~v2, . . . , ~vn).

�
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Example 6.11. Let us consider a simple “test” of Theorem 6.8. Let B =

{~v1, ~v2} be the basis on R2 given by

~v1 = (1,−1)T , ~v2 = (4,−3)T

and let S = {~e1, ~e2} be the standard basis on R2. By Proposition 6.10, we

have

PSB = (~v1, ~v2) =

(
1 4

−1 −3

)
.

Let ~x ∈ Rn be the vector whose coordinate representation with respect to B
is

[~x]B = (−2, 5)T .

In other words, ~x is given by

~x = −2~v1 + 5~v2 = (−2, 2)T + (20,−15)T = (18,−13)T .

By Proposition 6.4, [~x]S = ~x. By Theorem 6.8, we should obtain the same

exact answer. Let us verify that this is indeed the case:

PSB[~x]B =

(
1 4

−1 −3

)(
−2

5

)
=

(
18

−13

)
= ~x = [~x]S .

The next result will prove useful for computing the transition matrix between two

arbitrary bases B and B′ on a vector space V .

Theorem 6.12. Let V be a vector space of dimension n and let B, C, and

D be bases on V . Then

(a) PBB = In where In is the n× n identity matrix

(b) PDB = PDCPCB
(c) P−1CB = PBC

Proof. Let

B = {u1, . . . , un}.

(a): By Proposition 6.3, we have [ui]B = ~ei for i = 1, . . . , n. By Proposition

6.9, we have

PBB = ([u1]B, [u2]B, . . . , [un]B)

= (~e1, ~e2, . . . , ~en)

= In.

(b): Let v ∈ V be an arbitrary vector. Using Theorem 6.8, we have

[v]D = PDB[v]B



6.2. The Transition Matrix 187

However, we also have

[v]D = PDC [v]C

= PDC (PCB[v]B))

= (PDCPCB) [v]B.

This shows that

PDB[v]B = (PDCPCB) [v]B. (88)

Setting v = ui for any i ∈ {1, . . . , n} in (88), we obtain

PDB~ei = (PDCPCB)~ei (89)

where we use the fact that [ui]B = ~ei (by Proposition 6.3). Equation (89) implies

that the ith column of PDB and PDCPCB are equal for i = 1, . . . , n. This in turn

implies that

PDB = PDCPCB.

(c): Using (a) and (b), we find that

PBCPCB = PBB = In

and

PCBPBC = PCC = In.

This implies that P−1CB = PBC . �

For convenience, we recall that for an invertible 2 matrix

A =

(
a b

c d

)
,

its inverse is given explicitly by

A−1 =
1

ad− bc

(
d −b
−c a

)
.
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Example 6.13. Consider the vector space R2. Let B and C be the bases on

R2 given by

B = {(−1, 2)T , (2, 5)}
and

C = {(2, 3)T , (4,−1)T }.
Let us compute the transition matrix PCB using Theorem 6.12. To do this,

let S = {~e1, ~e2} denote the standard basis on R2. By Proposition 6.10, we

have

PSB =

(
−1 2

2 5

)
and

PSC =

(
2 4

3 −1

)
.

Using Theorem 6.12, we have

PCB = PCSPSB

= P−1SC PSB

=

(
1/14 2/7

3/14 −1/7

)(
−1 2

2 5

)
=

(
1/2 11/7

−1/2 −2/7

)
.

Let’s try a simple test of the above transition matrix. Let ~v ∈ R2 be the

vector whose coordinate vector with respect to B is

[~v]B = (2, 3)T .

By definition, this means that

~v = 2(−1, 2)T + 3(2, 5)T = (4, 19)T .

Using the transition matrix PCB, we compute [~v]C:

[~v]C = PCB[~v]B = (40/7,−13/7)T .

Let us verify that this is indeed the coordinate vector of ~v with respect to the

basis C:
40

7
(2, 3)T − 13

7
(4,−1)T = (4, 19)T = ~v.

Example 6.13 generalizes easily as follows:

Corollary 6.14. Let B and C be any bases on Rn. Then

PCB = P−1SC PSB.
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Exercise 6.15. Consider the following bases on R3:

B = {(2,−1, 1)T , (0,−1, 1)T , (1,−1, 0)T }

and

C = {(1, 1, 0)T , (1, 0, 1)T , (0, 1, 1)T }.
Compute the transition matrix PCB.

6.3. Matrix Representations of Linear Maps

In section 6.1, we showed that by fixing a basis on a vector space V , we were able

to identify vectors of V with vectors of Rn (where n = dimV ). In this section, we

apply the same idea to linear maps. This will allow us to represent a linear map

ϕ : V → W as a matrix once we have fixed a basis on both V and W . With that

said, we now introduce the main definition of this section:

Definition 6.16. Let ϕ : V →W be a linear map. Let

B = {v1, . . . , vn}

be a basis on V and let

C = {w1, . . . , wm}
be a basis on W . The matrix representation of ϕ with respect to the bases

B and C is the m× n matrix

[ϕ]CB :=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn


where the entries are aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n are defined as follows:

ϕ(vj) =

m∑
i=1

aijwi.

The matrix representation of a linear map can also be expressed in terms of coor-

dinate vectors:
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Proposition 6.17. Let ϕ : V →W be a linear map. Let

B = {v1, . . . , vn}

be a basis on V and let

C = {w1, . . . , wm}
be a basis on W . Then the jth column of the matrix representation [ϕ]CB is

the coordinate vector [ϕ(vj)]C, that is,

[ϕ]CB = ([ϕ(v1)]C , [ϕ(v2)]C , . . . , [ϕ(vn)]C).

Proof. The proof follows directly from Definition 6.16. Indeed, the elements of the

matrix representation [ϕ]CB are the coefficients appearing in the equation

ϕ(vj) =

m∑
i=1

aijwi.

The above equation implies that the coordinate vector of the vector ϕ(vj) ∈ W

with respect to the basis C is

[ϕ(vj)]C =


a1j
a2j
...

amj



which is simply the jth column of the matrix representation [ϕ]CB. �

Example 6.18. Let R[x]2 be the vector space of polynomials of degree 2 or

less and let R[x]1 be the vector space of polynomials of degree 1 or less. Let

D : R[x]2 → R[x]1

be the map which sends a polynomial p(x) ∈ R[x]2 to the polynomial

Dp(x) :=
dp

dx
(x) ∈ R[x]1.

Example 5.43 implies that D is a linear map. Let B = {x2, x, 1} and

C = {x, 1}. Then B is a basis on R[x]2 and C is a basis on R[x]1. Let

us compute the matrix representation [D]CB. To do this, we apply D to each

basis element of B:
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Dx2 = 2x = 2x+ (0)1

Dx = 1 = 0x+ 1

D1 = 0 = 0x+ (0)1.

Hence,

[Dx2]C =

(
2

0

)
, [Dx]C =

(
0

1

)
, [D1]C =

(
0

0

)
.

Proposition 6.17 implies that

[D]CB =

(
2 0 0

0 1 0

)
.

The next result shows that by fixing a basis on its domain and range, a linear

map ϕ : V → W can be computed in terms of matrix multiplication involving its

matrix representation and coordinate vectors on V :

Theorem 6.19. Let ϕ : V → W be a linear map and let B and C be bases

on V and W respectively. Then

[ϕ]CB[v]B = [ϕ(v)]C , ∀ v ∈ V.

Proof. Let

B = {v1, . . . , vn}
and let

C = {w1, . . . , wm}.
Let v ∈ V and express v as a linear combination of the basis B:

v =

n∑
j=1

αjvj .

By definition, we have

[v]B = (α1, α2, . . . , αn)T .

Let [ϕ]CB denote the matrix representation of ϕ with respect to the bases B and C
and let aij denote the (i, j)-entry of [ϕ]CB. Let us now apply ϕ to the vector v:

ϕ(v) =

n∑
j=1

αjϕ(vj)

=

n∑
j=1

m∑
i=1

αjaijwi

=

m∑
i=1

 n∑
j=1

aijαj

wi.
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The above equality implies that the ith component of the coordinate vector [ϕ(v)]C
is the sum

∑n
j=1 aijαj . At the same time, the sum

∑n
j=1 aijαj is precisely the ith

element of the column vector obtained by multiplying the matrix representation

[ϕ]CB with the coordinate vector [v]B. In other words, the sum
∑n
j=1 aijαj is the

ith element of the column vector [ϕ]CB[v]B. This implies that [ϕ]CB[v]B = [ϕ(v)]C ,

which completes the proof. �

Example 6.20. Let D : R[x]2 → R[x]1 be the linear map induced by ordi-

nary differentiation from Example 6.18 and let B = {x2, x, 1} and C = {x, 1}
be bases on [R][x]2 and R[x]1 respectively. From Example 6.18, we found that

[D]CB =

(
2 0 0

0 1 0

)
.

Let us “test” Theorem 6.19. Consider the polynomial p = 5x2 − 3x + 2.

According to Theorem 6.19, we should find that

[D]CB[p]B = [Dp]C . (90)

Let us verify that this is indeed the case. For the left side, we first note that

[p]B =

 5

−3

2

 .

Then the left side of (91) is

[D]CB[p]B =

(
10

−3

)
.

To compute the right side, we first note that Dp = 10x− 3. Given the basis

C, we immediately see that

[Dp]C =

(
10

−3

)
.

Hence, we conclude that [D]CB[p]B = [Dp]C (as expected from Theorem 6.19).

Example 6.21. Let V be a 2-dimensional vector space with basis B =

{v1, v2} and let W be a 3-dimensional vector space with basis C =

{w1, w2, w3}. Let T : V → W be the unique linear map whose values on

the basis B is

T (v1) = 2w1 + 3w2 − w3, T (v2) = w1 − w2 + w3.

From this, we see that

[T ]CB =

 2 1

3 −1

−1 1

 .
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Let us try another test of Theorem 6.19. Let

v = 3v1 + 5v2

We now verify that

[T ]CB[v]B = [T (v)]C . (91)

For the left side of (91), we have

[T ]CB[v]B =

 2 1

3 −1

−1 1

( 3

5

)
=

 11

4

2

 .

To compute the right side of (91), we evaluate T (v):

T (v) = 3T (v1) + 5T (v2)

= 3(2w1 + 3w2 − w3) + 5(w1 − w2 + w3)

= 11w1 + 4w2 + 2w3.

This in turn implies that

[T (v)]C =

 11

4

2

 ,

which shows that [T ]CB[v]B = [T (v)]C .

Next, let ϕ : V → W be a linear map. Also, let B and B′ be bases on V and

let C and C′ be bases on W . A natural question then is the following: how are

the matrix representations [T ]CB and [T ]C′B′ related to one another? The answer

is given by the next result:

Theorem 6.22. Let ϕ : V → W be a linear map. Also, let B and B′ be

bases on V and let C and C′ be bases on W . Then

[ϕ]C′B′ = PC′C [ϕ]CBPBB′ (92)

where PBB′ (resp. PC′C) is the transition matrix from B′ (resp. C) to B
(resp. C′).

Proof. Let v ∈ V be arbitrary and let [v]B and [v]B′ be the coordinate vectors of

v with respect to B and B′. Also, let [ϕ(v)]C and [ϕ(v)]C′ be the coordinate vectors

of ϕ(v) with respect to C and C′. By Theorem 6.8, we have

[v]B = PBB′ [v]B′ (93)

and

[ϕ(v)]C′ = PC′C [ϕ(v)]C (94)

By Theorem 6.19, we have

[ϕ]CB[v]B = [ϕ(v)]C (95)
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and

[ϕ]C′B′ [v]B′ = [ϕ(v)]C′ . (96)

Multiplying both sides of (95) from the left by PC′C and substituting (93) and (94)

gives

PC′C [ϕ]CBPBB′ [v]B′ = [ϕ(v)]C′ . (97)

Equations (96) and (97) imply

[ϕ]C′B′ [v]B′ = PC′C [ϕ]CBPBB′ [v]B′ . (98)

Since v ∈ V is arbitrary, equation (98) implies that

[ϕ]C′B′ = PC′C [ϕ]CBPBB′ (99)

which completes the proof. �

Of particular interest to us is the special case of linear maps whose domain and

range are the same vector space. A linear map

ϕ : V → V

is commonly called an endomorphism of V . When computing the matrix repre-

sentation of an endomorphism ϕ : V → V , one typically chooses a single basis B
of V and considers the matrix representation [ϕ]BB. To simplify things a little, we

will use the following notation:

[ϕ]B := [ϕ]BB.

The next result is a special (yet important) case of Theorem 6.22:

Corollary 6.23. Let ϕ : V → V be a linear map and let B and B′ be bases

on V . Then

[ϕ]B′ = PB′B[ϕ]BPBB′ = P−1BB′ [ϕ]BPBB′ .

Proof. Apply Theorem 6.22 to the linear map ϕ : V → V with C = B and C′ = B′.
In the last equality, we use the fact that P−1BB′ = PB′B by Theorem 6.12. �

Recall from Chapter 3 that two n×n matrices A and B are similar if there exists

an invertible n× n matrix C such that B = C−1AC. From Corollary 6.23, we see

that [ϕ]B and [ϕ]B′ are similar matrices. One can say more:

Corollary 6.24. Let V be a vector space of dimension n and let ϕ : V → V

be a linear map. Let B be any basis of V and let A := [ϕ]B. For any invertible

n× n matrix C, there exists a basis B′ of V such that [ϕ]B′ = C−1AC.

Proof. Let B = {u1, u2, . . . , un} be any basis on V and let C = (cij) be any

invertible n× n matrix. Let

B′ := {v1, v2, . . . , vn}
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be the basis on V defined by

vj :=

n∑
i=1

cijui

for j = 1, 2, . . . , n. By the definition of the transition matrix, we have PBB′ = C.

Corollary 6.23 then implies

[ϕ]B′ = P−1BB′ [ϕ]BPBB′ = C−1AC.

This completes the proof. �

Example 6.25. Let T : R2 → R2 the linear map defined by

T~v =

(
2y

x+ y

)
for ~v = (x, y)T . Let S = {~e1, ~e2} denote the standard basis and let B =

{~u1, ~u2} where

~u1 = (−2, 3)T , ~u2 = (1,−1)T .

Let us compute [T ]B. First, we compute the matrix representation of T with

respect to S (i.e. [T ]S := [T ]SS). This is easily computed using Proposition

6.17 and Proposition 6.4:

[T ]S = ([T (~e1)]S , [T (~e2)]S)

=

(
0 2

1 1

)
.

Next, we compute the transition matrix PSB with the help of Proposition

6.10:

PSB =

(
−2 1

3 −1

)
.

Using Corollary 6.23, we have

[T ]B = P−1SB [T ]SPSB

=

(
1 1

3 2

)(
0 2

1 1

)(
−2 1

3 −1

)
=

(
7 −2

20 −6

)
.

Let’s put the above result to the test. By Theorem 6.19 the following equality

should hold for any vector ~v ∈ R2

[T ]B[~v]B = [T (~v)]B. (100)

For the test, let ~v be the vector whose coordinate representation with respect

to B is

[~v]B = (2, 1)T .
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Hence, ~v is given by

~v = 2~u1 + ~u2 = (−3, 5)T .

Hence,

T (~v) = (10, 2)T .

Let us first compute the right side of (100). Using the transition matrix

PBS , we have

[T (~v)]B = PBS [T (~v)]S

= PBST (~v)

=

(
1 1

3 2

)(
10

2

)
=

(
12

34

)
.

For the left side of (100), we have

[T ]B[~v]B =

(
7 −2

20 −6

)(
2

1

)
=

(
12

34

)
,

which is the desired result.

6.4. More on Matrix Representations

In this section, let V and W be any (real finite dimensional) vector spaces and

define Hom(V,W ) to be the set of all linear maps from V to W . It should be clear

to the reader that Hom(V,W ) has a natural vector space structure. Indeed, for

any two linear maps ϕ, ψ ∈ Hom(V,W ) and any scalar c ∈ R, we simply define

ϕ+ ψ ∈ Hom(V,W ) and cϕ ∈ Hom(V,W ) pointwise, that is,

(ϕ+ ψ)(v) := ϕ(v) + ψ(v), ∀ v ∈ V

and

(cϕ)(v) := cϕ(v), ∀ v ∈ V.

Exercise 6.26. Verify that the above operations turns Hom(V,W ) into a

vector space.

The above vector space structure transforms very nicely when taking matrix rep-

resentations:
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Proposition 6.27. Let ϕ : V → W and ψ : V → W be linear maps and

let B and C be bases on V and W respectively. Then the following relations

hold:

(i) [ϕ+ ψ]CB = [ϕ]CB + [ψ]CB
(ii) [rϕ]CB = r[ϕ]CB for all r ∈ R

Proof. (i): Let v ∈ V . Using Theorem 6.19 and Proposition 6.7, we have the

following:

[ϕ+ ψ]CB[v]B = [(ϕ+ ψ)(v)]C

= [ϕ(v) + ψ(v)]C

= [ϕ(v)]C + [ψ(v)]C

= [ϕ]CB[v]B + [ψ]CB[v]B

= ([ϕ]CB + [ψ]CB) [v]B.

Since v ∈ V is arbitrary, the above equation implies that

[ϕ+ ψ]CB = [ϕ]CB + [ψ]CB.

This completes the proof of (i).

(ii): Once again, using Theorem 6.19 and Proposition 6.7, we have the following:

[rϕ]CB[v]B = [rϕ(v)]C

= r[ϕ(v)]C

= r[ϕ]BC [v]B.

The above equation then implies

[rϕ]CB = r[ϕ]CB,

which completes the proof of (ii). �
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Example 6.28. Let R[x]4 denote the vector space of polynomials of degree

4 or less. Let

B := {x4, x3, x2, x, 1}
and let D1 and D2 be the endomorphisms on R[x]4 given by

D1 := 5
d

dx
+ 1, D1p(x) := 5

d

dx
p(x) + p(x)

and

D2 :=
d2

dx2
− d

dx
, D2p(x) =

d2

dx2
p(x)− d

dx
p(x)

for all p(x) ∈ R[x]4. Its a simple matter to verify that D1 and D2 are indeed

linear maps. Since

D1x
4 = x4 + 20x3

D1x
3 = x3 + 15x2

D1x
2 = x2 + 10x

D1x = x+ 5

D11 = 1

and

D2x
4 = −4x3 + 12x2

D2x
3 = −3x2 + 6x

D2x
2 = −2x+ 2

D2x = −1

D21 = 0,

it follows that the matrix representation of D1 and D2 with respect to B is

[D1]B =


1 0 0 0 0

20 1 0 0 0

0 15 1 0 0

0 0 10 1 0

0 0 0 5 1


and

[D2]B =


0 0 0 0 0

−4 0 0 0 0

12 −3 0 0 0

0 6 −2 0 0

0 0 2 −1 0


where we recall that [D1]B and [D2]B are short for [D1]BB and [D2]BB re-

spectively. By Proposition 6.27, we conclude that the matrix representation

of D1 +D2 is
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[D1 +D2]B = [D1]B + [D2]B

=


1 0 0 0 0

16 1 0 0 0

12 12 1 0 0

0 6 8 1 0

0 0 2 4 1

 .

Let’s try a simple test of our calculation. Let p(x) = x4 − x3 + x2 − x+ 1.

Applying D1 +D2 to p(x) gives

(D1 +D2)p(x) := D1p(x) +D2p(x)

= (x4 + 19x3 − 14x2 + 9x− 4) + (−4x3 + 15x2 − 8x+ 3)

= x4 + 15x3 + x2 + x− 1.

From this, we see that

[(D1 +D2)p(x)]B = (1, 15, 1, 1,−1)T .

By Theorem 6.19, we have

[(D1 +D2)p(x)]B = [D1 +D2]B[p(x)]B.

Let us verify that the right side does indeed match the left side. Using our

calculation for [D1 +D2]B, we have

[D1 +D2]B[p(x)]B =


1 0 0 0 0

16 1 0 0 0

12 12 1 0 0

0 6 8 1 0

0 0 2 4 1




1

−1

1

−1

1



=


1

15

1

1

−1


which is the desired result.

The next result relates the composition of linear maps to matrix multiplication

(and thus reveals the significance of matrix multiplication):

Proposition 6.29. Let ϕ : V →W and ψ : W → U be linear maps. Let B,

C, and D be bases on V , W , and U respectively. Then

[ψ ◦ ϕ]DB = [ψ]DC [ϕ]CB

where the right side of the equation is matrix multiplication.
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Proof. Let v ∈ V . By Theorem 6.19, we have

[ψ ◦ ϕ]DB[v]B = [(ψ ◦ ϕ)(v)]D

= [ψ(ϕ(v))]D

= [ψ]DC [ϕ(v)]C

= [ψ]DC ([ϕ]CB[v]B)

= ([ψ]DC [ϕ]CB) [v]B.

Since v ∈ V is arbitrary, the above equation implies [ψ ◦ ϕ]DB = [ψ]DC [ϕ]CB. This

completes the proof. �

Example 6.30. Let R[x]4 be the vector space of polynomials of degree 4 or

less. Let D1 and D2 be the endomorphisms on R[x]4 defined by

D1 := 5
d

dx
+ 1, D1p(x) := 5

d

dx
p(x) + p(x)

and

D2 :=
d2

dx2
− d

dx
, D2p(x) =

d2

dx2
p(x)− d

dx
p(x).

Consider the basis B = {x4, x3, x2, x, 1} on R[x]4. Using the calculation from

Example 6.28 and Proposition 6.29, we compute the matrix representation

of D1 ◦D2 with respect to B (recall that [D1]B is short for [D1]BB):

[D1 ◦D2]B = [D1]B[D2]B

=


1 0 0 0 0

20 1 0 0 0

0 15 1 0 0

0 0 10 1 0

0 0 0 5 1




0 0 0 0 0

−4 0 0 0 0

12 −3 0 0 0

0 6 −2 0 0

0 0 2 −1 0



=


0 0 0 0 0

−4 0 0 0 0

−48 −3 0 0 0

120 −24 −2 0 0

0 30 −8 −1 0

 .

Let us put this calculation to the test. Let p(x) = x4 + x3. Then
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(D1 ◦D2)p(x) = D1(D2p(x))

= D1(−4x3 + 9x2 + 6x)

= −4x3 − 51x2 + 96x+ 30.

Hence,

[(D1 ◦D2)p(x)]B = (0,−4,−51, 96, 30)T .

We computed [D1 ◦D2]B using Proposition 6.29. If our calculation of this

matrix representation is correct, then by Theorem 6.19, we should observe

[(D1 ◦D2)p(x)]B = [D1 ◦D2]B[p(x)]B.

We now verify the above identity:

[D1 ◦D2]B[p(x)]B =


0 0 0 0 0

−4 0 0 0 0

−48 −3 0 0 0

120 −24 −2 0 0

0 30 −8 −1 0




1

1

0

0

0



=


0

−4

−51

96

30

 .

This verifies the above identity (and suggests that our calculation of [D1 ◦
D2]B is indeed correct).

6.5. Determinants, Eigenvalues, and Eigenvectors for Linear Maps

Recall from Chapter 3 that the characteristic polynomial of an n × n matrix A is

defined by

pA(x) := det(xIn −A).

The eigenvalues of A are then defined to be the roots of its characteristic polynomial;

an eigenvector of A associated to an eigenvalue λ of A was then defined to be a

nonzero vector ~v ∈ Rn satisfying A~v = λ~v.

Let V be a vector space over a field F (where F, as usual, is understood to be

R or C). In order to generalize these ideas to an endomorphism ϕ : V → V , we

first need to generalize the notion of the determinant.

Definition 6.31. Let B be any basis on V . The determinant of a linear

map ϕ : V → V is defined as det(ϕ) := det([ϕ]B).
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For Definition 6.31 to be well defined, det(ϕ) cannot depend on the choice of basis

B. The next result shows that this is indeed the case.

Theorem 6.32. Let ϕ : V → V be a linear map and let B and C be any

bases on V . Then det([ϕ]B) = det([ϕ]C).

Proof. By Corollary 6.23, we have

[ϕ]C = P−1BC [ϕ]BPBC .

Using the multiplicative property of the determinant (see Chapter 3), we have

det([ϕ]C) = det(P−1BC [ϕ]BPBC)

= det(P−1BC )det([ϕ]B)det(PBC)

=
1

det(PBC)
det([ϕ]B)det(PBC)

= det([ϕ]B).

This completes the proof. �

Example 6.33. Let A be an n × n matrix. Recall from Chapter 3 that

A naturally defines a linear endomorphism of Rn via matrix multiplication.

Explicitly, we associate to A the linear map ϕA : Rn → Rn which is defined

by

ϕA(~v) := A~v.

In Chapter 3, we used the term “linear transformation” for linear maps

of this kind. Let S denote the standard basis on Rn. Since the matrix

representation [ϕA]S = A, it follows from Definition 6.31 that

det(ϕA) = det(A).

Hence, the determinant of the linear transformation associated to an n× n
matrix A is precisely the determinant of A.

Example 6.34. Let R[x]2 denote the vector space of real polynomials of

degree 2 or less. Consider the linear map

D : R[x]2 → R[x]2, p(x) 7→ d

dx
p(x).

Let B = {x2, x, 1}. Then the matrix representation of D with respect to B is
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[D]B =

 0 0 0

2 0 0

0 1 0

 .

From this, we have

det (D) = det ([D]B) = 0.

Using the notion of determinants for endomorphisms, we can now introduce the

following definition:

Definition 6.35. Let ϕ : V → V be a linear map. The characteristic

polynomial of ϕ is the polynomial

pϕ(x) := det(x · idV − ϕ),

where idV : V → V is the identity map on V .

As the reader might have guessed, we have the following nice result:

Proposition 6.36. Let ϕ : V → V be a linear map and let B be any

basis on V . Then the characteristic polynomial of ϕ is exactly equal to the

characteristic polynomial of the matrix representation [ϕ]B.

Proof. Let n = dimV . Using Proposition 6.27, we have

pϕ(x) := det(x · idV − ϕ)

:= det([x · idV − ϕ]B)

= det(x[idV ]B − [ϕ]B)

= det(xIn − [ϕ]B)

:= p[ϕ]B .

This completes the proof. �

Example 6.37. Let D : R[x]2 → R[x]2 be the linear map defined in Example

6.34 and let B = {x2, x, 1}. From Example 6.34, we have

[D]B =

 0 0 0

2 0 0

0 1 0

 ,

Proposition 6.36 implies that the characteristic polynomial of D is simply

the characteristic polynomial of [D]B. Using this fact, we find that
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pϕ = det(xI3 − [D]B)

= det

 x 0 0

−2 x 0

0 −1 x


= x3.

Using Definition 6.35, we can now generalize the notion of eigenvalues and eigen-

vectors to endomorphisms.

Definition 6.38. Let ϕ : V → V be a linear map and let pϕ(x) denote its

characteristic polynomial. The eigenvalues of ϕ are the roots of pϕ. An

eigenvector of ϕ associated to an eigenvalue λ of ϕ is a nonzero vector

v ∈ V satisfying

ϕ(v) = λv.

The subspace of V spanned by all the eigenvectors associated to λ is called

the eigenspace of λ. This subspace is denoted by Eϕλ or by Eλ.

Example 6.39. Let D : R[x]2 → R[x]2 be the linear map from Example

6.34. From Example 6.37, we found that the characteristic polynomial of D

is pϕ = x3. Hence, the eigenvalues of D are all zero. By inspection, the

only eigenvectors of D are the constant polynomials:

Dc =
d

dx
c = 0 = 0c

for all c ∈ R ⊂ R[x]2.

In general, how does one go about finding the eigenvectors of a general endomor-

phism ϕ : V → V . The next result says that this problem is equivalent to finding

all the eigenvectors of any matrix representation of ϕ.

Theorem 6.40. Let ϕ : V → V be a linear map and let B be any basis of

V .

(i) ϕ and [ϕ]B have the same eigenvalues.

(ii) Let λ be any eigenvalue of ϕ and let v be an eigenvector of ϕ associated

to λ. Then [v]B is an eigenvector of [ϕ]B associated to the eigenvalue

λ.

(iii) Let λ be an eigenvalue of [ϕ]B and let ~x be an eigenvector of [ϕ]B
associated to λ. Let vx ∈ V be the unique vector satisfying [vx]B = ~x.

Then vx is an eigenvector of ϕ associated to the eigenvalue λ.
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Proof. (i): By Proposition 6.36, ϕ and [ϕ]B have the same characteristic polyno-

mial. Since the eigenvalues of ϕ and [ϕ]B are just the roots of its characteristic

polynomial, we conclude that ϕ and [ϕ]B have the same eigenvalues.

(ii): Let v ∈ V . By Theorem 6.19, we have

[ϕ]B[v]B = [ϕ(v)]B. (101)

Suppose now that v is an eigenvector of ϕ. By definition, v 6= 0 and ϕ(v) = λv.

This together with (101) implies

[ϕ]B[v]B = [ϕ(v)]B

= [λv]B

= λ[v]B,

where we have applied Proposition 6.27 in the last equality. This shows that [v]B
is an eigenvector of the matrix [ϕ]B. (Note that [v]B 6= ~0 since v 6= 0.)

(iii): Suppose that ~x is an eigenvector of [ϕ]B associated to an eigenvalue λ.

Let vx ∈ V be the unique vector defined by [vx] = ~x. (Note that since ~x 6= ~0, we

also have vx 6= 0.) By Theorem 6.19, we have

[ϕ(vx)]B = [ϕ]B[vx]B

= [ϕ]B~x

= λ~x

= λ[vx]B

= [λvx]B.

The last equality implies ϕ(vx) = λvx. This completes the proof. �

We conclude this section by introducing the notion of diagonalizable linear maps,

which turns out to be strongly related to the idea of diagonalizable matrices.

Definition 6.41. A linear map ϕ : V → V is diagonalizable if there exists

a basis of V such that every element of the basis is an eigenvector of ϕ.
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Example 6.42. Let sl(2;R) be the vector space consisting of 2 × 2 real

matrices with trace zero. (See Example 5.18.) Let

ϕ : sl(2;R)→ sl(2;R)

be the linear map which sends a matrix(
a b

c −a

)
∈ sl(2;R)

to the matrix (
0 2b

−2c 0

)
∈ sl(2;R).

(It is a simple exercise to verify that ϕ is indeed linear.) The reader can

verify that sl(2;R) is a 3-dimensional vector space with basis

H :=

(
1 0

0 −1

)
, E :=

(
0 1

0 0

)
, F :=

(
0 0

1 0

)
.

Observe that

ϕ(H) = 0H, ϕ(E) = 2E, ϕ(F ) = −2F.

Hence, ϕ is a diagonalizable linear map.

Theorem 6.43. Let ϕ : V → V be a linear map and let B be any basis on

V . Then the following statements are equivalent:

(i) ϕ is diagonalizable.

(ii) The matrix representation [ϕ]B is diagonalizable.

Proof. Let n = dimV .

(i): Suppose that ϕ is diagonalizable. By definition, there exists a basis

{v1, . . . , vn} of V such that vi is an eigenvector of ϕ for i = 1, . . . , n. Let λi
be the eigenvalue of ϕ associated to vi for i = 1, . . . , n. Theorem 6.40 implies that

[v1]B, . . . , [vn]B

are also eigenvectors on [ϕ]B. Note also that since {v1, . . . , vn} is a basis on V ,

it follows that {[v1]B, . . . , [vn]B} is a basis on Rn. Let C be the matrix whose ith

column is [vi]B for i = 1, . . . , n. Then

C−1[ϕ]BC =

 λ1 · · · 0
...

. . .
...

0 . . . λn

 . (102)

(ii): Now suppose that [ϕ]B is diagonalizable. Then there exists an n × n

matrix C satisfying (102). Let ~xi denote the ith column of C. Equation (102)

implies that [ϕ]B~xi = λi~xi. For i = 1, . . . , n, let ui ∈ V be the unique vector
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defined by [ui]B = ~xi. Theorem 6.40 implies that ϕ(ui) = λiui. Moreover, since

~x1, . . . , ~xn is a basis on Rn, it follows that u1, . . . , un must be a basis on V . Hence,

ϕ is diagonalizable. This completes the proof. �

Chapter 6 Exercises

1. Let R[x]2 be the vector space of real polynomials of degree 2 and let

B1 = {x2, x, 1}, B2 = {x2 + x, 2x+ 3, 1}.

Compute the transition matrix PB2B1 . Use PB2B1 to give the coordinate vector

with respect to B2 for each of the polynomials given below:

(a) 5x2 + 2x+ 1

(b) −x2 − 3x+ 1

(c) 2x− 7

(d) x2 + 5x

For (a)-(d) above, use the coordinate vector you computed to recover the orig-

inal polynomial.

Lastly, what is the polynomial p(x) whose coordinate vector with respect to

B2 is [p(x)]B2
= (1,−2, 2)T .

2. Consider the vector space R2. Let

B = {(1, 1), (1,−1)}.

Let S = {~e1, ~e2} denote the standard basis on R2. Compute the transition

matrix PBS . Use PBS to compute the coordinate vector with respect to B for

each of the elements of R2 given below:

(a) ~v = (2, 1)

(b) ~u = (1, 2)

(c) ~w = (2,−3)

For (a)-(c) above, use the coordinate vector you computed to recover the orig-

inal vector.

Lastly, what is the element ~v ∈ R2 whose coordinate vector with respect to B
is [~v]B = (2, 5)T .

3. Consider the vector space R2 and the following bases:

B1 = {(1, 1), (1,−1)}, B2 = {(2, 1), (1, 2)},
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(a) Compute the transition matrix from B1 to B2: PB2B1 . (Hint: use the

following relation:

PB2B1 = PB2SPSB1 = P−1SB2
PSB1 ,

where S is the standard basis on R2.)

(b) Compute the transition matrix from B2 to B1: PB1B2
(Hint: PB1B2

=

P−1B2B1

(c) Suppose [~v]B1
= (5, 1)T . Find [~v]B2

using the appropriate transition

matrix.

(d) Find ~v first using [~v]B1 and then using [~v]B2 . (If your work is correct,

both coordinate vectors will yield the same vector.)

4. Consider the vector space R2 and the following bases:

B1 = {(2, 3), (1,−1)}, B2 = {(1, 3), (−2, 4)},

(a) Compute the transition matrix from B1 to B2: PB2B1 .

(b) Compute the transition matrix from B2 to B1: PB1B2
.

(c) Suppose [~v]B1
= (1, 2)T . Find [~v]B2

using the appropriate transition

matrix.

(d) Find ~v first using [~v]B1 and then using [~v]B2 .

5. Find the matrix representation of the linear map T : R2 → R2 defined by

T

(
x

y

)
=

(
−x

x+ 2y

)
on R2 with respect to the standard basis ~e1, ~e2 .

6. Find the matrix representation of the linear map T : R3 → R3 defined by

T

 x

y

z

 =

 x− 3y

x− z
−y + 2z


with respect to the standard basis ~e1, ~e2, ~e3 of R3 .

7. Let U be a vector space with basis B = {u1, u2} and let V be a vector space

with basis C = {v1, v2}. Let T : U → V be the linear map defined by

T (u1) = 2v1 + 3v2 , T (u2) = v1 − v2 .

Find the matrix representation [T ]CB.

8. Let U be a vector space with basis B = {u1, u2, u3} and let V be a vector

space with basis C = {v1, v2}. Let T : U → V be the linear map defined by

T (u1) = v1 − 5v2 , T (u2) = 2v1 + v2 , T (u3) = v1 − v2 .
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Find the matrix representation [T ]CB.

9. Let M2(R) be the vector space of real 2× 2 matrices. Let

C =

(
2 1

0 1

)
.

Let LC : M2(R) → M2(R) be the map defined by LC(A) := CA for A ∈
M2(R).

(a) Verify that LC is linear.

(b) Let Eij for i, j ∈ {1, 2} be the 2× 2 matrix which is 1 in the (i, j)-entry

and zero everywhere else. Verify that

B = {E11, E12, E21, E22}

is a basis of M2(R).

(c) Compute the matrix representation of LC with respect to B: [LC ]B.

(d) Verify that L−1C = LC−1 .

(e) Compute [LC−1 ]B and verify the following identity by direct calculation:

[LC−1 ]B = [L−1C ]B = [LC ]−1B .

In other words, check that [LC−1 ]B[LC ]B = I4.

10. Let R[x]2 be the vector space of polynomials of degree 2 or less and let

D : R[x]2 → R[x]2

be the linear map defined by

D(p(x)) =
d2

dx2
p(x) + 2

d

dx
p(x) + p(x).

Let B = {x2, x, 1}.
(a) Compute the matrix representation of D with respect to B: [D]B.

(b) Use [D]B to compute the coordinate vector of

p(x) = x2 − 2x+ 1

with respect to B.

(c) Compute the characteristic polynomial pD of D.

(d) Find the eigenvalues of D and their corresponding eigenspaces.

11. Let V be a 3-dimensional vector space and let B1 and B2 be bases on V whose

transition matrix is given by

PB2B1
=

 1 2 2

0 −1 1

2 1 1

 .
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Suppose ϕ : V → V is an endomorphism of V whose matrix representation

with respect to B1 is

[ϕ]B1
=

 0 1 3

1 0 1

1 1 1

 .

Find the matrix representation of ϕ with respect to B2.



Chapter 7

More on Linear Systems

In Chapter 1, we introduced the Gauss Jordan method for solving systems of linear

equations. We saw examples of systems with a unique solution, no solution, or mul-

tiple solutions. In this chapter, we apply the theory of vector spaces to determine

which of the aforementioned three camps a given linear system falls into.

7.1. Row Space & Column Space

The following definitions will prove quite relevant towards the main goal of this

chapter.

Definition 7.1. Let A be an m× n matrix. Let ~ri denote the ith row of A

(expressed as a row vector) for i = 1, . . . ,m and let ~cj denote the jth column

of A (expressed as a column vector) for j = 1, . . . , n. The row space of A

is defined by

Row(A) := span{~r1, . . . , ~rm} ⊂ Rn.
The column space of A is defined by

Col(A) := span{~c1, . . . ,~cn} ⊂ Rm.

We would like to point out a small nuisance associated with this definition. For

an m× n matrix A, Row(A) is a subspace of Rn and Col(A) is a subspace of Rm.

Since Row(A) is spanned by row vectors, we regard Rn as the vector space of row

vectors. Similarly, since Col(A) is spanned by column vectors, Rm is regarded as

the vector space of column vectors. If A is now a square matrix with m = n, then

the elements of Rn are expressed as both row vectors and column vectors depending

211
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on the context. For convenience, we define

Row(A)T := {~r T | ~r ∈ Row(A)} = Col(AT )

and

Col(A)T := {~c T | ~c ∈ Col(A)} = Row(AT ).

Example 7.2. Let In denote the n× n identity matrix. The columns (and

rows) of In consist of the standard basis {~e1, . . . , ~en} of Rn. Hence,

Col(In) = Row(In)T = span{~e1, . . . , ~en} = Rn.

Example 7.3. Let

A =

(
2 3 −1

1 4 6

)
.

The column space of A is

Col(A) = span

{(
2

1

)
,

(
3

4

)
,

(
−1

6

)}
= R2

and the row space is

Row(A) = span {(2, 3,−1), (1, 4, 6)}) 6= R3

7.2. Matrix Rank

The row space and column space of an m× n matrix A look quite different. After

all, Row(A) is a subspace of Rn while Col(A) is a subspace of Rm. Hence, the

following result may seem a little surprising:

Theorem 7.4. For any matrix A, dim Row(A) = dim Col(A).

Proof. Let A be an m × n matrix and let aij denote the (i, j) element of A. Let

~ri ∈ Rn for i = 1, . . . ,m denote the ith row of A:

~ri = (ai1, . . . , ain). (103)

Let k = dim Row(A). Let ~v1, . . . , ~vk ∈ Rn be a basis of Row(A). Let

~vl = (bl1, . . . , bln), l = 1, . . . , k. (104)

Express ~ri for i = 1, . . . ,m as a linear combination of ~v1, . . . , ~vk:

~ri = αi1~v1 + · · ·+ αik~vk. (105)

Comparing the components of (103) and (104) to those of (105) leads to the fol-

lowing:

aij = αi1b1j + αi2b2j + · · ·+ αikbkj . (106)



7.2. Matrix Rank 213

Let ~cj ∈ Rm for j = 1, . . . , n denote the jth column of A. Then

~cj = (a1j , . . . , amj)
T . (107)

Also, define ~αl ∈ Rm for l = 1, . . . , n by

~αl := (α1l, α2l, . . . , αml)
T . (108)

Then (106) can be written more compactly as

~cj = b1j~α1 + b2j~α2 + · · ·+ bkj~αk. (109)

Since Col(A) := span{~c1, . . . ,~cn}, equation (109) implies

Col(A) ⊂ span{~α1, ~α2, . . . , ~αk}. (110)

This in turn implies that dim Col(A) ≤ k. Since k := dim Row(A), we have shown

that

dim Col(A) ≤ dim Row(A). (111)

Now consider the matrix AT . By the above argument, we have

dim Col(AT ) ≤ dim Row(AT ). (112)

However,

Col(AT ) = span{~r T1 , . . . , ~r Tm } = Row(A)T (113)

and

Row(AT ) = span{~c T1 , . . . ,~c Tn } = Col(A)T . (114)

Since the transpose operation does not alter the dimension of the subspace, the

above two observations along with (112) gives

dim Row(A) ≤ dim Col(A). (115)

The inequalities (111) and (115) then imply dim Row(A) = dim Col(A). This com-

pletes the proof. �

With Theorem 7.4 in hand, we now introduce the following definition:

Definition 7.5. The rank of a matrix A (denoted Rank(A)) is defined to

be the dimension of the column space of A or, equivalently, the dimension

of the row space of A.

Example 7.6. Let

A =

(
0 1 3 −1 5

−1 1 5 8 −2

)
.

Its clear that the rows of A are linearly independent. Hence, the row space

of A has dimension 2. From this, we conclude that Rank(A) = 2.
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We now prove two results which will be useful for calculating the rank of a matrix.

For these results, recall that two matrices are row equivalent if one can be trans-

formed into the other using nothing but elementary row operations.

Theorem 7.7. Let A and B be row equivalent matrices. Then Row(A) =

Row(B). In particular, Rank(A) = Rank(B).

Proof. Let A and B be m×n matrices. Suppose that A can be transformed into B

by a series of elementary row operations. Let N be the number of elementary row

operations needed to transform A into B. Let A0 := A and let A1, A2, . . . , AN := B

denote the gradual transformation of A into B by elementary row operations. In

other words, for k = 0, 1, . . . , N − 1, Ak+1 is obtained from Ak by applying a

single elementary row operation. Let us consider the effect on the row space of

Ak after applying one of the three elementary row operations. Recall that the first

row operation involves swapping two rows of a matrix; the second row operation

involves scaling a row by a nonzero scalar; and the third row operation involves

adding a scalar multiple of one row to that of a another row. Clearly, the new

matrix obtained from Ak by applying any of these row operations has the same row

space as Ak. Hence, Row(Ak) = Row(Ak+1) for k = 0, 1, . . . , N − 1. From this, we

conclude that

Row(A) = Row(A0) = Row(A1) = Row(A2) = · · · = Row(AN ) = Row(B).

This completes the proof. �

Theorem 7.8. Let A be a matrix and let E denote A in reduced row echelon

form. Then the nonzero rows of E form a basis for Row(A). In particular,

Rank(A) is equal to the number of nonzero rows of E.

Proof. By Theorem 7.7, Row(A) = Row(E). Let ~r1, . . . , ~rl denote the nonzero

rows of E where ~ri is the ith row of E. Since the zero rows of E contribute nothing

to its row space, we have

Row(E) = span{~r1, . . . , ~rl}.

To complete the proof, we just need to show that ~r1, . . . , ~rl is linearly independent.

We do this by induction on l. If l = 1, then we clearly have a linearly independent

set. So suppose that linear independence holds for all matrices in reduced echelon

form with exactly l − 1 non-zero rows, where l ≥ 2.

Now let E be a matrix in row reduced echelon form with non-zero rows ~r1, . . . , ~rl,

where ~ri is the ith row of E. Suppose that

c1~r1 + c2~r2 + · · ·+ cl~rl = ~0.
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Since E is in reduced row echelon form, the leftmost non-zero component in ~r1
is a 1 and no other row has a non-zero number in this position. It follows from

this that c1 = 0. Let E′ be the matrix with l − 1 rows ~r2, . . . , ~rl (in this order).

Then E′ is in reduced row echelon form. By the induction hypothesis, ~r2, . . . , ~rl is

linearly independent. This implies c2 = · · · = cl = 0. Hence, ~r1, ~r2, . . . , ~rl is linearly

independent. This completes the induction step. �

Example 7.9. Let

A =

 2 1 10

3 2 17

1 1 7


Let us find a basis for Row(A). By Theorem 7.8, a basis for Row(A) is

simply the nonzero rows of A in reduced row echelon form. Applying the

Gauss Jordan method to A, we obtain 1 0 3

0 1 4

0 0 0

 .

Hence, a basis for Row(A) is

{(1, 0, 3), (0, 1, 4)}.

To find a basis for Col(A), we simply find a basis for Row(AT ) and use the fact

that Col(A) = Row(AT )T .

Example 7.10. Let

A =

 4 2 1

−2 4 1

−16 2 −1


Let us find a basis for Col(A). The problem then is equivalent to finding a

basis for the row space of

AT =

 4 −2 −16

2 4 2

1 1 −1

 .

Using the Gauss Jordan method, we put AT in reduced row echelon form: 1 0 −3

0 1 2

0 0 0

 .

Hence, a basis for Col(A) is

{(1, 0,−3)T , (0, 1, 2)T }.
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Example 7.11. Let V be the subspace of R4 spanned by the vectors

~v1 := (1, 2, 3, 4), ~v2 = (1,−2, 1,−3), ~v3 = (1, 10, 7, 18).

Let us find a basis for V . It is clear that ~v1 and ~v2 are linearly independent.

However, is ~v3 a linear combination of ~v1 and ~v2? We can answer this

question by regarding ~v1, ~v2, and ~v3 as the rows of the 3× 4 matrix

A :=

 1 2 3 4

1 −2 1 −3

1 10 7 18


and then computing a basis for the row space of this matrix using Theorem

7.8. If the reduced row echelon form of this matrix has exactly two non-zero

rows, then ~v3 must be a linear combination of ~v1 and ~v2. Otherwise, ~v1, ~v2,

and ~v3 are linearly independent and thus form a basis for V .

Using the Gauss Jordan method, we find that the reduced echelon form of A

is given by

A :=

 1 0 2 1/2

0 1 1/2 7/4

0 0 0 0

 .

From this, we conclude that {~v1, ~v2} is a basis on V . Alternately, by The-

orem 7.8, the first two rows of the above matrix also constitute a basis for

V .

7.3. The null space of a matrix

Let V and W be vector spaces (over R) and let ϕ : V →W be a linear map. Recall

from Chapter 5 that the null space (or kernel) of ϕ is defined as

ker ϕ := {v ∈ V | ϕ(v) = 0} ⊂ V

and the image of ϕ is

im ϕ := {ϕ(v) ∈W | v ∈ V } ⊂W.

Also recall that the nullity of ϕ (denoted by Nullity(ϕ)) is the dimension of ker ϕ

and the rank of ϕ (denoted by Rank(ϕ)) is the dimension of im ϕ. The Rank-Nullity

Theorem (Theorem 5.60) says that the rank and nullity of ϕ are related by

Nullity(ϕ) + Rank(ϕ) = dimV.

We will now apply these ideas to the row and column space of an m× n matrix A.

As we saw in Chapter 3, A induces a natural linear map

ϕA : Rn → Rm

by ϕA(~v) := A~v, where the right side is matrix multiplication. Let

{~c1, . . . ,~cn}
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denote the columns of A and let ~v = (v1, . . . , vn)T ∈ Rn be arbitrary. Then

ϕA(~v) = v1~c1 + v2~c2 + · · ·+ vn~cn.

From this, we see that

im ϕA = Col(A),

which in turn implies

Rank(ϕA) = Rank(A).

This relationship is also the original motivation for the definition of the rank of a

linear map. Also, the kernel or null space of ϕA is given by

ker ϕA := {~v ∈ Rn | ϕA(~v) = ~0} = {~v ∈ Rn | A~v = ~0}.

This observation leads to the following definition:

Definition 7.12. The kernel or null space of an m×n matrix A (denoted

ker(A) or N(A)) is the subspace

{~v ∈ Rn | A~v = ~0} ⊂ Rn

The dimension of ker(A) is denoted as Nullity(A).

Applying the Rank-Nullity Theorem (Theorem 5.60) to the linear map ϕA gives

Corollary 7.13 (Rank-Nullity Theorem (matrix version)). Let A be an

m× n matrix. Then Rank(A) + Nullity(A) = n.

Example 7.14. Let

A =

 1 4 1

0 2 2

−1 −5 −2

 .

Let us compute the null space of A. Let ~v = (v1, v2, v3)T and suppose that

A~v = ~0. Expanding this matrix equation, we obtain the homogeneous linear

system:

v1 + 4v2 + v3 = 0

2v2 + 2v3 = 0

−v1 − 5v2 − 2v3 = 0.

Solving the above linear system, we obtain the null space or kernel of A:

N(A) = {(3r,−r, r)T | r ∈ R}.

Since dim N(A) = 1, it follows from the matrix version of the Rank-Nullity

Theorem that Rank(A) = 2.
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7.4. Solutions of linear systems: a closer look

In this section, we use the notion of rank to determine when a system of linear

equations admits a unique solution, many solutions, or no solution.

Theorem 7.15. Let A be an m×n matrix. For the matrix equation A~x = ~b,

let A′ be the augmented matrix defined by

A′ :=
(
A ~b

)
.

(a) If Rank(A′) = Rank(A) = n, then the solution to A~x = ~b is unique.

(b) If Rank(A′) = Rank(A) < n, then there are many solutions to A~x = ~b.

In fact, there are infinitely many solutions.

(c) If Rank(A′) 6= Rank(A), then A~x = ~b has no solution.

Proof. Let ~ai denote the ith column of A and let ~x = (x1, . . . , xn)T . Then the

matrix equation A~x = ~b expands as

x1~a1 + · · ·+ xn~an = ~b. (116)

Hence, A~x = ~b has a solution if and only if ~b ∈ Col(A). The question of whether

the solution is unique then depends on whether ~b is a unique linear combination of

~a1, . . . ,~an.

For (a), let us suppose that Rank(A′) = Rank(A) = n. From the definition of

rank, we have

dim Col(A) = dim Col(A′) = n.

This implies that ~a1, . . . ,~an is linearly independent and hence a basis for Col(A).

Also, since

Col(A′) = span{~a1, . . . ,~an, ~b},
it follows that ~b is a linear combination of ~a1, . . . ,~an. (If not, then dim Col(A′) =

n + 1 which would be a contradiction.) Since ~a1, . . . ,~an is a basis of Col(A), it

follows that ~b is a unique linear combination of ~a1, . . . ,~an which (from the above

remarks) implies that A~x = ~b has a unique solution. This completes the proof of

(a).

For (b), let us suppose that Rank(A′) = Rank(A) < n. As in (a), this implies

that ~b is a linear combination of ~a1, . . . ,~an. Hence, A~x = ~b has a solution. By the

matrix version of the Rank-Nullity Theorem (Corollary 7.13), we have

Rank(A) + Nullity(A) = n.

Since Rank(A) < n, it follows that Nullity(A) > 0. In particular, N(A) 6= {~0}. Let

~x0 be any solution to A~x = ~b. Then ~x0 + ~n is also a solution for any ~n ∈ N(A).

Indeed,

A(~x0 + ~n) = A~x0 +A~n = ~b+~0 = ~b.
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Since N(A) 6= {0}, N(A) has infinitely many elements. From the above observation,

it follows that A~x = ~b has infinitely many solutions. This completes the proof of

(b).

For (c), let us suppose that Rank(A′) 6= Rank(A). Since A′ is spanned by

the vectors ~a1, . . . ,~an,~b, it follows that Rank(A′) = Rank(A) + 1. In particular, ~b

cannot be a linear combination of the column vectors of A. From (116), it follows

that A~x = ~b has no solution. This completes the proof of (c). �

Chapter 7 Exercises

1. Given

A =

 1 2 4

3 8 4

2 6 3

 ,

find dimCol(A) and dimRow(A). Then compare these two dimensions.

2. Let V be the subspace of R4 spanned by the vectors

~v1 = (1, 0, 2, 3), ~v2 = (2,−1, 0, 4), ~v3 = (0,−1,−4,−2)

Find a basis for V .

3. Find row space and column space of

A =

(
1 −1 0

2 −1 2

)

4. Calculate the rank of matrix

A =


1 2 3 4

4 5 6 7

0 0 0 8

0 0 0 9



5. Find a basis for the null space of

A =

 1 4 2

0 −3 4

1 1 6
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6. Compute the null space of

A =


0 1 1 −1 2

0 2 −2 −2 0

0 1 1 −1 −1

1 1 0 1 −1


and use Rank-Nullity Theorem to evaluate the rank of A.

7. Suppose A is a n× n matrix, and rank(A) = 1. Show

(a) A =


a1
a2
...

an

(b1 b2 · · · bn
)

(b) A2 = kA, where k is a scalar.

8. For any matrices An×m and Bm×s, show

rank(AB) ≤ min(rank(A), rank(B))

9. Let A and B be m× n matrices. Show that

rank(A±B) ≤ rank(A) + rank(B)

10. Let A and B be n× n square matrices. If AB = 0, show that

rank(A) + rank(B) ≤ n

11. Let

A =

 1 2 −1 2

3 7 −2 5

0 1 1 −1

 .

(a) Find a basis for Row(A). What is the dimension of Row(A)?

(b) Find a basis for Col(A). What is the dimension of Col(A)?

(c) Find a basis for ker(A). What is the dimension of ker(A)?

(d) Verify the matrix version of the Rank-Nullity Theorem.
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12. Let

A =


2 2 −1 −1 0

1 1 1 0 1

1 −2 1 0 0

0 −3 0 0 −1

−1 −1 −4 −1 −3

 .

(a) Find a basis for Row(A). What is the dimension of Row(A)?

(b) Find a basis for Col(A). What is the dimension of Col(A)?

(c) Find a basis for ker(A). What is the dimension of ker(A)?

(d) Verify the matrix version of the Rank-Nullity Theorem.

13. Using your calculations from problem 11., determine if the following system

has a solution. If the system has a solution, is it unique? Justify your answer.

w + 2x− y + 2z = 2

3w + 7x− 2y + 5z = 4

x+ y − z = −2

14. Using your calculations from problem 12., determine if the following system

has a solution. If the system has a solution, is it unique? Justify your answer.

2v + 2w − x− y = 1

v + w + x+ z = 2

v − 2w + x = 1

−3w − z = 1

−v − w − 4x− y − 3z = 1

15. Determine how many solutions the following system has

(a)
x1 − 2x2 + 3x3 − 4x4 = 4

x2 − x3 + x4 = 3

x1 + 3x2 + x4 = 2

−7x2 + 3x3 + 4x4 = 1

(b)
−x1 + 3x2 − 3x3 + 4x4 = −1

3x1 − 2x2 + 2x3 − 3x4 = 2

2x1 + 3x2 − 3x3 + 5x4 = −3

2x1 − x2 + x3 − 3x4 = 4





Chapter 8

The Dual Space

In this very short chapter, we introduce the idea of the dual space, which turns

out to be a very important idea in mathematics (especially in differential geometry

which is the branch of mathematics which applies calculus to curved spaces). We

will need the idea of the dual space later on in Chapter 9. Throughout this chapter,

we let F = R or C and every vector space is a finite dimensional vector space over

F unless stated otherwise.

8.1. The Dual Space

The dual space is formally defined as follows:

Definition 8.1. The dual space of a vector space V is the vector space V ∗

which consists of all linear maps from V into F. The vector space structure

on V ∗ is the natural one which is defined by pointwise addition and scalar

multiplication. Explicitly, for f, g ∈ V ∗ and c ∈ F, vector addition and

scalar multiplication are defined by

(f + g)(v) := f(v) + g(v), (cf)(v) := cf(v)

for all v ∈ V . The elements of V ∗ are sometimes called covectors or 1-

forms.

We now collect some basic facts about the dual space.

Theorem 8.2. Let V be a (finite dimensional) vector space. Then dimV ∗ =

dimV .

223
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Proof. Let n = dimV and let {b1, b2, . . . , bn} be a basis on V . Let θi ∈ V ∗ for

i = 1, . . . , n be the unique linear map from V to F defined by the condition:

θi(bj) =

{
1 if i = j

0 if i 6= j.

(Recall from Chapter 5 that any linear map is completely determined once its values

on a basis are known.) We now show that {θ1, . . . , θn} is a basis on V ∗. Let f ∈ V ∗
be arbitrary and let

fθ :=

n∑
i=1

f(bi)θ
i.

From the definition of θi, we have

fθ(bj) =

(
n∑
i=1

f(bi)θ
i

)
(bj)

=

n∑
i=1

f(bi)θ
i(bj)

= f(bj)θ
j(bj)

= f(bj).

Hence, fθ and f agree on a basis of V . This implies that fθ and f must be the

same linear map, i.e., fθ = f . This shows that {θ1, . . . , θn} spans V ∗. We now

show linear independence. Suppose that for some c1, . . . , cn ∈ F, we have

c1θ
1 + c2θ

2 + · · ·+ cnθ
n = 0. (117)

Evaluating the left and right sides at bi gives

0 = (c1θ
1 + · · ·+ cnθ

n)(bi)

= c1θ
1(bi) + · · ·+ cnθ

n(bi)

= ciθ
i(bi)

= ci.

This proves that {θ1, . . . , θn} is a basis of V ∗. From this, we conclude that dimV ∗ =

n = dimV . �

The proof of Theorem 8.2 motivates the following definition:

Definition 8.3. Let V be a vector space and let B = {b1, . . . , bn} be a basis

on V . The dual basis of B is the basis

B∗ := {θ1, . . . , θn}

on V ∗ where θi : V → F is the unique linear map satisfying θi(bi) = 1 and

θi(bj) = 0 for j 6= i.
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Remark 8.4. The notation for the dual basis varies greatly in the literature.

If B = {b1, . . . , bn} is a basis on V , the dual basis of B is sometimes denoted

by

B∗ = {b∗1, . . . , b∗n}
or by

B∗ = {b1, . . . , bn}.

For convenience, we record the following result:

Corollary 8.5. Let V be a vector space and let B = {b1, . . . , bn} be a basis

on V . Also, let B∗ = {θ1, . . . , θn} denote the dual basis. Then

(i) f = f(b1)θ1 + · · ·+ f(bn)θn for all f ∈ V ∗
(ii) v = θ1(v)b1 + · · ·+ θn(v)bn for all v ∈ V .

Proof. Statement (i) was already proved during the proof of Theorem 8.2. For

statement (ii), let v ∈ V and express v as (a unique) linear combination of the basis

B:

v = α1b1 + · · ·+ αnbn (118)

Applying the dual basis element θi to both sides of (118) gives

θi(v) = α1θ
i(b1) + · · ·+ αnθ

i(bn) = αiθ
i(bi) = αi.

This proves (ii). �

Consider a vector space V . Since V ∗ is also a vector space, one can also take the

dual of V ∗. This new space is the vector space (V ∗)∗ and is called the double dual

of V . So what do we get by taking the dual twice? The next result provides an

answer to this question (at least for the case of finite dimensional vector spaces).

Theorem 8.6. Let V be a (finite dimensional) vector space. Then (V ∗)∗ is

canonically (i.e. naturally) isomorphic to V . Specifically, the isomorphism

associates a vector v ∈ V with the element ϕv ∈ (V ∗)∗ defined by ϕv(f) :=

f(v) for all f ∈ V ∗.

Proof. Let v ∈ V and let ϕv : V ∗ → F be the map which sends f ∈ V ∗ to f(v) ∈ F.

We now quickly verify that ϕv is a linear map. Let f, g ∈ V ∗ and let c ∈ F. Then

ϕv(f + g) := (f + g)(v)

= f(v) + g(v)

= ϕv(f) + ϕv(g)
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and

ϕv(cf) := (cf)(v)

= cf(v)

= cϕv(f).

This proves that ϕv : V ∗ → F is a linear map. In particular, this means that

ϕv ∈ (V ∗)∗.

Next, let ϕ : V → (V ∗)∗ be the map which sends v ∈ V to ϕv ∈ (V ∗)∗. In

other words, ϕ(v) := ϕv. We now show that ϕ is a linear map. To do this, let

v, w ∈ V and f ∈ V ∗. Then

ϕv+w(f) := f(v + w)

= f(v) + f(w)

= ϕv(f) + ϕw(f)

= (ϕv + ϕw)(f), (119)

where the second equality follows from the fact that f : V ∗ → F is a linear map

(by definition) and the last equality is the definition of vector addition on (V ∗)∗.

For c ∈ F, we also have

ϕcv(f) := f(cv)

= cf(v)

= cϕv(f)

= (cϕv)(f) (120)

where the second equality again follows from the linearity of f . Since f ∈ V ∗ was

arbitrary, (119) and (120) then imply

ϕ(v + w) := ϕv+w

= ϕv + ϕw

= ϕ(v) + ϕ(w)

and

ϕ(cv) := ϕcv

= cϕv

cϕ(v).

This proves that ϕ : V → V ∗ is a linear map. Moreover, note that ϕ is canonical or

natural since its construction does not depend on arbitrary choices such as a choice

of basis on V for example.

Lastly, we prove that ϕ is an isomorphism. In other words, we have to show that

ϕ is one-to-one and onto. First, we verify that ϕ is one-to-one, that is, dim kerϕ = 0.
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To do this, let {b1, . . . , bn} be any basis on V and let {θ1, . . . , θn} denote the dual

basis. By Corollary 8.5, any vector v ∈ V decomposes as

v = θ1(v)b1 + θ2(v)b2 + · · ·+ θn(v)bn.

Now let v ∈ kerϕ. Then for all f ∈ V ∗, we have ϕv(f) = f(v) = 0. In particular,

setting f = θi, we have θi(v) = 0 for i = 1, . . . , n. From the above decomposition,

this implies that v = 0. Hence, dim kerϕ = 0.

For the onto part, first note that by Theorem 8.2, we have

dim(V ∗)∗ = dimV ∗ = dimV.

Since dim kerϕ = 0, the Rank Nullity Theorem (Theorem 5.60) implies

dimV = dim kerϕ+ dim im ϕ = dim im ϕ.

This implies that im ϕ has the same dimension as (V ∗)∗. However, im ϕ is also a

subspace of (V ∗)∗. From this, we conclude that im ϕ = (V ∗)∗. Hence, ϕ is onto.

This completes the proof. �

For the case of finite dimensional vector spaces (which is what we focus on in this

book), most people simply blur the distinction between V and (V ∗)∗ and simply

regard them as being one and the same. In other words, one identifies the vector

v ∈ V with the element ϕv ∈ (V ∗)∗ by setting v(f) := f(v) for all f ∈ V ∗. One

emphasizes this point of view by writing (V ∗)∗ = V . This is the point of view

we will adopt in this book. Strictly speaking, of course, what we really have is an

isomorphism (albeit a natural one). Hence, the correct expression is (V ∗)∗ ' V as

opposed to (V ∗)∗ = V .

Here are some basic examples to consider.

Example 8.7. Let sl2(R) be the vector space of 2×2 real matrices with zero

trace. An arbitrary element X ∈ sl2(R) is of the form

X =

(
c a

b −c

)
(121)

for a, b, c ∈ R. As we have seen several times, a convenient basis for sl2(R)

is

E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
.

Let {δE , δF , δH} denote the dual basis. Then
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sl2(R)∗ = span{δE , δF , δH}
= {α1δE + α2δF + α3δH | a, b, c ∈ R}

Let f = α1δE + α2δF + α3δH be an arbitrary 1-form and let X ∈ sl2(R) be

an arbitrary element of the form (8.7). In other words, X = aE + bF + cH.

Then

f(X) = α1a+ α2b+ α3c.

Example 8.8. Consider the vector space Rn with vectors expressed as col-

umn vectors. Let S = {~e1, . . . , ~en} denote the standard basis on Rn and let

f ∈ (Rn)∗ be an arbitrary element. Since f is a linear map from Rn to R,

it follows that f is just a linear transformation associated to some unique

1× n matrix Af . In other words,

f(~v) = Af~v ∈ R

for all ~v ∈ Rn, where the right side is evaluated by matrix multiplication. To

compute Af , let us apply f to some arbitrary vector ~v = v1~e1 + · · ·+ vn~en ∈
Rn:

f(~v) = v1f(~e1) + · · ·+ vnf(~en)

= (f(~e1), . . . , f(~en))

 v1
...

vn

 .

From this, we see that

Af = (f(~e1), . . . , f(~en)) .

Conversely, the linear transformation associated to any 1 × n matrix A is

also an element of the dual space (Rn)∗. This shows that if we regard Rn as

the vector space of column vectors with n components, then (Rn)∗ can be

naturally identified with the vector space of row vectors with n components.

8.2. The Dual of a Linear Map

Definition 8.9. Let ϕ : U → V be a linear map. The dual of ϕ is the map

ϕ∗ : V ∗ → U∗ defined by ϕ∗(f) := f ◦ ϕ ∈ U∗ for f ∈ V ∗.

Before stating the next result, recall that the composition of two linear maps is

again a linear map. This fact implies that ϕ∗(f) : U → F in Definition 8.9 is a

linear map. In other words, ϕ∗(f) is indeed an element of U∗.
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Proposition 8.10. The dual of a linear map is also a linear map. Moreover,

if ϕ : U → V and ψ : V →W are linear maps. Then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Proof. Let ϕ : U → V be a linear map. To show that ϕ∗ : V ∗ → U∗ is linear, let

f, g ∈ V ∗ and let c ∈ F. Then for all u ∈ U , we have

ϕ∗(f + g)(u) := (f + g) ◦ ϕ(u)

= f ◦ ϕ(u) + g ◦ ϕ(u)

= (ϕ∗(f))(u) + (ϕ∗(g))(u)

= (ϕ∗(f) + ϕ∗(g))(u) (122)

and

ϕ∗(cf)(u) := (cf) ◦ ϕ(u)

= c(f ◦ ϕ(u))

= c(ϕ∗(f)(u))

= (cϕ∗(f))(u). (123)

Since u ∈ U is arbitrary, (122) and (123) imply

ϕ∗(f + g) = ϕ∗(f) + ϕ∗(g), ϕ∗(cf) = cϕ∗(f).

This proves that ϕ∗ is linear.

For the last part, let ψ : V → W be a linear map. Then for all h ∈ W ∗, we

have

(ψ ◦ ϕ)∗(h) = h ◦ (ψ ◦ ϕ)

= (h ◦ ψ) ◦ ϕ
= ϕ∗(h ◦ ψ)

= ϕ∗(ψ∗(h))

= (ϕ∗ ◦ ψ∗)(h).

Since h ∈W ∗ is arbitrary, we conclude that (ψ ◦ϕ)∗ = ϕ∗ ◦ψ∗. This completes the

proof. �

The next result concerns the matrix representation of the dual of a linear map:

Theorem 8.11. Let ϕ : V →W be a linear map and let B be a basis on V

and let C be a basis on W . Let B∗ and C∗ denote the dual bases of B and C
respectively. Then the matrix representations [ϕ∗]B∗C∗ and [ϕ]CB are related

by [ϕ∗]B∗C∗ = [ϕ]TCB.
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Proof. Let B = {v1, . . . , vn} be a basis on V and let C = {w1, . . . , wm} be a basis

on W . Also, let aij denote the (i, j)-element of the matrix representation [ϕ]CB.

By definition, we have

ϕ(vj) =

m∑
i=1

aijwi. (124)

Let B∗ = {θ1, . . . , θn} and C∗ = {δ1, . . . , δm} denote the dual bases of B and C
respectively. Let bij denote the (i, j)-element of the matrix representation [ϕ∗]B∗C∗ .

Once again, by definition, we have

ϕ∗(δj) =

n∑
i=1

bijθ
i. (125)

From (125), we have

ϕ∗(δj)(vi) =

n∑
k=1

bkjθ
i(vi)

= bij . (126)

On the other hand, using the definition of ϕ∗, we also have

ϕ∗(δj)(vi) = δj (ϕ(vi))

= δj

(
m∑
k=1

akiwk

)

=

m∑
k=1

akiδ
j(wk)

= aji. (127)

(126) and (127) now imply [ϕ∗]B∗C∗ = [ϕ]TCB. This completes the proof. �

Theorem 8.11 is the reason why the dual of a linear map is also called the trans-

pose of a linear map and the notation ϕT is used in place of ϕ∗.



Chapter 8 Exercises 231

Example 8.12. Let R[x]2 denote the vector space of polynomials of degree

2 or less. Let D : R[x]2 → R[x]2 be the linear map defined by

Dp(x) :=
d2

dx2
p(x) + 3

d

dx
p(x) + p(x), ∀ p(x) ∈ R[x]2.

Let B := {x2, x, 1}. Then B is a basis on R[x]2 and the matrix representation

of D with respect to B is

[D]B =

 1 0 0

6 1 0

2 3 1

 .

Let B∗ be the dual basis of B. By Theorem 8.11, the matrix representation

of D∗ with respect to B∗ is

[D∗]B∗ = [D]TB =

 1 6 2

0 1 3

0 0 1

 .

Chapter 8 Exercises

In the problems below, let F = R or C and assume all vector spaces are finite

dimensional and over F unless stated otherwise.

1. Let T : R3 → R2 be the linear map defined by

T (x, y, z) := (5x− 3y, y + z).

Let S3 denote the standard basis on R3 and let S2 denote the standard basis

on R2. Also, let S∗3 and S∗2 denote the corresponding dual bases. Compute

the matrix representation [T ∗]S∗3S∗2 of the dual map T ∗ : (R2)∗ → (R3)∗ with

respect to the aforementioned dual bases.

2. Let R[x]2 be the vector space of polynomials of degree 2 and let B denote the

basis {x2, x, 1} on R[x]2. Let

D : R[x]2 → R[x]2

be the linear map defined by

Dp(x) := 3
d2

dx2
p(x)− 4

d

dx
p(x)− p(x).

Let B∗ denote the dual basis. Compute the matrix representation of the dual

linear map D∗ with respect to B∗.

3. Let V be an infinite dimensional vector space over F. Also, let ϕ : V → (V ∗)∗

be the linear map which sends v ∈ V to the linear map ϕv : V ∗ → F defined

by ϕv(f) := f(v). Show that ϕ is injective, but not surjective. In particular,
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ϕ is not a vector space isomorphism.

4. Let ϕ : V →W be a vector space isomorphism. Show that (ϕ∗)−1 = (ϕ−1)∗.

5. Let V be a vector space of dimension n and let f1, f2, . . . , fk ∈ V ∗ with k ≤ n.

Show that f1, f2, . . . , fk is linearly independent if and only if

dim(ker f1 ∩ ker f2 ∩ · · · ∩ ker fk) = n− k.

In particular, f1, . . . , fn ∈ V ∗ is a basis if and only if

ker f1 ∩ ker f2 ∩ · · · ∩ ker fn = {0}.

Hints: Consider the map ψ : V → Fk defined by ψ(v) := (f1(v), . . . , fk(v)).

Also, for a basis {b1, . . . , bn} on V , consider the n× k matrix
ψ(b1)

ψ(b2)
...

ψ(bn)

 .

6. Free Vector Spaces. Let F be a field. Let A be a set. Define a vector space

F (A) to be the set of all functions f : A→ F that equal 0 almost everywhere

in the sense that f(a) = 0 for all but finitely many a ∈ A . For f, g ∈ F (A)

and c ∈ F, define

(f + g)(a) := f(a) + g(a), (cf)(a) := cf(a)

for all a ∈ A.

(a) Show that F (A) is a vector space over F .

(b) Show that for any vector space V over F , the set of linear maps F (A)→ V

are in bijection with the set of functions A→ V .

7. Show that Rn is naturally isomorphic to the free real vector space F (n) on a

finite set n . Thus, for any real vector space V , linear maps Rn → V are in

bijection with functions n→ V .

8. Show that the polynomial vector space F[x] and the free vector space over a

field F on the set of natural numbers F (N) are isomorphic.

9. Show that the dual space F (A)∗ over a field F and the vector space of all func-

tions FA (not just those that equal 0 almost everywhere) are isomorphic. This

example shows that a vector space and its dual are not necessarily isomorphic.
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Inner Product Spaces

In Chapter 2, we introduced the dot product on Rn, which allows one to compute

the length or norm of a vector as well as the angle between two vectors. The dot

product, of course, is a byproduct of the natural (i.e. Euclidean) geometry on

Rn. In fact, the dot product is really much more than a byproduct. Since the dot

product allows one to compute distances and angles, one can view the dot product

as a clever, compact tool for encoding the Euclidean geometry of Rn.

Now suppose that we have an arbitrary real vector space V . What distinguishes

Rn from V ? The answer is geometry. Rn comes with its own natural geometry

(namely the familiar Euclidean geometry that we all learned about in grade school)

whereas V does not. For example, let C([0, 1]) be the set of all continuous real

valued functions on the closed interval [0, 1]. Note that C([0, 1]) has a natural vector

space structure with vector addition and scalar multiplication defined pointwise:

(f + g)(x) := f(x) + g(x)

(cf)(x) := cf(x)

for all f, g ∈ C([0, 1]), c ∈ R, and x ∈ [0, 1]. Now here are some questions for the

reader. For continuous functions f, g ∈ C([0, 1]), what is the angle between f and

g? What is the length of f? How does one even define these concepts for functions?!

We can answer these questions rather easily for vectors in Rn. However, when it

comes to a vector space like C([0, 1]), which is hard to visualize, these questions

become more difficult to answer. Angles and lengths are geometric concepts and

since C([0, 1]) lacks a natural geometry, we do not know how to answer these

questions. Put another way, we cannot answer these questions because C([0, 1])

lacks its own dot product. On the other hand, if we could equip C([0, 1]) with

something like a dot product, then we would have a pretty good idea of how to

answer these geometric questions. This line of thinking leads one to the notion of

233
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an inner product, which generalizes the notion of the dot product to general vector

spaces.

In the next two sections, we will introduce two types of inner products: one for

real vector spaces and one for complex vector spaces. We conclude our introductory

remarks here by reminding the reader about the notion of Cartesian products:

Definition 9.1. Let X1, X2, . . . , Xn be any sets. The Cartesian product

of X1, X2, . . . , Xn is the set

X1 ×X2 × · · · ×Xn := {(x1, x2, . . . , xn) | xi ∈ Xi for i = 1, 2, . . . , n}.

The most important examples in this book is the real vector space Rn which is

the Cartesian product of n copies of R and the complex vector Cn which is the

Cartesian product of n copies of C.

9.1. Real Inner Product Spaces

In this section, we define inner products for real vector spaces. The definition is

modeled over the algebraic properties of the dot product.

Definition 9.2. Let V be a real vector space. An inner product is a map

〈·, ·〉 : V × V → R, (u, v) 7→ 〈u, v〉 ∈ R

which satisfies the following conditions:

(i) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V (symmetry)

(ii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V (linearity condition 1)

(iii) 〈cu, v〉 = c〈u, v〉 for all c ∈ R and u, v ∈ V (linearity condition 2)

(iv) 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 iff v = 0 (positive definiteness)

The pair (V, 〈·, ·〉) is called a (real) inner product space.

Let w ∈ V be arbitrary and let fw : V → R be the map defined by

fw(v) := 〈v, w〉.

Conditions (ii) and (iii) in Definition 9.2 then implies that fw : V → R is a linear

map. Furthermore, the symmetry condition of 〈·, ·〉 (condition (i)) also implies that

〈·, ·〉 is linear in its second argument as well, that is,

〈u, v + w〉 = 〈u, v〉+ 〈u,w〉, 〈u, cv〉 = c〈u, v〉

for all u, v, w ∈ V and c ∈ R.
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Remark 9.3. Let V and W be (real) vector spaces. A map

β : V ×W → R, (v, w) 7→ β(v, w)

which is linear in each argument, that is,

β(v + v′, w) = β(v, w) + β(v′, w), β(cv, w) = cβ(v, w)

and

β(v, w + w′) = β(v, w) + β(v, w′), β(v, cw) = cβ(v, w)

for all v, v′ ∈ V , w,w′ ∈ W , and c ∈ R is called a bilinear form. An

inner product is then an example of a bilinear form. Conditions (i)-(iii) of

Definition 9.2 is simply the statement that an inner product is a symmetric

bilinear form on V . If we thrown in condition (iv), Definition 9.2 is

equivalent to the statement that 〈·, ·〉 is a positive definite, symmetric

bilinear form.

Example 9.4. The most well important example of an inner product space

is, of course, the vector space Rn equipped with its dot product. For ~u,~v ∈
Rn, define

〈~u,~v〉 := ~u · ~v.
From the properties of the dot product, we immediately have

〈~u,~v〉 := ~u · ~v = ~v · ~u = 〈~v, ~u〉

and

〈~u+ ~v, ~w〉 := (~u+ ~v) · ~w
= ~u · ~w + ~v · ~w
= 〈~u, ~w〉+ 〈~v, ~w〉

and

〈c~u,~v〉 := (c~u) · ~v = c(~u · ~v) = c〈~u,~v〉.

Also, 〈~u, ~u〉 = ~u · ~u ≥ 0 with equality only when ~u = ~0. Hence, we have

shown that the dot product is an inner product.

Example 9.5. Let C([0, 1]) be the set of all continuous real valued func-

tions on the closed interval [0, 1]. Note that C([0, 1]) is naturally a real vector

space with vector addition and scalar multiplication defined pointwise, i.e,

(f + g)(x) := f(x) + g(x)

and (cf)(x) := cf(x) for all f, g ∈ C([0, 1]) and c ∈ R. Also, observe that

C([0, 1]) is an infinite dimensional vector space. Indeed, let R[x]n denote

the vector space of real polynomials of degree n or less. Since R[x]n is a
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subspace of C([0, 1]) and dimR[x]n = n+1, it follows that dimC([0, 1]) =∞.

We will now turn C([0, 1]) into an inner product space. For f, g ∈ C([0, 1]),

define

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx.

From the above definition, we have

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx =

∫ 1

0

g(x)f(x)dx = 〈g, f〉.

Also, for f, g, h ∈ C([0, 1]) and c ∈ R, we have

〈f + g, h〉 :=

∫ 1

0

(f + g)(x)h(x)dx

=

∫ 1

0

f(x)g(x)dx+

∫ 1

0

f(x)h(x)dx

= 〈f, g〉+ 〈f, h〉

and

〈cf, g〉 :=

∫ 1

0

(cf)(x)g(x)dx

=

∫ 1

0

cf(x)g(x)dx

= c

∫ 1

0

f(x)g(x)dx

= c〈f, g〉.

To show that 〈·, ·〉 is an inner product, it only remains to show that it is

positive definite. First, for any f ∈ C([0, 1]), we have

〈f, f〉 :=

∫ 1

0

f(x)f(x)dx =

∫ 1

0

f2(x)dx ≥ 0

since f2 ≥ 0. Now suppose f 6= 0. Then there exists an x0 ∈ [0, 1] such

that f(x0) 6= 0. Moreover, since f is continuous, we can further assume

that x0 is neither 0 or 1. (A continuous function on [0, 1] which is nonzero

cannot be nonzero at 0 and 1 while being zero for every 0 < x < 1.) Since

x0 is neither 0 or 1 and f is continous, there must be an ε > 0 such that

[x0 − ε, x0 + ε] ⊂ [0, 1] and f is never zero on [x0 − ε, x0 + ε]. By the

Extreme Value Theorem, f attains an absolute minimum (which is nonzero)

on [x0 − ε, x0 + ε]. Let m be the absolute minimum of f on [x0 − ε, x0 + ε].

Then

〈f, f〉 :=

∫ 1

0

f2(x)dx

≥
∫ x0+ε

x0−ε
f2(x)dx

≥
∫ x0+ε

x0−ε
m2dx = 2m2ε 6= 0.

Hence, 〈·, ·〉 is positive definite, which proves that it is indeed an inner

product.
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The inner product space constructed in Example 9.5 is infinite dimensional, which

makes it quite different than the standard example given in Example 9.4. Our

focus, however, will mainly be on finite dimensional inner product spaces. Hence,

unless stated otherwise, every inner product space in this chapter is assumed to be

finite dimensional.

Example 9.6. Let M2(C) denote the set of 2× 2 complex matrices. As we

saw in Chapter 5, M2(C) is naturally a complex vector space. Indeed, vector

addition is given by the usual additiion of matrices and scalar multiplication

is just the ordinary scalar multiplication for matrices. Now any complex

vector space is also a real vector space since R ⊂ C. In this example, we are

going to view M2(C) as a real vector space. The reason for this will become

clear in a moment. For a complex matrix

A =

(
a b

c d

)
,

let A∗ denote its conjugate transpose, that is,

A∗ =

(
a c

b d

)
,

where, for example, a denotes the conjugate of the complex number a.

Now let su(2) denote the real subspace of M2(C) consisting of all 2 × 2

complex matrices X whose trace is zero and satisfies X∗ = −X. (A matrix

which satisfies the second condition is called skew-Hermitian.) Note su(2)

is not a complex vector space! It is strictly a real vector space. Indeed,

observe that if X ∈ su(2), then

(iX)∗ = −iX∗ = −i(−X) = iX 6= −iX.

Hence, iX /∈ su(2). This is why we chose to regard M2(C) as a real vector

space for this particular example. We now define an inner product on su(2)

by

〈X,Y 〉 := Tr(XY ∗) = Tr(X(−Y )) = −Tr(XY ).

We now verify that the above definition is indeed an inner product. From

the properties of the trace, we immediately have 〈X,Y 〉 = 〈Y,X〉. We also

have

〈X + Y, Z〉 = −Tr((X + Y )Z)

= −Tr(XZ + Y Z)

= −Tr(XZ)− Tr(Y Z)

= 〈X,Z〉+ 〈Y,Z〉

for all X,Y, Z ∈ su(2). Also, we have 〈cX, Y 〉 = −Tr(cXY ) = −cTr(XY ) =

c〈X,Y 〉 for all c ∈ R and X,Y ∈ su(2). Lastly, we need to verify that
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〈·, ·〉 is positive definite. For this, we observe that every X ∈ su(2) is of the

form

X =

(
αi z

−z −αi

)
for α ∈ R and z ∈ C. From the form of X, we deduce that dim su(2) = 3.

Now let us compute 〈X,X〉:

〈X,X〉 = −Tr(X2)

= −Tr

(
−(α2 + |z|2) 0

0 −(α2 + |z|2)

)
= 2(α2 + |z|2)

≥ 0.

In particular, we see that 〈X,X〉 = 0 if and only if X = 0.

We now ask the reader to think back to Chapter 2. Every idea or result as-

sociated to the dot product generalizes in a straightforward way to any real inner

product space. In each case, the generalization is obtained by swapping out the

dot product for an inner product. Consequently, all the proofs for the dot prod-

uct case work equally well for the general case. In other words, all the hard work

was already done in Chapter 2! We now run through a few of these ideas and results.

Definition 9.7. Let (V, 〈·, ·〉) be a real inner product space. The norm or

length of a vector v ∈ V is defined by

‖v‖ :=
√
〈v, v〉.

Theorem 9.8. Cauchy-Schwartz inequality (general case) Let (V, 〈·, ·〉) be a

real inner product space. Then |〈u, v〉| ≤ ‖u‖ ‖v‖ for all u, v ∈ V . Moreover,

for u, v nonzero, 〈u, v〉 = ‖u‖ ‖v‖ if and only if u = λv for some positive

λ ∈ R.

Proof. The proof is identical to the the dot product version (see Theorem 2.49).

One simply replaces the dot product with the inner product and the proof still

works. �
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Definition 9.9. Let (V, 〈·, ·〉) be a real inner product space. The angle

θ ∈ [0, π] between two (nonzero) vectors u, v ∈ V is defined by

cos θ =
〈u, v〉
‖u‖ ‖v‖

.

u and v are said to be orthogonal if 〈u, v〉 = 0.

Definition 9.10. Let (V, 〈·, ·〉) be a real inner product space and let

{v1, . . . , vk} be a set of vectors in V . {v1, . . . , vk} is called an orthogo-

nal set if vi 6= 0 for i = 1, . . . , k and 〈vi, vj〉 = 0 for all 1 ≤ i < j ≤ k.

In other words, a set of vectors in a real inner product space form an orthogonal

set if they are all nonzero and mutually orthogonal to one another.

Proposition 9.11. Let (V, 〈·, ·〉) be a real inner product space and let

{v1, . . . , vk} ⊂ V be an orthogonal set. Then {v1, . . . , vk} is a linearly inde-

pendent set.

Proof. The proof is identical to the proof of Proposition 2.57. One simply replaces

the dot product with the inner product 〈·, ·〉 and the argument works as before. �

Definition 9.12. Let (V, 〈·, ·〉) be a real inner product space. Let v, u ∈ V
with u nonzero. The orthogonal projection of v onto u is the vector

projuv :=
〈u, v〉
‖u‖2

u.

Recall from Chapter 2 that the notion of orthogonal projection was the critical

ingredient in the Gram-Schmidt process which allows one to construct an orthogo-

nal basis on any subspace of Rn. Using Definition 9.12, the Gram-Schmidt process

generalizes to any real inner product space as follows:
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The Gram-Schmidt process for a real inner product space

Let (V, 〈·, ·〉) be a real inner product space. The Gram-Schmidt process

generates an orthogonal basis from an existing basis on V . Once one obtains

the orthogonal basis, one can normalize it to obtain an orthonormal basis.

Let B = {v1, v2, . . . , vn} be any basis on V . We obtain an orthogonal basis

B′ := {b1, b2, . . . , bn}

as follows:

1. Define b1 := v1
2. For k = 2, . . . , n, define

bk := vk −
k−1∑
i=1

projbivk

Setting ui := bi/ ‖bi‖, the set {u1, u2, . . . , un} is then an orthonormal basis.

At this point, the reader should be convinced that any dot product related

result or idea from from Chapter 2 can be generalized to any real inner product

space simply by replacing the dot product with an inner product. We conclude this

section by mentioning one additional idea\result:

Definition 9.13. Let (V, 〈·, ·〉) be a real inner product space and let W be

a subspace of V . The orthogonal complement of W in V is the subspace

W⊥ := {w ∈W | 〈w, v〉 = 0 ∀ v ∈ V }.

Theorem 9.14. Let (V, 〈·, ·〉) be a real inner product space and let W be a

subspace of V . Then

V = W ⊕W⊥.

Proof. The proof is identical to the dot product version in Theorem 2.80. Specifi-

cally, one obtains the proof by replacing Rn with V and the dot product with 〈·, ·〉
in the proof of Theorem 2.80. �

9.2. More on Real Inner Product Spaces

Let V be a (finite dimensional) real vector space. A natural question then is how

many inner products exist on V ? The answer is lots! We will see shortly that

an inner product on V is equivalent to a choice of orthonormal basis on V . The

following definition will prove essential to the problem at hand:
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Definition 9.15. Let (V, 〈·, ·〉) be a real inner product space and let

B = {v1, . . . , vn}

be any basis on V . The matrix representation of 〈·, ·〉 with respect to

the basis B is the n × n matrix whose (i, j) element is 〈vi, vj〉. The matrix

representation of 〈·, ·〉 with respect to B is denoted by [〈·, ·〉]B.

The next result shows that a matrix representation of an inner product contains all

the information about an inner product. This is analogous to a matrix representa-

tion of a linear map or the coordinate representation of a vector.

Proposition 9.16. Let (V, 〈·, ·〉) be a real inner product space and let B be

any basis on V .

(i) [〈·, ·〉]B is a symmetric matrix.

(ii) 〈v, w〉 = [v]TB [〈·, ·〉]B[w]B for all v, w ∈ V .

(iii) If B is an orthonormal basis, then 〈v, w〉 = [v]B · [w]B for all v, w ∈ V .

Proof. Let B = {v1, . . . , vn} be any basis on V .

(i): The (i, j) and (j, i) entries of the matrix [〈·, ·〉]B is 〈vi, vj〉 = 〈vj , vi〉 (by

the symmetry condition of the inner product). From this, we see that [〈·, ·〉]B is a

symmetric matrix.

(ii): Let v, w ∈ V and write

[v]B = (α1, . . . , αn)T , [w]B = (β1, . . . , βn)T

for their coordinate representations with respect to B. By definition, this means

v =

n∑
i=1

αivi, w =

n∑
j=1

βjvj . (128)
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Using (128), we expand 〈v, w〉 using the bilinearity of the inner product (which is

a consequence of conditions (i)-(iii) of Definition 9.2)

〈v, w〉 = 〈
n∑
i=1

αivi,

n∑
j=1

βjvj〉

=

n∑
i=1

n∑
j=1

〈αivi, βjvj〉

=

n∑
i=1

n∑
j=1

αiβj〈vi, vj〉

=
n∑
i=1

n∑
j=1

αi〈vi, vj〉βj

= [v]TB [〈·, ·〉]B[w]B.

(iii): Suppose now that B = {v1, . . . , vn} is an orthonormal basis. Then

〈vi, vj〉 =

{
1 if i = j

0 if i 6= j

Hence, [〈·, ·〉]B = In (the n× n identity matrix). Using (ii), we have

〈v, w〉 = [v]TB [〈·, ·〉]B[w]B

= [v]TBIn[w]B

= [v]TB [w]B

= [v]B · [w]B.

�

Theorem 9.17. Let V be a (real) vector space. Let B be any basis on V

and define

〈·, ·〉B : V × V → R
by 〈u, v〉B := [u]B ·[v]B for all u, v ∈ V . Then 〈·, ·〉B is an inner product on V

and B is an orthonormal basis with respect to this inner product. Moreover,

every inner product on V is of this form. In addition, if C is another basis

on V , then 〈·, ·〉B = 〈·, ·〉C if and only if the transition matrix PCB is an

orthogonal matrix, that is, P−1CB = PTCB.

Proof. We now verify that 〈·, ·〉B satisfies all the conditions given in Definition 9.2.

Condition (i) of Definition 9.2 follows from the fact that the dot product commutes:

〈u, v〉B = [u]B · [v]B = [v]B · [u]B = 〈v, u〉B
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for all u, v ∈ V . Conditions (ii) and (iii) are a consequence of Proposition 6.7 and

the basic properties of the dot product:

〈u+ v, w〉B = [u+ v]B · [w]B

= ([u]B + [v]B) · [w]B

= [u]B · [w]B + [v]B · [w]B

= 〈u,w〉B + 〈v, w〉B

and

〈cu, v〉B = [cu]B · [v]B

= (c[u]B) · [v]B

= c([u]B · [v]B)

= c〈u, v〉B

for all u, v, w ∈ V and c ∈ R. For condition (iv), we have 〈u, u〉 = [u]B · [u]B ≥ 0

for all u ∈ V . Moreover, since the coordinate vector [u]B = ~0 if and only if u = 0,

it follows that 〈u, u〉 = 0 if and only if u = 0. This proves that 〈·, ·〉B is an inner

product on V .

Now let 〈·, ·〉 be any inner product on V . Using the Gram-Schmidt process for

real inner product spaces (see Section 9.1), we can always construct an orthonormal

basis on the real inner product space (V, 〈·, ·〉). Let D be any orthonormal basis for

(V, 〈·, ·〉). By statement (iii) of Proposition 9.16, we have

〈u, v〉 = [u]D · [v]D

for all u, v ∈ V . However, the right hand side is just 〈u, v〉D. Since u, v ∈ V are

arbitrary, we conclude that 〈·, ·〉 = 〈·, ·〉D.

For the last part of Theorem 9.17, we need to determine when two bases B and

C induce the same inner product on V . More precisely, we need to determine the

necessary and sufficient conditions for 〈·, ·〉B = 〈·, ·〉C .
Suppose first that 〈·, ·〉B = 〈·, ·〉C Let u, v ∈ V . Then

[u]B · [v]B = [u]C · [v]C . (129)

Using Theorem 6.8 to express [u]C and [v]C in terms of [u]B and [v]B respectively,

equation (129) can be rewritten as

[u]TB [v]B = [u]TC [v]C

= (PCB[u]B)T (PCB[v]B)

= [u]TB(PTCBPCB)[v]B. (130)

Since the above relation holds for all u, v ∈ V , it follows that the coordinate vectors

[u]B and [v]B can assume any element of Rn (where n = dimV ). From this, it

follows that PTCBPCB = In (the n × n identity matrix). Hence, PCB is orthogonal.

To see this more explicitly, write B = {b1, . . . , bn} and let u = bi and v = bj . Then
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[u]B = ~ei and [v]B = ~ej , where ~ei and ~ej are the ith and jthe standard basis vectors

on Rn respectively. Equation (129) then reduces to

(In)ij = ~eTi (PTCBPCB)~ej = (PTCBPCB)ij ,

where (In)ij and (PTCBPCB)ij are the (i, j)-elements of In and PTCBPCB respectively.

On the other hand, if PCB is orthogonal, then PTCBPCB = In and equation (130)

implies that [u]B · [v]B = [u]C · [v]C , which in turn implies that 〈·, ·〉B = 〈·, ·〉C . This

completes the proof. �

Example 9.18. Consider the vector space R2 (with vectors expressed as

column vectors) and let

~u1 =

(
1

1

)
, ~u2 =

(
1

2

)
.

Then B = {~u1, ~u2} is a basis on R2. Let 〈·, ·〉B denote the inner product on

R2 induced by B from Theorem 9.17. Let S = {~e1, ~e2} denote the standard

basis on R2. Let us compute the matrix representation of 〈·, ·〉B with respect

to S. By definition, the (i, j) element of [〈·, ·〉B]S is

〈~ei, ~ej〉B := [~ei]B · [~ej ]B.

In order to compute the above inner products, we first need to compute the

coordinate vectors of ~e1 and ~e2 with respect to B. Doing a small calculation,

we find

[~e1]B =

(
2

−1

)
, [~e2]B =

(
−1

1

)
.

The matrix representation of 〈·, ·〉B with respect to S is then

[〈·, ·〉B]S =

(
5 −3

−3 2

)
.

Since [~v]S = ~v for all ~v ∈ R2, Proposition 9.16 implies

〈~v, ~w〉B = ~vT
(

5 −3

−3 2

)
~u (131)

for all ~v, ~u ∈ R2. In particular, observe that 〈~ui, ~ui〉B = 1 for i = 1, 2 and

〈~u1, ~u2〉B = 0 by evaluating the right side of (131). Also, note that

〈~e1, ~e2〉B = −21 6= 0.

Hence, the vectors ~e1 and ~e2 (which are orthogonal from the point of view of

Euclidean geometry) fail to be orthogonal with respect to the inner product

〈·, ·〉B.



9.3. Complex Inner Product Spaces 245

9.3. Complex Inner Product Spaces

Whether you like complex vector spaces or not, complex vector spaces are ultimately

“nicer” than real vector spaces. Specifically, linear endomorphisms of a complex

vector space have more structure than endomorphisms on a real vector space. For

instance, any linear endomorphism on a complex vector space always has at least

one eigenvalue. This is not true for the real case. We will obtain a better view

of this structure in Chapter 13. Furthermore, by studying complex vector spaces

and their endomorphisms, we also learn more about linear endomorphisms on a

real vector space. Hence, if you are not a fan of complex vector spaces, think of

complex vector spaces as a tool or intermediary which we can use to learn more

about real vector spaces and their linear maps. (Historically, complex numbers

were not initially held in high regard. They were originally developed as a mere

tool for finding real roots of cubic equations of the form x3 +ax− b with a, b ∈ R.)

In this section, we introduce the notion of complex inner product spaces, which

is a complex vector space equipped with a type of inner product, one that is similar

to the real case, but not exactly the same. From a physics perspective, complex

inner product spaces are of fundamental importance to the mathematical framework

of quantum mechanics. While you may have some unease (or disdain) for complex

numbers and the like, it seems that nature is rather fond of these mathematical

curiosities. With that said, we now give the formal definition of a complex inner

product space.

For the remainder of this chapter, we denote the conjugate of a complex num-

ber z = a+ bi (i =
√
−1) by z = a− bi. The magnitude or modulus of a complex

number z is |z| :=
√
zz. The conjugate transpose of an n ×m complex matrix A

will be denoted by A∗. Hence, if z ∈ C, then z = z∗.

Definition 9.19. Let V be a complex vector space. A Hermitian inner

product on V is a map

〈·, ·〉 : V × V → C, (u, v) 7→ 〈u, v〉 ∈ C

which satisfies the following conditions:

(i) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V (conjugate symmetry)

(ii) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 for all u, v, w ∈ V (linearity condition 1)

(iii) 〈u, cv〉 = c〈u, v〉 for all u, v ∈ V , c ∈ C (linearity condition 2)

(iv) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0 (positive definiteness)

The pair (V, 〈·, ·〉) is called a complex inner product space.

We now make a few comments about Definition 9.19. Note that 〈·, ·〉 is linear in the

second slot by conditions (ii) and (iii). However, it is not quite linear in its first slot.
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Proposition 9.20. Let u, v, w ∈ V and c ∈ C. Then

(i) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
(ii) 〈cv, w〉 = c〈v, w〉

Proof. For (i), we have

〈u+ v, w〉 = 〈w, u+ v〉

= 〈w, u〉+ 〈w, v〉

= 〈w, u〉+ 〈w, v〉
= 〈u,w〉+ 〈v, w〉

and for (ii) we have

〈cv, w〉 = 〈w, cv〉

= c〈w, v〉

= c〈w, v〉
= c〈v, w〉.

�

Statement (ii) in Proposition 9.20 shows that 〈cv, w〉 6= c〈v, w〉 in general. This is

the reason why a complex inner product fails to be linear in its first slot.

Exercise 9.21. Cn has a natural Hermitian inner product (which is anal-

ogous to the natural inner product (i.e. the dot product) that exists on Rn).

Let the vectors in Cn be expressed as column vectors. This inner product is

defined by

〈~u,~v〉 := (~u)∗~v, ∀ ~u,~v ∈ V. (132)

If ~u = (u1, . . . , un)T and ~v = (v1, . . . , vn)T , then the above inner product is

given by

〈~u,~v〉 =

n∑
i=1

uivi. (133)

We will call this the standard Hermitian inner product on Cn. Verify

that 〈·, ·〉 is a Hermitian inner product on Cn.
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Exercise 9.22. Let C([0, 1];C) be the set of continuous complex valued

functions on the closed interval [0, 1]. Explicitly, an element f of C([0, 1];C)

is of the form

f(x) = f1(x) + if2(x)

where f1 and f2 are continuous real valued functions on [0, 1]. C([0, 1];C)

is naturally a complex vector space with vector addition and scalar multipli-

cation defined pointwise:

(f + g)(x) := f(x) + g(x), (cf)(x) := cf(x)

for f, g ∈ C([0, 1];C) and c ∈ C. We now define a Hermitian inner product

〈·, ·〉 : C([0, 1];C)× C([0, 1];C)→ C
by

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx

=

∫ 1

0

(f1(x)g1(x) + f2(x)g2(x)) + i

∫ 1

0

(f1(x)g2(x)− f2(x)g1(x))dx

for f = f1+if2 and g = g1+ig2 in C([0, 1];C). Show that 〈·, ·〉 is a Hermitian

inner product on C([0, 1];C). (The proof of this is similar to the one given

in Example 9.5.

Using condition (iv) of Definition 9.19, we can define the length or norm of a vector

just like in the real case:

Definition 9.23. Let (V, 〈·, ·〉) be a complex inner product space. The norm

of a vector v ∈ V is ‖v‖ :=
√
〈v, v〉.

Note that for a complex inner product space (V, 〈·, ·〉), we can no longer de-

fine an angle between two arbitrary vectors v, w ∈ V since 〈v, w〉 is a complex

number in general. Consequently, Definition 9.9 for a real inner product space

simply does not work for the complex case. At best, we can generalize the notion

of orthogonality to complex inner product spaces (which proves to be quite fruitful):

Definition 9.24. Let (V, 〈·, ·〉) be a complex inner product space. Two vec-

tors v, w ∈ V are orthogonal if 〈v, w〉 = 0.

Using Definition 9.24, many of the results and ideas of real inner product spaces

generalize to complex inner product spaces (although a little extra care is required

due to the conjugate symmetry of Hermitian inner products). We begin with the
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complex version of the Cauchy-Schwartz inequality:

Theorem 9.25 (Cauchy-Schwartz inequality (complex version)). Let

(V, 〈·, ·〉) be a complex inner product space. Then |〈v, w〉| ≤ ‖v‖ ‖w‖ for

all v, w ∈ V . Moreover, for v, w nonzero, |〈v, w〉| = ‖v‖ ‖w‖ if and only if

v = λw for some λ ∈ C.

Proof. First, observe that if v = 0 or w = 0, we immediately have |〈v, w〉| =

‖v‖ ‖w‖ = 0. Hence, the Cauchy-Schwartz inequality holds for this case. So let us

assume that v and w are nonzero vectors. Let

c :=
〈w, v〉
‖w‖2

∈ C (134)

and expand the quantity ‖v − cw‖2:

‖v − cw‖2 = 〈v − cw, v − cw〉

= 〈v, v〉 − c〈v, w〉 − c〈w, v〉+ |c|2〈w,w〉

= ‖v‖2 − 〈w, v〉
‖w‖2

〈v, w〉 − 〈w, v〉
‖w‖2

〈w, v〉+
|〈w, v〉|2

‖w‖4
‖w‖2

= ‖v‖2 − |〈v, w〉|
2

‖w‖2
− |〈w, v〉|

2

‖w‖2
+
|〈w, v〉|2

‖w‖2

= ‖v‖2 − |〈v, w〉|
2

‖w‖2
(135)

Since ‖v − cw‖2 ≥ 0, (135) implies

|〈v, w〉|2 ≤ ‖v‖2 ‖w‖2 ,

which in turn implies the Cauchy-Schwartz inequality.

For the last part, observe that if v = λw, then

|〈v, w〉| = |〈λw,w〉|
= |λ||〈w,w〉|
= |λ|〈w,w〉

= |λ| ‖w‖2

= (|λ| ‖w‖) ‖w‖
= ‖λw‖ ‖w‖
= ‖v‖ ‖w‖ .
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On the other hand, suppose that |〈v, w〉| = ‖v‖ ‖w‖ with v, w nonzero. So let

us assume that w 6= 0. Let c ∈ C be defined via (134). Then by (135), we have

‖v − cw‖2 = ‖v‖2 − |〈v, w〉|
2

‖w‖2
= ‖v‖2 − ‖v‖

2 ‖w‖2

‖w‖2
= 0,

which in turn implies that v−cw = 0. Hence, v = cw. This completes the proof. �

Definition 9.26. Let (V, 〈·, ·〉) be a complex inner product space and let

{v1, . . . , vk} be a set of vectors in V . {v1, . . . , vk} is called an orthogonal

set if vi 6= 0 for i = 1, . . . , k and 〈vi, vj〉 = 0 for all 1 ≤ i < j ≤ k.

Proposition 9.27. Let (V, 〈·, ·〉) be a complex inner product space and let

{v1, . . . , vk} ⊂ V be an orthogonal set. Then {v1, . . . , vk} is a linearly inde-

pendent set.

Proof. Like the case of real inner products, the proof is identical to the proof of

Proposition 2.57 for the dot product. One simply replaces the dot product with

the Hermitian inner product 〈·, ·〉 and the argument works as before. �

The definition of orthogonal projection for Hermitian inner products is essen-

tially the same as the real case. However, due to the fact that a Hermitian inner

product is only conjugate symmetric, we have to be careful with the order of the

vectors which appear in the inner product:

Definition 9.28. Let (V, 〈·, ·〉) be a complex inner product space. Let v, u ∈
V with u nonzero. The orthogonal projection of v onto u is the vector

projuv :=
〈u, v〉
‖u‖2

u.

The Gram-Schmidt process (which we state below for convenience) can also be

applied to a complex inner product space to produce an orthogonal basis. However,

the order of the vectors u and v appearing in the inner product for the formula of

projuv is critical for the Gram-Schmidt process to work as before. Of course it

makes no difference for a real inner product space, but it does for a complex one.
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The Gram-Schmidt process for a complex inner product space

Let (V, 〈·, ·〉) be a complex inner product space. The Gram-Schmidt process

generates an orthogonal basis from an existing basis on V . Once one obtains

the orthogonal basis, one can normalize it to obtain an orthonormal basis.

Let B = {v1, v2, . . . , vn} be any basis on V . We obtain an orthogonal basis

B′ := {b1, b2, . . . , bn}

as follows:

1. Define b1 := v1
2. For k = 2, . . . , n, define

bk := vk −
k−1∑
i=1

projbivk

Setting ui := bi/ ‖bi‖, the set {u1, u2, . . . , un} is then an orthonormal basis.

The following result simply verifies that the Gram-Schmidt process still works for

a complex inner product space provided that one follows Definition 9.28 exactly

for the definition of orthogonal projection.

Theorem 9.29. Any complex inner product space admits an orthogonal

basis.

Proof. Let (V, 〈·, ·〉) be a complex inner product space and let n = dimV . Let

B = {v1, . . . , vn} be any basis on V and let B′ = {b1, . . . , bn} denote the set of

vectors resulting from applying the Gram-Schmidt process to B. By Proposition

9.27, it suffices to show that B′ is an orthogonal set. Let B′k =: {b1, . . . , bk} for

k ≤ n. We now show that B′k is an orthogonal set for k = 1, 2, . . . , n by induction

on k. First, observe that B′1 is trivially an orthogonal set. Now suppose that B′k is

an orthogonal set. To show that B′k+1 is an orthogonal set, we need to show that

〈bi, bk+1〉 = 0 for i = 1, 2, . . . , k and bk+1 6= 0. From the definition of bk+1, we have

〈bi, bk+1〉 = 〈bi, vk+1〉 −
k∑
j=1

〈bi,projbjvk+1〉

= 〈bi, vk+1〉 −
k∑
j=1

〈bj , vk+1〉
‖bj‖2

〈bi, bj〉

= 〈bi, vk+1〉 −
〈bi, vk+1〉
‖bi‖2

〈bi, bi〉

= 0.

Note that if we were careless with the definition of projbivk+1 and used the inner

product 〈vk+1, bi〉 instead of 〈bi, vk+1〉 in its definition, we would not obtain zero
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for 〈bi, bk+1〉. Rather, we would obtain

〈bi, vk+1〉 − 〈vk+1, bi〉 = 〈bi, vk+1〉 − 〈bi, vk+1〉 = 2Im{〈bi, vk+1〉}

where Im(z) denotes the imaginary part of a complex number z.

Lastly, to see that bk+1 6= 0, observe that

{b1, . . . , bk} ⊂ span{v1, . . . , vk}.

Consequently, the condition bk+1 = 0 implies that vk+1 ∈ span{v1, . . . , vk}; this

contradicts the fact that {v1, . . . , vn} is a basis on V . From this, we conclude that

bk+1 6= 0. This along with the above calculation shows that B′k+1 is an orthogonal

set. In particular, B′n = B′ is an orthogonal set. This completes the proof. �

For the sake of completeness, we conclude this section with the following definition

and result:

Definition 9.30. Let (V, 〈·, ·〉) be a complex inner product space and let

W be a subspace of V . The orthogonal complement of W in V is the

subspace

W⊥ := {w ∈W | 〈w, v〉 = 0 ∀ v ∈ V }.

Theorem 9.31. Let (V, 〈·, ·〉) be a complex inner product space and let W

be a subspace of V . Then

V = W ⊕W⊥.

Proof. The proof of Theorem 9.31 is identical to the dot product version given in

Theorem 2.80. �

9.4. More on Complex Inner Product Spaces

As the reader might have guessed, the current section is simply the complex version

of Section 9.2. The results and ideas of this section are naturally quite similar to

those of Section 9.2, but not exactly the same. These slight differences are (again)

due to the fact that a Hermitian inner product is not really symmetric, but only

conjugate symmetric. The reader with a reasonable “math sense” will be able to

guess how the results of Section 9.2 change for the complex case. Naturally, we

begin with the following definition:
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Definition 9.32. Let (V, 〈·, ·〉) be a complex inner product space and let

B = {v1, . . . , vn}

be any basis on V . The matrix representation of 〈·, ·〉 with respect to the

basis B is the n × n (complex) matrix whose (i, j) element is 〈vi, vj〉. The

matrix representation of 〈·, ·〉 with respect to B is denoted by [〈·, ·〉]B.

As in the real case, the matrix representation of a Hermitian inner product encodes

all the information. Before stating the complex version of Proposition 9.16, we

remind the reader that a complex matrix A is said to be Hermitian if A∗ = A. A

Hermitian matrix can be viewed as the complex version of a real symmetric matrix.

Proposition 9.33. Let (V, 〈·, ·〉) be a complex inner product space and let

B be any basis on V .

(i) [〈·, ·〉]B is a Hermitian matrix.

(ii) 〈v, w〉 = [v]∗B[〈·, ·〉]B[w]B for all v, w ∈ V .

(iii) If B is an orthonormal basis, then 〈v, w〉 = [v]∗B[w]B for all v, w ∈ V .

Proof. Let B = {v1, . . . , vn} be any basis on V .

(i): The (i, j) and (j, i) entries of the matrix [〈·, ·〉]B are 〈vi, vj〉 and 〈vj , vi〉
respectively. Since 〈vi, vj〉 = 〈vj , vi〉, it follows that [〈·, ·〉]B is Hermitian.

(ii): Let v, w ∈ V and write

[v]B = (α1, . . . , αn)T , [w]B = (β1, . . . , βn)T ∈ Cn

for their coordinate representations with respect to B. By definition, this means

v =

n∑
i=1

αivi, w =

n∑
j=1

βjvj . (136)

Using (136), we expand 〈v, w〉 using conditions (i)-(iii) of Definition 9.19:

〈v, w〉 = 〈
n∑
i=1

αivi,

n∑
j=1

βjvj〉

=

n∑
i=1

n∑
j=1

〈αivi, βjvj〉

=

n∑
i=1

n∑
j=1

αiβj〈vi, vj〉

=

n∑
i=1

n∑
j=1

αi〈vi, vj〉βj

= [v]∗B[〈·, ·〉]B[w]B.
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(iii): Suppose now that B = {v1, . . . , vn} is an orthonormal basis. Then

〈vi, vj〉 =

{
1 if i = j

0 if i 6= j

Hence, [〈·, ·〉]B = In (the n× n identity matrix). Using (ii), we have

〈v, w〉 = [v]∗B[〈·, ·〉]B[w]B

= [v]∗BIn[w]B

= [v]∗B[w]B.

�

Statement (i) of Proposition 9.33 is the reason why an inner product on a complex

vector space is called Hermitian.

We conclude this section with the complex version of Theorem 9.17. This

result shows that a Hermitian inner product on a complex vector is equivalent to a

choice of orthonormal basis. Before stating the result, we remind the reader that

an invertible complex matrix A is called unitary if A−1 = A∗. Hence, a unitary

matrix can be viewed as the complex version of an orthogonal matrix.

Theorem 9.34. Let V be a complex vector space. Let B be any basis on V

and define

〈·, ·〉B : V × V → C
by 〈u, v〉B := [u]∗B[v]B for all u, v ∈ V . Then 〈·, ·〉B is a Hermitian inner

product on V and B is an orthonormal basis with respect to this inner prod-

uct. Moreover, every inner product on V is of this form. In addition, if

C is another basis on V , then 〈·, ·〉B = 〈·, ·〉C if and only if the transition

matrix PCB is a unitary matrix, that is, P−1CB = P ∗CB.

Proof. We now verify that 〈·, ·〉B satisfies all the conditions given in Definition

9.19. For condition (i), we have

〈u, v〉B = [u]∗B[v]B = ([v]∗B[u]B) = 〈v, u〉B

for all u, v ∈ V . Conditions (ii) and (iii) are a consequence of Proposition 6.7:

〈u, v + w〉B = [u]∗B [v + w]B

= [u]∗B ([v]B + [w]B)

= [u]∗B[v]B + [u]∗B[w]B

= 〈u, v〉B + 〈u,w〉B
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and

〈u, cv〉B = [u]∗B[cv]B

= [u]∗B (c[v]B)

= c([u]∗B[v]B)

= c〈u, v〉B

for all u, v, w ∈ V and c ∈ C. For condition (iv), let u ∈ V and write

[u]B = (α1, α2, . . . , αn)T ∈ Cn,

where n := dimV . Then

〈u, u〉B = [u]∗B[u]B

=

n∑
i=1

αiαi

=

n∑
i=1

|αi|2.

From this, we see that 〈u, u〉 ≥ 0. We also see that 〈u, u〉 = 0 if and only if [u]B = ~0

and the latter is equivalent to u = 0. Hence, 〈·, ·〉B is positive definite. We have

thus proven that 〈·, ·〉B is a Hermitian inner product.

Now let 〈·, ·〉 be any Hermitian inner product on V . Using the Gram-Schmidt

process for complex inner product spaces (see Section 9.4), we can always construct

an orthonormal basis on the complex inner product space (V, 〈·, ·〉). Let D be any

orthonormal basis for (V, 〈·, ·〉). By statement (iii) of Proposition 9.33, we have

〈u, v〉 = [u]∗D[v]D

for all u, v ∈ V . However, the right hand side is just 〈u, v〉D. Since u, v ∈ V are

arbitrary, we conclude that 〈·, ·〉 = 〈·, ·〉D.

For the last part of Theorem 9.34, we need to determine when two bases B
and C induce the same Hermitian inner product on V . More precisely, we need to

determine the necessary and sufficient conditions for 〈·, ·〉B = 〈·, ·〉C .
Suppose first that 〈·, ·〉B = 〈·, ·〉C Let u, v ∈ V . Then

[u]∗B[v]B = [u]∗C [v]C . (137)

Using Theorem 6.8 to express [u]C and [v]C in terms of [u]B and [v]B respectively,

equation (137) can be rewritten as

[u]∗B[v]B = [u]∗C [v]C

= (PCB[u]B)∗(PCB[v]B)

= [u]∗B(P ∗CBPCB)[v]B. (138)
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Since the above relation holds for all u, v ∈ V , it follows that the coordinate vectors

[u]B and [v]B can assume any element of Cn (where n := dimV ). From this, it

follows that P ∗CBPCB = In (the n× n identity matrix). Hence, PCB is unitary.

On the other hand, if PCB is unitary, then P ∗CBPCB = In and equation (138)

implies that [u]∗B[v]B = [u]∗C [v]C , which in turn implies that 〈·, ·〉B = 〈·, ·〉C . This

completes the proof. �

Example 9.35. Consider the vector space C2 (with vectors expressed as

column vectors) and let

~u1 =

(
i

1

)
, ~u2 =

(
2

i

)
.

Then B = {~u1, ~u2} is a basis on C2. Let 〈·, ·〉B denote the Hermitian inner

product on C2 induced by B from Theorem 9.34. Let S = {~e1, ~e2} denote

the standard basis on C2. Let us compute the matrix representation of 〈·, ·〉B
with respect to S.

By definition, the (i, j) element of [〈·, ·〉B]S is

〈~ei, ~ej〉B := [~ei]
∗
B[~ej ]B.

In order to compute the above inner products, we first compute the coordinate

vectors of ~e1 and ~e2 with respect to B:

[~e1]B =

(
−i/3

1/3

)
, [~e2]B =

(
2/3

−i/3

)
.

The matrix representation of 〈·, ·〉B with respect to S is then

[〈·, ·〉B]S =

(
2/9 i/9

−i/9 5/9

)
.

Since [~v]S = ~v for all ~v ∈ C2, Proposition 9.33 implies

〈~v, ~w〉B = ~v ∗
(

2/9 i/9

−i/9 5/9

)
~u (139)

for all ~v, ~u ∈ C2. In particular, observe that 〈~ui, ~ui〉B = 1 for i = 1, 2 and

〈~u1, ~u2〉B = 0 by evaluating the right side of (139).

9.5. Inner Products and the Dual Space

For a finite dimensional vector space V , Theorem 8.6 shows that V and the double

dual (V ∗)∗ are essentially the same vector space. This view is a consequence of a

canonical isomorphism from V to (V ∗)∗ that allows one to naturally identify the

elements of V with those of (V ∗)∗. Naturally, one wonders if a similar relationship

exists between V and V ∗. The short answer to this question is no. However, if

one is dealing with an inner product space, then the inner product itself can be
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used as a “bridge” to identify the elements of V with those of V ∗. Since real inner

products and Hermitian inner products are not quite the same (one is symmetric

and the other is only conjugate symmetric), we will study the real and complex

cases separately. We begin with the real case:

Theorem 9.36. Let (V, 〈·, ·〉) be a real inner product space. Let ψ : V → V ∗

be the map which sends u ∈ V to the 1-form ψu ∈ V ∗ defined by ψu := 〈·, u〉.
In other words, ψu(v) := 〈v, u〉 for all v ∈ V . Then ψ is a vector space

isomorphism. In particular, for any f ∈ V ∗, there exists a u ∈ V such that

f(v) = 〈v, u〉 for all v ∈ V .

Proof. Let u ∈ V . First, we need to verify that ψu ∈ V ∗. In other words, we

need to show that ψu : V → R is a linear map. This can be seen by the following

calculation:

ψu(v + w) = 〈v + w, u〉
= 〈v, u〉+ 〈w, u〉
= ψu(v) + ψu(w)

and

ψu(rv) = 〈rv, u〉
= r〈v, u〉
= rψu(v)

for all v, w ∈ V and r ∈ R.

Next, we need to show that ψ : V → V ∗ itself is a linear map. Since ψ(u) := ψu,

we need to show that

ψu1+u2
= ψu1

+ ψu2
, ψru1

= rψu1
(140)

for all u1, u2 ∈ U and r ∈ R. To do this, let v ∈ V . Then

ψu1+u2
(v) = 〈v, u1 + u2〉

= 〈v, u1〉+ 〈v, u2〉
= ψu1(v) + ψu2(v)

= (ψu1
+ ψu2

)(v) (141)

and

ψru1
(v) = 〈v, ru1〉

= r〈v, u1〉
= r(ψu1

(v))

= (rψu1
)(v) (142)
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(141) and (142) then imply (140).

Lastly, we need to show that ψ is a vector space isomorphism. In other words,

we need to show that kerψ = {0} and im ψ = V ∗. Let u ∈ kerψ. Then ψu(v) :=

〈v, u〉 = 0 for all v ∈ V . Since inner products are positive definite (by definition),

it follows that v = 0. This proves that kerψ = {0}. To show that im ψ = V ∗, first

observe from the Rank-Nullity Theorem (Theorem 5.60) that

dimV = dim kerψ + dim im ψ = dim im ψ.

Since dimV ∗ = dimV (by Theorem 8.2) and im ψ is a subspace of V ∗, it follows

readily that im ψ = V ∗. This completes the proof. �

We now turn to the complex case. For the complex case, we actually need a slight

variation of the dual space. This variation is based on the notion of antilinear

maps:

Definition 9.37. Let V and W be complex vector spaces. A map ϕ : V →
W is called antilinear if

ϕ(v + w) = ϕ(v) + ϕ(w), ϕ(cv) = cϕ(v)

for all v, w ∈ V and c ∈ C, where c is the conjugate of c. An antilinear map

is called an anitlinear isomorphism if it is one-to-one and onto.

Remark 9.38. The properties of antilinear maps are similar to those of

linear maps. However, for our present needs, we will not need this informa-

tion (although we have provided several exercises at the end where you can

work out some of these properties for yourself).

We can now define our modified dual space:

Definition 9.39. Let V be a complex vector space. The antidual space is

the complex vector space V ∗ which consists of all antilinear maps from V to

C with the usual pointwise vector addition and scalar multiplication:

(f + g)(v) := f(v) + g(v), ∀ v ∈ V

(cf)(v) := cf(v), ∀ v ∈ V
for all f, g ∈ V ∗ and c ∈ C. The element of V ∗ are called anti-covectors

or anti-1-forms.

The relationship between V ∗ and V ∗ is given by the following result:
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Theorem 9.40. Let V be a complex vector space. Let ρ : V ∗ → V ∗ be

the map which sends f ∈ V ∗ to its conjugate f , where f(v) := f(v) for all

v ∈ V . Then ρ is an antilinear isomorphism. In particular,

dimV ∗ = dimV ∗ = dimV.

Proof. We begin by verifying that ρ maps V ∗ into V ∗. To do this, let f ∈ V ∗. Let

us verify that ρ(f) := f is an antilinear map from V to C (i.e. an anti-covector).

For v, v′ ∈ V , we have

f(v + v′) := f(v + v′)

= f(v) + f(v′)

= f(v) + f(v′)

= f(v) + f(v′),

where the last equality is simply the definition of f . Also, for c ∈ C, we have

f(cv) = f(cv)

= cf(v)

= cf(v)

= cf(v)

where the second equality follows from the fact that f is a linear map. This proves

that f ∈ V ∗.
Next, we show that ρ is an antilinear map. To do this, let f, f ′ ∈ V ∗ and c ∈ C.

Also, let v ∈ V . Then

ρ(f + f ′)(v) = f + f ′(v)

= (f + f ′)(v)

= f(v) + f ′(v)

= f(v) + f ′(v)

= ρ(f)(v) + ρ(f ′)(v)

= [ρ(f) + ρ(f ′)](v) (143)

Also,

ρ(cf)(v) = cf(v)

= cf(v)

= cf(v)

= cρ(f)(v)

= [cρ(f)](v). (144)
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(143) and (144) show that ρ is antilinear.

Lastly, we need to show that ρ is an (antilinear) isomorphism. For this, let

f ∈ ker ρ and suppose that ρ(f) := f = 0. In other words, f(v) := f(v) = 0 for all

v ∈ V . Clearly, this implies that f(v) = 0 for all v ∈ V . In other words, f = 0.

This proves that ker ρ = {0}. Hence, ρ is one-to-one.

To show that ρ is onto, let g ∈ V ∗. Define f : V → C by f(v) := g(v) for all

v ∈ V . Let v, v′ ∈ V and c ∈ C. Since g(v+v′) = g(v)+g(v′), the above calculation

implies that

f(v + v′) = f(v) + f(v′).

On the other hand, since g(cv) = cg(v), the above calculation implies that f(cv) =

cf(v). This shows that f ∈ V ∗. Since

f(v) = f(v) = g(v) = g(v)

for all v ∈ V , we see that ρ(f) = g. This proves that ρ is onto. Hence, ρ is an

antilinear isomorphism. This in turn implies

dimV ∗ = dimV ∗ = dimV

where the last equality follows from Theorem 8.2. �

Remark 9.41. Theorem 9.40 justifies the notation V ∗ for the antidual

space. Every element of V ∗ is obtained by conjugating an element of V ∗.

Here is the complex version of Theorem 9.36:

Theorem 9.42. Let (V, 〈·, ·〉) be a complex inner product space. Let

ψ : V → V ∗

be the map which sends u ∈ V to the anti-1-form ψu ∈ V ∗ defined by

ψu := 〈·, u〉. In other words, ψu(v) := 〈v, u〉 for all v ∈ V . Then ψ is

a vector space isomorphism. In particular, for any f ∈ V ∗, there exists a

unique u ∈ V such that f(v) = 〈v, u〉 for all v ∈ V .

Proof. The proof is quite similar to the proof of Theorem 9.36. However, there

are some differences since the inner product here is conjugate symmetric. This is

the reason why the image of ψ is in V ∗ as opposed to V ∗.

Let u ∈ V . First, we verify that ψu is indeed an anti-1-form. To do this, let

v, v′ ∈ V and c ∈ C. Then

ψu(v + v′) = 〈v + v′, u〉
= 〈v, u〉+ 〈v′, u〉
= ψu(v) + ψu(v′)
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and

ψu(cv) = 〈cv, u〉
= c〈v, u〉
= cψu(v),

where the second equality follows from Proposition 9.20. This proves that ψu ∈ V ∗.
Next, we need to show that ψ : V → V ∗ itself is a linear map. Since ψ(u) := ψu,

we need to show that

ψu1+u2
= ψu1

+ ψu2
, ψcu1

= cψu1
(145)

for all u1, u2 ∈ U and c ∈ C. To do this, let v ∈ V . Then

ψu1+u2
(v) = 〈v, u1 + u2〉

= 〈v, u1〉+ 〈v, u2〉
= ψu1

(v) + ψu2
(v)

= (ψu1 + ψu2)(v) (146)

and

ψcu1(v) = 〈v, cu1〉
= c〈v, u1〉
= c(ψu1(v))

= (cψu1
)(v), (147)

where we recall that there is no conjugation when the scalar is pulled from the

second argument of a Hermitian inner product. (146) and (147) then imply (145).

Lastly, we need to show that ψ is a vector space isomorphism. In other words,

we need to show that kerψ = {0} and im ψ = V ∗. Let u ∈ kerψ. Then ψu(v) :=

〈v, u〉 = 0 for all v ∈ V . Since all inner products (including Hermitian ones) are

positive definite (by definition), it follows that v = 0. This proves that kerψ = {0}.
To show that im ψ = V ∗, first observe from the Rank-Nullity Theorem (Theorem

5.60) that

dimV = dim kerψ + dim im ψ = dim im ψ.

Since dimV ∗ = dimV (by Theorem 9.40) and im ψ is a subspace of V ∗, it follows

readily that im ψ = V ∗. This completes the proof.

�

9.6. Adjoint Linear Maps

In this section, the term inner product space will refer to either a complex inner

product space or a real inner product space. When we want to emphasize one over

the other, we will do so explicitly. In this section, we introduce the idea of the

adjoint map, which requires two ingredients for its construction: an existing linear
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map ϕ : V → V and an inner product on V .

Definition 9.43. Let (V, 〈·, ·〉) be an inner product space (complex or real)

and let ϕ : V → V be a linear map. The adjoint of ϕ is a linear map

ϕa : V → V satisfying the condition 〈ϕ(v), w〉 = 〈v, ϕa(w)〉 for all v, w ∈ V .

Our goal now is to show that the adjoint map always exists and is unique. The

following lemma is a key step towards this goal.

Lemma 9.44. Let (V, 〈·, ·〉) be an inner product space and let ϕ : V → V be

a linear map. Suppose ϕ̂ : V → V is a map (not necessarily linear) which

satisfies

〈ϕ(v), w〉 = 〈v, ϕ̂(w)〉. (148)

Then ϕ̂ is necessarily unique and linear. In other words, ϕ̂ is the adjoint

map ϕa of ϕ with respect to the inner product 〈·, ·〉.

Proof. Let F = C or R and let (V, 〈·, ·〉) be an inner product space over F.

Suppose that ϕ̂ : V → V is a map (not necessarily linear) which satisfies (148).

We first show that the map ϕ̂ is unique. So let us suppose that ϕ̃ : V → V is

another map which satisfies

〈ϕ(v), w〉 = 〈v, ϕ̃(w)〉

for all v, w ∈ V . This implies that

〈v, ϕ̂(w)− ϕ̃(w)〉 = 0 (149)

for all v, w ∈ V . Setting v = ϕ̂(w)− ϕ̃(w) gives

〈ϕ̂(w)− ϕ̃(w), ϕ̂(w)− ϕ̃(w)〉 = 0 (150)

for all w ∈ V . The positive definiteness of the inner product then implies

ϕ̂(w)− ϕ̃(w) = 0 (151)

for all w ∈ V . Hence, ϕ̂ = ϕ̃ which proves the uniqueness claim.

Lastly, we show that ϕ̂ is linear. Let w1, w2 ∈ V . Since ϕ̂ satisfies (148), we

have

〈v, ϕ̂(w1 + w2)〉 = 〈ϕ(v), w1 + w2〉
= 〈ϕ(v), w1〉+ 〈ϕ(v), w2〉
= 〈v, ϕ̂(w1)〉+ 〈v, ϕ̂(w2)〉
= 〈v, ϕ̂(w1) + ϕ̂(w2)〉 (152)

for all v ∈ V . (152) thus implies

〈v, ϕ̂(w1 + w2)− ϕ̂(w1)− ϕ̂(w2)〉 = 0 (153)
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for all v ∈ V . The postive definiteness of the inner product implies

ϕ̂(w1 + w2)− ϕ̂(w1)− ϕ̂(w2) = 0. (154)

In other words, we have ϕ̂(w1 +w2) = ϕ̂(w1)+ ϕ̂(w2). Now let w ∈ V and let c ∈ F.

Then

〈ϕ(v), cw〉 = 〈v, ϕ̂(cw)〉 (155)

for all v ∈ V . However, we also have

〈ϕ(v), cw〉 = c〈ϕ(v), w〉
= c〈v, ϕ̂(w)〉
= 〈v, cϕ̂(w)〉 (156)

for all v ∈ V . (Note that from Definition 9.19, a Hermitian inner product is linear

in its second argument. Hence, if 〈·, ·〉 is Hermitian, there is no conjugation of c in

the first and third equalities.) Equations (155) and (156) now imply

〈v, ϕ̂(cw)− cϕ̂(w)〉 = 0 (157)

for all v ∈ V . The positive definiteness of the inner product then implies that

ϕ̂(cw)− cϕ̂(w) = 0. (158)

In other words, ϕ̂(cw) = cϕ̂(w). This completes the proof that ϕ̂ is linear. �

Theorem 9.45. Let (V, 〈·, ·〉) be an inner product space. Any linear map

ϕ : V → V has a unique adjoint map with respect to 〈·, ·〉.

Proof. Let ϕ : V → V be a linear map.

We first consider the case where (V, 〈·, ·〉) is a real inner product space. Let

w ∈ V be arbitrary. Define a map fw : V ∗ → R by

fw(v) := 〈ϕ(v), w〉

for all v ∈ V . Since ϕ is linear and a real inner product is linear in both arguments,

it follows that fw is linear. In other words, fw ∈ V ∗. By Theorem 9.36, there exists

a unique element of V , which we denote as uw, such that

fw(v) = 〈v, uw〉

for all v ∈ V . Define a map ϕ̂ : V → V by ϕ̂(w) := uw. From the definition of fw
and ϕ̂, we have

〈ϕ(v), w〉 = 〈v, ϕ̂(w)〉.
Lemma 9.44 now implies that ϕ̂ is both linear and unique. Hence, ϕa := ϕ̂ is the

unique adjoint map of ϕ. This completes the proof of the real case.

The complex case is proved in a similar manner. Let (V, 〈·, ·〉) be a complex

inner product space. As before, let w ∈ V be arbitrary and define fw : V → C by

fw(v) := 〈ϕ(v), w〉
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Note that this time fw is not linear, but antilinear. In other words, fw ∈ V ∗.

Indeed this follows from the linearity of ϕ and Proposition 9.20 which shows that a

Hermitian inner product is antilinear in its first argument. By Theorem 9.42, there

exists a unique element of V , which we (again) denote as uw, such that

fw(v) = 〈v, uw〉

for all v ∈ V . As before, define a map ϕ̂ : V → V by ϕ̂(w) := uw. By construction,

we again have

〈ϕ(v), w〉 = 〈v, ϕ̂(w)〉.

Lemma 9.44 once again implies that ϕ̂ is both linear and unique. Hence, ϕa := ϕ̂

is the unique adjoint map of ϕ. This completes the proof for the complex case. �

What happens if one takes the adjoint of the adjoint? The answer is given by the

following result:

Corollary 9.46. Let (V, 〈·, ·〉) be an inner product space and ϕ : V → V be

a linear map. Then (ϕa)a = ϕ.

Proof. Let ϕa : V → V be the (unique) adjoint map of ϕ. From the definition of

the adjoint map, we have

〈ϕ(v), w〉 = 〈v, ϕa(w)〉 (159)

for all v, w ∈ V .

First consider the case where (V, 〈·, ·〉) is a real inner product space. Since a

real inner product is symmetric, we have

〈w,ϕ(v)〉 = 〈ϕa(w), v〉 (160)

for all v, w ∈ V . From the definition of the adjoint map, (160) shows that ϕ is

an adjoint map of ϕa. However, by Theorem 9.45, the adjoint of a linear map is

unique. From this, we conclude that (ϕa)a = ϕ.

Now suppose that (V, 〈·, ·〉) is a complex inner product space. Taking the

conjugate of both sides of (159) and then applying the conjugate symmetry of

a Hermitian inner product once again gives (160). The same reasoning as in the

real case implies that (ϕa)a = ϕ. This completes the proof. �

The following results tells us how to compute the adjoint map practically:

Theorem 9.47. Let (V, 〈·, ·〉) be a real inner product space and let B be

an orthonormal basis on V . For a linear map ϕ : V → V , the matrix

representations of ϕ and ϕa with respect to B are related by [ϕa]B = [ϕ]TB .
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Proof. Let B = {x1, . . . , xn} be an orthonormal basis on V with respect to 〈·, ·〉.
Let aij denote the (i, j)-element of the matrix representation [ϕ]B. Also, let bij

denote the (i, j)-element of the matrix representation [ϕa]B. By definition,

ϕ(xj) =

n∑
i=1

aijxi

and

ϕa(xj) =

n∑
i=1

bijxi.

From this, we have

〈ϕ(xi), xj〉 =

n∑
k=1

〈akixk, xj〉

=

n∑
k=1

aki〈xk, xj〉

= aji,

where the last equality follows from the fact that B is an orthonormal basis. Like-

wise, we have

〈xi, ϕa(xj)〉 =

n∑
k=1

〈xi, bkjxk〉

=

n∑
k=1

bkj〈xi, xk〉

= bij .

Since

〈ϕ(xi), xj〉 = 〈xi, ϕa(xj)〉,

we conclude that bij = aji. Hence, [ϕa]B = [ϕ]TB . This completes the proof. �

Theorem 9.48. Let (V, 〈·, ·〉) be a complex inner product space and let B
be an orthonormal basis on V . For a linear map ϕ : V → V , the matrix

representations of ϕ and ϕa with respect to B are related by [ϕa]B = [ϕ]∗B,

where [ϕ]∗B denotes the conjugate transpose of [ϕ]B.

Proof. Let B = {x1, . . . , xn} be an orthonormal basis on V with respect to 〈·, ·〉.
Let aij denote the (i, j)-element of the matrix representation [ϕ]B. Also, let bij

denote the (i, j)-element of the matrix representation [ϕa]B. By definition,

ϕ(xj) =

n∑
i=1

aijxi
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and

ϕa(xj) =

n∑
i=1

bijxi.

From this, we have

〈ϕ(xi), xj〉 =

n∑
k=1

〈akixk, xj〉

=

n∑
k=1

aki〈xk, xj〉

= aji,

where the last equality follows from the fact that B is an orthonormal basis and by

Proposition 9.20. Likewise, we have

〈xi, ϕa(xj)〉 =

n∑
k=1

〈xi, bkjxk〉

=

n∑
k=1

bkj〈xi, xk〉

= bij .

Since

〈ϕ(xi), xj〉 = 〈xi, ϕa(xj)〉,

we conclude that bij = aji. Hence, [ϕa]B = [ϕ]∗B. This completes the proof. �

Example 9.49. Let A be any n×n complex matrix and let 〈·, ·〉 denote the

standard Hermitian inner product on Cn, that is,

〈~u,~v〉 = (~u)∗~v

for all ~u,~v ∈ Cn, where the elements of Cn are expressed as column vectors

and (~u)∗ denote the conjugate transpose of ~u. Let S = {~e1, . . . , ~en} denote

the standard basis on Cn. Then S is an orthonormal basis with respect to

〈·, ·〉. Let ϕ : Cn → Cn be the matrix transformation associated to A, that

is, ϕ(~v) = A~v. The matrix representation of ϕ with respect to S is simply

[ϕ]S = A. By Theorem 9.48, we have [ϕa]B = A∗. This in turn implies that

ϕa(~v) = A∗~v.
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Example 9.50. Let R[x]2 denote the vector space of real polynomials of

degree 2 or less. Let B = {x2, x, 1} and let

〈·, ·〉 := 〈·, ·〉B

be the unique inner product on R[x]2 for which B is an orthonormal basis.

Let D be the linear map from R[x]2 to itself given by D = d
dx + 1. Then the

matrix representation of D with respect to B is

[D]B =

 1 0 0

2 1 0

0 1 1

 .

By Theorem 9.47, the matrix representation of the adjoint of D with respect

to B is

[Da]B =

 1 2 0

0 1 1

0 0 1

 .

Hence, Da acts on the basis elements as follows:

Da(x2) = x2, Da(x) = 2x2 + x, Da(1) = x+ 1.

As an additional check of Theorem 9.47, observe (for example) that

〈D(x2), x2〉 = 〈x2 + 2x, x2〉 = 〈x2, x2〉 = 〈x2, Da(x2)〉

and

〈D(x2), x〉 = 〈x2 + 2x, x〉 = 2 = 〈x2, 2x2 + x〉 = 〈x2, Da(x)〉.

9.7. Self-adjoint maps

As in the previous section, the term inner product space will refer to either a com-

plex inner product space or a real one. When there is a need to single out one over

the other, we will do so explicitly. We begin with our main definition:

Definition 9.51. Let (V, 〈·, ·〉) be an inner product space. A self-adjoint

map is a linear map ϕ : V → V such that ϕa = ϕ.

Remark 9.52. Self-adjoint maps turn out to play an important role in quan-

tum mechanics. In quantum mechanics, a system is modeled by a certain

type of complex inner product space and the observables of the system (i.e.

the quantities that one measures like the position or momentum of an elec-

tron) are modeled by self-adjoint maps. Unlike the vector spaces that we deal

with in this book, the complex inner product spaces in quantum mechanics

are generally infinite dimensional.
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The matrix representations of self-adjoint maps are given by the following results:

Proposition 9.53. Let (V, 〈·, ·〉) be a real inner product space and let B be

an orthonormal basis on V . Then a linear map ϕ : V → V is self-adjoint if

and only if [ϕ]B is a symmetric matrix.

Proof. Let ϕ : V → V be a linear map. By Theorem 9.47, we have [ϕ]TB = [ϕa]B.

Consequently, one obtains the following equivalence:

ϕa = ϕ⇐⇒ [ϕ]TB = [ϕ]B.

This completes the proof. �

Proposition 9.54. Let (V, 〈·, ·〉) be a complex inner product space and let B
be an orthonormal basis on V . Then a linear map ϕ : V → V is self-adjoint

if and only if [ϕ]B is a Hermitian matrix.

Proof. Let ϕ : V → V be a linear map. By Theorem 9.48, we have [ϕ]∗B = [ϕa]B.

Consequently, one obtains the following equivalence:

ϕa = ϕ⇐⇒ [ϕ]∗B = [ϕ]B.

This completes the proof. �

Example 9.55. Consider the complex vector space Cn where all vectors

are expressed as column vectors and let 〈·, ·〉 denote the standard Hermitian

inner product on Cn, that is, 〈~u,~v〉 = (~u)∗~v for ~u,~v ∈ Cn. Let A be any

Hermitian matrix and let ψ : Cn → Cn be the linear map defined via ψ(~v) :=

A~v. The standard basis S on Cn is then an orthonormal basis and [ψ]S = A.

By Proposition 9.54, ψ is self-adjoint with respect to 〈·, ·〉.

We now prove our main result for self-adjoint maps on a complex inner product

space. We will then use this result to deduce a similar result for real inner product

spaces. This is a good example of how one can gain insight into real structures by

first studying their complex counterparts.
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Theorem 9.56. Let (V, 〈·, ·〉) be a complex inner product space and let ϕ :

V → V be a self-adjoint map.

(i) Every eigenvalue of ϕ is real.

(ii) If λ and λ′ are distinct eigenvalues of ϕ and v and v′ are eigenvectors

of ϕ associated to λ and λ′ respectively, then 〈v, v′〉 = 0.

(iii) There exists an orthogonal basis on V which consists entirely of eigen-

vectors of ϕ. In particular, ϕ is diagonalizable.

Proof. (i): Suppose λ is an eigenvalue of ϕ and v is an eigenvector of ϕ associated

to λ. Since ϕa = ϕ, we have

〈ϕ(v), v〉 = 〈v, ϕ(v)〉
〈λv, v〉 = 〈v, λv〉

λ〈v, v〉 = λ〈v, v〉.

Since v 6= 0, we have 〈v, v〉 6= 0 which in turn implies that λ = λ. From this, we

conclude that λ ∈ R.

(ii): Suppose that λ and λ′ are distinct eigenvalues of ϕ and v and v′ are their

associated eigenvectors respectively. Then

〈ϕ(v), v′〉 = 〈v, ϕ(v′)〉
〈λv, v′〉 = 〈v, λ′v′〉
λ〈v, v′〉 = λ′〈v, v′〉,

where we use the fact that λ is real in the third equality. Since λ 6= λ′, it follows

immediately that 〈v, v′〉 = 0.

(iii): We will prove this by induction on dimV . For dimV = 1, let ~v be any

nonzero vector of V . Then {v} is a basis of V which is also orthogonal (since any

set consisting of a single nonzero vector is orthogonal in a trivial way). Since every

element of V is a scalar multiple of v, we also have ϕ(v) = λv for some λ ∈ C.

Hence, {v} is our desired basis. This proves (iii) for the 1-dimensional case.

Now let (V, 〈·, ·〉) be a complex inner product space of dimension n and assume

that (iii) holds for all complex inner product spaces of dimension less than n. Here

at last is where we really need to make use of the differences between the field of

complex numbers and the field of real numbers. Let p(x) denote the characteristic

polynomial of ϕ. Since V is a complex vector space, p(x) is then a complex poly-

nomial (i.e. its coefficients are all elements of C). Recall that the Fundamental

Theorem of Algebra (Theorem 5.3) says that any complex polynomial has a zero

or root which lies in C. This implies that p(x) has at least one root. However, the

roots of p(x) are simply the eigenvalues of ϕ. Hence, ϕ has at least one eigenvalue.

Let Eλ denote the eigenspace of ϕ associated to λ, that is, Eλ is the subspace of V

spanned by the eigenvectors of ϕ associated to λ. Since eigenvectors are nonzero by



9.7. Self-adjoint maps 269

definition, it follows dimEλ ≥ 1. If dimEλ = dimV , then we are done. Indeed, in

this case, we have Eλ = V which immediately implies that any basis of V must con-

sist entirely of eigenvectors of ϕ. Consequently, using the Gram-Schmidt process,

we can construct an orthogonal basis on V which consists entirely of eigenvectors

of ϕ. So let us instead suppose that dimEλ < dimV . For this case, let

V ′ := E⊥λ

be the orthogonal complement of Eλ with respect to 〈·, ·〉. By Theorem 9.31, we

have

V = Eλ ⊕ V ′.

In particular, V ′ is a nonzero vector space with

dimV ′ = dimV − dimEλ = n− dimEλ < n.

We now show that ϕ(V ′) ⊂ V ′. Let v ∈ Eλ and let v′ ∈ V ′. Then

〈ϕ(v′), v〉 = 〈v′, ϕ(v)〉
= 〈v′, λv〉
= λ〈v′, v〉
= 0.

This shows that ϕ(v′) ∈ V ′ := E⊥λ . Hence, ϕ maps V ′ into V ′.

Let 〈·, ·〉′ be the restriction of 〈·, ·〉 to the subspace V ′ of V . Then (V ′, 〈·, ·〉′) is

a complex inner product space of dimension less than n. Let ϕ′ be the restriction

of ϕ to V ′. Then ϕ′ : V ′ → V ′ is a self-adjoint map on (V ′, 〈·, ·〉′). By the induction

hypothesis, there exists an orthogonal basis B′ of V ′ which consists entirely of

eigenvectors of ϕ′. Of course, any eigenvector of ϕ′ is also an eigenvector of ϕ.

Next, let 〈·, ·〉λ be the restriction of 〈·, ·〉 to Eλ. Then (Eλ, 〈·, ·〉λ) is also a

complex inner product space. Hence, we can construct an orthogonal basis on Eλ.

Let Bλ be any orthogonal basis on Eλ and let

B := Bλ ∪ B′.

Then B consists entirely of eigenvectors of ϕ. Moreover, since V = Eλ ⊕ V ′, it

follows readily that B is also a basis of V . Also, observe that since Bλ ⊂ Eλ and

B′ ⊂ V ′ := (Eλ)⊥, it follows that every element of B is orthogonal to every element

of B′. In addition, since Bλ and B′ are also orthogonal sets, it follows that B is also

orthogonal. This completes the proof of (iii). �
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Theorem 9.57. Let A be an n× n Hermitian matrix.

(i) The eigenvalues of A are real.

(ii) If λ1 and λ2 are distinct eigenvalues of A and ~v1 and ~v2 are eigenvectors

of A associated to λ1 and λ2 respectively, then (~v1)∗~v2 = 0, where

~v1, ~v2 ∈ Cn are expressed as column vectors.

(iii) A is diagonalizable by a unitary matrix, that is, there exists a unitary

matrix P such that P ∗AP is a diagonal matrix.

Proof. Let 〈·, ·〉 denote the standard Hermitian inner product on Cn, that is,

〈~v, ~w〉 = (~v)∗ ~w

for all ~v, ~w ∈ Cn, where the elements of Cn are expressed as column vectors. Let

ψ : Cn → Cn be the linear map defined by ψ(~v) := A~v. From Example 9.55,

ψ : Cn → Cn is a self-adjoint map on (Cn, 〈·, ·〉).
Let S denote the standard basis on Cn. Then the matrix representation [ψ]S =

A. By Theorem 6.40, ψ and A have the same eigenvalues. Theorem 9.56 now

implies that the eigenvalues of A are all real. This proves (i).

Suppose λ1 and λ2 are distinct eigenvalues of A and ~v1 and ~v2 are eigenvectors

of A associated to λ1 and λ2 respectively. From the definition of ψ, ~v1 and ~v2 are

also eigenvectors of ψ associated to distinct eigenvalues. By Theorem 9.56, we have

0 = 〈~v1, ~v2〉 = (~v1)∗~v2.

This proves (ii).

Statement (iii) of Theorem 9.56 implies that Cn has an orthogonal basis which

consists of the eigenvectors of ψ. Of course, from the definition of ψ, every eigen-

vector of ψ is also an eigenvector of A. Let

B := {~v1, . . . , ~vn}

be this basis. Here, the term “orthogonal” means orthogonal with respect to the

standard hermitian inner product on Cn. Hence, for ~vi and ~vj with i 6= j, we have

〈~vi, ~vj〉 = (~vi)
∗~vj = 0.

Furthermore, by normalizing each of the basis vectors, we may further assume that

B is an orthonormal basis. Hence,

〈~vi, ~vi〉 = (~vi)
∗~vi = 1

for i = 1, . . . , n. Let P be the n×n matrix whose ith column is ~vi. Then it follows

that P ∗P = In. In other words, P is unitary. Let λi be the eigenvalue associated
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to the eigenvector ~vi. Then

AP = (A~v1, . . . , A~vn)

= (λ1~v1, . . . , λn~vn)

= PD, (161)

where D is the n × n diagonal matrix whose ith element is λi. (161) now implies

P ∗AP = D. This prove (iii). �

Example 9.58. Consider the Hermitian matrix

A =

(
1 2 + i

2− i 3

)
.

By Theorem 9.57, A has real eigenvalues and is diagonalizable by a unitary

matrix. Let us verify this by direct calculation. The characteristic polyno-

mial of A is found to be

p(x) = x2 − 4x− 2.

The eigenvalues of A are then 2+
√

6 and 2−
√

6. The eigenvectors associated

to 2 +
√

6 and 2−
√

6 are respectively

~v1 =

(
2 + i

1 +
√

6

)
, ~v2 =

(
2 + i

1−
√

6

)
.

Clearly, this is a basis on C2. Theorem 9.57 also states that the eigenvectors

associated to distinct eigenvalues are orthogonal with respect to the standard

Hermitian inner product. This is indeed the case:

(~v1)∗~v2 = (2− i)(2 + i) + (1 +
√

6)(1−
√

6) = 5 + (−5) = 0.

Let ~u1 := ~v1/ ‖~v1‖ and ~u2 := ~v2/ ‖~v2‖ be the normalization of ~v1 and ~v2
respectively and let P be the 2×2 matrix whose first column is ~u1 and whose

second column is ~u2. Then one has

P ∗AP =

(
2 +
√

6 0

0 2−
√

6

)
.

We now apply the results of the complex case to the real case.

Theorem 9.59. Let A be a real n× n symmetric matrix.

(i) The eigenvalues of A are real.

(ii) If λ1 and λ2 are distinct eigenvalues of A and ~v1 and ~v2 are eigenvectors

of A associated to λ1 and λ2 respectively, then ~v1 · ~v2 = 0.

(iii) A is diagonalizable by an orthogonal matrix, that is, there exists a (real)

orthogonal matrix P such that PTAP is a diagonal matrix.
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Proof. Since R ⊂ C and A is a real symmetric matrix, A is automatically a

Hermitian matrix. By Theorem 9.57, all the eigenvalues of A are real. This proves

(i).

For (ii), suppose that λ1 and λ2 are distinct eigenvalues of A and ~v1 and ~v2
are eigenvectors of A associated to λ1 and λ2 respectively. By statement (ii) of

Theorem 9.57, we have

~v1 · ~v2 = ~vT1 ~v2

= (~v1)∗~v2

= 0.

where ~v1 and ~v2 are regarded as column vectors and we use the fact that ~vT1 = (~v1)∗

since ~v1 ∈ Rn. This proves (ii).

For (iii), let λ is an eigenvalue of A and let ~v be an eigenvector of A associated

to λ. Since A is viewed as a Hermitian matrix, the eigenvectors of A (for the

moment) should be regarded as elements of Cn. We can decompose the eigenvector

~v into its and imaginary parts:

~v = Re(~v) + i Im(~v),

where Re(~v) and Im(~v) are elements of Rn. Since ~v is an eigenvector of A associated

to λ, we have

A~v = λ~v

ARe(~v) + i AIm(~v) = λRe(~v) + i λIm(~v) (162)

Of course, the real parts on the left and right sides of (162) must be equal. Likewise,

the imaginary parts on the left and right sides of (162) must be equal. Since A is

a real matrix and λ ∈ R, it follows that

ARe(~v) = λRe(~v), AIm(~v) = λIm(~v).

From this, we conclude that if ~v ∈ Cn is an eigenvector of A, then Re(~v) and Im(~v)

are also eigenvectors of A.

By statement (iii) of Theorem 9.57, there exists an n × n matrix P (possibly

complex) such that P−1 = P ∗ and P ∗AP is diagonal. These two conditions imply

that the columns of P form a basis on Cn which consists entirely of the eigenvectors

of A. Let

~v1, ~v2, . . . , ~vn (163)

denote the columns of P . Since each ~vi is an eigenvector of A, the above argument

implies that the following real vectors are also eigenvectors of A:

D := {Re(~v1), Re(~v2), . . . ,Re(~vn), Im(~v1), Im(~v2), . . . , Im(~vn)}. (164)

Since (163) is a basis of Cn and ~vj is a C-linear combination of Re(~vj) and Im(~vj) for

j = 1, 2, . . . , n, it follows that (164) must span Cn. This in turn implies that (164)

must contain a basis of Cn. Let D1 ⊂ D denote this basis. We have thus found a

basis of Cn which consists of real eigenvectors ofA. SinceD1 is linearly independent
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over C, it must also be linearly independent over R ⊂ C. Hence, D1 must also be

a basis of the real vector space Rn. Let λ1, . . . , λk be the distinct eigenvalues of

A and let Eλj be the (real) eigenspace of A associated to λj . Statement (ii) of

Theorem 9.59 combined with the fact that D1 is a basis of Rn implies that

Rn = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk . (165)

Let Bλj be any orthonormal basis of Eλj for j = 1, . . . , k. Then statement (ii) of

Theorem 9.59 along with (165) implies that

B := Bλ1 ∪ · · · ∪ Bλk

is an orthonormal basis of Rn consisting of the eigenvectors of A. Denote the

elements of B by

B := {~x1, . . . , ~xn}.

Let Q be the n × n matrix whose jth column is ~xj . Then the fact that B is

orthonormal basis which consists of the eigenvectors of A implies that Q is an

orthogonal matrix and QTAQ is a diagonal matrix. This completes the proof of

(iii). �

Example 9.60. Consider the 2× 2 real symmetric matrix

A =

(
−1 2

2 4

)
.

By Theorem 9.59, A has real eigenvalues and is diagonalizable by an orthog-

onal matrix P . Let us verify this by direct calculation. The characteristic

polynomial of A is then

p(x) = x2 − 3x− 8.

The eigenvalues are then (3 +
√

41)/2 and (3−
√

41)/2. The eigenvectors of

A are found to be

~v1 =

(
4

5 +
√

41

)
, ~v2 =

(
4

5−
√

41

)
.

By inspection, we see that ~v1 ·~v2 = 0. Let ~u1 = ~v1/ ‖~v1‖ and ~u2 = ~v2/ ‖~v2‖ be

the normalization of ~v1 and ~v2 respectively and let P be the 2×2 matrix whose

first column is ~u1 and whose second column is ~u2. Then P is orthogonal and

PTAP =

(
3+
√
41

2 0

0 3−
√
41

2

)
.
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Theorem 9.61. Let (V, 〈·, ·〉) be a real inner product space and let ϕ : V →
V be a self-adjoint map.

(i) Every eigenvalue of ϕ is real.

(ii) If λ and λ′ are distinct eigenvalues of ϕ and v and v′ are eigenvectors

of ϕ associated to λ and λ′ respectively, then 〈v, v′〉 = 0.

(iii) There exists an orthogonal basis on V which consists entirely of eigen-

vectors of ϕ. In particular, ϕ is diagonalizable.

Proof. Let B be any orthonormal basis on V . Since ϕ is self-adjoint and B is

orthonormal, Proposition 9.53 implies that the matrix representation [ϕ]B is a sym-

metric matrix. Let A := [ϕ]B. By Theorem 9.59, the eigenvalues of A are all real.

However, the eigenvalues of a linear map and its matrix representation are the same

(see Theorem 6.40). From this, we conclude that the eigenvalues of ϕ are all real.

This proves (i).

Now suppose that λ and λ′ are distinct eigenvalues of ϕ and v and v′ be

eigenvectors of ϕ associated to λ and λ′ respectively. Since B is an orthonormal

basis, we have

〈v, v′〉 = [v]B · [v′]B

by Proposition 9.16. By Theorem 6.40, [v]B and [v′]B are eigenvectors of A := [ϕ]B
associated to the eigenvalues λ and λ′ respectively. Since A is (real) symmetric,

Theorem 9.59 implies that [v]B · [v′]B = 0. Hence, 〈v, v′〉 = 0. This proves (ii).

By statement (iii) of Theorem 9.59, there exists an orthogonal matrix P such

that PTAP is diagonal. This simply implies that the columns of P form an or-

thonormal basis of Rn which consists entirely of eigenvectors of A. Let

~v1, . . . , ~vn

denote the columns of P . Let λi be the eigenvalue of A associated to ~vi and let

vi ∈ V be the unique vector whose coordinate representation with respect to B is

~vi, that is, [vi]B := ~vi for i = 1, . . . , n. This implies that

v1, . . . , vn

is a basis of V . By Theorem 6.40, vi is also an eigenvector of ϕ associated to the

eigenvalue λi for i = 1, . . . , n. By Proposition 9.16, we have

〈vi, vj〉 = [vi]B · [vj ]B = ~vi · ~vj . (166)

Since ~v1, . . . , ~vn is an orthonormal basis on Rn, (166) now implies v1, . . . , vn is an

orthonormal basis on V . This proves (iii). �
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Chapter 9 Exercises

1. Consider the Hermitian matrix

A =

(
1 1 + i

1− i 2

)
.

(a) Compute the eigenvalues of A and the corresponding eigenspaces.

(b) Find a unitary matrix U for which U∗AU is a diagonal matrix.

2. Consider the Hermitian matrix

A =

(
1 1 + i

1− i 1

)
.

(a) Compute the eigenvalues of A and the corresponding eigenspaces.

(b) Find a unitary matrix U for which U∗AU is a diagonal matrix.

3. Test each matrix A below for diagonalizability. If A is diagonalizable, then

find a non-singular matrix P such that P−1AP = D , where D is diagonal.

A =

(
1 2

2 −5

)
; A =

 0 0 1

1 0 −1

0 1 1

 .

4. Show that if a square matrix M is diagonalizable, then so is its transpose MT .

5. Find an expression for An if

A =

(
0 −2

1 3

)
.

Hint: diagonalize A .

6. Let 〈·, ·〉 be an inner product on R2 for which the basis

B = {~b1,~b2} = {(1, 1), (1,−1)}

is orthonormal with respect to 〈·, ·〉. Let S = {~e1, ~e2} denote the standard

basis on R2.

(a) Compute the matrix representation of 〈·, ·〉 with respect to S: [〈·, ·〉]S .

(b) Let ϕ : R2 → R2 be the linear map defined by

ϕ(~e1) = 2~e1 + ~e2, ϕ(~e2) = ~e1 − 2~e2.

Compute the matrix representation of the adjoint map ϕa with respect

to S: [ϕa]S .
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(c) As a test of your calculation, verify the following identity:

〈ϕ(~e1), ~e2〉 = 〈~e1, ϕa(~e2)〉.

7. Let 〈·, ·〉 be an inner product on R3 for which the basis

B = {~b1,~b2,~b3} = {(0, 1,−2), (2,−1, 0), (1, 0, 3)}

is orthonormal with respect to 〈·, ·〉. Let S = {~e1, ~e2, ~e3} denote the standard

basis on R3.

(a) Compute the matrix representation of 〈·, ·〉 with respect to S: [〈·, ·〉]S .

(b) Let ϕ : R3 → R3 be the linear map defined by

ϕ(~e1) = 2~e1 + 2~e3, ϕ(~e2) = 2~e1, ϕ(~e3) = ~e1 + ~e2 + ~e3

Compute the matrix representation of the adjoint map ϕa with respect

to S: [ϕa]S .

(c) As a test of your calculation, verify the following identity:

〈ϕ(~e3), ~e2〉 = 〈~e3, ϕa(~e2)〉.

8. Let R[x]2 be the vector space of real polynomials of degree 2 or less. Let 〈·, ·〉
be the inner product on R[x]2 defined by

〈p(x), q(x)〉 :=

∫ 1

0

p(x)q(x)dx.

(a) Construct an orthonormal basis on (R[x]2, 〈·, ·〉) by applying the Gram-

Schmidt process to the basis B := {x2, x, 1} of R[x]2. Call the resulting

orthonormal basis C.
(b) Let D : R[x]2 → R[x]2 be the linear map defined by

Dp(x) := 4
d

dx
p(x) + p(x).

Give the matrix representation of the adjoint map Da of D with respect

to B and the above inner product: [Da]B.

(c) Let ϕ : R[x]2 → R[x]2 be the linear map whose matrix representation

with respect to B is

[ϕ]B =

 6 −15 −60

0 18 48

0 0 6

 .

Calculate the following: 〈ϕ(x2), x〉 and 〈x2, ϕ(x)〉. What did you find?

(d) Determine conclusively if ϕ is self-adjoint. (Hint: calculate the matrix

representation [ϕ]C .)
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9. Let C([0, 1];C) be the vector space of continuous complex valued functions on

the closed interval [0, 1]. (See Example 9.22.) Define 〈·, ·〉 by

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx

for f, g ∈ C([0, 1];C). Show that 〈·, ·〉 is a Hermitian inner product on

C([0, 1];C). (The proof of this is similar to the one given in Example 9.5).

10. Suppose ϕ : V →W is an antilinear map.

(i) Show that kerϕ is a subspace of V and im ϕ is a subspace of W .

(ii) As in the linear case, define

Nullity(ϕ) := dim kerϕ, Rank(ϕ) := dim im ϕ.

Show that the Rank-Nullity Theorem still holds for antilinear maps. In

other words, show that

dimV = Nullity(ϕ) + Rank(ϕ)

11. Let ϕ : U → V and ψ : V →W be antilinear maps. Show that ψ◦ϕ : U →W

is a linear map.
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Chapter 10

The Determinant Revisited

The goal of this chapter is to prove the properties of the determinant which were

introduced in Chapter 4. Along the way, we will encounter the explicit formula for

the determinant and establish its equivalence to the recursive definition given in

Chapter 4.

10.1. The Sign of a Permutation

Let Sn denote the set of permutations on the ordered set

{1, 2, . . . , n}.

Recall that an element σ ∈ Sn is simply a bijective map

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

From σ, we obtain a reordering of the above set:

{σ(1), σ(2), . . . , σ(n)}.

One can express the information contained in the permutation σ as a 2×n matrix:(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

The first row of the above matrix represents the inputs and the second row the

corresponding outputs. Let e denote the identity map on {1, 2, . . . , n}. e is called

the identity permutation. Its matrix representation is then(
1 2 · · · n

1 2 · · · n

)
.

281
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Definition 10.1. A permutation which simply swaps two elements i and j

of the set {1, 2, . . . , n} is a called a transposition and is denoted by (i, j).

Example 10.2. Consider the transposition (2, 5) ∈ S5 on the ordered

{1, 2, 3, 4, 5}. Its matrix representation is(
1 2 3 4 5

1 5 3 4 2

)
.

Intuitively, given any permutation σ ∈ Sn, one can obtain the permutation

{σ(1), σ(2), . . . , σ(n)}

by successively swapping pairs of elements of the set {1, 2, . . . , n}. In other words,

σ can be expressed as a composition (or product) of transpositions. This intuitive

fact is proven rigorously in any book on abstract algebra.

Example 10.3. Consider the permutation σ ∈ S5 whose matrix represen-

tation is (
1 2 3 4 5

4 5 2 3 1

)
.

By scribbling away on paper, we see right away that σ is given by the com-

position

σ = (1, 5)(1, 2)(1, 3)(1, 4),

where we recall that (i, j) : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} are maps (not

points!) which maps i to j and j to i and leaves everything unchanged. Now

one can ask, is this the only way to express σ as a product of compositions?

The answer is no. We can also express σ as follows:

σ = (1, 5)(1, 2)(1, 3)(1, 4)(1, 3)(1, 2)(1, 3)(2, 3).

Example 10.4. Consider the permutation β ∈ S5 whose matrix represen-

tation is (
1 2 3 4 5

3 1 2 5 4

)
.

With a little thought, we see that β is given by the product

β = (1, 3)(2, 3)(4, 5).

We can also express β as the product

β = (1, 3)(2, 3)(4, 5)(3, 4)(2, 4)(2, 3)(2, 4).

Examples 10.3 and 10.4 illustrate that the expression of a permutation as a prod-

uct of transpositions is not unique. However, notice that both expressions for σ in
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Example 10.3 consists of an even number of transpositions while the expressions

for β in Example 10.4 consist of an odd number of transpositions. This is not a

coincidence.

Theorem 10.5. Let σ ∈ Sn and suppose

σ = τ1τ2 · · · τr = γ1γ2 · · · γs, (167)

where τi and γi are transpositions. Then r and s are either both even or

both odd.

From (167), we have

e = τ1τ2 · · · τrγs · · · γ2γ1.
Hence, Theorem 10.5 is equivalent to the following:

Theorem 10.6. The identity permuation e ∈ Sn is always expressed as an

even number of transpositions.

The proof of Theorem 10.6 is given in any book on abstract algebra and turns out

to be somewhat lengthy. The point of all this is that one has a well defined notion

of even and odd permutations:

Definition 10.7. Let σ ∈ Sn and let

σ = τ1τ2 · · · τr
be any decomposition of σ into transpositions. σ is called even if r is even

and odd if r is odd.

The sign of σ is then given by

sgn(σ) :=

{
1 if σ is even

−1 if σ is odd

Example 10.8. The permutation σ in Example 10.3 is even while the per-

mutation β in Example 10.4 is odd. Hence, sgn(σ) = 1 and sgn(β) = −1.

10.2. Multilinear Maps

The notion of a multilinear map is a simple generalization of a linear map. We

have already encountered multilinear maps. For example, the inner product is a

multilinear map and, later, we will see that the determinant is a multilinear map.

Without loss of generality, we assume throughout this section that all vector spaces
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are real. Naturally, we begin with the following definition:

Definition 10.9. Let W and Vi for i = 1, . . . , k be vector spaces. The map

F : V1 × V2 × · · · × Vk →W

is called a multilinear map (or k-linear map) if F is linear in each of

its k arguments.

More explicitly, the map F in Definition 10.9 is k-linear if for any i ∈ {1, 2, . . . , k}
and any fixed xj ∈ Vj for all j 6= i, F satisfies the following conditions:

F (x1, . . . , xi−1, cv, xi+1, . . . , xn) = cF (x1, . . . , xi−1, v, xi+1, . . . , xn)

and

F (x1, . . . , xi−1,v + v′, xi+1, . . . , xn)

= F (x1, . . . , xi−1, v, xi+1, . . . , xn) + F (x1, . . . , xi−1, v
′, xi+1, . . . , xn)

for all c ∈ R and v, v′ ∈ V .

Example 10.10. Let V be a (real) vector space and let 〈·, ·〉 be an inner

product. Define

F : V × V → R
by F (u, v) := 〈u, v〉. Then

F (cu, v) = 〈cu, v〉 = c〈u, v〉 = cF (u, v)

and

F (u+ u′, v) = 〈u+ u′, v〉 = 〈u, v〉+ 〈u′, v〉 = F (u, v) + F (u′, v)

for all c ∈ R and u, v ∈ V . Likewise, we also have

F (u, cv) = cF (u, v), F (u, v + v′) = F (u, v) + F (u, v′), ∀c ∈ R, v, v′ ∈ V.

Hence, F is a 2-linear map.

Let V be any fixed real vector space. We are now going to specialize to k-linear

maps of the form

F : V × V × · · · × V︸ ︷︷ ︸
k copies

→W.

Let {b1, . . . , bn} be a basis on V . Recall that for a linear map ϕ : V → W , ϕ

is completely determined by its values on the basis elements: ϕ(bi), i = 1, . . . , n.

Hence, if ψ : V →W is another linear map and ψ(bi) = ϕ(bi) for i = 1, . . . , n. then

ψ = ϕ. A similar result applies to k-linear maps.
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Theorem 10.11. Let V be a vector space and let F and G be multilinear

maps with the same range W and domain

V × V × · · · × V︸ ︷︷ ︸
k copies

.

Let {b1, . . . , bn} be a basis on V . Then F = G if and only if

F (bi1 , bi2 , . . . bik) = G(bi1 , bi2 , . . . bik) (168)

for all indices i1, i2, . . . , ik ∈ {1, 2, . . . , n}.

Proof. We prove Theorem 10.11 explicitly for the case k = 2. The general case is

proved in exactly the same way. The only difference is that the notation becomes

more cumbersome.

(⇒): This is immediate. If F = G, then certainly (168) is satisfied.

(⇐): Suppose that

F (bi, bj) = G(bi, bj) (169)

for all bi, bj ∈ {b1, . . . , bn}. Let u, v ∈ V be arbitrary. Then we can express each as

a linear combination of the basis elements:

u = α1b1 + · · ·+ αnbn

v = β1b1 + · · ·+ βnbn, (170)

for some αi, βi ∈ R. Since F is multilinear, we have

F (u, v) =
n∑
i=1

αiF (bi, v)

=

n∑
i=1

n∑
j=1

αiβjF (bi, bj). (171)

The same calculation applied to G gives

G(u, v) =

n∑
i=1

n∑
j=1

αiβjG(bi, bj). (172)

Comparing (171) and (172) and using (169) implies F (u, v) = G(u, v). �

We specialize even further with the following definition:
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Definition 10.12. Let

F : V × V × · · · × V︸ ︷︷ ︸
k copies

→W

be a k-linear map. F is alternating if swapping any two of its arguments

changes the sign of F , that is,

F (v1, . . . , vi, . . . , vj , . . . , vk) = −F (v1, . . . , vj , . . . , vi, . . . , vk).

Moreover, if W = R, then F is called a k-form on V .

Example 10.13. Consider the vector space R2 and define

ω2 : R2 × R2 → R

as follows: for

~u =

(
a

b

)
,

(
c

d

)
,

ω2(~u,~v) := det

(
a c

b d

)
= ad− bc.

We now verify that ω2 is a 2-form. First, we verify that ω2 is alternating,

that is, it changes sign if we swap any two of its arguments (in this case it

only has two arguments):

ω2(~v, ~u) = det

(
c a

d b

)
= bc− ad = −(ad− bc) = −ω2(~u,~v).

Now we verify that ω2 is linear in its first argument. To do this, let r ∈ R
and let

~x =

(
p

q

)
.

Then

ω2(~u+ ~x,~v) = det

(
a+ p c

b+ q d

)
= (a+ p)d− (b+ q)c

= (ad− bc) + (pd− qc)
= ω2(~u,~v) + ω2(~x,~v)

and

ω2(r~u,~v) = det

(
ra c

rb d

)
= rad− rbc
= r(ad− bc)
= rω2(~u,~v).
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To check the linearity of the second argument, we use the fact that ω2 is

alternating and the fact that ω2 is linear in the first argument:

ω2(~u,~v + ~x) = −ω2(~v + ~x, ~u)

= −ω2(~v, ~u)− ω2(~x, ~u)

= ω2(~u,~v) + ω2(~u, ~x).

and

ω2(~u, r~v) = −ω2(r~v, ~u)

= −rω2(~v, ~u)

= rω2(~u,~v).

Hence, we have verified that ω2 is a 2-form on R2.

Example 10.13 shows that the determinant on 2× 2 matrices is really a 2-form on

R2. In the next section, we will show that the determinant on n × n matrices for

arbitrary n is an n-form on Rn. Before we leave this section, we make a few more

observations:

Proposition 10.14. Let

F : V × V × · · · × V︸ ︷︷ ︸
k copies

→W

be a k-linear map. For all v1, . . . , vk ∈ V , the following statements are

equivalent:

(1) F is alternating.

(2) Swapping two adjacent elements in F (v1, v2, . . . , vk) results in a sign

change, that is,

F (v1, . . . , vi, vi+1, . . . , vk) = −F (v1, . . . , vi+1, vi, . . . , vk)

for all i < k.

(3) If vi = vi+1 for all i < k, then F (v1, v2, . . . , vk) = 0.

(4) If vi = vj for some i 6= j, then F (v1, v2, . . . , vk) = 0.

Proof. (1)⇒ (2). Immediate.

(2)⇒ (3). Suppose vi = vi+1 for some i < k. Then

F (v1, . . . , vi, vi+1, . . . , vk) = F (v1, . . . , vi+1, vi, . . . , vk) = −F (v1, . . . , vi, vi+1, . . . , vk)

where the first equality follows from the fact that vi = vi+1 and the second equality

follows from (2). This implies

F (v1, v2, . . . , vk) = 0.
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(2) ⇐ (3). Replace the ith and (i + 1)th arguments of F (v1, v2, . . . , vk) with

u := vi + vi+1 and expand by multilinearity:

F (v1, . . . , u,u, . . . , vk) = F (v1, . . . , vi, vi, . . . , vk) + F (v1, . . . , vi, vi+1, . . . , vk)

+ F (v1, . . . , vi+1, vi, . . . , vk) + F (v1, . . . , vi+1, vi+1, . . . , vk).

By (3), the term on the left side of the equation is zero and also the first and fourth

terms on the right side. Hence, the above equation reduces to

F (v1, . . . , vi, vi+1, . . . , vk) + F (v1, . . . , vi+1, vi, . . . , vk) = 0.

From this, we conclude that F (v1, . . . , vi, vi+1, . . . , vk) = −F (v1, . . . , vi+1, vi, . . . , vk).

(3)⇒ (4). Without loss of generality, take i < j. Suppose vi = vj . If j = i+ 1,

then we have

F (v1, v2, . . . , vk) = 0

by (3). So let us suppose that j > i+ 1. Note that vj can be moved to the (i+ 1)th

spot by swapping adjacent pairs successively a total of j − i − 1 times. Since (3)

implies (2), we have

F (v1, v2, . . . , vi, vj , vi+1, . . . , vk) = (−1)j−i−1F (v1, v2, . . . , vk).

The left side of the equation is zero by (3). Hence, F (v1, v2, . . . , vk) = 0.

(4) ⇒ (1). Without loss of generality, take i < j. Replace the ith and jth

arguments of F (v1, v2, . . . , vk) with u := vi + vj and expand by multilinearity:

F (v1, . . . , u, . . . , u, . . . , vk) = F (v1, . . . , vi, . . . , vi, . . . , vk) + F (v1, . . . , vi, . . . , vj , . . . , vk)

+ F (v1, . . . , vj , . . . , vi, . . . , vk) + F (v1, . . . , vj , . . . , vj , . . . , vk).

By (4), the left side of the equation is zero and also the first and fourth terms on

the right side. Hence,

F (v1, . . . , vi, . . . , vj , . . . , vk) = −F (v1, . . . , vj , . . . , vi, . . . , vk).

�

Proposition 10.15. Let

F : V × V × · · · × V︸ ︷︷ ︸
k copies

→W

be an alternating k-linear map. Let v1, . . . , vk ∈ V and let σ ∈ Sk be a

permutation. Then

F (vσ(1), vσ(2), . . . , vσ(k)) = sgn(σ)F (v1, v2, . . . , vk).

Proof. Let σ ∈ Sk be a permutation. Express σ as a product of transpositions:

σ = τr · · · τ2τ1.
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To go from F (v1, v2, . . . , vk) to F (vσ(1), vσ(2), . . . , vσ(k)), one needs to successively

swap a total of r pairs of the arguments. Since each swap causes a sign change of

F (v1, v2, . . . , vk), it follows that

F (vσ(1), vσ(2), . . . , vσ(k)) = (−1)rF (v1, v2, . . . , vk).

From the definition of the sign of a permutation, it follows that sgn(σ) = (−1)r.

From this, we have

F (vσ(1), vσ(2), . . . , vσ(k)) = sgn(σ)F (v1, v2, . . . , vk).

�

This is a refinement of Theorem 10.11 for alternating multilinear maps:

Theorem 10.16. Let V be a vector space and let F and G be alternating

k-linear maps with the same range W and domain

V × V × · · · × V︸ ︷︷ ︸
k copies

.

Let {b1, . . . , bn} be a basis on V . Then F = G if and only if

F (bi1 , bi2 , . . . bik) = G(bi1 , bi2 , . . . bik) (173)

for all indices

1 ≤ i1 < i1 < i2 < · · · < ik ≤ n.

Proof. (⇒) If F = G, (173) is certainly satisfied.

(⇐) Suppose (173) holds. Let

i1, i2, . . . , ik ∈ {1, 2, . . . , n}

be arbitrary. Since F and G are both alternating, it follows from statement (4) of

Proposition 10.14 that if ip = iq for some p 6= q, then

F (bi1 , bi2 , . . . bik) = G(bi1 , bi2 , . . . bik) = 0.

Now consider the case where

i1, i2, . . . , ik ∈ {1, 2, . . . , n}

are all distinct. Choose a permutation σ ∈ Sk such that

iσ(1) < iσ(2) < · · · < iσ(k). (174)

(173) now implies

F (biσ(1) , biσ(2) , . . . biσ(k)) = G(biσ(1) , biσ(1) , . . . biσ(1)) (175)

On the other hand, Proposition 10.15 implies that

F (biσ(1) , biσ(2) , . . . biσ(k)) = sgn(σ)F (bi1 , bi2 , . . . bik) (176)

G(biσ(1) , biσ(2) , . . . biσ(k)) = sgn(σ)G(bi1 , bi2 , . . . bik). (177)
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(175), (176), and (177) now imply

F (bi1 , bi2 , . . . bik) = G(bi1 , bi2 , . . . bik) (178)

for the case where the indices i1, i2, . . . , ik ∈ {1, 2, . . . , n} are all distinct. We have

now proven that (177) holds for all possible values i1, i2, . . . , ik ∈ {1, 2, . . . , n}.
Theorem 10.11 now implies that F = G. �

Applying Theorem 10.16 to the case of n-forms on an n-dimensional vector space

V immediately yields the following:

Corollary 10.17. Let V be an n-dimensional vector space and let ω and µ

be n-forms on V . Let {b1, . . . , bn}. Then ω = µ if and only if

ω(b1, b2, . . . , bn) = µ(b1, b2, . . . , bn).

10.3. The Determinant as an n-form

Let A be an n×n matrix. In Chapter 4, we defined the determinant as the cofactor

expansion along the first row:

det(A) :=

n∑
k=1

(−1)1+ka1k det(A[1, k]) for n ≥ 2, (179)

where we recall that A[i, j] denotes the matrix obtained from A by deleting its ith

row and jth column. The determinant of a 1×1 matrix (a) was defined to be itself:

det(a) := a. With this last ingredient, the determinant of any n × n matrix can

be computed using (179). For the sake of calculation, this definition is just “ok”.

However, in order to get a deeper understanding of the determinant, the above

definition is not very satisfactory.

In this section, we prove that the determinant is really an n-form on Rn. This

turns out to be the correct way to understand what a determinant really is. Once we

establish that the determinant is an n-form, we will be able to derive the properties

of the determinant relatively easily. To begin, let A be an n×n matrix with n ≥ 2.

Also, let ~a1, . . . ,~an ∈ Rn denote the columns of A. For i ∈ {1, 2, . . . , n}, define

ω(i)
n (~a1, . . . ,~an) :=

n∑
k=1

(−1)i+kaik det(A[i, k]) (180)

Note that the right side of (180) is the cofactor expansion along the ith row of A.

To simplify notation, we will also write

ω(i)
n (A) := ω(i)

n (~a1, . . . ,~an). (181)

From (179), we have

ω(1)
n (A) = det(A) n ≥ 2. (182)
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The goal for this section is the following result:

Proposition 10.18. For any i ∈ {1, 2, . . . , n}, ω(i)
n is an n-form on Rn. In

particular, the determinant is an n-form on Rn.

Proof. We will prove this by induction on n. For n = 1, there is nothing to prove.

Consider the n = 2 case. Let

A =

(
a c

b d

)
.

For the n = 2 case, we have two 2-forms: ω
(1)
2 and ω

(2)
2 . By direct calculation, we

find

ω
(1)
2 (A) = ω

(2)
2 (A) = ad− bc.

The calculation carried out in Example 10.13 shows that ω
(1)
2 and ω

(2)
2 are 2-forms

on R2. Now let us suppose that the result holds for the n−1 case form some n ≥ 3.

Now let A be an n× n matrix. By definition,

ω(i)
n (A) =

n∑
k=1

(−1)i+kaik det(A[i, k]).

Since the A[i, k]’s are (n−1)×(n−1) matrices, we can rewrite the above expression

using (182):

ω(i)
n (A) =

n∑
k=1

(−1)i+kaikω
(1)
n−1(A[i, k]).

Let ~v ∈ Rn and let r ∈ R. Let A′ be the matrix obtained from A by replacing the

jth column by ~v and let A′′ be the matrix obtained from A by replacing the jth

column by ~aj + r~v. To prove that ω
(i)
n is multilinear, we need to show that

ω(i)
n (A′′) = ω(i)

n (A) + rω(i)
n (A′). (183)

Let vk denote the kth component of ~v. Also, let a′kl and a′′kl denote the (k, l)-element

of A′ and A′′ respectively. Note that for k = 1, 2, . . . , n

akl = a′kl = a′′kl, for l 6= j (184)

and

a′kj = vk, a′′kj = akj + rvk. (185)

Also, observe that for k = 1, 2, . . . , n

A[k, j] = A′[k, j] = A′′[k, j]. (186)
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Expand ω
(i)
n (A′′) as follows:

ω(i)
n (A′′) =

n∑
k=1

(−1)i+ka′′ikω
(1)
n−1(A′′[i, k])

= (−1)j+k(aij + rvi)ω
(1)
n−1(A′′[i, j]) +

∑
k 6=j

(−1)i+kaikω
(1)
n−1(A′′[i, k]).

(187)

Using (186), the first term in (187) can be rewritten as

(−1)j+kaijω
(1)
n−1(A[i, j]) + (−1)j+krviω

(1)
n−1(A′[i, j]). (188)

Given (185) and the fact that ω
(1)
n−1 is an (n − 1)-form by hypothesis implies that

the summation term in (187) can be expanded as∑
k 6=j

(−1)i+kaikω
(1)
n−1(A[i, k]) + r

∑
k 6=j

(−1)i+kaikω
(1)
n−1(A′[i, k]). (189)

Substituting (188) and (190) into (187) and using (182) gives

ω(i)
n (A′′) =

n∑
k=1

(−1)i+kaikω
(1)
n−1(A[i, k]) + r

n∑
k=1j

(−1)i+kaikω
(1)
n−1(A′[i, k])

=

n∑
k=1

(−1)i+kaik det(A[i, k]) + r

n∑
k=1j

(−1)i+kaik det(A′[i, k])

= ω(i)
n (A) + rω(i)(A′),

which is the desired result we seek.

Lastly, we verify that ω
(i)
n is alternating. By statement (3) of Proposition 10.14,

it suffices to show that if ~aj = ~aj+1 for some j < n, then ω
(i)
n (A) = 0. So let us

suppose that ~aj = ~aj+1 for some j < n. Expanding ω
(i)
n (A) gives

ω(i)
n (A) =

n∑
k=1

(−1)i+kaik det(A[i, k])

=

n∑
k=1

(−1)i+kaikω
(1)
n−1(A[i, k])

= (−1)i+jaijω
(1)
n−1(A[i, j]) + (−1)i+j+1ai,j+1ω

(1)
n−1(A[i, j + 1])

+
∑

k 6=j,j+1

(−1)i+kaikω
(1)
n−1(A[i, k]). (190)

Since ~aj = ~aj+1, we have A[i, j] = A[i, j+1] and aij = ai,j+1. This implies that the

first two terms in (190) sum to zero. For the summation in (190), note thatA[i, k] for

k 6= j, j + 1 contains two identical adjacent columns. By the induction hypothesis,

ω
(1)
n−1 is an (n−1)-form. This implies that ω

(1)
n−1(A[i, k]) = 0 for k 6= j, j+1. Hence,

the summation term in (190) is also zero. Hence, ω
(i)
n (A) = 0 as desired. �
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Corollary 10.19. ω
(1)
n = ω

(i)
n for i = 1, 2, . . . , n.

Proof. By Proposition 10.18, ω
(i)
n are n-forms on Rn for i = 1, 2, . . . , n. Let

~e1, . . . , ~en

be the standard basis on Rn. By direct inspection, we have

ω(i)
n (~e1, . . . , ~en) = 1 (191)

for i = 1, 2, . . . , n. Corollary 10.17 implies that

ω(1)
n = ω(2)

n = · · · = ω(n)
n .

�

We can now prove half of the Cofactor Expansion Theorem (Theorem 4.10):

Corollary 10.20. Let A be an n × n matrix with n ≥ 2. Then for i =

1, 2, . . . , n

det(A) =

n∑
k=1

(−1)k+iaik det(A[i, k]).

Proof. Using (182) and Corollary 10.19, we have

det(A) = ω(1)
n (A)

= ω(i)n(A)

=

n∑
k=1

(−1)i+kaik det(A[i, k]).

�

Let A be an n × n matrix with n ≥ 2 and let ~ai be the ith column of A. To

emphasize that the determinant is really an n-form, we will occasionally write

det(~a1,~a2, . . . ,~an) := det(A).

We conclude this section with a proof of the behavior of the determinant under

column operations (see Theorem 4.15):
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Corollary 10.21. Let A be an n × n matrix with n ≥ 2 and let ~ai denote

the ith column of A.

(i) Let A1 be the matrix obtained from A by swapping columns ~ai and ~aj
for i 6= j. Then det(A1) = − det(A).

(ii) Let A2 be the matrix obtained from A by replacing ~ai by c~ai for c ∈ R.

Then det(A2) = cdet(A).

(iii) Let A3 be the matrix obtained from A by replacing the jth column by

r~ai + ~aj for r ∈ R and i 6= j. Then det(A3) = det(A).

Proof. For (i), take i < j without loss of generality. Then we have

det(A1) = det(~a1, . . . ,~aj , . . . ,~ai, . . . ,~ak)

= − = det(~a1, . . . ,~ai, . . . ,~aj , . . . ,~ak)

= −det(A).

For (ii), we have

det(A2) = det(~a1,~a2, . . . , c~ai, . . . ,~ak)

= cdet(~a1,~a2, . . . ,~ai, . . . ,~ak)

= cdet(A).

Lastly, for (iii), take i < j without loss of generality. Then we have

det(A3) = det(~a1, . . . ,~ai, . . . , c~ai + ~aj , . . . ,~ak)

= cdet(~a1, . . . ,~ai, . . . ,~ai, . . . ,~ak) + det(~a1, . . . ,~ai, . . . ,~aj , . . . ,~ak)

= 0 + det(~a1, . . . ,~ai, . . . ,~aj , . . . ,~ak)

= det(A).

�

To use an old tired saying, understanding the determinant via (179) is a case of

missing the forest for the trees. It is only after coming to the realization that the

determinant is an n-form does the forest finally comes into view.

10.4. Explicit Formula

Let A be an n × n matrix with n ≥ 2. Let ~ai denote the ith column of A and let

aij denote the (i, j)-element of A. Also, let ~ei denote the ith standard basis. Then

~aj =

n∑
i=1

aij~ei.
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In the last section, we showed that the determinant is an n-form on Rn which takes

the value 1 on the standard basis. Let us expand det(A) using multilinearity:

det(A) = det(~a1,~a2, . . . ,~an)

=

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

ai11ai22 · · · ainn det(~ei1 , ~ei2 , . . . , ~ein). (192)

Consider an arbitrary term in the sum:

ai11ai22 · · · ainn det(~ei1 , ~ei2 , . . . , ~ein). (193)

Each of the above indices ik, k = 1, 2, . . . , n, can take on any value from 1 to n.

Since the determinant is an n-form, if there is any repetition in the set

i1, i2, . . . , in, (194)

then (193) is exactly zero. Hence, the potentially nonzero terms in the sum (192)

are those for which (194) is a permutation of 1, 2, . . . , n. Hence, for each of these

terms, there is a unique permutation σ ∈ Sn such that

ik = σ(k) for k = 1, 2, . . . , n. (195)

If (193) consists of entirely distinct indices, then by Proposition 10.15, we have

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n det(~e1, ~e2, . . . , ~en). (196)

Moreover, since the determinant takes the value 1 on the standard basis (in other

words det(In) = 1), (196) can be further simplified to

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n. (197)

Hence, every potentially nonzero term in (192) is of this form for some unique

σ ∈ Sn. So by throwing out the terms with repeating indices in (192) (which are

zero) and rewriting those with distinct indices in the form of (197) yields the ex-

plicit formula for the determinant:

Theorem 10.22. Let A be an n× n matrix. Then

det(A) =
∑
σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n.

We now give an alternate proof of Theorem 4.23 using the explicit formula for the

determinant:

Theorem 10.23. Let A be an n× n matrix. Then det(AT ) = det(A).
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Proof. Let aij denote the (i, j)-element of A. Also, let B = AT and let bij denote

the (i, j)-element of B. Using Theorem 10.22, we have

det(AT ) = det(B)

=
∑
σ∈Sn

sgn(σ)bσ(1)1bσ(2)2 · · · bσ(n)n

=
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n). (198)

Consider an arbitrary term in the sum:

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n). (199)

Let σ−1 be the inverse map of σ. Note that sgn(σ−1) = sgn(σ). Using this fact, we

can rewrite the above term as

sgn(σ−1)aσ−1(σ(1))σ(1)aσ−1(σ(2))σ(2) · · · aσ−1(σ(n))σ(n) (200)

As sets, {σ(1), σ(2), . . . , σ(n)} and {1, 2, . . . , n} contain the same elements. (The

only difference, of course, is the order of these sets.) So by simply rearranging the

factors in (200), we see that (200) can be rewritten as

sgn(σ−1)aσ−11aσ−1(2)2 · · · aσ−1(n)n. (201)

Using (201), we can rewrite (198) as

det(AT ) =
∑
σ∈Sn

sgn(σ−1)aσ−11aσ−1(2)2 · · · aσ−1(n)n (202)

Lastly, since the map from Sn to itself which sends σ to its inverse σ−1 is a bijection,

it follows that the sum in (202) is equal to

det(AT ) =
∑
σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n (203)

which is precisely the explicit formula for det(A). Hence, det(AT ) = det(A). �

Corollary 10.24. Let A be an n × n matrix for n ≥ 2. Then for j =

1, 2, . . . , n

det(A) =

n∑
k=1

(−1)k+jakj det(A[k, j]).
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Proof. Let B = AT . Using Corollary 10.20 and Theorem 10.23, we have

det(A) = det(AT )

= det(B)

=

n∑
k=1

(−1)j+kbjk det(B[j, k])

=

n∑
k=1

(−1)j+kakj det(AT [j, k])

=

n∑
k=1

(−1)j+kakj det(A[k, j]T )

=

n∑
k=1

(−1)j+kakj det(A[k, j]).

�

Remark 10.25. Corollaries 10.20 and 10.24 prove the Cofactor Expansion

Theorem (Theorem 4.10).

The proof of Theorem 4.15 is obtained by combining Corollary 10.21 with the fol-

lowing result:

Corollary 10.26. Let A be an n× n matrix with n ≥ 2 and let Ri denote

the ith row of A.

(i) Let A1 be the matrix obtained from A by swapping rows Ri and Rj for

i 6= j. Then det(A1) = −det(A).

(ii) Let A2 be the matrix obtained from A by replacing Ri by cRi for c ∈ R.

Then det(A2) = cdet(A).

(iii) Let A3 be the matrix obtained from A by replacing the jth row by cRi+

Rj for c ∈ R and i 6= j. Then det(A3) = det(A).

Proof. Let B = AT and let ~bi denote the ith column of B. Then ~bi = RTi . To

prove (i)-(iii), we apply Corollary 10.21 and Theorem10.23.

(i): Let B1 = AT1 . Then B1 is the matrix obtained from B by swapping columns
~bi and ~bj . Hence,

det(A1) = det(AT1 ) = det(B1) = −det(B) = −det(AT ) = −det(A).

(ii): Let B2 = AT2 . Then B2 is the matrix obtained from B by scaling ~bi by c.

Hence,

det(A2) = det(AT2 ) = det(B2) = cdet(B) = cdet(AT ) = cdet(A).
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(iii): Let B3 = AT3 . Then B3 is the matrix obtained from B by replacing

column j by c~bi +~bj . Hence,

det(A3) = det(AT3 ) = det(B3) = det(B) = det(AT ) = det(A).

�

We conclude this chapter with a proof of the multiplicative property of the

determinant (Theorem 4.19).

Theorem 10.27. Let A and B be n × n matrices. Then det(AB) =

det(A) det(B).

Proof. The n = 1 case is trivial so let us assume n ≥ 2. To prove Theorem 10.27,

we make use of the fact that the determinant is an n-form on Rn. Let ~ai and
~bi denote the ith columns of A and B respectively. Let aij and bij denote the

(i, j)-elements of A and B respectively. Then

det(AB) = det(A~b1, A~b2, . . . , A~bn).

Expand the vector A~bi:

A~bi = b1i~a1 + b2i~a2 + · · ·+ bni~an.

Since the determinant is an n-form (and hence multilinear), we have

det(AB) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

bi11bi22 · · · binn det(~ai1 ,~ai2 , . . . ,~ain). (204)

Consider an arbitrary term in the sum:

bi11bi22 · · · binn det(~ai1 ,~ai2 , . . . ,~ain). (205)

Since the determinant is an n-form, if there is any repetition in the indices i1, i2, . . . , in,

the above term will be zero. Hence, the only terms which contribute to (204) are

those for which {i1, i2, . . . , in} is equal to {1, 2, . . . , n} as unordered sets. In this

case, there is a unique permutation σ ∈ Sn such that

σ(k) = ik.

So if {i1, i2, . . . , in} are all distinct, we can use Proposition 10.15 to rewrite (204)

as

sgn(σ)bσ(1)1bσ(2)2 · · · bσ(n)n det(~a1,~a2, . . . ,~an). (206)

Since det(A) = det(~a1,~a2, . . . ,~an), we can further simplify to

sgn(σ)bσ(1)1bσ(2)2 · · · bσ(n)n det(A). (207)



Chapter 10 Exercises 299

So discarding all the terms with repeating indices and rewriting those with distinct

indices in the form of (207), we can rewrite (204) as

det(AB) =
∑
σ∈Sn

sgn(σ)bσ(1)1bσ(2)2 · · · bσ(n)n det(A)

=

(∑
σ∈Sn

sgn(σ)bσ(1)1bσ(2)2 · · · bσ(n)n

)
det(A)

= det(B) det(A)

= det(A) det(B),

where the second to last equality follows from the explicit formula for det(B). �

Chapter 10 Exercises

1. Let σ ∈ S6 be the permutation given by(
1 2 3 4 5 6

2 3 5 1 4 6

)
.

Write σ as a product of transpositions. What is the sign of σ?

2. A p-cycle in Sn is a permutation which is a generalization of a transposition.

For example, the 3-cycle (1, 3, 2) in S5 is the permutation which maps 1 to

3, 3 to 2, and 2 to 1 and maps all other numbers to themselves. Explicitly,

(1, 3, 2) is given by (
1 2 3 4 5

3 1 2 4 5

)
.

A transposition is then a 2-cycle. Write a p-cycle (i1, i2, . . . , ip) ∈ Sn as a

product of transpositions. What is the sign of a p-cycle?

3. Write every element of S3 using the cycle notation introduced in Problem 2..

Also, determine the sign of each element in S3.

4. Let V be a real vector space and suppose ω is a 2-form on V which satisfies

the following condition:

ω(u, v) = 0 ∀ v ∈ V ⇐⇒ u = 0.

A 2-form which satisfies the above condition is called nondegenerate or

symplectic. The pair (V, ω) is called a symplectic vector space. Show

that if (V, ω) is a symplectic vector space, then there exists a basis of V of the

form

B = {e1, e2, . . . , en, f1, f2, . . . , fn}
such that

ω(ei, fj) =

{
1 if i = j

0 if i 6= j
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and

ω(ei, ej) = ω(fi, fj) = 0, for all i, j.

The basis B is called a symplectic vector space. In particular, conclude

that every symplectic vector space is necessarily even dimensional.

5. Let (V, ω) be a symplectic vector space (see Problem 4.). Let W ⊂ V be a

subspace. Define

Wω := {v ∈ V | ω(v, w) = 0 ∀ w ∈W}.

Wω is called the ω-orthogonal complement of W .

(a) Show that dimW + dimWω = dimV .

(b) Show that (Wω)ω = W .

(c) Construct a subspace L of V such that dimL = 1
2 dimV and Lω = L.

Such a subspace is called a Lagrangian subspace of (V, ω). (Hint: use

Problem 4.).

(d) Show that in general V is not a direct sum of W and Wω. (Hint: use (c)).

6. Consider the vector space R2 and define ω(~u,~v) := det(~u,~v) for all ~u,~v ∈ R2.

(a) Show that (R2, ω) is a symplectic vector space (see Problem 4.).

(b) Let ~e1, ~e2 denote the standard basis on R2. Show that ~e1, ~e2 is a sym-

plectic basis on (R2, ω).

(c) Let Wi be the subspace spanned by ~ei for i = 1, 2. Show that Wi is a

Lagrangian subspace of (R2, ω) for i = 1, 2 (see Problem 5.)

7. Let

A =

 1 −2 1

0 2 1

2 1 1

 .

(a) Compute det(A) using the explicit formula for the determinant. (Use

Problem 3.)

(b) Check your answer in (a) by computing det(A) using a cofactor expansion.

8. Let ~u,~v ∈ R2 be linearly independent. Show that det(~u,~v) is the area of the

parallelogram formed from ~u,~v.

9. Let ~u,~v, ~w ∈ R3 be linearly independent. Show that det(~u,~v, ~w) is the volume

of the parallelepiped formed by ~u,~v, ~w.

10. Let V be a real vector space. Let B1 and B2 be bases of V . B1 is said to have

the same orientation as B2 if det(PB1B2
) > 0, where PB1B2

is the transition

matrix from B2 to B1. We abbreviate the condition of vector space orientation

by writing B1 ∼ B2.
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(a) Show that B1 ∼ B1.

(b) Show that if B1 ∼ B2, then B2 ∼ B1.

(c) Show that if B3 is a basis of V and B1 ∼ B2 and B2 ∼ B3, then B1 ∼ B3.

Conditions (a) through (c) prove that the idea of vector space orientation is

an equivalence relation, a notion which we will introduce in Chapter 11.





Chapter 11

Quotient Vector Spaces

Quotient vector spaces are one of the most common and important constructions in

mathematics for generating new vector spaces from existing vector spaces. Before

we get to the business of actually defining and studying quotient vector spaces, we

would like to take a moment to give some motivation for quotient vector spaces.

One of the most striking applications of quotient vector spaces occurs in a

branch of mathematics called algebraic topology. First, topology is a branch of

mathematics which regards spaces as being made of clay. In other words, in topol-

ogy, spaces can be stretched, compressed, and deformed in a continuous manner.

Two spaces are considered the same in topology if one space can be continuously

deformed into the other without tearing the space in the process. For example, from

the standpoint of topology, a cube is the same as a sphere since one can continuously

deform the cube into the sphere without tearing the cube in the process. On the

other hand, a donut or torus is not the same as a sphere (topologically speaking)

since deforming the sphere into the torus would create tears in the sphere. The pri-

mary question in topology then is to determine when two spaces can be considered

the same from the point of view of clay. In general, this is a very hard question

to answer. It turns out to be somewhat easier to determine when two spaces are

different. This question leads to algebraic topology, which is the application of

abstract algebra to topology. One of the main tools of algebraic topology are cer-

tain objects called cohomology groups. Now the definition of cohomology groups

is far outside the scope of a linear algebra textbook so we will make no effort to

define them. However, the point of cohomology groups is this: two spaces which

produce different sets of cohomology groups cannot be topologically equivalent. At

this point, the reader is no doubt wondering what any of this has to do with quo-

tient vector spaces. The answer is everything! At the end of the day, cohomology

groups, at their most fundamental level, are nothing but quotient vector spaces!

In essence then, quotient vector spaces can be used to distinguish one shape from

303
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that of another. Of course, the details of how this is done exactly is far outside the

scope of this book. Even so, this example does highlight one of the most important

applications of quotient vector spaces. With that said, we now turn to the business

of actually defining and studying quotient vector spaces.

11.1. Quotient Vector Spaces

In this section, we will work our way towards the definition of a quotient vector

space. We begin with the definition of an equivalence relation which generalizes the

notion of equality between two elements in a set.

Definition 11.1. Let S be a set. A binary relation on S is simply a

subset R ⊂ S × S. If (a, b) ∈ R, one writes a ∼ b. One often suppresses

any mention of R and simply refers to ∼ as the binary relation.

An equivalence relation on S is a binary relation ∼ which satisfies the

following conditions:

(i) a ∼ a for all a ∈ S (reflexive property)

(ii) if a ∼ b for some a, b ∈ S, then b ∼ a (symmetric property)

(iii) if a ∼ b and b ∼ c for some a, b, c ∈ S, then a ∼ c (transitive property)

For a ∈ S, the set

[a] := {b ∈ S | b ∼ a}
is called the equivalence class of a. The element a is said to be a repre-

sentative of [a]. The set of all equivalence classes of S is denoted as S/ ∼.

S/ ∼ is called the quotient set of the equivalence relation.

Remark 11.2. Let V be a vector space and let B be a basis on V . Recall

that we denote the coordinate representation of a vector v ∈ V with respect

to B by [v]B. While this notation is similar to the notation used for equiva-

lence classes, coordinate representations have nothing to do with equivalence

classes. Hence, the reader should not confuse these two ideas. Likewise,

matrix representations have nothing to do with equivalence classes.
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Example 11.3. Let S be any set and let R ⊂ S × S be the binary relation

defined by

R := {(a, a) | a ∈ S}.
Clearly, R satisfies the three conditions of Definition 11.1 and is thus an

equivalence relation. Of course, the equivalence relation ∼ associated to R

is none other than the usual notion of equality. In other words, ∼ is simply

= here. The equivalence class associated to a ∈ S is simply the one element

subset [a] = {a}. Hence, the quotient set S/ ∼ is simply S in this case.

Theorem 11.4. Let S be a set and let ∼ be an equivalence relation on S.

For any a, b ∈ S, there are only two possibilities: [a] ∩ [b] = ∅ or [a] = [b].

In particular, S is a (disjoint) union of its equivalence classes.

Proof. Let a, b ∈ S. If [a] = [b], we are done. So suppose that [a] 6= [b]. We need

to show that [a] and [b] are disjoint sets. Let us suppose this is not the case, that

is, [a] ∩ [b] 6= ∅. Let c ∈ [a] ∩ [b]. From the definition of equivalence classes, we

have c ∼ a and c ∼ b. By the symmetric property of equivalence relations, we also

have a ∼ c. The transitive property now implies that a ∼ b, which means that

b ∈ [a]. Now let x ∈ [a] be any arbitrary element. By definition, we have x ∼ a.

Since a ∼ b, we also have x ∼ b which in turn implies that x ∈ [b]. Since x ∈ [a]

was arbitrary, we conclude that [a] ⊂ [b]. A similar argument shows that [a] ⊃ [b].

From this, we conclude that [a] = [b], which is a contradiction. Since we arrived

at this contradiction by assuming [a] ∩ [b] 6= ∅, we conclude that our assumption is

wrong. In other words, [a] ∩ [b] = ∅.
For the last statement, let E := S/ ∼ denote the set of all equivalence classes

of S. Let

X :=
⋃

[a]∈E

[a].

This is a disjoint union by the first statement of Theorem 11.4, that is, given two

distinct equivalence classes [a] and [b], we must have [a] ∩ [b] = ∅. Clearly, we have

X ⊂ S. Now, let a ∈ S be arbitrary. By the reflexive property, we have a ∈ [a].

Since [a] ∈ E, it follows that a ∈ X, which in turn implies that S ⊂ X. From this,

we conclude that X = S. This completes the proof. �

Remark 11.5. The proof of Theorem 11.4 is an example of proof by contra-

diction. Proof by induction and proof by contradiction are two of the most

powerful strategies used in mathematics for proving a claim.

We now have the necessary background to define quotient vector spaces. Let V

be a vector space and W a subspace of V . Let RVW ⊂ V × V be the binary relation
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given by

RVW := {(v, v′) | v, v′ ∈ V and v − v′ ∈W}. (208)

In other words, we write v ∼ v′ if and only if v − v′ ∈W . The following result will

prove to be essential to the definition of quotient vector spaces:

Theorem 11.6. Let V be a vector space and W a subspace of V . Let ∼
be the binary relation determined by the set RVW ⊂ V × V . Then ∼ is an

equivalence relation.

Proof. To prove the reflexive property, let v ∈ V . Since W is a subspace of V , W

contains the zero element 0. Consequently, v− v = 0 ∈W . This shows that v ∼ v.

For the symmetric property, let us suppose that v ∼ v′ for some v, v′ ∈ V . By

definition, this means that v − v′ ∈ W . Since W is a subspace of V , any scalar

multiple of v − v′ is also in W . In particular, we have

−(v − v′) = v′ − v ∈W.

From this, we have v′ ∼ v.

Lastly, for the transitive property, let us suppose that v ∼ v′ and v′ ∼ v′′ for

some v, v′, v′′ ∈ V . Then v− v′ and v′ − v′′ are both in W . Since W is a subspace,

the sum of any two elements of W is again in W . In particular, we have

(v − v′) + (v′ − v′′) = v − v′′ ∈W.

From this, we have v ∼ v′′. This completes the proof. �

Here (at last) is the definition of quotient vector spaces:

Definition 11.7. Let V be a vector space over a field F and let W be a

subspace of V . Let RVW ⊂ V × V be defined by (208) and let ∼ be the

equivalence relation determined by RVW . The quotient vector space is the

quotient set V/ ∼ equipped with the following vector space structure:

(i) (vector addition) [u] + [v] := [u+ v] for all u, v ∈ V
(ii) (scalar multiplication) c[v] := [cv] for all c ∈ F and v ∈ V .

The quotient vector space V/ ∼ is denoted as V/W which one reads as “V

mod W”. The equivalence class [v] represented by v is called the coset of u.

Once again, we would like to stress to the reader that the element [v] ∈ V/W is

an equivalence class and not a coordinate representation of v. (This should be

quite clear since we have not specified any basis and the notion of a coordinate

representation is meaningless without fixing a basis on V .)

Now that we have defined the quotient vector space, we have to actually verify

that V/W is indeed a vector space. However, before we can do that, we first have
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to show that the definition of vector addition and scalar multiplication appearing in

Definition 11.7 is well-defined, that is, it is independent of the choice of equivalence

class or coset representatives. The next result does just that.

Proposition 11.8. Let V be a vector space over F and let W be a subspace

of V . If [u] = [u′] and [v] = [v′] for some u, u ∈ V and v, v′ ∈ V , then

(i) [u+ v] = [u′ + v′]

(ii) [cv] = [cv′] for all c ∈ F

Proof. Suppose that [u] = [u′] and [v] = [v′] for some u, u′ ∈ V and v, v′ ∈ V .

Let ∼ be the equivalence relation on V determined by RVW . In other words, for

x, y ∈ V , we have x ∼ y if and only if x− y ∈W .

By Theorem 11.6, ∼ is an equivalence relation. Hence, u′ ∈ [u′] by the reflexive

property. Since [u′] = [u], we also have u′ ∈ [u] which implies that u′ ∼ u. In other

words, w1 := u′−u ∈W . Likewise, since [v] = [v′], it follows that w2 := v′−v ∈W .

From this, we have

u′ = u+ w1, v′ = v + w2.

Consequently,

(u′ + v′)− (u+ v) = (u+ w1 + v + w2)− (u+ v)

= w1 + w2

∈W,

where the last equality follows from the fact that W is a subspace. Hence, u′+v′ ∼
u + v. From this, we have u′ + v′ ∈ [u + v]. Since we also have u′ + v′ ∈ [u′ + v′],

we see that [u+ v]∩ [u′+ v′] 6= ∅. Since ∼ is an equivalence relation, Theorem 11.4

implies that [u+ v] = [u′ + v′]. This proves (i).

For (ii), let c ∈ F. Then

cv′ − cv = c(v′ − v)

= c(v + w2 − v)

= cw2

∈W,

where the last equality follows from the fact that W is a subspace. Hence, cv′ ∼ cv.

From this, we have cv′ ∈ [cv]. Since we also have cv′ ∈ [cv′], we see that [cv]∩[cv′] 6=
∅. Since ∼ is an equivalence relation, Theorem 11.4 implies that [cv] = [cv′]. This

proves (ii). �

Now that we know that the vector addition and scalar multiplication operations

are well-defined, it is a straightforward matter to check that the quotient vector

space V/W satisfies all the axioms of a vector space given in Definition 5.4.
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Exercise 11.9. Let V be a vector space and let W be a subspace. Show that

V/W with vector addition and scalar multiplication given by (i) and (ii) in

Definition 11.7 satisfies all the axioms of a vector space (see Definition 5.4).

In particular, show that the zero vector of V/W is simply the coset [0] and

that the additive inverse of a coset [v] is [−v].

For convenience, we record the following simple fact:

Proposition 11.10. Let V be a vector space and let W be a subspace.

(i) The coset of v ∈ V in V/W is

[v] = {w + v | w ∈W}. (209)

(ii) [v] = [0] if and only if v ∈W .

(209) is often denoted more concisely by writing [v] = W + v.

Proof. For (i), let u ∈ [v] be arbitrary. It follows then that u − v ∈ W . Setting

w := u− v, we have u = w + v. Hence, we have shown

[v] ⊂ {w + v | w ∈W}.

For the reverse inclusion, let w ∈ W be arbitrary and let v′ := w + v. Clearly,

we have v′ − v ∈W , which implies that v′ ∈ [v]. Hence, we have

[v] ⊃ {w + v | w ∈W}.

This proves (209).

For (ii), we simply observe that

[v] = [0]⇐⇒ v ∈ [0]⇐⇒ v − 0 = v ∈W.

This completes the proof. �

What is the dimension of V/W? What does a basis on V/W look like? These

are some natural questions about the quotient vector space. The answers to these

particular questions are given by the following result:

Theorem 11.11. Let V be a vector space and let W be a subspace. Let

B := {w1, . . . , wk} be a basis on W and let C := {w1, . . . , wk, x1, . . . , xn−k}
be any basis on V which extends B, where k := dimW and n := dimV .

Then

{[x1], . . . , [xn−k]}
is a basis on V/W . In particular, dimV/W = dimV − dimW .
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Proof. Let v ∈ V and express v as a (unique) linear combination of the basis C:

v = a1w1 + · · · akwk + b1x1 + · · ·+ bn−kxn−k.

From Definition 11.7, we have

[v] = [a1w1 + · · · akwk + b1x1 + · · ·+ bn−kxn−k]

= [a1w1] + · · ·+ [akwk] + [b1x1] + · · ·+ [bn−kxn−k]

= [0] + · · ·+ [0] + b1[x1] + · · ·+ bn−k[xn−k]

= b1[x1] + · · ·+ bn−k[xn−k]

where the third equality follows from statement (ii) of Proposition 11.10. Hence,

V/W = span{[x1], . . . , [xn−k]}.

To complete the proof, we we need to verify that the above vectors are linearly

independent. So suppose that

c1[x1] + · · · cn−k[xn−k] = [0]. (210)

(210) can be rewritten as

[c1x1 + · · ·+ cn−kxn−k] = [0].

Statement (ii) of Proposition 11.10 implies that

c1x1 + · · ·+ cn−kxn−k ∈W. (211)

Since B := {w1, . . . , wk} is a basis on W and C := {w1, . . . , wk, x1, . . . , xn−k} is

a basis on V , (211) implies that ci = 0 for i = 1, . . . , n − k, which proves that

[x1], . . . , [xn−k] is also linearly independent. This completes the proof. �

Example 11.12. Let R[x]n denote the vector space of real polynomials of

degree n or less. Consider the vector space R[x]5. Since R[x]2 is a subspace

of R[x]5, we can form the quotient vector space R[x]5/R[x]2. The basis

B = {x2, x, 1} is a basis of R[x]2 and C = {x5, x4, x3, x2, x, 1} is a basis of

R[x]5 which extends B. By Theorem 11.11,

{[x5], [x4], [x3]}

is a basis of R[x]5/R[x]2. By Proposition 11.10, the elements [x2], [x], and

[1] are all equal to the zero vector of R[x]5/R[x]2.
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Example 11.13. Let M2(R) be the vector space of 2 × 2 real matrices.

Let A2(R) denote the susbpace of M2(R) consisting of 2× 2 anti-symmetric

(or skew-symmetric) matrices. Recall that a matrix A is anti-symmetric if

AT = −A. For a matrix,

A =

(
a b

c d

)
,

it is easy to see that A is anti-symmetric if and only if a = 0, d = 0, and

b = −c. Hence, a basis for A2(R) is

W :=

(
0 1

−1 0

)
.

Let

X :=

(
1 0

0 0

)
, Y :=

(
0 0

0 1

)
, Z :=

(
0 1

1 0

)
.

Then {W,X, Y, Z} is a basis on M2(R). By Theorem 11.11, a basis for

M2(R)/A2(R) is [X], [Y ], and [Z].

Let S2(R) denote the subspace of real 2 × 2 symmetric matrices. Observe

that X, Y , and Z is a basis for S2(R). Let

ϕ : S2(R)→M2(R)/A2(R)

be the natural map which sends a symmetric matrix A to its coset [A] in

M2(R)/A2(R). This map is then a vector space isomorphism. Indeed, for

A,B ∈ S2(R) and c ∈ R, we have

ϕ(A+B) := [A+B] = [A] + [B] = ϕ(A) + ϕ(B)

and

ϕ(cA) = [cA] = c[A] = cϕ(A),

which proves that ϕ is linear. In particular, ϕ maps the basis X, Y , and Z on

S2(R) to the basis [X], [Y ], and [Z] on M2(R)/A2(R), which implies that ϕ

is an isomorphism. This shows that modding M2(R) by the subspace of anti-

symmetric matrices yields a quotient space which is naturally isomorphic to

the subspace of symmetric matrices. In the end of chapter exercises, you

will generalize this result to the n× n case.

We conclude this section with the following definition:

Definition 11.14. Let V be a vector space and let W be a subspace. The

map π : V → V/W which sends a vector v ∈ V to its coset [v] ∈ V/W is

called the (canonical) projection map.
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Proposition 11.15. Let π : V → V/W be the projection map. Then

(i) π is linear

(ii) kerπ = W

Proof. (i): This follows immediately from the definition of vector addition and

scalar multiplication in V/W . Explicitly, for v1, v2 ∈ V and c ∈ F, we have

π(v1 + v2) = [v1 + v2]

= [v1] + [v2]

= π(v1) + π(v2)

and

π(cv1) = [cv1]

= c[v1]

= cπ(v1).

(ii): Let v ∈ V . By Proposition 11.10, π(v) = [v] = [0] if and only if v ∈ W .

Hence, kerπ = W . �

Remark 11.16. The symbol π will not be reserved only for the projection

map. We will typically use π to denote any canonical linear map between

two vector spaces. (For example, see the Second and Third Isomorphism

Theorems in the next section.)

11.2. The Isomorphism Theorems

In this section, we present three canonical isomorphism theorems associated to quo-

tient vector spaces. Throughout this section, we let F = R or C and every vector

space is over F.

Theorem 11.17 (The First Isomorphism Theorem). Let ϕ : V → W be a

linear map and let ϕ̃ : V/ kerϕ→ im ϕ be the map which sends [v] ∈ V/kerϕ

to ϕ(v) ∈ im ϕ. Then ϕ̃ is a vector space isomorphism. (ϕ̃ is called the

induced map associated to ϕ on the quotient vector space.)

Proof. The first order of business is to show that ϕ̃ is well-defined. In other words,

we need to show that if [v] = [v′], then

ϕ̃([v]) := ϕ(v) = ϕ(v′) =: ϕ̃([v′]).
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So let us suppose that [v] = [v′]. From the definition of the quotient space V/ kerϕ,

this is equivalent to the statement that

v − v′ ∈ kerϕ.

However, this implies that ϕ(v − v′) = 0. Since ϕ is a linear map, we have

ϕ(v − v′) = ϕ(v)− ϕ(v′) = 0,

which in turn implies that ϕ(v) = ϕ(v′). Hence, ϕ̃ is indeed a well-defined map.

Next, we show that ϕ̃ is linear. To do this, let [v1], [v2] ∈ V/ kerϕ and let

c ∈ F. Then

ϕ̃([v1] + [v2]) = ϕ̃([v1 + v2])

= ϕ(v1 + v2)

= ϕ(v1) + ϕ(v2)

= ϕ̃([v1]) + ϕ̃([v2])

and

ϕ̃(c[v1]) = ϕ̃([cv1])

= ϕ(cv1)

= cϕ(v1)

= cϕ̃([v1]).

To show that ϕ̃ is an isomorphism, we first verify that ϕ̃ is injective. To do

this, let [v] ∈ ker ϕ̃. Then

ϕ̃([v]) = ϕ(v)

= 0,

which means that v ∈ kerϕ. By Proposition 11.10, this implies that [v] = [0].

Hence, ker ϕ̃ is the zero subspace of V/ kerϕ. From this, we conclude that ϕ̃ is

injective.

Lastly, since ϕ̃([v]) := ϕ(v) for all v ∈ V , it follows immediately that

im ϕ̃ = im ϕ.

This proves that ϕ̃ is surjective, which completes the proof. �

Corollary 11.18. Let ϕ : V →W be a surjective linear map and let

ϕ̃ : V/ kerϕ→W, [v] 7→ ϕ(v)

be the induced map. Then ϕ̃ is a vector space isomorphism.

Proof. Since ϕ is surjective, we have im ϕ = W . Corollary 11.18 now follows from

the First Isomorphism Theorem. �
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Example 11.19. Let ϕ : R3 → R2 be the linear map defined by

ϕ(x, y, z) := (x− y, z).

Clearly, ϕ is surjective and the kernel of ϕ is

kerϕ = {(a, a, 0) | a ∈ R}.

By the First Isomorphism Theorem, the map

ϕ̃ : R3/ kerϕ→ R2, [(x, y, z)] 7→ (x− y, z)

is a vector space isomorphism.

Example 11.20. Let Mn(R) be the vector space of n×n real matrices and

let Sn(R) and An(R) be the subspaces of n×n symmetric and anti-symmetric

matrices respectively. Recall that a matrix A is anti-symmetric if AT = −A.

Define

ϕ : Mn(R)→Mn(R), A 7→ 1

2
(A+AT ).

The map ϕ is clearly linear. Moreover, the image of ϕ is Sn(R). Indeed, for

any A ∈Mn(R), ϕ(A)T = ϕ(A). Also, if A is symmetric, then

ϕ(A) :=
1

2
(A+AT ) =

1

2
2A = A.

Observe that kerϕ = An(R). Consequently, by the First Isomorphism The-

orem, the map

ϕ̃ : Mn(R)/An(R)→ Sn(R), [A] 7→ 1

2
(A+AT )

is a vector space isomorphism.

The Second and Third Isomorphism Theorems establish canonical isomor-

phisms between certain quotient vector spaces. In order to distinguish a coset

of one quotient vector space from that of another, we will employ the notation

of Proposition 11.10 where a coset [v] ∈ V/W is denoted by W + v. Here is the

Second Isomorphism Theorem:

Theorem 11.21 (Second Isomorphism Theorem). Let V be a vector space

and let U and W be subspaces of V . For u ∈ U , denote its coset in U/U ∩W
by [u] and for v ∈ U +W , denote its coset in (U +W )/W by W + v. Let

π : U/U ∩W → (U +W )/W

be the map defined by π([u]) := W+u. Then π is a vector space isomorphism.

Proof. First, we need to check that π is well defined. In other words, if u and u′

are elements of U which represent the same coset in U/U ∩W , we wish to show
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that

π([u]) = π([u′]). (212)

To do this, we simply note that since u and u′ are representatives of the same coset

in U/U ∩W , we have

u− u′ ∈ U ∩W ⊂W.
This implies that u and u′ also represent the same coset in (U + W )/W , that is,

W + u = W + u′. This proves (212). Hence, π is well defined.

Next, we check the linearity of π. To do this, let u1, u2 ∈ U and let c ∈ F.

Then

π([u1] + [u2]) = π([u1 + u2])

= W + (u1 + u2)

= (W + u1) + (W + u2)

= π([u1]) + π([u2])

and

π(c[u1]) = π([cu1])

= W + cu1

= c(W + u1)

= cπ([u1]).

To establish that π is an isomorphism, we first verify that π is injective. So let

[u] ∈ kerπ. Then

π([u]) = W + u = W + 0 = W

This implies that u ∈ W . However, since [u] is an element of U/(U ∩ W ), we

also have u ∈ U . Hence, u ∈ U ∩W , which implies that [u] is the zero vector in

U/U ∩W . This proves that kerπ = {[0]}, which implies that π is injective.

To show that π is surjective, we apply the Rank-Nullity Theorem (Theorem

5.60) to π, which gives

dimU/(U ∩W ) = dim kerπ + dim im π = dim im π.

By Theorem 11.11, we have

dim(U +W )/W = dim(U +W )− dimW

= dimU + dimW − dimU ∩W − dimW

= dimU − dimU ∩W
= dimU/U ∩W,

where the second equality follows from Proposition 5.75. The above calculation

shows that im π has the same dimension as dim(U + W )/W . Since im π is a

subspace of (U +W )/W , it follows that

im π = (U +W )/W.
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This completes the proof. �

Corollary 11.22. Let V be a vector space and let U and W be subspaces

of V such that V = U ⊕W is a direct sum. Then the map

π : U → V/W

which sends u ∈ U to the coset [u] ∈ V/W is a vector space isomorphism.

Proof. Since V is a direct sum of U and W , we have U ∩ W = {0} and V =

U +W . In particular, U/U ∩W = U . Corollary 11.22 now follows from the Second

Isomorphism Theorem. �

Example 11.23. Consider the vector space R3 and let {~e1, ~e2, ~e3} denote

the standard basis on R3. Let W be the subspace spanned by ~e1 − ~e2 and let

U be the subspace spanned by ~e1 and ~e3. Then we have

R3 = W ⊕ U.

By the Second Isomorphism Theorem, the canonical map

π : U
∼→ R3/W, ~u 7→ [~u]

is a vector space isomorphism.

Before we can state the third and final isomorphism theorem, we first need to

know what the subspaces of a quotient vector space look like. The answer to this

problem is given by the following result:

Proposition 11.24. Let V be a vector space and let J be a subspace of V .

(i) If W is a subspace of V such that J ⊂ W , then W/J is a subspace of

V/J .

(ii) If X is a subspace of V/J , then there exists a unique subspace WX of

V such that J ⊂WX and X = WX/J .

Proof. (i): Let W be a subspace of V such that J ⊂W . Then W is a vector space

in its own right and J is also a subspace of W . Hence, it makes sense to consider

the quotient space W/J . By Proposition 11.10, the coset of w ∈ W in V/J and

W/J are exactly the same; both are given by the set

[w] = {j + w | j ∈ J} = J + w.

This shows that W/J is a subset of V/J . Let w1, w2 ∈ W and let c ∈ F. Since W

is a subspace of V , we have

[w1] + [w2] := [w1 + w2] ∈W/J
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and

c[w1] := [cw1] ∈W/J.

This proves that W/J is a subspace of V/J .

(ii): Let X be a subspace of V/J and define

WX := {v ∈ V | [v] ∈ X}.

Observe that J ⊂WX . Indeed, since X is a subspace of V/J , it necessarily contains

the zero vector [0] of V/J . By Proposition 11.10, we have [j] = [0] for all j ∈ J .

From the definition of WX , we have J ⊂ WX . Now let w1, w2 ∈ WX . From the

definition of WX , we have [w1], [w2] ∈ X. Since X is a subspace of V/J , we also

have

[w1] + [w2] ∈ X.

However, [w1] + [w2] := [w1 + w2]. From the definition of WX , we have w1 + w2 ∈
WX . Likewise, for c ∈ F, we have c[w1] ∈ X. Since c[w1] := [cw1], it follows

that cw1 ∈ WX . This proves that WX is a subspace of V . Moreover, it follows

immediately from the definition of WX that X = WX/J .

For the uniqueness claim, suppose that there exists another subspace W ′X of V

such that J ⊂W ′X and X = W ′X/J . Let w ∈WX . Since WX/J = X = W ′X/J , we

have [w] ∈W ′X/J . Hence, there exists w′ ∈W ′X such that [w] = [w′]. This implies

that w′ = w + j for some j ∈ J . Since J ⊂ WX , it follows that w + j ∈ WX . In

particular, w′ ∈ WX This shows that W ′X ⊂ WX . An entirely similar argument

shows that W ′X ⊃ WX . This proves that W ′X = WX as desired. This completes

the proof. �

We now state and prove the Third Isomorphism Theorem:

Theorem 11.25 (Third Isomorphism Theorem). Let V be a vector space

and let W and J be subspaces of V such that J ⊂W . For v ∈ V , denote its

coset in V/W by [v] and for J + v ∈ V/J , denote its coset in (V/J)/(W/J)

by [J + v]. Let

π : V/W → (V/J)/(W/J)

be the map defined by π([v]) := [J+v]. Then π is a vector space isomorphism.

Proof. Note that by Proposition 11.24, W/J is a subspace of V/J . Hence, it makes

sense to consider the quotient vector space (V/J)/(W/J).

As in the Second Isomorphism Theorem, the first order of business is to show

that π is a well defined map. Hence, we must verify that if [v] = [v′], then

[J + v] = [J + v′]. (213)
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So let us suppose that [v] = [v′] for some v, v′ ∈ V . This implies that v − v′ ∈ W .

In particular, this mean that

J + (v − v′) ∈W/J. (214)

(214) can be rewritten as

(J + v)− (J + v′) ∈W/J. (215)

(215) then implies that their cosets in (V/J)/(W/J) are equal. In other words, this

implies (213). Hence, π is well defined.

Next, we verify that π is a linear map. To do this, let [v1], [v2] ∈ V/W and let

c ∈ F. Then

π([v1] + [v2]) = π([v1 + v2])

= [J + (v1 + v2)]

= [(J + v1) + (J + v2)]

= [J + v1] + [J + v2]

= π([v1]) + π([v2])

and

π(c[v1]) = π([cv1])

= [J + cv1]

= [c(J + v1)]

= c[J + v1]

= cπ([v1]).

To show that π is an isomorphism, let [v] ∈ kerπ. Since the zero vector of V/J

is the coset J+0 = J , it follows that the zero vector of (V/J)/(W/J) is [J ]. Hence,

π([v]) = [J + v] = [J ].

This implies that J + v ∈ W/J , which in turn implies that v ∈ W . Consequently,

the coset of v in V/W is [v] = [0]. This shows that kerπ = {[0]}. Hence, π is

injective.

For the surjectivity of π, we apply the Rank-Nullity Theorem (Theorem 5.60)

to π. This gives

dimV/W = dim kerπ + dim im π = dim im. (216)

(216) combined with Theorem 11.11 gives

dim im π = dimV − dimW. (217)
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On the other hand, by a few applications of Theorem 11.11, we also have

dim(V/J)/(W/J) = dimV/J − dimW/J

= (dimV − dim J)− (dimW − dim J)

= dimV − dimW. (218)

Since im π is a subspace of (V/J)/(W/J), (217) and (218) imply that im π =

(V/J)/(W/J). This completes the proof. �

Example 11.26. Consider the vector space R5 and let {~e1, ~e2, . . . , ~e5} de-

note the standard basis on R5. Let W be the subspace spanned by

{~e2 − ~e4, ~e3 − ~e5, ~e5 − ~e1}

and let J be the subspace spanned by ~e3 − ~e1. Observe that J ⊂ W . By the

Third Isomorphism Theorem, the map

π : R5/W → (R5/J)/(W/J)

defined by π([~v]) := [J + ~v] is a vector space isomorphism.

11.3. Other Induced Maps

In this very short section, we introduce the following notion:

Definition 11.27. Let ϕ : V →W be a linear map and let U be a subspace

of V . Also, let π : V → V/U be the projection map. ϕ is said to factor

through V/U if there exists a linear map ϕ̃ : V/U → W which satisfies

ϕ = ϕ̃ ◦ π.

The condition that a linear map ϕ : V → W factors through a quotient vector

space V/U is often expressed in the form of a commutative diagram:

V V/U

W

π

ϕ ϕ̃

The answer to when a linear map factors through a quotient vector space is given

by the following result:

Theorem 11.28. Let ϕ : V → W be a linear map and let U be a subspace

of V . Then ϕ factors through V/U if and only if U ⊂ kerϕ. Moreover, the

map ϕ̃ : V/U →W which satisfies ϕ = ϕ̃ ◦ π is unique.
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Proof. Suppose first that there exists a linear map ϕ̃ : V/U → W satisfying

ϕ = ϕ̃ ◦ π. From Proposition 11.15, the kernel of the projection map π : V → V/U

is U . Hence, for any u ∈ U , we have

ϕ(u) = ϕ̃ ◦ π(u)

= ϕ̃([u])

= ϕ̃([0])

= 0,

where the last equality follows from the assumption that ϕ̃ is linear. This shows

that U ⊂ kerϕ.

On the other hand, let us suppose that U ⊂ kerϕ. Define a map ϕ̃ : V/U →W

by the condition that

ϕ̃([v]) := ϕ(v) (219)

for all v ∈ V . Of course, we need to check that (219) produces a well defined map.

So suppose that v, v′ ∈ V represent the same cosets in V/U . Then v − v′ ∈ U and

since U ⊂ kerϕ, we have

ϕ(v − v′) = 0⇐⇒ ϕ(v) = ϕ(v′). (220)

(220) then implies that ϕ̃([v]) = ϕ̃([v′]). This proves that ϕ̃ is a well defined map.

Since π(v) := [v] for all v ∈ V , (219) can be rewritten as

ϕ̃ ◦ π := ϕ, (221)

which is none other than the factoring condition. To verify that ϕ̃ is also linear, let

v1, v2 ∈ V and let c ∈ F. Then

ϕ̃([v1] + [v2]) = ϕ̃([v1 + v2])

= ϕ(v1 + v2)

= ϕ(v1) + ϕ(v2)

= ϕ̃([v1]) + ϕ̃([v2])

and

ϕ̃(c[v1]) = ϕ̃([cv1])

= ϕ(cv1)

= cϕ(v1)

= cϕ̃([v1]).

This proves that ϕ̃ is linear. To summarize, we have a constructed a linear map

ϕ̃ : V/U →W satisfying ϕ = ϕ̃ ◦ π. By definition, ϕ factors through V/U .

Lastly, for the uniqueness claim, suppose that ψ : V/U → W is another linear

map satisfying ϕ = ψ ◦ π. From this, we have

ϕ̃ ◦ π = ψ ◦ π.
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Since the projection map π is surjective, it immediately follows that ϕ̃ = ψ. This

proves the uniqueness claim. �

Example 11.29. Let ϕ : R4 → R2 be the linear map defined by

ϕ(w, x, y, z) := (x− z, w − y).

The kernel of ϕ is then

kerϕ = {(a, b, a, b) | a, b ∈ R}.

Let U be the subspace of R4 defined by

U := {(a, 0, a, 0) | a ∈ R}.

Then U ⊂ kerϕ. By Theorem 11.28, ϕ factors through V/U . The unique

“factoring map” is the map

ϕ̃ : V/U → R2

given by

ϕ̃([(w, x, y, z)]) = ϕ(x− z, w − y).

Theorem 11.30. Let ϕ : V → V be a linear map and let U ⊂ V be a

subspace. The map

ϕ : V/U → V/U, [v] 7→ [ϕ(v)]

is a well defined linear map if and only if ϕ(U) ⊂ U . (The space U is said

to be invariant under ϕ.)

Proof. ϕ is well defined if and only if

[ϕ(v + u)] = [ϕ(v)], ∀ v ∈ V, u ∈ U. (222)

Since

[ϕ(v + u)] = [ϕ(v) + ϕ(u)] = [ϕ(v)] + [ϕ(u)], (223)

it follows that (222) is equivalent to

[ϕ(v + u)]− [ϕ(v)] = [ϕ(u)] = [0], ∀ u ∈ U. (224)

Of course, (224) is equivalent to ϕ(u) ∈ U for all u ∈ U . From this, we see that ϕ

is well defined if and only if ϕ(U) ⊂ U .

Lastly, the linearity of ϕ follows easily from the linearity of ϕ. �

Chapter 11 Exercises

1. Let Mn(R) denote the vector space of n × n real matrices. Also, let Sn(R)

and An(R) denote the subspace of real symmetric and anti-symmetric matri-

ces respectively. Recall that an n × n matrix A is anti-symmetric (or skew-

symmetric) if AT = −A.
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(a) Show that Mn(R) = Sn(R)⊕An(R)

(b) Let ρs : Sn(R) → Mn(R)/An(R) be the map which sends an element A

of Sn(R) to its coset [A] in Mn(R)/An(R). Show that ρs is a vector space

isomorphism.

(c) Let ρa : An(R) → Mn(R)/Sn(R) be the map which sends an element A

of An(R) to its coset [A] in Mn(R)/Sn(R). Show that ρa is a vector space

isomorphism.

2. Let Mn(R) denote the vector space of n × n real matrices. Also, let Sn(R),

An(R), and Dn(R) denote the subspace of real symmetric, anti-symmetric,

and diagonal matrices respectively. Let

K1 := Mn(R)/Dn(R), K2 := Sn(R)/Dn(R).

Show that An(R) is canoncially isomoprhic to the quotient vector spaceK1/K2.

(Recall that a vector space isomorphism is canonical if it does not depend on

an arbitrary choice of bases.)

3. A short exact sequence is a sequence of linear maps of the form

0→ V1
ι→ V2

π→ V3 → 0

where ι : V1 → V2 is an injective linear map and π : V2 → V3 is a surjective

linear map such that kerπ = im ι. The map 0→ V1 is simply the linear map

which sends the zero vector to the zero vector of V1 and V3 → 0 is the linear

map which maps every element of V3 to the zero vector.

(a) Let V be a vector space and let W be any subspace of V . Show that the

vector spaces W , V , and V/W naturally form a short exact sequence.

(b) For any short exact sequence

0→ V1
ι→ V2

π→ V3 → 0,

show that there exists a linear map ρ : V3 → V2 such that π ◦ ρ = idV3
.

Given such a map ρ, also show that the map

ϕ : V1 × V3 → V2, (v1, v3) 7→ ι(v1) + ρ(v3) (225)

is a vector space isomorphism and that

V2 = ker ι⊕ im ρ.

In (225), V1 × V3 is the Cartesian product of vector spaces, where vector

addition and scalar multiplication are defined componentwise.

(c) Construct a linear map ρ : V/W → V for the short exact sequence in (a).
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4. Let V be a real vector space and let µ ∈ V ∗ be a nonzero element of the dual

space. Show that V/ kerµ ' R.

5. Let Mn(R) be the vector space of n × n real matrices and let sln(R) be the

subspace of matrices with zero trace. Show that Mn(R)/sln(R) is canonically

isomorphic to R.

6. Let ϕ : V → V be a diagonalizable linear map. Let W ⊂ V be invariant under

ϕ. Show that the induced map ϕ : V/W → V/W is also diagonalizable.

7. Suppose that V ⊆ Rn is a subspace and let V ⊥ denotes the orthogonal com-

plement of V with respect to the ordinary dot product. Show that the linear

map

V ⊥ → Rn/V, v 7→ [v]

is an isomorphism. (This implies that every coset of V is represented by a

unique element of V ⊥ ).

8. Consider the quotient vector space of R3 by the subspace W defined by

x − 2y + 2z = 0. (Note that W is a plane through the origin.) Show that

R3/W is canonically isomorphic to R. Use Problem 7. to interpret R3/W

geometrically.

9. Consider the quotient vector space of R3 by the subspace

W := {(2t,−t, t) | t ∈ R}.

(Note that W is a line through the origin.) Use Problem 7. to interpret R3/W

geometrically.



Chapter 12

A Tour of Ring Theory

In this chapter, we venture into an area of abstract algebra called ring theory.

The justification for doing this is that we will use ring theory later in Chapter

13 to prove some of the deepest results of linear algebra. Before we get to any

precise definitions, lets take a moment to understand the basic idea of a ring,

which is not at all complicated. Roughly speaking, a ring is a set with two binary

operations: an addition operation and a multiplication operation which satisfy some

natural conditions and are compatible with one another. For example, the set of

all integers Z is a ring. Integers can be added together and they can be multiplied

together and these operations have nice properties like associativity. Moreover,

they are compatible with one another via the distributive property. However, this

is a linear algebra book. For this reason, we are only interested in rings which are

also vector spaces. So in this book, we will take a more narrow view of what a ring

is. For us, a ring over a field F is a vector space over F with a vector multiplication

operation which is compatible with the vector addition operation and the scalar

multiplication operation on the vector space. Hence, a ring in this book is a set with

three operations: scalar multiplication, vector addition, and vector multiplication;

the latter allows two vectors to be multiplied together to produce a new vector. The

type of rings that we focus on are more commonly called F-algebras. However, we

will not use this terminology. Instead, we will refer to this type of ring as a ring

over F. Hence, our terminology will differ a little from what you might find in an

abstract algebra book. With that said, its time to be begin our study of rings.

12.1. Rings and their Homomorphisms

As far as this book is concerned, a ring is just a vector space with a vector mul-

tiplication. Of course, the vector multiplication on a ring cannot be arbitrary. It

must also be compatible with vector addition and scalar multiplication. Here is the

323
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precise definition of a ring:

Definition 12.1. A ring over F is a vector space R over F which is equipped

with a vector multiplication

R×R→ R, (r, s) 7→ rs ∈ R

which satisfies the following conditions for all r, s, t ∈ R and c ∈ F:

(i) (rs)t = r(st) (multiplicative associativity)

(ii) r(s+ t) = rs+ rt (left distributivity)

(iii) (s+ t)r = sr + tr (right distributivity)

(vi) c(rs) = (cr)s = r(cs) (scalar distributivity)

An element 1 ∈ R satisfying 1r = r1 = r for all r ∈ R is called an identity

element. If R contains such an element (which is necessarily unique),

then R is called a ring with identity.

Moreover, if rs = sr for all r, s ∈ R, R is called a commutative ring.

The following result is intuitively clear, but we will prove it all the same.

Proposition 12.2. Let R be a ring over F. Then r0 = 0r = 0 for all

r ∈ R.

Proof. Let r ∈ R be arbitrary, then

r0 + r0 = r(0 + 0)

= r0

Adding the additive inverse −(r0) to both sides of the above equation yields r0 = 0.

A similar argument gives 0r = 0. �

At this point, we would like to discuss some of the differences between the

vector addition and the vector multiplication operations on a ring. To do this, let

R be a ring over F. One of the differences concerns the idea of commutativity.

Since R is also a vector space over F, we have r+ s = s+ r for any r, s ∈ R. Hence,

the addition operation is commutative. However, in the case of the multiplication

operation, commutativity is no longer required. In other words, a ring may contain

elements u, v satisfying uv 6= vu.

Another key difference between vector addition and vector multiplication on

a ring has to do with the notion of an inverse element. Once again, since R is

also a vector space over F, every element of r ∈ R has an additive inverse element

−r such that r + (−r) = 0. This is not true for vector multiplication on a ring.

More precisely, given an element r ∈ R, there may not exist a multiplicative inverse
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element r−1 ∈ R such that rr−1 = 1. Certainly, if r = 0, then by Proposition 12.2,

r cannot have a multiplicative inverse. On the other hand, even if r 6= 0, r may still

lack a multiplicative inverse. In the language of abstract algebra, R equipped with

its vector addition operation is an example of an abelian group. The subject of

groups is a very interesting and massive subject in its own right. However, to stay

on course for this chapter, we will not say anymore about groups.

At this point, its well past time for some concrete examples. All of the examples

given below are vector spaces that possess a natural vector multiplication which is

compatible with the vector space structure. Moreover, all of these examples have

an identity element.

Example 12.3. Any zero dimensional vector space V = {0} is naturally

a ring. By Proposition 12.2, there is only one possibility for our vector

multiplication: 00 := 0. In this case, the identity element and the zero

vector are one and the same. The ring consisting only of the zero vector is

called the zero ring.

Example 12.4. The field of real numbers R is a ring over R. In this

particular case, the scalar multiplication and the vector multiplication on R
are one and the same. Similarly, the field of complex numbers C is a ring

over C. Again, scalar multiplication and vector multiplication coincide here.

Note that since R ⊂ C, we can also regard C as a ring over R. In this case,

the scalar multiplication and vector multiplication no longer coincide.

Example 12.5. Let Mn(F) be the vector space of n × n matrices whose

entries lie in F. Then Mn(F) is a ring over F if we take the usual matrix

multiplication as our vector multiplication. Indeed, from our study of matrix

operations in Chapter 3, we know that matrix multiplication satisfies the

following relations for all A,B,C ∈Mn(F) and c ∈ F:

(i) (AB)C = A(BC)

(ii) A(B + C) = AB +AC

(iii) (B + C)A = BC + CA

(iv) c(AB) = (cA)B = A(cB)

By Definition 12.1, Mn(F) is a ring over F. In fact, the fields R and C are

special cases of this ring since R = M1(R) and C = M1(C).
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Example 12.6. Let V be a vector space over F and let End(V ) denote the

set of linear endomorphisms of V . Again, recall that a linear endomorphism

of V is simply a linear map from V to itself. End(V ) is naturally a vector

space over F with vector addition defined by

(ϕ+ ψ)(v) := ϕ(v) + ψ(v)

and scalar multiplication defined by

(cϕ)(v) := cϕ(v)

for all ϕ,ψ ∈ End(V ) and c ∈ F. The vector multiplication that turns

End(V ) into a ring over F is (of course!) composition of linear maps:

ϕψ := ϕ ◦ ψ.

The identity element on End(V ) is (naturally) the identity map idV : V →
V . The reader should verify that conditions (i)-(iv) of Definition 12.1 are

indeed satisfied using composition of linear maps for vector multiplication.

The vector space End(V ) with this vector multiplication is called the endo-

morphism ring of V .

Example 12.7. Let F[x] be the vector space of all polynomials in the

variable x with coefficients in F. F[x] is naturally a ring over F if we take

the ordinary multiplication of polynomials for the vector multiplication on

F[x]. F[x] with this vector multiplication is called the polynomial ring.

Of course, the polynomial ring F[x] naturally generalizes to the polynomial

ring in n-variables: F[x1, x2, . . . , xn].

The endomorphism ring End(V ) and the polynomial ring F[x] are the most impor-

tant rings in this book. We will use these rings later in Chapter 13. Now that we

have a reasonable idea of what a ring is, its time to define what a map between two

rings should be. The definition is actually quite obvious:

Definition 12.8. Let R and S be rings over F. A ring homomorphism

(or ring map) is a linear map ϕ : R→ S which satisfies

ϕ(r1r2) = ϕ(r1)ϕ(r2)

for all r1, r2 ∈ R. In addition, if R and S both have identity elements, ϕ is

also required to preserve the identity, that is, ϕ(1R) = 1S where 1R and 1S
denote the identity elements on R and S respectively. If ϕ is also a vector

space isomorphism, then ϕ is called a ring isomorphism.
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Example 12.9. For any ring R over F, the identity map idR : R→ R is a

ring isomorphism.

Example 12.10. Consider the ring of matrices Mn(F). Let P ∈Mn(F) be

any invertible matrix. Define

ϕ : Mn(F)→Mn(F)

by ϕ(A) := PAP−1. Then ϕ is a ring isomorphism. Let us verify this is

indeed the case. First, we show that ϕ is a linear map. To do this, let

A,B ∈Mn(F) and let c ∈ F. Then

ϕ(A+B) := P (A+B)P−1

= PAP−1 + PBP−1

= ϕ(A) + ϕ(B)

and

ϕ(cA) := P (cA)P−1

= c(PAP−1)

= cϕ(A).

Next, we show that ϕ preserves the vector multiplication

ϕ(AB) = P (AB)P−1

= (PA)(PP−1)(BP−1)

= (PAP−1)(PBP−1)

= ϕ(A)ϕ(B).

In addition, ϕ preserves the identity element on Mn(F) (which is simply the

identity matrix In):

ϕ(In) := PInP
−1

= PP−1

= In.

Lastly, ϕ has an inverse: ϕ−1(A) := P−1AP . Hence, ϕ is a ring isomor-

phism.
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Example 12.11. Let V be a vector space over F and fix a basis B on V .

Define a map

T : End(V )→Mn(F)

which sends ϕ ∈ End(V ) to [ϕ]B, where [ϕ]B is the matrix representation of

ϕ with respect to B. T is then a ring isomorphism. First, its clear that T

is a bijective map. Indeed, two endomorphisms on V are equal if and only

if their matrix representations with respect to B are equal. Also, given any

n×n matrix A, there exists a (unique) endomorphism ϕ such that [ϕ]B = A.

Let us verify that it is also a linear map. To do this, let ϕ,ψ ∈ End(V ) and

let c ∈ F. By Proposition 6.27, we have

T (ϕ+ ψ) := [ϕ+ ψ]B

= [ϕ]B + [ψ]B

= T (ϕ) + T (ψ)

and

T (cϕ) := [cϕ]B

= c[ϕ]B

= cT (ϕ).

This proves that ϕ is a vector space isomorphism. Note, however, that the

isomorphism is not canonical as it depends on the basis B.

Next, using Proposition 6.29, we verify that T also preserves the vector

multiplication:

T (ϕψ) = T (ϕ ◦ ψ)

= [ϕ ◦ ψ]B

= [ϕ]B[ψ]B

= T (ϕ)T (ψ).

Lastly, since [idV ]B = In (where n = dimV ), it follows that T also preserves

the identity element. This proves that T is a ring isomorphism.

As an immediate consequence of Example 12.11, we have the following:

Corollary 12.12. Let V be a vector space over F of dimension n. Then

dim End(V ) = n2.



12.2. Subrings and Ideals 329

Proof. From Example 12.11, End(V ) and Mn(F) are isomorphic as rings over F.

In particular, End(V ) and Mn(F) are isomorphic as vector spaces. Hence,

dim End(V ) = dimMn(F) = n2.

�

12.2. Subrings and Ideals

In this section, we introduce two subspaces associated to a ring: subrings and

ideals.

Definition 12.13. Let R be a ring over F. A subring of R is a subspace

S of R such that s1s2 ∈ S for all s1, s2 ∈ S.

Proposition 12.14. Let R and T be rings over F and let ϕ : R → T be a

ring homomorphism. Then im ϕ is a subring of T .

Proof. Since ϕ is also a linear map, im ϕ is a subspace of T . Let t1, t2 ∈ im ϕ.

Then there exists r1, r2 ∈ R such that ϕ(r1) = t1 and ϕ(r2) = t2. Since ϕ preserves

vector multiplicaton, we have

t1t2 = ϕ(r1)ϕ(r2)

= ϕ(r1r2)

∈ im ϕ.

This completes the proof. �

Example 12.15. Consider the ring M2(F). Let

S := {
(
a b

0 c

)
| a, b, c ∈ F}

be the subsapce of 2 × 2 upper triangular matrices. Then S is a subring of

M2(F). Indeed, consider two upper triangular matrices A and B:

A =

(
a1 a2
0 a3

)
, B =

(
b1 b2
0 b3

)
.

Then

AB =

(
a1b1 a1b2 + a2b3

0 a3b3

)
∈ S.

The notion of an ideal comes in three different “flavors”: left, right, and two-

sided. Here is the formal definition:
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Definition 12.16. Let R be a ring over F.

(i) A subspace J of R is called a left ideal if rj ∈ J for all r ∈ R and

j ∈ J .

(ii) A subspace J of R is called a right ideal if jr ∈ J for all r ∈ R and

j ∈ J .

(iii) A subspace J of R is called a two-sided ideal (or simply ideal) if J

is both a left and right ideal.

Note that any left, right, or two-sided ideal of R is automatically a subring of R.

The converse is not true. For example, the subring S in Example 12.15 is neither

a left nor right ideal. Indeed, consider the matrix(
1 1

1 1

)
∈M2(F)

and multiply it from the left and right by an arbitrary element of S. Then(
1 1

1 1

)(
a b

0 c

)
=

(
a b+ c

a b+ c

)
/∈M2(F)

and (
a b

0 c

)(
1 1

1 1

)
=

(
a+ b a+ b

c c

)
/∈M2(F)

whenever a and c are nonzero. For the sake of completeness, we state the following

(obvious) result:

Proposition 12.17. Let R be a commutative ring over F. Then every ideal

of R is a two-sided ideal.

Proof. Let J be a left ideal of R. Then for any r ∈ R and any j ∈ J , we have

jr = rj ∈ J.

Hence, J is also a right ideal and thus a two-sided ideal. Likewise, if J is a right

ideal, it must also be a two-sided ideal. �

For the needs of this book, we will focus primarily on the polynomial ring F[x].

Since F[x] is a commutative ring, the notions of left, right, and two-sided ideals all

coincide. From now on, the term “ideal” will always mean two-sided ideal.
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Example 12.18. Let R be a ring over F. The subspace of R consisting

only of the zero vector 0 is an ideal of R since r0 = 0r = 0 for all r ∈ R.

The ideal {0} is called the trivial ideal. Any ideal different that {0} is

called non-trivial.

The ring R itself is also an ideal of R. Any ideal of R different than R is

called a proper ideal.

Example 12.19. Consider the polynomial ring F[x] and let J denote the

subspace of F[x] spanned by all polynomials of degree 2 or larger. Then J is

an ideal of F[x]. Indeed, let a(x) ∈ J and let p(x) ∈ F[x]. If either a(x) or

p(x) is zero, we of course have a(x)p(x) = 0 ∈ J (since J is a subspace and

thus contains the zero element). So let us suppose that a(x) and p(x) are

both nonzero. Then

deg a(x)p(x) = deg a(x) + deg p(x) ≥ deg a(x) ≥ 2.

Hence, a(x)p(x) ∈ J . This proves that J is an ideal of F[x]. Moreover, since

every nonzero element of J has degree at least 2, J 6= F[x], that is, J is a

proper ideal of F[x]. We will study the polynomial ring in more detail later

in Section 12.4.

Here are some basic properties of ideals that we will make use of in Section 12.3:

Proposition 12.20. Let R be a ring over F and let J and K be ideals of

R. The subspaces J +K and J ∩K are both ideals of R.

Proof. Let r ∈ R and let x ∈ J + K. From the definition of J + K, x = j + k

for some j ∈ J and k ∈ K. Since J and K are ideals of R, we have rj, jr ∈ J and

rk, kr ∈ K. Hence,

rx = r(j + k) = rj + rk ∈ J +K

and

xr = (j + k)r = jr + kr ∈ J +K.

This proves that J +K is an ideal of R.

Let a ∈ J ∩K. Since a is an element of both J and K, it follows that ra and

ar are elements of both J and K. In other words, ra, ar ∈ J ∩K. This proves that

J ∩K is an ideal of R. �

We conclude this section with the following result which shows that any ring ho-

momorphism naturally gives rise to an ideal:
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Theorem 12.21. Let R and S be rings over F and let ϕ : R→ S be a ring

homomorphism. Then kerϕ is an ideal of R.

Proof. Let a ∈ kerϕ. Then for all r ∈ R, we have

ϕ(ra) = ϕ(r)ϕ(a) = ϕ(r)0 = 0.

LIkewise, ϕ(ar) = 0. This proves that ra and ar both lie in kerϕ. Hence, kerϕ is

an ideal of R. �

12.3. Quotient Rings and Isomorphism Theorems

Given a ring R over F and a subspace S of R, one can form the quotient vector

space R/S. Given that we are dealing with rings, we can ask the following natural

question: What condition must be placed on S so that R/S is also a ring over F,

where the ring structure is induced from R? The answer is given by the following

result:

Theorem 12.22. Let R be a ring over F and let J be a subspace of R. Then

the quotient vector space R/J is a ring over F with vector multiplication

defined by

[r1][r2] := [r1r2], ∀ r1, r2 ∈ R (226)

if and only if J is an ideal of R. With J an ideal of R, the ring R/J is

called the quotient ring. Moreover, if R is a ring with identity element 1,

then its coset [1] is the identity element of R/J .

Proof. Suppose first that R/J is a ring over F with vector multiplication given

by (226). Let j ∈ J and r ∈ R be arbitrary. In the quotient vector space R/J ,

[j] = [0] is the zero vector. Since R/J is a ring, we have

[r][j] = [r][0] = [0] (227)

On the other hand, by (226), we also have

[r][j] = [rj]. (228)

(227) and (228) now imply that rj ∈ J . A similar argument shows that jr ∈ J .

This proves that J is an ideal of R.

Now suppose that J is an ideal of R. We need to verify that the multiplication

given by (226) is well defined. To do this, let r1, r2 ∈ R and suppose that r′1 and

r′2 are elements of R satisfying

[r1] = [r′1], [r2] = [r′2]. (229)

We need to verify that

[r1][r2] = [r′1][r′2]. (230)
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Let j1 := r1 − r′1 and j2 := r2 − r′2. (229) implies that j1 and j2 are elements of J .

Then

r1r2 − r′1r′2 = (r′1 + j1)(r′2 + j2)− r′1r′2
= r′1r

′
2 + r′1j2 + j1r

′
2 + j1j2 − r′1r′2

= r′1j2 + j1r
′
2 + j1j2.

Since J is an ideal, every term in the last equality is an element of J . Hence,

r1r2 − r′1r′2 ∈ J . This implies [r1r2] = [r′1r
′
2], which in turn implies (230). This

proves that the vector multiplication given by (226) is well defined.

Now suppose that R is a ring with identity element 1. Then for all r ∈ R, we

have

[r][1] = [r1] = [r] = [1r] = [1][r]

This proves that [1] is the identity element of R/J .

To complete the proof, we need to show that R/J with vector multiplication

given by (226) satisfies conditions (i)-(iv) in Definition 12.1. This is a very straight-

forward exercise which we leave to the reader. �

Exercise 12.23. Let R be a ring over F and let J be an ideal of R. Verify

that the vector multiplication on R/J satisfies conditions (i)-(iv) in Defini-

tion 12.1.

We now apply the three isomorphism theorems for quotient vector spaces (The-

orems 11.17, 11.21, and 11.25) to quotient rings and show that they yield ring iso-

morphisms.

Theorem 12.24 (First Isomorphism Theorem for Rings). Let R and S be

rings over F and let ϕ : R→ S be a ring homomorphism. Then the induced

map

ϕ̃ : R/ kerϕ→ im ϕ

given by ϕ̃([r]) := ϕ(r) is a ring isomorphism.

Proof. By Theorem 12.21, kerϕ is an ideal of R. Hence, R/ kerϕ is a quotient

ring. By the First Isomorphism Theorem for quotient vector spaces (Theorem

11.17), ϕ̃ is a vector space isomorphism. We now verify that ϕ̃ preserves the vector

multiplication. To do this, let r1, r2 ∈ R. Then

ϕ̃([r1][r2]) = ϕ̃([r1r2])

= ϕ(r1r2)

= ϕ(r1)ϕ(r2)

= ϕ̃([r1])ϕ̃([r2]).
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Let us now suppose that R and S are rings with identity elements 1R and 1S
respectively. Then [1R] is the identity element of R/J and

ϕ̃([1R]) = ϕ(1R) = 1S .

This proves that ϕ̃ preserves the identity element. �

Example 12.25. Since R ⊂ C, let us regard C as a ring over R. Define

evi : R[x]→ C

to be the map which evaluates a real polynomial p(x) ∈ R[x] at i :=
√
−1,

that is, evi(p(x)) := p(i). Clearly, evi is a ring homomorphism. Moreover,

evi is surjective. Indeed, for a, b ∈ R, we have

evi(a+ bx) := a+ bi ∈ C.

By Theorem 12.24, the induced map

ẽvi : R[x]/ ker evi → C

given by ẽvi([p(x)]) := p(i) is a ring isomorphism. Since

evi(x
2 + 1) := i2 + 1 = −1 + 1 = 0,

we see that x2 + 1 ∈ evi. Hence, kerϕ 6= {0}. We will see later in Section

12.4 that ker evi consists of all real polynomials p(x) which are divisible by

the polynomial x2 + 1.

This example shows that the field of complex numbers can be expressed as a

quotient ring of the polynomial ring R[x]! We will generalize this example

in Section 12.6.

Theorem 12.26 (Second Isomorphism Theorem for Rings). Let R be a ring

over F and let J and K be ideals of R. Define

π : J/J ∩K → (J +K)/K

by π([j]) := K+ j (where the coset of j in (J +K)/K is denoted by K+ j).

Then π is a ring isomorphism.

Proof. By Proposition 12.20, both J∩K and J+K are ideals ofR. Since J∩K ⊂ J ,

it follows that J ∩K is also an ideal of J (where J is regarded as a ring in its own

right). Likewise, since K ⊂ J+K, it follows that K is also an ideal of J+K (where

J +K is regarded as a ring). Hence, J/J ∩K and (J +K)/K are quotient rings.

By the Second Isomorphism Theorem for quotient vector spaces (Theorem

11.21), π is a vector space isomorphism. To complete the proof, we only need
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to show that π preserves the vector multiplication. To this, let j1, j2 ∈ J . Then

π([j1][j2]) := π([j1j2])

= K + j1j2

= (K + j1)(K + j2)

= π([j1])π([j2]).

This completes the proof. �

Example 12.27. Let R[x, y] be the real polynomial ring in the variables x

and y. For p ∈ R[x, y], define (p) to be the set of all polynomials of R[x, y]

which are divisible by p. Hence, every polynomial a ∈ (p) is of the form

a = pq

for some polynomial q ∈ R[x, y]. It is easy to see that (p) is in fact an ideal

of R[x, y]. Now consider the ideals (x) and (y) of R[x, y]. Note that

(x) ∩ (y) = (xy).

By Theorem 12.26, the quotient rings

(x)/(xy)

and

((x) + (y))/(y)

are canonically isomorphic.

For the last isomorphism theorem, we first need to know what the ideals of a

quotient ring look like. The answer is given by the following result:

Proposition 12.28. Let R be a ring over F and let J be an ideal of R.

(i) If K is an ideal of R such that J ⊂ K, then K/J is an ideal of R/J .

(ii) If X is an ideal of R/J , then there exists a unique ideal KX of R such

that X = KX/J .

Proof. (i): Since K is an ideal of R, it is also a subspace of R. It follows from

Proposition 11.24 that K/J is a subspace of R/J . Let [r] ∈ R/J and let [k] ∈ K/J ,

Since rk and kr are both elements of K (since K is an ideal), we have

[r][k] = [rk] ∈ K/J, [k][r] = [kr] ∈ K/J.

This proves that K/J is an ideal of R/J .

(ii): Let X be an ideal of R/J . Since X is also a subspace of R/J , it follows

from Proposition 11.24 that there exists a unique subspace KX of R such that

J ⊂ KX and X = KX/J . We need to show that KX is also an ideal of R. To do
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this, let r ∈ R and k ∈ KX . Since X = KX/J is an ideal of R/J , we have

[r][k] = [rk] ∈ X = KX/J.

This implies that rk = j+k′ for some j ∈ J and k′ ∈ KX . Since J ⊂ KX , it follows

that rk ∈ KX . A similar argument shows that kr ∈ KX . This proves that KX is

an ideal of R. �

Theorem 12.29 (Third Isomorphism Theorem for Rings). Let R be a ring

over F and J and K be ideals of R with J ⊂ K. Let

π : R/K → (R/J)/(K/J)

be the natural map which sends [r] ∈ R/K to [J + r] ∈ (R/J)/(K/J). Then

π is a ring isomorphism.

Proof. By Proposition 12.28, K/J is an ideal of R/J . Hence, we can form the

quotient ring (R/J)/(K/J). Proposition 11.24 implies that π is a vector space

isomorphism. To prove the theorem, it only remains to show that π preserves the

vector multiplication and the identity element if R is a ring with identity.

Let r1, r2 ∈ R. Then

π([r1][r2]) = π([r1r2])

= [J + r1r2]

= [J + r1][J + r2]

= π([r1])π([r2]).

Lastly, if R has an identity element 1, then we immediately have

π([1]) = [J + 1].

Hence, π preserves the identity element. �

Example 12.30. Consider the polynomial ring F[x]. For p ∈ F[x], let (p)

denote the ideal of F[x] consisting of all polynomials divisible by p.

Consider the ideals (x) and (x2). Observe that (x2) ⊂ (x). By Theorem

12.29, the quotient rings

F[x]/(x)

and

(F[x]/(x2))/((x)/(x2))

are canonically isomorphic.
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12.4. More on the Polynomial Ring

In this section, we introduce a type of ring called a principal ideal domain over

F (or PID over F for short) and then prove that the polynomial ring F[x] is a PID.

To define a PID, we first need to introduce a few ideas.

Definition 12.31. Let R be a ring over F. A non-zero element a ∈ R is

called a zero divisor if there exists a nonzero element b ∈ R such that

ab = 0 or ba = 0.

Example 12.32. Consider the ring M2(R) consisting of all 2× 2 real ma-

trices. Then the matrix

A =

(
1 0

0 0

)
is zero divisor since for

B =

(
0 0

0 1

)
,

we have AB = 0.

Definition 12.33. An integral domain over F is a commutative ring R

over F with identity which has no zero divisors.

Example 12.34. The polynomial ring F[x] is an integral domain over F.

Indeed, F[x] has an identity element (namely 1 ∈ F) and given two nonzero

polynomials

p1 =

n∑
i=0

aix
i

and

p2 =

m∑
i=0

bix
i,

their product is

p1p2 = p2p1 =

n∑
i=0

m∑
j=0

aibjx
i+j 6= 0
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Definition 12.35. Let R be a commutative ring over F with identity. An

ideal J of R is said to be prinicipal if there exists an element j0 ∈ J such

that

J = {rj0 | r ∈ R}.
The ideal J is said to be generated by j0 and is denoted by J = (j0).

We can now state the definition of a principal ideal domain over F:

Definition 12.36. A principal ideal domain over F (or PID over F)

is an integral domain R over F with the property that every ideal of R is

principal.

We are now going to prove that F[x] is a PID. To do this, we need the following

classic result:

Theorem 12.37 (Euclidean division of polynomials). Let a(x), b(x) ∈ F[x]

with b(x) 6= 0. Then there exists q(x), r(x) ∈ F[x] with deg r(x) < deg b(x)

such that

a(x) = b(x)q(x) + r(x).

Proof. First, consider the case where deg a(x) < deg b(x). For this case, we simply

set q(x) = 0 and r(x) = a(x).

Now consider the case where deg a(x) ≥ deg b(x). Let

a(x) = anx
n + · · ·+ a1x+ a0

and

b(x) = bkx
k + · · ·+ b1x+ b0.

Let V ⊂ F[x] the the vector space of polynomials of degree n or less. Set

fj :=

{
xj−kb(x) for j ≥ k

xj for j < k

Since deg fj = j, it follows that

fn, fn−1, . . . , f1, f0
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is a basis for V . Since a(x) ∈ V , there exists c0, c1, . . . , cn ∈ F such that

a(x) =

n∑
j=0

cjfj

=

n∑
j=k

cjx
n−jb(x) +

k−1∑
j=0

cjx
j

=

 n∑
j=k

cjx
n−j

 b(x) +

k−1∑
j=0

cjx
j .

Setting

q(x) =

n∑
j=k

cjx
n−j

and

r(x) =

k−1∑
j=0

cjx
j

proves the theorem for case where deg a(x) ≥ deg b(x). �

Theorem 12.38. The polynomial ring F[x] is a PID. Moreover, if J is a

nonzero ideal of F[x] and b ∈ J is a nonzero polynomial of minimal degree

in J , then J = (b).

Proof. We have already seen in Example 12.34 that F[x] is an integral domain

over F. We now show that every ideal of F[x] is principal. To do this, let J be

an arbitrary ideal of F[x]. If J is the zero ideal, then J is clearly principal (J is

generated by 0 ∈ F). So let us assume that J is a nonzero ideal of F[x]. Since J is

nonzero, we can choose a nonzero polynomial b ∈ J of minimal degree, that is,

deg b ≤ deg a ∀ nonzero a ∈ J. (231)

Let a ∈ J be arbitrary. By Theorem 12.37, there exists q, r ∈ F[x] such that

deg r < deg b and a = qb + r. Since J is an ideal and b ∈ J , we also have bq ∈ J .

This implies that

r = a− bq ∈ J.

If r 6= 0, then J contains a nonzero polynomial of degree less than b; this contradicts

(231). Consequently, we must have r = 0, which in turn implies that a = qb. This

proves that J is generated by the polynomial b, that is, J = (b). This completes

the proof. �
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Example 12.39. Let us consider the ring homomorphism from Example

12.25:

evi : R[x]→ C, p(x) 7→ p(i).

As we noted in Example 12.25, the kernel of evi, ker evi, is not zero as it

contains the polynomial x2 + 1. If p is a polynomial of degree 1 or 0 (recall

that a degree 0 polynomial is a constant polynomial where the constant is

required to be nonzero), then we clearly have p(i) 6= 0. Hence, x2 + 1 is a

polynomial of minimal degree in ker evi. Since ker evi is an ideal of R[x],

Theorem 12.38 shows that ker evi = (x2+1). Hence, every element of ker evi
is of the form (x2 + 1)q(x) for q ∈ F[x].

12.5. The Chinese Remainder Theorem

In this section, we prove a result called the Chinese Remainder Theorem for

the polynomial ring F[x]. Before doing this, we first cover some basic preliminaries.

We begin by introducing some common notation associated to F[x]:

Notation 12.40. Let a, b ∈ F[x] be polynomials with b nonzero. If b divides

a, that is, there exists a polynomial q ∈ F[x] such that a = qb, one expresses

this condition by writing

b | a (232)

(232) reads as “b divides a”. If b does not divide a, one writes b 6 | a.

Example 12.41. For the polynomial ring R[x], x+ 1 | x2 − 1.

Definition 12.42. Two polynomials p1, p2 ∈ F[x] are said to be coprime

(or relatively prime) if they have no common factors. In other words, if

b ∈ F[x] is a nonzero polynomial such that b | p1 and b | p2, then b must be

an element of F.

A finite set of polynomials p1, p2, . . . , pn are said to be pairwise coprime

if any two polynomials pi, pj with i 6= j are coprime.

Example 12.43. For the polynomial ring R[x], the polynomials

x+ 1, 5x+ 2, x2 + 1

are pairwise coprime.
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Given a finite number of rings over F, R1, R2, . . . , Rn, we can easily produce a new

ring over F by taking the cartesian product of these rings. Moreover, the new ring

naturally contains subrings which are isomorphic to R1, R2, . . . , Rn.

Definition 12.44 (Direct Product of Rings). Let R1, R2, . . . , Rn be rings

over F. The cartesian product

R := R1 ×R2 · · · ×Rn.

is naturally a ring over F with ring structure. Formally, its vector space

structure is defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) := (a1 + b1, a2 + b2, . . . , an + bn)

and

c(a1, a2, . . . , an) := (ca1, ca2, . . . , can)

for ai, bi ∈ Ri for i = 1, . . . , n and c ∈ F. The vector multiplication on R is

given by

(a1, a2, . . . , an)(b1, b2, . . . , bn) := (a1b1, a2b2, . . . , anbn)

R equipped with the above ring structure is called a direct product of rings.

Moreover, if R1, R2, . . . , Rn has identity element 11,12, . . . ,1n, then R has

the identity element

(11,12, . . . ,1n).

The direct product of rings is also called an external direct sum.

Remark 12.45. Definition 12.44 can be generalized to an infinite number of

rings. However, in the infinite case, the terms “direct product of rings” and

“external direct sum” no longer coincide. We will not discuss the precise

meaning of these terms in this book.

The following is a very simple exercise that the reader should carry out if there is

any doubt that Definition 12.44 yields a ring over F:

Exercise 12.46. Verify that Definition 12.44 satisfies all the conditions of

a ring over F given in Definition 12.1.

Here is a consequence of Theorem 12.38 that we will make use of shortly:
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Proposition 12.47. Let b1, b2 ∈ F[x] be coprime. Then there exists q1, q2 ∈
F[x] such that

q1b1 + q2b2 = 1. (233)

Proof. Let

J := {a1b1 + a2b2 | a1, a2 ∈ F[x]}.

Then its easy to see that J is an ideal of F[x]. Since all ideals of F[x] are principal

by Theorem 12.38, there exists a polynomial α ∈ F[x] such that J = (α). Since

b1, b2 ∈ J , we have

α | b1, α | b2.

However, since b1 and b2 are coprime, it follows that α ∈ F − {0}. However, if J

contains a nonzero element of F, it follows that J = F[x]. Hence, in particular,

1 ∈ J = F[x]. From the definition of J , it follows that there exists polynomials

q1, a2 ∈ F[x] satisfying (233). This completes the proof. �

We are now in a position to state the Chinese Remainder Theorem. We will

actually state two versions of the theorem. The first version is easier to understand:

Theorem 12.48 (Chinese Remainder Theorem-I). Let b1, b2, . . . , bk ∈ F[x]

be a finite set of pairwise coprime polynomials. Let r1, r2, . . . , rk ∈ F[x] be

arbitrary polynomials. Then there exists a polynomial a ∈ F[x] such that

a− ri ∈ (bi)

for i = 1, . . . , k. In other words, a can be expressed as

a = qibi + ri

for some qi ∈ F[x] for i = 1, . . . , k.

Here is the second version:
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Theorem 12.49 (Chinese Remainder Theorem-II). Let b1, b2, . . . , bk ∈ F[x]

be a finite set of pairwise coprime polynomials. Let

πk : F[x]→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk)

be the map defined by

π(a) := ([a]1, [a]2, . . . , [a]k)

for a ∈ F[x], where [a]i denotes the coset of a in F[x]/(bi) for i = 1, . . . , k.

Then

(i) πk is a ring homomorphism

(ii) πk is surjective

(iii) kerπk = (b1b2 · · · bk)

(iv) The induced map

π̃k : F[x]/(b1b2 · · · bk)→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk)

defined by π̃k([a]) := πk(a) is a ring isomorphism for a ∈ F[x].

Our plan now is to prove the second version of the Chinese Remainder Theorem

and then show how the second version implies the first version. Here is the proof

of the second version:

Proof. (i): Let a, a′ ∈ F[x] and c ∈ F, we have

πk(a+ a′) := ([a+ a′]1, [a+ a′]2, . . . , [a+ a′]k)

= ([a]1 + [a′]1, [a]2 + [a′]2, . . . , [a]k + [a′]k)

= ([a]1, [a]2, . . . , [a]k) + ([a′]1, [a
′]2, . . . , [a

′]k)

= πk(a) + πk(a′)

and

πk(ca) := ([ca]1, [ca]2, . . . , [ca]k)

= (c[a]1, c[a]2, . . . , c[a]k)

= c([a]1, [a]2, . . . , [a]k)

= cπk(a).

This proves that πk is linear. In addition, we also have

πk(aa′) = ([aa′]1, [aa
′]2, . . . , [aa

′]k)

= ([a]1[a′]1, [a]2[a′]2, . . . , [a]k[a′]k)

= ([a]1, [a]2, . . . , [a]k)([a′]1, [a
′]2, . . . , [a

′]k)

= πk(a)πk(a′).

This proves that πk is a ring homomorphism.
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(ii)-(iv): For k = 1, the theorem clearly holds. Let us consider the k = 2 case:

π2 : F[x]→ F[x]/(b1)× F[x]/(b2).

Since b1, b2 ∈ F[x] are coprime, it follows from Proposition 12.47 that there exists

q1, q2 ∈ F[x] such that

q1b1 + q2b2 = 1. (234)

Let f1, f2 ∈ F[x] be arbitrary and let

a = f1q2b2 + f2q1b1. (235)

From (234), we have

f1 = f1q1b1 + f1q2b2 (236)

and

f2 = f2q1b1 + f2q2b2. (237)

Then

a− f1 = (f2q1 − f1q1)b1 (238)

and

a− f2 = (f2q2 − f2q2)b2 (239)

(238) and (239) imply that

a− f1 ∈ (b1), a− f2 ∈ (b2). (240)

(240) implies

[a]1 = [f1]1, [a]2 = [f2]2. (241)

From (241), we have

π2(a) = ([a]1, [a]2) = ([f1]1, [f2]2), (242)

which proves that π2 is surjective.

Observe that a ∈ kerπ2 if and only if a ∈ (b1) ∩ (b2). However, since b1, b2 are

coprime, we have

kerπ2 = (b1) ∩ (b2) = (b1b2). (243)

Using (243) and applying the First Isomorphism Theorem for rings (Theorem 12.24)

yields the ring isomorphism:

π̃2 : F[x]/(b1b2)→ F[x]/(b1)× F[x]/(b2).

This proves (ii)-(iv) for the k = 2 case.

We now prove (ii)-(iv) for the general case by induction on k. Now suppose the

theorem holds for k− 1 pairwise polynomials where k ≥ 3. Let b1, b2, . . . , bk ∈ F[x]

be pairwise coprime. Let

b̃ := b1b2 · · · bk−1.
Since b̃ and bk are also coprime, the k = 2 case implies that

π2 : F[x]→ F[x]/(̃b)× F[x]/(bk)

is surjective and

kerπ2 = (̃bbk) = (b1b2 · · · bk). (244)
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By induction, we also have that the map

πk−1 : F[x]→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk−1)

is a surjective ring homomorphism with kerπk−1 = (b1b2 · · · bk−1) = (̃b) and that

the induced map

π̃k−1 : F[x]/(̃b)→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk−1)

is a ring isomorphism. Let idk : F[x]/(bk)→ F[x]/(bk) denote the identity map and

let

π̃k−1 × idk : F[x]/(̃b)× F[x]/(bk)→: F[x]/(̃b)× F[x]/(bk)

be the map defined by

π̃k−1 × idk([f ], [g]k) := (π̃k−1([f ]), [g]k)

= (πk−1(f), [g]k)

= ([f ]1, [f ]2, . . . , [f ]k−1, [g]k).

Since π̃k−1 and idk are both ring isomorphisms, it follows that π̃k−1 × idk is also a

ring isomorphism.

Now observe that the map

πk : F[x]→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk−1)× F[x]/(bk)

is in fact given by the composition

πk = (π̃k−1 × idk) ◦ π2.

Since π2 is a surjective ring homomorphism and π̃k−1 × idk is a ring isomorphism,

it follows that πk is surjective with kernel

kerπk = ker(π̃k−1 × idk) ◦ π2 = kerπ2 = (b1b2 · · · bk),

where the last equality follows from (244). This proves (ii) and (iii) for πk. Applying

the First Isomorphism Theorem for rings (Theorem 12.24) to πk proves (iv). This

completes the proof. �

Here is the proof of the first version of the Chinese Remainder Theorem (Theorem

12.48):

Proof. Let b1, . . . , bk ∈ F[x] be pairwise coprime. By Theorem 12.49, the map

πk : F[x]→ F[x]/(b1)× F[x]/(b2)× · · · × F[x]/(bk)

given by πk(a) = ([a]1, [a]2, . . . , [a]k) is a surjective ring homomorphism, where [a]i
denotes the coset of a in F[x]/(bi) . Hence, for r1, . . . , rk ∈ F[x] arbitrary, there

exists a ∈ F[x] such that

π(a) = ([r1]1, [r2]2, . . . , [rk]k).

This implies that [a]i = [ri]i for i = 1, . . . , k. This in turn is equivalent to ai − ri ∈
(bi) for i = 1, . . . , k. This completes the proof. �



346 12. A Tour of Ring Theory

12.6. † Other Fields

The notion of a field was defined way back in Chapter 5 in Definition 5.1. In linear

algebra, the fields of greatest interest are the field of real numbers R and the field

of complex numbers C. In addition to R and C, another common field is the field

of rational numbers

Q := {a
b
| a, b ∈ Z, b 6= 0},

where Z := {0,±1,±2,±3, . . . , } are the set of integers. Of course, there are other

fields besides Q, R, and C. In this section, we are going to broaden our knowledge

of fields (slightly) by proving a simple result that will provide us with a mechanism

to generate other fields. This short section is only needed for Chapter 14, which

focuses on less conventional applications of linear algebra. In this section, F will

denote any field. (In fact, all the general results of this chapter work for any field.)

We now introduce some definitions which will be needed later in Chapter 14.

Definition 12.50. Let p ∈ F[x]. p is said to be an irreducible polynomial

if deg p ≥ 1 and there does not exist polynomials a, b ∈ F[x] with deg a ≥ 1

and deg b ≥ 1 such that p = ab. A polynomial of positive degree which is not

irreducible is said to be reducible.

Example 12.51. Consider the polynomial p(x) = x2 + 1. In R[x], p is

irreducible. However, in C[x], p is reducible since

p = (x+ i)(x− i)

and x+ i and x− i are both elements of C[x].

We now introduce the notion of a field extension:

Definition 12.52. A field K is said to be a field extension of a field F if

F ⊂ K and the restriction of the field operations of K to F coincide with the

field operations of F as a field.

Example 12.53. The field R is a field extension of Q and C is a field

extension of both Q and R.

We conclude this very brief section with the following result which can be viewed

as a generalization of Example 12.25:
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Theorem 12.54. Let p(x) ∈ F[x]. Then the quotient ring F[x]/(p) is a

field if and only if p(x) is irreducible.

Moreover, F[x]/(p) is a field extension of F, where the field F is identified

with its image under the projection map π : F[x]→ F[x]/(p). In other words,

each element λ ∈ F is uniquely identified with its coset [λ] in F[x]/(p).

Proof. Suppose first that p(x) is irreducible. Since F[x]/(p) is a commutative ring,

we only need to show that every nonzero element of F[x]/(p) has an inverse. So let

[a] ∈ F[x]/(p) be a nonzero element. This implies that a /∈ (p). Moreover, since p

is irreducible, it follows that a and p are coprime. Proposition 12.47 implies that

there exists q1, q2 ∈ F[x] such that

q1a+ q2p = 1 (245)

Hence, taking the coset of both sides of (245) in F[x]/(p) gives

[q1a+ q2p] = [1]

[q1a] + [q2p] = [1]

[q1a] + [0] = [1]

[q1][a] = [1].

Hence, [a] has an inverse.

Lastly, since deg p ≥ 1, it follows that c /∈ (p) for all nonzero c ∈ F. Hence, the

image of F under the projection map

π : F[x]→ F[x]/(p)

is naturally isomorphic to F itself. Hence, by identifying F with its isomorphic

image

π(F) ⊂ F[x]/(p),

we can regard the field F[x]/(p) as a field extension of F.

Now suppose that F[x]/(p) is a field, but p is not irreducible. Then p = p1p2
for some polynomials p1, p2 ∈ F[x] of positive degree. Since deg p > pi for I = 1, 2,

it follows that pi 6 (p) for i = 1, 2. In particular, [p1] and [p2] are nonzero elements

in F[x]/(p). Since F[x]/(p) is a field, the product of any two nonzero elements can

never be zero. However, we have

[p1][p2] = [p1p2] = [p] = [0],

which is a contradiction. Hence, p must be irreducible. �
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Example 12.55. Consider the polynomial ring Q[x]. Since
√

2 /∈ Q, it

follows that the polynomial x2− 2 is irreducible in Q[x]. By Theorem 12.54,

the quotient ring

Q[x]/(x2 − 2)

is a field extension of Q. Moreover, since [x2 − 2] = [0], it follows that

[x]2 = [2].

Hence, the coset [x] of x in Q[x]/(x2 − 2) can be identified with
√

2. So

Q[x]/(x2 − 2) is essentially the field Q with
√

2 tacked on. For this reason,

we can denote this field extension by Q(
√

2). You will revisit this idea in

Chapter 14.

Chapter 12 Exercises

1. Let C(R) be the ring of continuous real valued functions on R. Let

J := {f ∈ C(R) | f(0) = 0}.

Show that J is an ideal of C(R).

2. Let Mn(R) be the ring of real n × n matrices. Let R be the set of real

n×n matrices whose first column is entirely zero. Show that R is a subring of

Mn(R), but not an ideal of Mn(R). (By ideal, we always mean a 2-sided ideal.)

3. Let Mn(R) be the ring of real n× n matrices. Let Bn(R) be the subspace of

Mn(R) consisting of all real n× n upper triangular matrices.

(a) Show that Bn(R) is a subring of Mn(R), but not an ideal of Mn(R).

(b) Let Nn(R) be the subspace of all real n × n strictly upper triangular

matrices. Show that Nn(R) is an ideal of Bn(R).

4. Let a ∈ F and let ρa : F[x, y]→ F[x] be the map which sends the polynomial

p(x, y) in 2-variables to the polynomial p(x, a) ∈ F[x] in 1-variable.

(a) Show that ϕ is a surjective ring homomorphism.

(b) Show that kerϕ = (y − a). Conclude that F[x, y]/(y − a) and F[x] are

isomorphic as rings.

5. Let p(x, y) ∈ F[x, y]. Show that p(x, x) = 0 if and only if (x − y) | p(x, y).

Hint: rewrite p(x, y) in the form

p(x, y) = cn(y)xn + cn−1(y)xn−1 + · · ·+ c1(y)x+ c0(y),
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where ci(y) is a polynomial in y only for i = 0, 1, . . . , n. Use this to show that

F[x, y]/(x− y) and F[x] are isomorphic as rings.

6. Let Mn(R) be the ring of real n × n matrices and let A be an n × n matrix.

Define

evA : R[x]→Mn(R)

to the map which sends the real polynomial p(x) = cnx
n + · · · + c1x + c0 to

the real matrix

p(A) := cnA
n + · · ·+ c1A+ c0In.

(a) Show that evA is a ring homomorphism.

(b) Show that ker evA 6= {0}.
(c) Show that there exists a unique nonzero monic polynomial mA(x) such

that p(A) = 0 if and only if mA(x) | p(x). (This polynomial is called the

minimal polynomial of A; we will study this idea in greater detail in

Chapter 13.)

7. The Chinese Remainder Theorem implies that there exists a real polynomial

p(x) which satisfies the following conditions:

x2 | (p(x)− x3)

(x2 + 1) | (p(x)− x4)

(x− 1) | (p(x)− x2).

Find p(x).

8. Let R be a ring and let I and J be ideals of R. Show that the (left, right, or

two-sided) ideal I + J is the smallest ideal containing I and J .

9. Prove what is commonly known as the Chinese Remainder Theorem for the

integers Z : if m and n are coprime, then for any integers a, b there exists an

integer k such that m | (k−a) and n | (k− b). Said differently, the the system

of modular equations x ≡ a (mod m) and x ≡ b (mod n) has a simultaneous

solution.

10. An ideal M ⊆ R of a commutative ring R is said to be maximal if for any

ideal J of R such that M ⊆ J , then either M = J or J = R.

(a) Show that an ideal (p(x)) of F[x] is maximal if and only if p(x) is an

irreducible polynomial.

(b) Prove a general version of Theorem 12.54: for a commutative ring R and

an ideal J of R, R/J is a field if and only if J is a maximal ideal.
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11. Prove that two integers a and b are coprime if and only if there are integers

s, t such that sa+ tb = 1



Chapter 13

The Minimal Polynomial and
its Consequences

In this chapter, we state and prove some of the more advanced results of linear

algebra. All of the results in this chapter revolve around a polynomial called the

minimal polynomial, which is intimately related to the characteristic polynomial

of a linear endomorphism. (Recall that a linear endomorphism is simply a linear

map from a vector space V to itself.) To prove the main results of this chapter,

we will need to make use of the basic ring theory that we developed in Chapter

12. Hence, the reader should study Chapter 12 before starting the current chapter.

In addition to its use of ring theory, the current chapter differs from the preceding

chapters because of its greater emphasis on complex vector spaces. Indeed, we must

rely heavily on the power of complex numbers to prove some of the main results of

this chapter.

13.1. The Minimal Polynomial

Throughout this section, we let F = R or C and we let V be a vector space over F.

For a polynomial

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 ∈ F[x]

and a linear endomorphism ϕ ∈ End(V ), we define a linear endomorphism p(ϕ) ∈
End(V ) via

p(ϕ) := cnϕ
n + cn−1ϕ

n−1 + · · ·+ c1ϕ+ c0idV . (246)

The following result will prove to be a stepping stone to the minimal polynomial:

351
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Lemma 13.1. For ϕ ∈ End(V ), there exists a nonzero polynomial p ∈ F[x]

such that p(ϕ) = 0.

Proof. Let N := (dimV )2 and consider the set

ϕN , ϕN−1, . . . , ϕ, idV . (247)

From Corollary 12.12, the endomorphism ring End(V ) is a vector space of dimension

N . Hence, the above set (which consists of N + 1 elements of End(V )) must be

linearly dependent. Consequently, there exists some scalars ci ∈ F, i = 0, 1, . . . , N

(not all zero) such that

cNϕ
N + cN−1ϕ

N−1 + · · ·+ c1ϕ+ c0idV = 0. (248)

Setting

p(x) := cNx
N + cN−1x

N−1 + · · ·+ c1x+ c0

(which is nonzero since not all of the ci’s are zero), it follows from (248) that

p(ϕ) = 0. This completes the proof. �

For ϕ ∈ End(V ), let

evϕ : F[x]→ End(V ) (249)

be the map defined by

evϕ(p) := p(ϕ). (250)

Theorem 13.2. Let ϕ ∈ End(V ). Then

(i) evϕ is a ring homomorphism.

(ii) ker evϕ 6= {0}
(iii) Let mϕ(x) ∈ F[x] be a monic polynomial of minimal degree satisfying

mϕ(ϕ) = 0. Then mϕ is unique and has the following property: if

p(x) ∈ F[x] satisfies p(ϕ) = 0, then mϕ(x) | p(x).

The polynomial mϕ in statement (iii) is called the minimal polynomial

of ϕ.

Proof. (i): Let p1, p2 ∈ F[x] and let c ∈ F. Let K := deg p1 and L := deg p2.

Write

p1(x) =

K∑
i=0

aix
i, p2(x) =

L∑
i=0

bix
i.
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Without loss of generality, assumeK ≥ L. IfK > L, set bj := 0 for j = L+1, . . . ,K.

Then

(p1 + p2)(x) =

K∑
i=0

(ai + bi)x
i, cp1(x) =

K∑
i=0

caix
i

From this, we have

evϕ(p1 + p2) :=

K∑
i=0

(ai + bi)ϕ
i

=

K∑
i=0

aiϕ
i +

K∑
i=0

biϕ
i

=

K∑
i=0

aiϕ
i +

L∑
i=0

biϕ
i

= p1(ϕ) + p2(ϕ)

= evϕ(p1) + evϕ(p2)

and

evϕ(cp1) :=

K∑
i=0

caiϕ
i

= c(

K∑
i=0

aiϕ
i)

= cp1(ϕ)

= cevϕ(p1),

where we set ϕ0 := idV . This proves that evϕ is linear.

To verify that evϕ preserves the ring multiplication, we first write

p1p2 =

K∑
i=0

L∑
j=0

aibjx
i+j .

Then

evϕ(p1p2) =

K∑
i=0

L∑
j=0

aibjϕ
i+j

=

K∑
i=0

L∑
j=0

aibjϕ
iϕj

=

(
K∑
i=0

aiϕ
i

) L∑
j=0

bjϕ
j


= p1(ϕ)p2(ϕ)

= evϕ(p1)evϕ(p2).
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Also, from (246), we see that for the constant polynomial p(x) = 1, we have

evϕ(p) = p(ϕ) = idV .

Hence, evϕ preserves the identity element. This completes the proof that evϕ is a

ring homomorphism.

(ii): From the definition of evϕ, ker evϕ consists of all polynomials p satisfying

p(ϕ) = 0. Lemma 13.1 shows that there exists a nonzero polynomial p ∈ F[x]

satisfying p(ϕ) = 0. Hence, p ∈ ker evϕ and we conclude that ker evϕ 6= {0}.
(iii): Since ker evϕ 6= {0}, there exists a monic polynomialmϕ of minimal degree

satisfying mϕ(ϕ) = 0. (Recall that a nonzero polynomial in one variable is monic

if its highest power term has coefficient 1.) Since evϕ is a ring homomorphism, it

follows from Theorem 12.21 that ker evϕ is an ideal of F[x]. Theorem 12.38 now

implies that ker evϕ is generated by mϕ:

ker evϕ = (mϕ) := {mϕq | q ∈ F[x]}.

Consequently, if p ∈ F[x] is any polynomial satisfying p(ϕ) = 0, we havemϕ(x) | p(x).

Hence, mϕ has the desired property.

For the uniqueness of mϕ, let m̂ϕ be another monic polynomial of minimal

degree satisfying m̂ϕ(ϕ) = 0. Then mϕ | m̂ϕ, and since mϕ and m̂ϕ are both of

minimal degree, we have deg m̂ϕ = degmϕ. This implies that m̂ϕ(x) = cmϕ(x) for

some c ∈ F. Since mϕ and m̂ϕ are both monic, it follows that c = 1, which proves

the uniqueness of mϕ. This completes the proof. �

Example 13.3. Consider the vector space R2 and let ~e1 and ~e2 denote the

standard basis on R2. Let ϕ ∈ End(R2) be the endomorphism on R2 defined

by

ϕ(~e1) = ~e2, ϕ(~e2) = −~e1.
Consider the monic polynomial p(x) = x+ a for a ∈ R. Then the endomor-

phism p(ϕ) : R2 → R2 is given by

p(ϕ)(~e1) = a~e1 + ~e2, p(ϕ)(~e2) = −~e1 + a~e2.

Hence, p(ϕ) 6= 0. This implies that the minimal polynomial of ϕ must be of

degree 2 or higher. Now consider the monic polynomial q = x2 + ax+ b for

a, b ∈ R. Then

p(ϕ)(~e1) = (b− 1)~e1 + a~e2, p(ϕ)(~e2) = −a~e1 + (b− 1)~e2

Hence, p(ϕ) = 0 if and only if a = 0 and b = 1. We conclude that mϕ =

x2 + 1 is the minimal polynomial of ϕ.

Theorem 13.2 shows that the map evϕ defined by (250) is a ring homomorphism.

The proof of Theorem 13.2 shows that the kernel of evϕ is the ideal generated by

the minimal polynomial mϕ(x) of ϕ. Applying the First Isomorphism Theorem for
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rings (Theorem 12.24) to evϕ yields the following result:

Corollary 13.4. Let ϕ ∈ End(V ) and let F[ϕ] denote the image of the ring

homomorphism evϕ : F[x]→ End(V ). Then the induced map

ẽvϕ : F[x]/(mϕ)→ F[ϕ]

given by [p] 7→ evϕ(p) := p(ϕ) is a ring isomorphism.

The notion of the minimal polynomial of a linear map can be defined for square

matrices in a natural way:

Definition 13.5. Let A be an n × n matrix whose entries lie in F and let

TA : Fn → Fn be the linear map defined by TA(~v) := A~v. The minimal

polynomial associated to A is mA(x) := mTA(x), where mTA(x) is the

minimal polynomial of the linear map TA.

Definition 13.5 is natural in the following sense:

Proposition 13.6. Let A be an n× n matrix whose entries lie in F. Let

q(x) = xk + ck−1x
k−1 + · · · c1x+ c0 ∈ F[x]

be the monic polynomial of minimal degree such that

q(A) := Ak + ck−1A
k−1 + · · ·+ c1A+ c0In = 0.

Then mA(x) = q(x).

Proof. Let TA : Fn → Fn be the natural linear map associated to A. Let

p(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0 ∈ F[x]

be any polynomial. Since (TA)r is just the natural linear map associated to the

matrix Ar, that is,

(TA)r = TAr ,

it follows that

p(TA)~v = (amA
m + am−1A

m−1 + · · ·+ a1A+ a0In)~v.

In other words,

p(TA) = Tp(A).

Hence, p(TA) is the zero map if and only if p(A) is the zero matrix. From this, we

conclude that the minimal polynomial of TA is the monic polynomial q(x) of smallest

degree for which q(A) is the zero matrix. By Definition 13.5, mA(x) = q(x). �
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Example 13.7. Let

A =

 2 0 0

0 2 0

0 0 −3

 .

In this case, its easy to see that the minimal polynomial of A is

mA(x) = (x− 2)(x+ 3) = x2 + x− 6.

13.2. The Primary Decomposition Theorem

In this section, the field F is again R or C and V is a vector space over F. The

following result is a special case of the Primary Decomposition Theorem. This

result will serve as a key step in the proof of the Primary Decomposition Theorem.

Lemma 13.8. Let ϕ ∈ End(V ). Suppose p1, p2 ∈ F[x] are coprime and

p1(ϕ)p2(ϕ) = 0. Then

(i) ϕ(ker pi(ϕ)) ⊂ ker pi(ϕ) for i = 1, 2

(ii) V = ker p1(ϕ)⊕ ker p2(ϕ)

(iii) im p1(ϕ) = ker p2(ϕ) and im p2(ϕ) = ker p1(ϕ)

Proof. (i): Let v ∈ ker p1(ϕ). Since p1(ϕ)ϕ = ϕp1(ϕ), we have

p1(ϕ)ϕ(v) = ϕp1(ϕ)(v)

= ϕ(0)

= 0.

Hence, ϕ(v) ∈ ker p1(ϕ), which proves that ϕ(ker p1(ϕ)) ⊂ ker p1(ϕ). A similar

argument shows that ϕ(ker p2(ϕ)) ⊂ ker p2(ϕ).

(ii): Since p1 and p2 are coprime, Proposition 12.47 shows that there exists

q1, q2 ∈ F[x] such that

1 = q1(x)p1(x) + q2(x)p2(x). (251)

By Theorem 13.2, the map

evϕ : F[x]→ End(V ), evϕ(p) := p(ϕ)

is a ring homomorhpism. Applying evϕ to both sides of (251) yields

evϕ(1) = evϕ(q1p1 + q2p2)

idV = evϕ(q1)evϕ(p1) + evϕ(q2)evϕ(p2)

idV = q1(ϕ)p1(ϕ) + q2(ϕ)p2(ϕ). (252)
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Let v ∈ ker p1(ϕ) ∩ ker p2(ϕ). Using (252), we have

v = (q1(ϕ)p1(ϕ) + q2(ϕ)p2(ϕ)) v

= q1(ϕ)p1(ϕ)v + q2(ϕ)p2(ϕ)v

= q1(ϕ)0 + q2(ϕ)0

= 0.

Hence,

ker p1(ϕ) ∩ ker p2(ϕ) = {0}. (253)

Now let v ∈ V be arbitrary. Using (252) again and noting that a(ϕ)b(ϕ) =

b(ϕ)a(ϕ) for all a, b ∈ F[x], we have

v = q1(ϕ)p1(ϕ)v + q2(ϕ)p2(ϕ)v

= p1(ϕ)q1(ϕ)v + p2(ϕ)q2(ϕ)v. (254)

Since p1(ϕ)p2(ϕ) = p2(ϕ)p1(ϕ) = 0 by hypothesis, it follows that

p1(ϕ)q1(ϕ)v ∈ ker p2(ϕ), p2(ϕ)q2(ϕ)v ∈ ker p1(ϕ). (255)

(253), (254), and (255) now imply

V = ker p1(ϕ)⊕ ker p2(ϕ).

This proves (i).

(iii): Let v1 ∈ ker p1(ϕ). From (252), we have

v1 = (q1(ϕ)p1(ϕ) + q2(ϕ)p2(ϕ))v1

= q2(ϕ)p2(ϕ)v1

= p2(ϕ)q2(ϕ)v1

∈ im p2(ϕ).

Hence, ker p1(ϕ) ⊂ im p2(ϕ). Now let u2 ∈ im p2(ϕ). Then u2 = p2(ϕ)v for some

v ∈ V . This implies that

p1(ϕ)u2 = p1(ϕ)p2(ϕ)v = 0,

where we have used the fact that p1(ϕ)p2(ϕ) is the zero map. This shows that

u2 ∈ ker p1(ϕ). Hence, ker p1(ϕ) ⊃ im p2(ϕ). Combining the previous result gives

ker p1(ϕ) = im p2(ϕ). A similar argument shows that ker p2(ϕ) = im p1(ϕ). This

completes the proof. �
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Theorem 13.9 (Primary Decomposition Theorem). Let ϕ ∈ End(V ). Sup-

pose p1, p2, . . . , pk ∈ F[x] are pairwise coprime and

p1(ϕ)p2(ϕ) · · · pk(ϕ) = 0.

Then

(i) ϕ(ker pi(ϕ)) ⊂ ker pi(ϕ) for i = 1, . . . , k

(ii) V = ker p1(ϕ)⊕ ker p2(ϕ)⊕ · · · ⊕ ker pk(ϕ)

Proof. (i): The proof is identical to the proof of (i) in Lemma 13.8. Once again,

it follows from the fact that pi(ϕ) and ϕ commute:

pi(ϕ)ϕ = ϕpi(ϕ)

for i = 1, 2, . . . , k.

(ii): We prove this by induction on k. For k = 1, we simply have p1(ϕ) = 0.

Hence, ker p1(ϕ) = V . The case of k = 2 is statement (ii) of Lemma 13.8. So let us

assume that the result is true for any k pairwise coprime polynomials where k ≥ 2.

Let p1, p2, . . . , pk+1 ∈ F[x] be k + 1 pairwise coprime polynomials such that

p1(ϕ)p2(ϕ) · · · pk+1(ϕ) = 0. (256)

Let g(x) := p1(x)p2(x) · · · pk(x). Then g and pk+1 are coprime and g(ϕ)pk+1(ϕ) =

0. By Lemma 13.8, we have

V = ker g(ϕ)⊕ ker pk+1(ϕ) (257)

and ϕ(ker g(ϕ)) ⊂ ker g(ϕ) and ϕ(ker pk+1(ϕ)) ⊂ ker pk+1(ϕ).

Let

ϕ1 := ϕ|ker g(ϕ) : ker g(ϕ)→ ker g(ϕ)

be the restriction of ϕ to the subspace ker g(ϕ) ⊂ V . Since p1, . . . , pk are coprime

and ϕ(ker g(ϕ)) ⊂ ker g(ϕ)

0 = g(ϕ)|ker g(ϕ)
= g

(
ϕker g(ϕ)

)
= g(ϕ1)

= p1(ϕ1)p2(ϕ1) · · · pk(ϕ1).

By the induction hypothesis applied to the endomorphism ϕ1 ∈ End(ker g(ϕ)) and

the k pairwise coprime polynomials p1, . . . , pk, we have

ker g(ϕ) = ker p1(ϕ1)⊕ ker p2(ϕ1)⊕ · · · ⊕ ker pk(ϕ1). (258)
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We now show that ker pi(ϕ1) = ker pi(ϕ) for i = 1, 2, . . . , k. To do this, let v ∈
ker pi(ϕ1) ⊂ ker g(ϕ). Then

pi(ϕ)v =
(
pi(ϕ)|ker g(ϕ)

)
v

= pi
(
ϕ|ker g(ϕ)

)
v

= pi(ϕ1)v

= 0.

Hence, ker pi(ϕ1) ⊂ ker pi(ϕ). On the other hand, for v ∈ ker pi(ϕ), we have

g(ϕ)v = p1(ϕ)p2(ϕ) · · · pi(ϕ) · · · pk(ϕ)v

= p1(ϕ)p2(ϕ) · · · p̂i(ϕ) · · · pk(ϕ)pi(ϕ)v

= 0

where p̂i(ϕ) denotes the omission of pi(ϕ). This implies that v ∈ ker g(ϕ). Hence,

v is in the domain of pi(ϕ1). Applying pi(ϕ1) to v gives

pi(ϕ1)v = pi
(
ϕ|ker g(ϕ)

)
v

=
(
pi(ϕ)|ker g(ϕ)

)
v

= pi(ϕ)v

= 0.

Hence, ker pi(ϕ1) ⊃ ker pi(ϕ) for i = 1, 2, . . . , k. We have thus proved that

ker pi(ϕ1) = ker pi(ϕ) (259)

for i = 1, . . . , k. Equations (257), (258), and (259) now imply

V = ker p1(ϕ)⊕ ker p2(ϕ)⊕ · · · ⊕ ker pk(ϕ)⊕ ker pk+1(ϕ).

This completes the proof. �
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Example 13.10. Consider the vector space R4 and let ~e1, ~e2, ~e3, ~e4 denote

the standard basis on R4. Let ϕ : R4 → R4 be the linear map defined by

ϕ(~e1) = ~e3, ϕ(~e2) = ~e4, ϕ(~e3) = −~e1, ϕ(~e4) = ~e2

Let p1 = x2 + 1 and p2 = x2 − 1. Then p1 and p2 are coprime. By direct

calculation, one finds that

p1(ϕ)p2(ϕ) = 0.

Theorem 13.9 (or Lemma 13.8 in this case) implies that

R4 = ker p1(ϕ)⊕ ker p2(ϕ).

By a straightforward calculation, we find that

ker p1(ϕ) = span{~e1, ~e3}, ker p2(ϕ) = span{~e2, ~e4}.

In this case, one finds that there are no monic polynomials p in degrees 1,2,

and 3 satisfying p(ϕ) = 0. From this, we deduce that the minimal polynomial

of ϕ is mϕ = (x2 + 1)(x2 − 1) = x4 − 1.

13.3. Diagonalizable Linear Maps

In this section, we study the minimal polynomial associated to diagonalizable linear

maps and prove a well known theorem about simultaneously diagonalizable linear

maps (a notion which we will define precisely a bit later). Throughout this section,

the field F is either R or C and V is a vector space over F. We being with some

basic observations:

Proposition 13.11. Let ϕ : V → V be a linear map and let λ1, . . . , λk be

distinct eigenvalues of ϕ. Let vi be an eigenvector of ϕ associated to λi for

i = 1, . . . , k. Then {v1, . . . , vk} is linearly independent.

Proof. For l ≤ k, let

El := {v1, v2, . . . , vl}.

For l = 1, El = {v1} is a linear independent set (since eigenvectors are nonzero

by definition). We now prove that El is linearly independent for l = 1, 2, . . . , k by

induction on l. Suppose then that El is linearly independent. Let us suppose that

v1, v2, . . . , vl+1

is linearly dependent. This implies that

vl+1 ∈ span{v1, . . . , vl}.
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Let us express vl+1 as a linear combination of the elements of El:

vl+1 =

l∑
i=1

αivi. (260)

Applying ϕ to both sides of (260) gives

ϕ(vl+1) =

l∑
i=1

αiϕ(vi)

λl+1vl+1 =

l∑
i=1

αiλivi. (261)

On the other hand, multiplying both sides of (260) by λl gives

λl+1vl+1 =

l∑
i=1

αiλl+1vi. (262)

Subtracting (261) from (262) gives

l∑
i=1

αi(λl+1 − λi)vi = 0.

Since v1, . . . , vl are linearly independent, it follows that αi(λl+1 − λi) = 0 for i =

1, . . . , l. Since λi 6= λj for i 6= j, it follows that αi = 0 for i = 1, . . . , l. From (260),

this implies that vl+1 = 0, which is a contradiction since eigenvectors are nonzero

by definition. Hence, we conclude that El+1 is linearly independent. In particular,

Ek := {v1, . . . , vk} is linearly independent. This completes the proof. �

Proposition 13.12. Let ϕ : V → V be a linear map and let λ1, . . . , λk
denote all the distinct eigenvalues of ϕ. Also, let Ei denote the eigenspace

of ϕ associated to λi for i = 1, . . . , k. Then ϕ is diagonalizable if and only

if

V = E1 ⊕ E2 ⊕ · · · ⊕ Ek.

Proof. Since ϕ is diagonalizable, V has a basis {v1, . . . , vn} which consists of eigen-

vectors of ϕ. Hence, each vi lies in some Ej . This implies that

V = E1 + E2 + · · ·+ Ek.

We now show that this sum is actually a direct sum. To do this, let ui ∈ Ei for

i = 1, . . . , k and suppose that

u1 + u2 + · · ·+ uk = 0.

Let S := {ui | ui 6= 0}. If S 6= ∅, then S is a linearly dependent set consisting of

eigenvectors associated to distinct eigenvalues. However, this contradicts Proposi-

tion 13.11. From this, we conclude that u1 = u2 = · · · = uk = 0. This implies that

V is a direct sum of the Ei’s.
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Now suppose that V is a direct sum of the eigenspaces Ei, i = 1, . . . , k. Let Bi
be any basis on Ei for i = 1, . . . , k. Then

B = B1 ∪ B2 ∪ · · · ∪ Bk
is a basis of V consisting of the eigenvectors of ϕ. Hence, ϕ is diagonalizable. �

The following result expresses the condition of diagonalizability in terms of the

minimal polynomial.

Theorem 13.13. Let ϕ : V → V be a linear map and let λ1, . . . , λk denote

the distinct eigenvalues of ϕ. Then ϕ is diagonalizable if and only if its

minimal polynomial is

mϕ(x) = (x− λ1)(x− λ2) · · · (x− λk). (263)

Proof. Suppose first that ϕ : V → V is diagonalizable. Let mϕ(x) denote the

minimal polynomial of ϕ. Also, let pi(x) = x− λi for i = 1, . . . , k and let

p(x) = p1(x)p2(x) · · · pk(x).

Note that p(x) is a monic polynomial.

Let Ei be the eigenspace associated to λi for i = 1, . . . , k. By Proposition

13.12,

V = E1 ⊕ E2 ⊕ · · · ⊕ Ek.
Let ui ∈ Ei. Since ϕ(ui) = λiui, we have

pi(ϕ)ui = (ϕ− λiidV )ui = ϕ(ui)− λiui = λiui − λiui = 0.

Hence,

p(ϕ)ui = p1(ϕ)p2(ϕ) · · · pk(ϕ)ui

= p1(ϕ)p2(ϕ) · · · p̂i(ϕ) · · · pk(ϕ)pi(ϕ)ui

= p1(ϕ)p2(ϕ) · · · p̂i(ϕ) · · · pk(ϕ)0

= 0

where p̂i(ϕ) denotes omission of pi(ϕ). Since V is a direct sum of the Ei’s, it follows

that p(ϕ) = 0. Theorem 13.2 implies that

mϕ(x) | p(x).

Since p1, p2, . . . , pk are distinct linear factors (and hence irreducible and pairwise

coprime - see Definitions 12.50 and 12.42), it follows that mϕ must be a product of

some subset of {p1, p2, . . . , pk}. So let us suppose that for some integers

1 ≤ a1 < a2 < · · · < al ≤ k,

we have

mϕ = pa1pa2 · · · pal .
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Suppose now that some linear factor pj is missing from mϕ. Then for uj ∈ Ej , we

have

pai(ϕ)uj = (λj − λai)uj 6= 0

for i = 1, 2, . . . , l. Hence

mϕ(ϕ)uj = pa1(ϕ)pa2(ϕ) · · · pal(ϕ)uj

= (λa1 − λj)(λa2 − λj) · · · (λal − λj)uj
6= 0,

which is a contradiction. Hence, mϕ must be a product of all the pi’s:

mϕ = p = p1p2 · · · pk = (x− λ1)(x− λ2) · · · (x− λk).

This proves the first half of the theorem.

Now let us suppose that the minimal polynomial mϕ of ϕ is given by (263).

Since the factors (x − λi) for i = 1, . . . , k are pairwise coprime, the Primary De-

composition Theorem (Theorem 13.9) implies that

V = ker(ϕ− λ1idV )⊕ ker(ϕ− λ2idV )⊕ · · · ⊕ ker(ϕ− λkidV ).

However, ker(ϕ − λiidV ) is simply the eigenspace of ϕ associated to λi for i =

1, . . . , k. By Proposition 13.12, ϕ is diagonalizable. �

Definition 13.14. Let ϕ1, . . . , ϕm ∈ End(V ) be diagonalizable linear maps.

The linear maps ϕ1, . . . , ϕm are simultaneously diagonalizable if there

exists a basis B of V such that each element of B is an eigenvector of ϕi for

i = 1, . . . ,m.

Example 13.15. Consider the vector space R2 and let ~e1 and ~e2 be the

standard basis on R2. Let ϕ1, ϕ2 ∈ End(R2) be the linear maps defined by

ϕ1(~e1) = ~e1 + 2~e2, ϕ1(~e2) = 2~e1 + ~e2

and

ϕ2(~e1) = 3~e1 − ~e2, ϕ2(~e2) = −~e1 + 3~e2.

With a little work, one finds that ϕ1 and ϕ2 are diagonalizable with eigen-

vectors

~e1 + ~e2, ~e1 − ~e2.
Indeed,

ϕ1(~e1 + ~e2) = 3(~e1 + ~e2), ϕ1(~e1 − ~e2) = −(~e1 − ~e2),

and

ϕ2(~e1 + ~e2) = 2(~e1 + ~e2), ϕ2(~e1 − ~e2) = 4(~e1 − ~e2),

Since the vectors ~e1 + ~e2 and ~e1 − ~e2 form a basis on R2, we conclude that

ϕ1 and ϕ2 are simultaneously diagonalizable.
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We conclude this section by proving a well known theorem about simultaneously

diagonalizable linear maps. Before doing this, we need the following result:

Lemma 13.16. Let ϕ : V → V be diagonalizable linear maps. If U is a

subspace of V which is invariant under ϕ, that is, ϕ(U) ⊂ U . Then the

restriction to U

ϕ|U : U → U

is also diagonalizable.

Proof. Let λ1, . . . , λk be the distinct eigenvalues of ϕ. Let ρ := ϕ|U . Since ϕ is

diagonalizable, Theorem 13.13 implies that the minimal polynomial of ϕ is

mϕ = (x− λ1)(x− λ2) · · · (x− λk).

Let mρ be the minimal polynomial of ρ. Since mϕ(ϕ) = 0, we also have

mϕ(ρ)(U) = mϕ(ϕ|U )(U)

= mϕ(ϕ)(U)

= 0.

Theorem 13.2 implies that mρ |mϕ. Since mϕ consists of distinct linear factors (x−
λi), i = 1, . . . , k, it follows that mρ must be a product of some subset of the factors

{x− λi | i = 1, . . . , k}. Theorem 13.13 implies that ρ := ϕ|U is diagonalizable. �

Theorem 13.17. Let ϕ1, . . . , ϕm ∈ End(V ) be diagonalizable linear maps.

Then the linear maps ϕ1, . . . , ϕm are simultaneously diagonalizable if and

only if they commute with one another, that is, ϕiϕj = ϕjϕi for all i, j ∈
{1, . . . ,m}.

Proof. (⇐): Suppose ϕ1, . . . , ϕm are commuting diagonalizable linear maps. We

show that they are simultaneously diagonalizable by induction on m. For m = 1,

we have a single diagonalizable linear map {ϕ1}, which is simultaneously diago-

nalizable in a trivial way. Now suppose that the result is true for m commutating

diagonalizable linear maps.

Let ϕ1, . . . , ϕm, ϕm+1 be any m+1 commuting diagonalizable linear maps. Let

λ1, . . . , λk be the distinct eigenvalues of ϕm+1 : V → V and let Ei be the eigenspace

of ϕm+1 associated to λi for i = 1, . . . , k. Let ei ∈ Ei. Then for j ≤ m, we have

ϕm+1ϕj(ei) = ϕjϕm+1(ei)

= λiϕj(ei).
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Hence ϕj(ei) is an eigenvector of ϕm+1 associated to λi. Hence, ϕj(Ei) ⊂ Ei for

j = 1, . . . ,m. By Lemma 13.16, the restricted linear map

ϕj |Ei : Ei → Ei

is diagonalizable for j = 1, . . . ,m. By the induction hypothesis, the m commuting

diagonalizable linear maps

ϕ1|Ei , ϕ2|Ei , . . . , ϕm|Ei
are simultaneously diagonalizable. Hence, there exists a basis Bi of Ei such that

each basis element of Bi is an eigenvector of ϕ1, . . . , ϕm. Since Bi ⊂ Ei, every

element of Bi is, of course, an eigenvector of ϕm+1 as well. The set

B := B1 ∪ B2 ∪ · · · ∪ Bk

is then a basis of V and, by construction, every element of B is an eigenvector of

ϕi for i = 1, . . . ,m+ 1. Hence, ϕ1, . . . , ϕm+1 are simultaneously diagonalizable.

(⇒): Suppose that ϕ1, . . . , ϕm are simultaneously diagonalizable. We now

show that they also commute with one another. By definition, there exists a basis

v1, . . . , vn of V such that vi is an eigenvector of ϕj for j = 1, . . . ,m. Hence, for

i = 1, . . . , n and j = 1, . . . ,m, we have

ϕj(vi) = λjivi

for some λji ∈ F. Then

ϕlϕj(vi) = λjiϕl(vi)

= λjiϕl(vi)

= λjiλlivi

= ϕjϕl(vi) (264)

for i = 1, . . . , n and j, l = 1, . . . ,m. Since {v1, . . . , vn} is a basis, (264) implies that

ϕjϕl = ϕlϕj for all j, l = 1, . . . ,m. �

Remark 13.18. The basic mathematical framework underlying quantum

mechanics is linear algebra. In quantum mechanics, a physical system is

represented by a complex inner product space (H, 〈·, ·〉). In this framework,

the observables (i.e. the physical quantities one measures like position or

momentum) are represented by self-adjoint operators. Recall from Theorem

9.56 that self-adjoint linear maps are diagonalizable. In quantum mechanics,

the eigenvectors of a self-adjoint map correspond to various physical states

of the system. The eigenvalues of a self-adjoint linear map ϕ are the pos-

sible values that the observable represented by ϕ can take on (after a mea-

surement). Two self-adjoint operators which commute are simultaneously

diagonalizable by Theorem 13.17. Hence, they share the same eigenvectors

(or physical states). Physically, commuting self-adjoint operators represent
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observables which can be measured simultaneously. Self-adjoint operators

which do not commute represent observables which cannot be measured si-

multaneously. This is the mathematical underpinning behind the famous

Heisenberg uncertainty principle.

13.4. Geometric Multiplicity vs Algebraic Multiplicity

In this brief section, V is a vector space over F, where F = R or C.

Definition 13.19. Let ϕ : V → V be a linear map and let pϕ be the

characteristic polynomial of ϕ. Also, let λ be an eigenvalue of ϕ and let Eλ
be the eigenspace of ϕ associated to λ.

(i) The geometric multiplicity of λ is dimEλ.

(ii) The algebraic multiplicity of λ is the largest integer k such that

(x− λ)k | pϕ(x).

We will denote the geometric multiplicity of λ by G(λ) and the algebraic

multiplicity of λ by A(λ).

Example 13.20. Consider the vector space R2 and let ~e1 and ~e2 denote the

standard basis on R2. Let ϕ : R2 → R2 be the linear map defined by

ϕ(~e1) = ~e1, ϕ(~e2) = ~e1 + ~e2.

The matrix representation of ϕ with respect to the standard basis S =

{~e1, ~e2} is

[ϕ]S =

(
1 1

0 1

)
.

From this, we find that the characteristic polynomial of ϕ is

pϕ(x) = det(xI2 − [ϕ]S) = (x− 1)2.

ϕ has only one eigenvalue: 1. From pϕ, we see that the algebraic multiplicity

of 1 is A(1) = 2. On the other hand, the eigenspace of 1 is spanned by ~e1.

Hence, the geometric multiplicity of 1 is G(1) = 1.

In the previous example, we have G(λ) ≤ A(λ). Is this always the case? The answer

is given by the following result:

Theorem 13.21. Let ϕ : V → V be a linear map and let λ be an eigenvalue

of ϕ. Then G(λ) ≤ A(λ).



13.4. Geometric Multiplicity vs Algebraic Multiplicity 367

Proof. Let Eλ be the eigenspace of ϕ and let {v1, . . . , vk} be a basis on Eλ. Extend

this to a basis on V :

B := {v1, . . . , vk, vk+1, . . . , vn}.

Since ϕ(vi) = λvi for i ≤ k, the matrix representation of ϕ with respect to B has

the form

[ϕ]B =

(
λIk X

0n−k,k Y

)
,

where Ik is the k × k identity matrix, 0n−k,k is the (n − k) × k zero matrix, X is

some (n− k)× k matrix, and Y is some (n− k)× (n− k) matrix. Let

Q = xIn − [ϕ]B =

(
(x− λ)Ik −X
0n−k,k xIn−k − Y

)
.

The characteristic polynomial of ϕ is then pϕ(x) = det(Q). Since the diagonal

elements of the matrix xIn−k − Y are degree 1 polynomials, it follows that these

very same elements can be used as pivots to transform xIn−k − Y into an upper

triangular matrix. Hence, we only need the row operation

cRi +Rj → Rj

to transform xIn−k − Y (and hence Q) into an upper triangular matrix. The only

difference here is that c is not an element of F. Instead, c is a function of x of the

form
a

f(x)

where a ∈ F and f(x) is a degree 1 polynomial. Let A denote the upper triangular

matrix obtained from xIn−k − Y after row operations and let

Q′ = xIn − [ϕ]B =

(
(x− λ)Ik −X
0n−k,k A

)
,

From our study of determinants, det(Q′) = det(Q). In addition, we recall that that

the determinant of an upper triangular matrix is just the product of all its diagonal

elements. Let h(x) denote the product of the diagonal elements of A. Then h is a

polynomial of degree n− k. Hence,

pϕ = det(Q)

= det(Q′)

= (x− λ)kh(x).

Since (x− λ)k | pϕ and k = dimEλ, it follows immediately that G(λ) ≤ A(λ). �

We conclude this section with another characterization of diagonalizable linear

maps.
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Theorem 13.22. Let V be a complex vector space and let ϕ : V → V be

a linear map. Also, let λ1, . . . , λk denote all the eigenvalues of ϕ. Then ϕ

is diagonalizable if and only if G(λi) = A(λi) for i = 1, . . . , k.

Proof. Let pϕ be the characteristic polynomial of ϕ. Since V is a complex vector

space, pϕ ∈ C[x]. The Fundamental Theorem of algebra implies that pϕ completely

factors:

pϕ = (x− λ1)a1(x− λ2)a2 · · · (x− λk)ak . (265)

From the definition of algebraic multiplicity, we have A(λi) := ai for i = 1, . . . , k.

Let Ei denote the eigenspace of ϕ associated to λi.

Suppose first that ϕ is diagonalizable. Let Bi be a basis of Ei for i = 1, . . . , k.

Let

B := B1 ∪ B2 ∪ · · · ∪ Bk.
Let gi := G(λi) := dimEi for i = 1, . . . , k. The matrix representation of ϕ with

respect to B is then

[ϕ]B =


λ1Ig1 0 0 · · · 0

0 λ2Ig2 0 · · · 0
...

...
. . . · · · 0

0 0 0 · · · λkIgk

 , (266)

where “0” here denotes zero matrices of various sizes. From (266), we have

pϕ = (x− λ1)g1(x− λ2)g2 · · · (x− λk)gk . (267)

Comparing (265) and (267), we have ai = gi for i = 1, . . . , k. Hence, A(λi) = G(λi)

for i = 1, . . . , k.

Now suppose that A(λi) = G(λi) for i = 1, . . . , k. Since the degree of the

characteristic polynomial is equal to dimV , we have

dimV = A(λ1) +A(λ2) + · · ·+A(λk)

= G(λ1) + G(λ2) + · · ·+ G(λk)

= dimE1 + dimE2 + · · ·+ dimEk. (268)

This implies

V = E1 ⊕ E2 ⊕ · · · ⊕ Ek.
Proposition 13.12 now implies that ϕ is diagonalizable. �

13.5. Block Matrices and Jordan Blocks

In this section, we formally introduce the notion of block matrices with particular

emphasis on block diagonal matrices.
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Definition 13.23. A block matrix is a matrix of the form
A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

Am1 Am2 · · · Amn


where Aij for i = 1, . . . ,m and j = 1, . . . , n are matrices of appropriate sizes

called the blocks of A.

A special (yet important) case of Definition 13.23 is the following:

Definition 13.24. A block diagonal matrix is a matrix of the form
A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak


where the blocks A1, A2, . . . , Ak are square matrices (not necessarily of the

same size) and 0 denotes zero matrices of appropriate sizes.

Example 13.25. The matrix

A =



1 −1 0 0 0 0 0

0 2 0 0 0 0 0

0 0 −2 4 1 0 0

0 0 2 1 5 0 0

0 0 −3 2 −4 0 0

0 0 0 0 0 6 0

0 0 0 0 0 0 −2


is block diagonal with blocks

A1 =

(
1 −1

0 2

)
, A2 =

 −2 4 1

2 1 5

−3 2 −4

 , A3 = (6), A4 = (−2).

Recall from our study of determinants that the determinant of an upper triangular

matrix is simply the product of its diagonal elements. The following result is a

generalization of this.
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Theorem 13.26. Let A be a block matrix of the form

A =


A11 A12 A13 · · · A1k

0 A22 A23 · · · A2k

0 0 A33 · · · A3k

...
...

...
. . .

...

0 0 0 · · · Akk


where the block diagonals Aii for i = 1, . . . , k are square matrices (not nec-

essarily of the same size). Then the determinant of A is just the product of

the determinants of its diagonal blocks, that is,

det(A) = det(A11) det(A22) · · · det(Akk).

Proof. Using row operations, we can transform A into an upper triangular matrix.

Given the form of A, this amounts to using row operations to transform each of

its diagonal blocks into an upper triangular matrix. Let us recall the effect on the

determinant from each type of row operation:

1. Ri ↔ Rj (i 6= j): changes the sign of the determinant

2. cRi → Ri: scales the determinant by a factor of c

3. cRi +Rj → Rj : no change

Using only row operations 1 and 3, A can be transformed into an upper triangular

matrix A′. Let si denote the number of row swaps used in transforming Aii into an

upper triangular matrix A′ii. Let αi denote the product of the diagonal elements

of A′ii. From our study of determinants, the determinant of an upper triangular

matrix is simply the product of its diagonal elements. Hence, det(A′ii) = αi. The

determinant of Aii and A′ii are then related by

det(Aii) = (−1)si det(A′ii) = (−1)siαi.

The determinant of A′ is then the product of its all diagonal elements. Hence,

det(A′) = α1α2 · · ·αk
= det(A′11) det(A′22) · · · det(A′kk).

Let s =
∑k
i=1 si be the total number of row swaps needed in transforming A into

A′. The determinant of A is then given by

det(A) = (−1)s det(A′)

= (−1)s det(A′11) det(A′22) · · · det(A′kk)

= (−1)s1(−1)s2 · · · (−1)sk det(A′11) det(A′22) · · · det(A′kk)

= ((−1)s1 det(A′11)) ((−1)s2 det(A′22)) · · · ((−1)sk det(A′kk))

= det(A11) det(A22) · · · det(Akk).

�
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Example 13.27. Let

A =


2 1 −3 7

−1 5 8 3

0 0 5 −2

0 0 2 7

 .

By Theorem 13.26, the determinant of A is

det(A) = det

(
2 1

−1 5

)
det

(
5 −2

2 7

)
= (11)(39)

= 429.

The following is a special case of Theorem 13.26:

Corollary 13.28. The determinant of a block diagonal matrix

A =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak


is the product of the determinants of its diagonal blocks, that is,

det(A) = det(A1) det(A2) · · · det(Ak).

Example 13.29. Consider the matrix A from Example 13.25. By Theorem

13.26, the determinant of A is

det(A) = det(A1) det(A2) det(A3) det(A4)

= (2)(7)(6)(−2)

= −168.
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Definition 13.30. A Jordan block of size n is an n×n matrix consisting

of a number λ ∈ F along the main diagonal and the number 1 along the

superdiagonal:

Jn(λ) :=



λ 1 0 0 · · · 0

0 λ 1 0 · · · 0

0 0 λ 1 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0 · · · 1

0 0 0 0 · · · λ


A block diagonal matrix consisting of Jordan blocks is said to be in Jordan

canonical form.

Example 13.31. The matrix

A =



3 1 0 0 0 0 0

0 3 0 0 0 0 0

0 0 −4 1 0 0 0

0 0 0 −4 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


is in Jordan canonical form with Jordan blocks J2(3), J2(−4), and J3(0).

A matrix in Jordan canonical form is a diagonal matrix if and only if it consists of

Jordan blocks of size 1. Intuitively, a matrix which is in Jordan canonical form is

“close” to being a diagonal matrix. As we have seen, not every linear endomorphism

is diagonalizable. However, for every linear endomorphism ϕ on a complex vector

space V , we can settle for the next best thing: one can always find a basis B of

V for which the matrix representation [ϕ]B is in Jordan canonical form. The rest

of this chapter will be devoted to proving this result and exploring a few of its

consequences.

13.6. Nilpotent Maps

As we alluded to in the previous section, every linear endomorphism on a complex

vector space V has a basis B for which its matrix representation can be put into the

Jordan canonical form. We will see later that the Jordan canonical form implies

that a linear map can be uniquely decomposed into a sum of a diagonalizable map

and a nilpotent map. In order to prove the existence of such a basis, we need

to spend a little time studying nilpotent maps. This is the purpose of the present

section. In this section, F = R or C and V is a vector space over F. Naturally, we
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begin with the following definition:

Definition 13.32. A linear map ϕ ∈ End(V ) is nilpotent if ϕk = 0 for

some integer k > 0.

Example 13.33. The zero endomorphism 0 ∈ End(V ) is trivially nilpotent.

Here is a less trivial example.

Example 13.34. Consider the vector space R2 with standard basis ~e1, ~e2.

Let ϕ : R2 → R2 be the linear map defined by

ϕ(~e1) = ~e2, ϕ(~e2) = 0.

Its easy to see that ϕ2 = 0. Hence, ϕ is nilpotent.

Theorem 13.35. Let ϕ ∈ End(V ). Then ϕ is nilpotent if and only if the

minimal polynomial of ϕ is of the form mϕ(x) = xk for some k ≥ 1.

Proof. Suppose ϕ is nilpotent. By definition, ϕn = 0 for some n ≥ 1. Since

p(ϕ) = ϕn for p(x) = xn ∈ F[x], Theorem 13.2 implies that mϕ | xn. Since

mϕ(ϕ) = 0 and mϕ(x) is monic, it follows that mϕ(x) = xk for some 1 ≤ k ≤ n.

Now suppose mϕ(x) = xk for some k ≥ 1. From the definition of the minimal

polynomial, we have mϕ(ϕ) = ϕk = 0. Hence, ϕ is nilpotent. �

Theorem 13.36. Let ϕ ∈ End(V ) be a nilpotent map. Then 0 is the only

eigenvalue of ϕ.

Proof. Let λ be an eigenvalue of ϕ and let v ∈ V be an associated eigenvector. By

definition, v is nonzero. Hence, for any k ≥ 1, we have

ϕk(v) = λkv.

If λ 6= 0, then ϕk(v) 6= 0 for all k ≥ 1. In particular, ϕ is not nilpotent, which is a

contradiction. Hence, we conclude that λ = 0. �

The converse to Theorem 13.36 is not true in general as the following example

demonstrates:
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Example 13.37. Consider the vector space R3 and let ~e1, ~e2, ~e3 denote its

standard basis. Let ϕ : R3 → R3 be the linear map defined by

ϕ(~e1) = 0, ϕ(~e2) = −~e3, ϕ(~e3) = ~e2.

The characteristic polynomial of ϕ is pϕ = x(x2 + 1) ∈ R[x], which has only

has 0 as its eigenvalue. However, ϕ is not nilpotent since ϕ2k(~e2) = (−1)k~e2
for k ≥ 1. It will follow easily from the Cayley-Hamilton Theorem (which

we will prove later) that the converse to Theorem 13.36 does hold if V is a

complex vector space.

Our goal now for the remainder of this section is to show that if ϕ : V → V

is nilpotent, then there exists a basis B of V for which the matrix representation

of ϕ with respect to B is in the Jordan canonical form where all Jordan blocks are

of the form Jp(0) for various p ≥ 1. Such a basis is called a Jordan basis for ϕ.

We are going to arrive at a proof of this result by first proving a number of smaller

results. In essence, we are building a bridge towards this main result. Each smaller

result can be regarded as a plank in this bridge. We begin with the following result:

Lemma 13.38. Let ϕ ∈ End(V ) be a nonzero nilpotent linear map. Suppose

ϕk = 0 and ϕk−1 6= 0 for some positive integer k. Then for any v ∈ V such

that ϕk−1(v) 6= 0, the set

{v, ϕ(v), . . . , ϕk−1(v)}

is linearly independent.

Proof. We prove this by induction on k. Since ϕ is nonzero by hypothesis, k is at

least 2. Let us first consider the case where k = 2. Let v ∈ V be any vector such

that ϕ(v) 6= 0 and suppose that

a0v + a1ϕ(v) = 0 (269)

for some a0, a1 ∈ F. Applying ϕ to both sides of (269) and using the fact that

ϕ2 = 0 and ϕ(v) 6= 0, we obtain a0 = 0. Equation (269) reduces to a1ϕ(v) = 0.

Since ϕ(v) 6= 0, we conclude that a1 = 0 as well. Hence, {v, ϕ(v)} is linearly

independent.

Suppose the result is true for all nilpotent maps satisfying ϕk = 0 and ϕk−1 6= 0

for some k ≥ 2. Now let ψ : V → V be a nilpotent map such that ψk+1 = 0 and

ψk 6= 0. Let V ′ = im ψ. Then

ψ(V ′) ⊂ ψ(V ) = im ψ = V ′.

Hence, ψ|V ′ ∈ End(V ′). Let ψ′ := ψ|V ′ . Since ψ is a nonzero map, we have

V ′ 6= {0}. Let v′ ∈ V ′ be arbitrary. Then v′ = ψ(v) for some v ∈ V and

(ψ′)k(v′) = ψk(v′) = ψk+1(v) = 0.
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Hence, (ψ′)k = 0. Also, since ψk 6= 0, there exists v ∈ V such that ψk(v) 6= 0. Let

v′ = ψ(v). Then

(ψ′)k−1(v′) = ψk−1(v′) = ψk(v) 6= 0.

Hence, (ψ′)k−1 6= 0. Now let v′ ∈ V ′ ⊂ V be any element such that (ψ′)k−1(v′) 6= 0.

By the induction hypothesis applied to ψ′ := ψ|V ′ , the set

{v′, ψ(v′), . . . , ψk−1(v′)}

is linearly independent. Since v′ ∈ V ′, there exists v ∈ V such that v′ = ψ(v). The

above linearly independent set can be rewritten as

{ψ(v), ψ2(v), . . . , ψk(v)}. (270)

Now suppose that

a0v + a1ψ(v) + · · ·+ akψ
k(v) = 0 (271)

for some a0, a1, . . . , ak ∈ F. Applying ψ to both sides of (271) gives

a0ψ(v) + a1ψ
2(v) + · · ·+ ak−1ψ

k(v) = 0, (272)

where we have used the fact that ψk+1 = 0. However, the set (270) is linearly

independent. Hence, a0 = a1 = · · · = ak−1 = 0. (271) now reduces to akψ
k(v) = 0.

Since ψk(v) 6= 0, we conclude that ak = 0 as well. From this, it follows that

{v, ψ(v), ψ2(v), . . . , ψk(v)}

is linearly independent. This proves the induction step. �

Lemma 13.39. Let ϕ : V → V be a nonzero nilpotent map. Let k be

the smallest integer such that ϕk = 0. Let v ∈ V be any vector such that

ϕk−1(v) 6= 0. Also, let

U := span{v, ϕ(v), . . . , ϕk−1(v)}.

Then

U ∩ kerϕ = span{ϕk−1(v)}

Proof. By Lemma 13.38, the set

B := {ϕk−1(v), . . . , ϕ(v), v}

is linearly independent. Let u ∈ U ∩ kerϕ. Since U = span B, it follows that

u = a0v + a1ϕ(v) + · · ·+ ak−1ϕ
k−1(v) (273)

for some a0, a1, . . . , ak−1 ∈ F. Applying ϕ to both sides of (273) and using the fact

that ϕk = 0 and ϕ(u) = 0 gives

0 = a0ϕ(v) + a1ϕ
2(v) + · · ·+ ak−2ϕ

k−1(v). (274)

Since ϕ(v), ϕ2(v), . . . , ϕk−1(v) is linearly independent, it follows that

a0 = a1 = · · · = ak−2 = 0.
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Hence, u = ak−1ϕ
k−1(v). From this, we conclude that U ∩ kerϕ is spanned by the

vector ϕk−1(v). �

Lemma 13.40. Let ϕ : V → V be a nonzero nilpotent map. Let k be the

smallest integer such that ϕk = 0 and let v ∈ V be any vector such that

ϕk−1(v) 6= 0. Also, let

B := {ϕk−1(v), . . . , ϕ(v), v}

and U := span B. Then

(i) ϕ(U) ⊂ U
(ii) The matrix representation of ϕ|U : U → U with respect to B is the

Jordan block Jk(0), that is,

[ϕ|U ]B = Jk(0)

(iii) if dimV = 2, then U = V and [ϕ]B = J2(0).

Proof. (i): Since ϕk = 0, it follows that

ϕ(ϕiv) = ϕi+1(v) ∈ U

for i = 0, 1, . . . , k − 1 (where we set ϕ0 := idV ). This implies that ϕ(U) ⊂ U .

(ii): By Lemma 13.38, B is linearly independent. Hence, B is a basis of U . Since

ϕ(ϕi(v)) = ϕi+1(v) (with ϕk(v) = 0), it follows that the matrix representation of

ϕ|U with respect to B is

[ϕ|U ]B =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

0 0 0 · · · 0


= Jk(0).

(Note that dimU = k.)

(iii). Since ϕ is a nonzero nilpotent map, it follows that k ≥ 2. By Lemma

13.38, {ϕ(v), v} is linearly independent. Since dimV = 2, it follows that k = 2 and

B = {ϕ(v), v} is a basis of V . Hence, U = V here, ϕ|U = ϕ, and

[ϕ]B =

(
0 1

0 0

)
= J2(0).

�
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Remark 13.41. Let 0 : V → V be the zero map and let n = dimV . For

any basis B, the matrix representation of 0 with respect to B is, of course,

the n × n zero matrix. Since J1(0) = 0, the n × n zero matrix can also be

expressed as a block diagonal matrix with n Jordan blocks all equal to J1(0).

In other words,

[0]B =


J1(0) 0 · · · 0

0 J1(0) · · · 0
...

...
. . .

...

0 0 · · · J1(0)

 .

Lemma 13.42. Let ϕ : V → V be a nonzero nilpotent linear map such

that ϕ2 = 0. Then there exists a Jordan basis B of V for ϕ such that all

the Jordan blocks in the matrix representation [ϕ]B are either J1(0) = 0 or

J2(0).

Proof. Since ϕ2 = 0, it follows that im ϕ ⊂ kerϕ. Let

{ỹ1, . . . , ỹt} (275)

be a basis on im ϕ and let yi ∈ V be defined by ϕ(yi) = ỹi for i = 1, . . . , t. Extend

(275) to a basis of kerϕ:

{ỹ1, ỹ2 . . . , ỹt, x1, x2 . . . , xs}. (276)

Let

B := {ỹ1, y1, ỹ2, y2 . . . , ỹt, yt, x1, . . . , xs}. (277)

We now show that B is linearly independent. Suppose

t∑
i=1

aiỹi +
t∑
i=1

biyi +
s∑
i=1

cixi = 0. (278)

Applying ϕ to both sides of (278) gives

t∑
i=1

biỹi = 0, (279)

where we use the fact that ỹi, xj ∈ kerϕ and ϕ(yi) = ỹi for i = 1, . . . , t, j = 1, . . . , s.

Since (277) is linearly independent, it follows that b1 = · · · = bt = 0. Equation

(278) now reduces to
t∑
i=1

aiỹi +

s∑
i=1

cixi = 0. (280)

Since (277) is linearly independent, we conclude that

a1 = · · · = at = c1 = · · · = cs = 0.

We have thus proven that B is linearly independent.
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By the Rank Nullity Theorem (Theorem 5.60), we have

dimV = dim kerϕ+ dim im ϕ

= (t+ s) + t

= 2t+ s,

which is the cardinality of B. Since B is also linearly independent, we conclude that

B is a basis on V .

Since

ϕ(ỹi) = 0, ϕ(yi) = ỹi, ϕ(xj) = 0

for i = 1, . . . , t and j = 1, . . . , s, we see that the matrix representation of ϕ with

respect to B is a block diagonal matrix which consists of t blocks of J2(0) and s

blocks of J1(0) = 0:

[ϕ]B =



J2(0) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · J2(0) 0 · · · 0

0 · · · 0 J1(0) · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0 J1(0)


.

�

We are now in a position to prove the main result of this section (which holds for

F = R or C). Note that the proof of this result is a bit technical. Hence, the reader

may wish to simply skim the proof for the first reading and then read it again for

all the details at a later time.

Theorem 13.43. Let ϕ : V → V be any nilpotent map and let n = dimV .

Then there exists a Jordan basis B of V for ϕ such that all the Jordan blocks

in the matrix representation [ϕ]B are of the form Jp(0) for various p ≥ 1.

More explicitly,

[ϕ]B =


Jn1(0) 0 · · · 0

0 Jn2(0) · · · 0
...

...
. . .

...

0 0 · · · Jnq (0)


where

∑q
i=1 ni = n.

Proof. If ϕ is the zero map, then the result holds by Remark 13.41. So let us

assume that ϕ is a nonzero nilpotent map. Let k be the smallest integer such that

ϕk = 0. Since ϕ 6= 0, it follows that k ≥ 2. Lemma 13.38 implies that {ϕ(v), v} is

linearly independent. Hence, dimV ≥ 2. If dimV = 2, then by statement (iii) of
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Lemma 13.40, there exists a basis B such that [ϕ]B = J2(0). Hence, Theorem 13.43

holds for dimV = 2.

We now prove Theorem 13.43 by induction on dimV . So let us assume that if

dimV < n and ϕ : V → V is a nonzero nilpotent map, there exists a basis B of V

such that [ϕ]B is a block diagonal matrix consisting of Jordan blocks of the form

Jp(0) for various p ≥ 1. Also, let us also suppose that if k is the smallest integer

such that ϕk = 0 and v ∈ V satisfies ϕk−1(v) 6= 0, then there exists a subspace C

of V (possibly C = {0}) which satisfies the following conditions:

(a) V = span{ϕk−1(v), . . . , ϕ(v), v} ⊕ C
(b) ϕ(C) ⊂ C.

Note that for dimV = 2, Lemma 13.40 shows that V = span{ϕ(v), v}. Hence,

C = {0} in this case. In particular, the existence of a subspace C satisfying

conditions (a) and (b) hold for the case of dimV = 2.

Now let dimV = n and let ϕ : V → V be a nonzero nilpotent map. Also, let

k be the smallest integer such that ϕk = 0 and let v ∈ V be any vector such that

ϕk−1(v) 6= 0. Let

B1 := {ϕk−1(v), . . . , ϕ(v), v}, U := span B1. (281)

Lemma 13.38 implies that B1 is a basis of U . Lemma 13.40 shows that ϕ(U) ⊂ U

and

[ϕ|U ]B1
= Jk(0).

If U = V , then we are done. In this case, the desired basis is B1 and [ϕ]B1
is a block

diagonal matrix which consists of a single Jordan block: Jk(0). So let us suppose

that U 6= V . We now construct a subspace C ⊂ V satisfying conditions (a) and (b)

above.

Before we do this, note that the existence of a subspace C ⊂ V satisfying

conditions (a) and (b) above implies the existence of a basis B of V with the property

that the matrix representation [ϕ]B is in Jordan canonical form with Jordan blocks

of the form Jp(0) for various p ≥ 1. Indeed, if such a subspace C exists, then

dimC < dimV = n

since dimU = k ≥ 2 and V = U ⊕ C. If ϕ|C = 0, then the matrix representation

of ϕ|C with respect to any basis of C is the zero matrix. By Remark 13.41, the

zero matrix is a special case of the Jordan canonical form where all Jordan blocks

are J1(0) = 0. On the other hand, if ϕ|C 6= 0, then by the induction hypothesis

applied to the nilpotent map ϕ|C : C → C, there exists a basis of C such that the

matrix representation of ϕ|C with respect to this basis is a block diagonal matrix

whose diagonal blocks are of the form Jp(0) for various p ≥ 1. Hence, whether

ϕ|C is zero or not, we can always find a basis B2 of C such that [ϕ|C ]B2
is a block

diagonal matrix with diagonal blocks of the form Jp(0) for various p ≥ 1. Letting

B = B1∪B2 gives a basis of V such that the matrix representation of ϕ with respect
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to B is

[ϕ]B =

(
[ϕ|U ]B1

0

0 [ϕ|C ]B2

)
=

(
Jk(0) 0

0 [ϕ|C ]B2

)
.

Given the form of [ϕ|C ]B2 , it follows immediately that the above matrix representa-

tion is a block diagonal matrix whose diagonal blocks are Jordan blocks of the form

Jp(0) for various p ≥ 1. Hence, to prove Theorem 13.43, it suffices to construct

a subspace C of V which satisfies conditions (a) and (b). We now focus our full

attention on doing just this.

By Lemma 13.42, Theorem 13.43 holds for all nonzero nilpotent maps satisfying

ϕ2 = 0. So let us assume that k ≥ 3. Since ϕk = 0 and ϕ 6= 0, it follows that

kerϕ 6= 0, kerϕ 6= V.

This in turn implies that

0 < dim im ϕ < dimV = n.

Note also that

ϕ(im ϕ) ⊂ ϕ(V ) = im ϕ.

Since k ≥ 3 is the smallest integer such that ϕk = 0, it follows that(
ϕ|im ϕ

)k−1
= 0 and

(
ϕ|im ϕ

)k−2
6= 0.

Let v′ = ϕ(v) ∈ im ϕ. Since ϕk−1(v) 6= 0, we have

ϕk−2v′ = ϕk−2(ϕ(v)) = ϕk−1(v) 6= 0.

Also, let

Ũ := span{ϕk−2(v′), . . . , ϕ(v′), v′}

= span{ϕk−1(v), . . . , ϕ2(v), ϕ(v)}.

Since dim im ϕ < dimV = n, the induction hypothesis applied to the nonzero

nilpotent map

ϕ|im ϕ : im ϕ→ im ϕ

yields a subspace C̃ ⊂ im ϕ such that

(a’) im ϕ = Ũ ⊕ C̃
(b’) ϕ(C̃) ⊂ C̃.

By Lemma 13.39, we have

U ∩ kerϕ = span{ϕk−1(v)}.

Let X be a basis of kerϕ which extends ϕk−1(v):

X := {x1, . . . , xs, ϕk−1(v)}.

There are two cases to consider: C̃ = {0} and C̃ 6= {0}.
case 1: C̃ = {0}. In this case, we have

im ϕ = Ũ = span{ϕk−1(v), . . . , ϕ2(v), ϕ(v)}.
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Let

Z := {v, ϕ(v), . . . , ϕk−1(v), x1, . . . , xs}.
We now show that Z is linearly independent. To do this, suppose that

k−1∑
i=0

aiϕ
i(v) +

s∑
i=1

bixi = 0 (282)

where ϕ0 := idV . Applying ϕ to both sides of (282) gives

a0ϕ(v) + · · ·+ ak−2ϕ
k−1(v) = 0. (283)

Since B1 is linearly independent, it follows that

a0 = · · · = ak−2 = 0.

Hence, (282) reduces to

ak−1ϕ
k−1(v) +

s∑
i=1

bixi = 0. (284)

Since X is linearly independent, we have

ak−1 = b1 = · · · = bs = 0.

This proves that Z is linearly independent. By the Rank Nullity Theorem (Theorem

5.60), we have

dimV = dim kerϕ+ dim im ϕ

= (s+ 1) + (k − 1)

= s+ k.

However, s+k is the cardinality of Z. Since Z is linearly independent, we conclude

that Z is in fact a basis of V . Let

C = span{x1, . . . , xs}. (285)

Since C ⊂ kerϕ, we have ϕ(C) = {0} ⊂ C. Also, since Z is a basis of V , it follows

from the definition of U in (281) and the definition of C in (285), that V = U ⊕C.

We have thus constructed a subspace C of V which satisfies conditions (a) and (b)

for the C̃ = {0} case.

case 2: C̃ 6= {0}. Since ϕ(C̃) ⊂ C̃, Theorem 11.30 shows that the map

ϕ : V/C̃ → V/C̃

given by ϕ([v]) := [ϕ(v)] is a well defined linear map. Moreover, since ϕ is nilpotent,

it follows immediately that ϕ is also nilpotent. Indeed,

ϕk([v]) = [ϕk(v)] = [0].

From condition (a’) above, C̃ satisfies

im ϕ = span{ϕk−1(v), . . . , ϕ2(v), ϕ(v)} ⊕ C̃. (286)



382 13. The Minimal Polynomial and its Consequences

This implies that

im ϕ = span{[ϕk−1(v)], . . . , [ϕ2(v)], [ϕ(v)]}. (287)

(286) implies that ϕi(v) /∈ C̃ for i = 1, 2, . . . , k − 1. Hence, im ϕ is a nonzero

subspace of V/C̃. In particular, ϕ is a nonzero nilpotent map. Since ϕk = 0 and

ϕk−1(v) /∈ C̃, it follows that k is also the smallest integer such that ϕk = [0]. Let

Û := span{[ϕk−1(v)], . . . , [ϕ2(v)], [ϕ(v)], [v]}. (288)

Note that Lemma 13.38 applied to the nonzero nilpotent map ϕ implies that

{[ϕk−1(v)], . . . , [ϕ2(v)], [ϕ(v)], [v]} (289)

is a basis of Û . From our study of quotient vector spaces, we have

dimV/C̃ = dimV − dim C̃ < dimV = n,

where we use the fact that C̃ 6= {0}. Applying the induction hypothesis to the

nonzero nilpotent map ϕ yields a subspace Ĉ of V/C̃ such that

(a”) V/C̃ = Û ⊕ Ĉ
(b”) ϕ(Ĉ) ⊂ Ĉ.

By Proposition 11.24, there exists a subspace C of V containing C̃ such that

Ĉ = C/C̃.

Condition (b”) above implies that ϕ(C) ⊂ C. From the definition of U in (281)

and the definition of Û in (288), we see that every element of Û is of the form

[u] for some u ∈ U . Consequently, condition (a”) implies that for every element

[v] ∈ V/C̃, there exists a unique [u] ∈ Û and a unique [c] ∈ Ĉ for some u ∈ U and

c ∈ C such that

[v] = [u] + [c].

This in turn implies that v − u− c ∈ C̃. Since C̃ ⊂ C, it follows that

V = U + C.

We now show that this is actually a direct sum. To do this, it suffices to show that

dimV = dimU + dimC. (290)

Using (a”), we have

dimV/C̃ = dim Û + dim Ĉ. (291)

Since

dimV/C̃ = dimV − dim C̃, dim Û = k = dimU, dim Ĉ = dimC − dim C̃,

we see that (291) yields (290). Hence, V = U ⊕ C, which proves that C is the

desired subspace satisfying conditions (a) and (b) for case 2. This completes the

proof. �
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Theorem 13.43 shows that for any nilpotent map ϕ : V → V (where V is a real

or complex vector space), a Jordan basis of V for ϕ exists. In addition to estab-

lishing the existence of a Jordan basis, the proof of Theorem 13.43 also suggests a

general strategy for actually finding a Jordan basis. The basic strategy works as

follows:

Finding a Jordan basis of a nilpotent map ϕ : V → V .

Set V0 := V and ϕ0 := ϕ. Carry out the following steps for i = 0, 1, 2, . . .

1. Let ki be the smallest integer such that ϕkii = 0 and let vi ∈ Vi be any

vector such that ϕki−1i (vi) 6= 0. (If ki = 1, i.e. ϕi is the zero map,

define ϕ0
i := idVi)

2. Let Bi := {ϕki−1i (vi), . . . , ϕi(vi), vi} and Ui := span Bi
3. Construct a subspace Ci ⊂ Vi such that

(a) Vi = Ui ⊕ Ci
(b) ϕi(Ci) ⊂ Ci

4. If Ci = {0}, then STOP. B := B0 ∪ · · · ∪ Bi is the Jordan basis of V

for ϕ. If Ci 6= {0}, set Vi+1 := Ci and ϕi+1 := ϕ|Vi+1 and repeat steps

1 through 4 by replacing i with i+ 1.

The crucial step in the above strategy is step 3, the construction of the subspace C.

From the proof of Theorem 13.43, this subspace C exists. Once again, the proof of

Theorem 13.43 provides a strategy for computing the subspace C. The following

result will prove useful in finding a Jordan basis.

Theorem 13.44. Let ϕ : V → V be a nilpotent map and let E0 be the

eigenspace of ϕ associated to the eigenvalue 0. Let B be a Jordan basis of V

for ϕ and let q be the number of Jordan blocks in [ϕ]B.

(a) Let Jki(0) be the ith Jordan block of [ϕ]B. Then the basis elements

associated to Jki(0) has the form

Bi = {ϕki−1(vi), . . . , ϕ(vi), vi}

for some vi ∈ V . In particular, B = B1 ∪ · · · ∪ Bq.
(b) The set {ϕk1−1(v1), ϕk2−1(v2), . . . , ϕkq−1(vq)} is a basis for E0. In

particular, dimE0 = q.

Proof. Let q be the number of Jordan blocks in in [ϕ]B. Also, let Jki(0) be the

ith Jordan block in [ϕ]B and let Bi denote the basis elements associated to the ith

Jordan block Jki(0) for i = 1, . . . , q. Then

B = B1 ∪ B2 ∪ · · · ∪ Bq.
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Note that Bi contains ki basis vectors. Write

Bi = {v(i)1 , . . . , v
(i)
ki
}.

Let Ui := span Bi. Then

V = U1 ⊕ U2 ⊕ · · · ⊕ Uq
and

[ϕ|Ui ]Bi = Jki(0).

From the form of Jki(0), we have

ϕ(v
(i)
j ) =

{
0 if j = 1

v
(i)
j−1 if j > 1

Hence, setting vi := v
(i)
ki

, we have

Bi = {ϕki−1(vi), . . . , ϕ(vi), vi}, ∀ i = 1, . . . , q.

This proves (a). We now show that

D := {ϕk1−1(v1), ϕk2−1(v2), . . . , ϕkq−1(vq)}

is a basis of E0 (where ϕ0 := idV ). Let x ∈ E0 and let us express x as a linear

combination of the basis elements of B = B1 ∪ · · · ∪ Bq:

x =

q∑
i=1

ki∑
j=1

aijϕ
ki−j(vi) (292)

for some aij ∈ F. Applying ϕ to both sides of (292) and using the fact that

ϕ(x) = 0x = 0

and

ϕki(vi) = 0, for i = 1, . . . , q

gives

0 =

q∑
i=1

ki∑
j=2

aijϕ
ki−j+1(vi). (293)

Since (293) is a linear combination of elements which belong to B, and hence, are

linearly independent, we conclude that

aij = 0 for j ≥ 2, i = 1, . . . , q.

Hence, (292) reduces to

x =

q∑
i=1

ai1ϕ
ki−1(vi) ∈ span D. (294)

This shows that E0 ⊂ span D. Also, since D ⊂ E0, we have E0 = span D. Lastly,

since D ⊂ B, D is also linearly independent. Therefore, we conclude that D is a

basis of E0. This proves (b). �
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Example 13.45. Let R[x]3 be the vector space of real polynomials of degree

3 or less and let D : R[x]3 → R[x]3 be the linear map defined by

Dp(x) :=
d

dx
p(x).

Clearly, D is nilpotent with D4 = 0 and D3 6= 0. The eigenspace of D

associated to the eigenvalue 0 is simply E0 = R, which is a one dimensional

subspace of R[x]3. By Theorem 13.44, any Jordan basis of R[x]3 for D

consists of a single Jordan block. Since D3x3 = 6 6= 0, it follows from the

general strategy outlined above that

B := {D3x3, D2x3, Dx3, x3} = {6, 6x, 3x2, x3}

is a Jordan basis of R[x]3 for D. In this case, [D]B = J4(0).

Example 13.46. Consider the vector space R4 and let ~e1, ~e2, ~e3, ~e4 denote

the standard basis on R4. Let ϕ : R4 → R4 be the linear map defined by

ϕ(~e1) = ϕ(~e4) = ~0, ϕ(~e2) = ~e1 + 0.5~e4, ϕ(~e3) = −1.5~e4.

Clearly, ϕ2 = 0 and

E0 = {a~e1 + b~e4 | a, b ∈ R}

where E0 is the eigenspace of ϕ associated to 0. Since dimE0 = 2, Theorem

13.44 implies that any Jordan basis of ϕ consists of 2 Jordan blocks. Using

the general strategy for finding a Jordan basis, let

B1 = {ϕ(~e2), ~e2} = {e1 + 0.5~e4, ~e2}

and

B2 = {ϕ(~e3), ~e3} = {−1.5~e4, ~e3}
Then B = B1 ∪ B2 is a Jordan basis of R4 for ϕ:

[ϕ]B =

(
J2(0) 0

0 J2(0)

)
.

Example 13.47. Consider the vector space R5 and let ~ei denote its ith

standard basis vector. Let ρ : R5 → R5 be the linear map defined by

ρ(~e1) = ~0, ρ(~e2) = ~e1, ρ(~e3) = −~e1 + ~e2

ρ(~e4) = 2~e1+~e2, ρ(~e5) = ~e1 − ~e2 + ~e3 + ~e4.

Then ρ4 = 0 and ρ3 6= 0. The eigenspace of ρ associated to 0 (which is

simply ker ρ) is

E0 = {a~e1 + b(3~e2 + ~e3 − ~e4) | a, b ∈ R}.
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Since dimE0 = 2, it follows that any Jordan basis of R5 for ρ consists of

two Jordan blocks. Let

B1 = {ρ3(~e5), ρ2(~e5), ρ(~e5), ~e5} = {2~e1, 2~e2, ~e1 − ~e2 + ~e3 + ~e4, ~e5}

and

B2 = {3~e2 + ~e3 − ~e4}
Then B = B1 ∪ B2 is a Jordan basis. The matrix representation [ϕ]B
consists of the Jordan blocks J4(0) and J1(0) = 0:

[ϕ]B =

(
J4(0) 0

0 0

)
.

13.7. The Jordan Canonical Form Theorem

In this section, V is a complex vector space and ϕ : V → V is any linear map. Let

mϕ ∈ C[x] denote the minimal polynomial of ϕ. Since mϕ is a complex polynomial,

the Fundamental Theorem of Algebra implies that mϕ factors completely into a

product of linear factors:

mϕ(x) = (x− λ1)q1(x− λ2)q2 · · · (x− λk)qk

where λi 6= λj for i 6= j. The main result of this section is a generalization of

Theorem 13.43 for nilpotent maps. In fact, much of the heavy lifting was already

carried out during the proof of Theorem 13.43. In essence, we are going to show

that there exists a Jordan basis of V for ϕ whose Jordan blocks are of the form

Jp(λi) for various p ≥ 1, i = 1, . . . , k. Here is the precise statement:

Theorem 13.48 (Jordan Canonical Form Theorem). Let V be a complex

vector space and let ϕ : V → V be a linear map. Also, let

mϕ(x) = (x− λ1)q1(x− λ2)q2 · · · (x− λk)qk

be the minimal polynomial of ϕ. Then there exists a basis B of V such that

the matrix representation [ϕ]B is a block diagonal matrix of the form

[ϕ]B =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 ,

where each Ai is itself a block diagonal matrix whose diagonal blocks are

Jordan blocks of the form Jp(λi) for various p ≥ 1. Moreover, let ni be the

size of the square matrix Ai (i.e. Ai is ni × ni). Then ni ≥ qi. The basis B
is called a Jordan basis for ϕ.
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Proof. Let

Vi := ker (ϕ− λiidV )qi , ∀ i = 1, . . . , k.

Since mϕ(ϕ) = 0 and the factors (ϕ−λiidV )qi for i = 1, . . . , k are pairwise coprime,

the Primary Decomposition Theorem (Theorem 13.9) implies

V = V1 ⊕ · · · ⊕ Vk (295)

and

ϕ(Vi) ⊂ Vi, ∀ i = 1, . . . , k. (296)

To prove Theorem 13.48, it suffices to consider the restriction of ϕ to Vi

ϕi := ϕ|Vi : Vi → Vi (297)

and construct a basis Bi of Vi such that the matrix representation [ϕi]Bi is a block

diagonal matrix whose diagonal blocks are all Jordan blocks of the form Jp(λi) for

various p ≥ 1.

Let mi(x) denote the minimal polynomial of ϕi in (297). We first show that

mi(x) = (x− λi)qi . (298)

From the definition of Vi, we have

(ϕi − λiidVi)qi = 0. (299)

This implies that mi(x) | (x − λi)qi . Hence, mi(x) = (x − λi)r for some r ≤ qi.

Suppose that r < qi. Letm′(x) be the polynomial obtained frommϕ(x) by replacing

(x− λi)qi with mi(x) = (x− λi)r. Since V is given by the direct sum in (295) and

mi(ϕ)(Vi) = {0}, it follows that m′(ϕ) = 0. Since degm′(x) < degmϕ(x), this

gives a contradiction. Hence, r = qi and mi(x) must be given by (298).

Now let

ψi := ϕi − λiidVi .

Then

ψqii = mi(ϕi) = 0.

Hence, ψi : Vi → Vi is a nilpotent map on Vi and qi is the smallest integer such

that ψqii = 0. Let

ni := dimVi.

We now show that ni ≥ qi. Let vi ∈ Vi be any vector such that ψqi−1i (vi) 6= 0. (If

qi = 1, that is, ψi = 0, we set ψ0
i := idVi .) By Lemma 13.38, the set

{ψqi−1i (vi), . . . , ψi(vi), vi} ⊂ Vi

is linearly independent. Since this set consists of qi elements, we conclude that

ni ≥ qi. (300)
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By Theorem 13.43, there exists a basis Bi of Vi such that [ψi]Bi consists of

Jordan blocks of the form Jp(0) for various p ≥ 1. Write

[ψi]Bi =


Jp1i(0) 0 · · · 0

0 Jp2i(0) · · · 0
... 0

. . .
...

0 0 · · · Jptii(0)

 . (301)

Since ψi = ϕi − λiidVi , we have

[ψi]Bi = [ϕi]Bi − [λiidVi ]Bi

= [ϕ|Vi ]Bi − λiIni , (302)

where Ini denote the ni × ni identity matrix. Using (301) and (302), we have

[ϕ|Vi ]Bi = [ψi]Bi + λiIni

=


Jp1i(λi) 0 · · · 0

0 Jp2i(λi) · · · 0
... 0

. . .
...

0 0 · · · Jptii(λi)

 . (303)

Let

Ai := [ϕ|Vi ]Bi . (304)

Since ϕ|Vi is an endomorphism of Vi and ni := dimVi, we note that Ai is ni × ni.
Also, since Bi is a basis of Vi, it follows that

B = B1 ∪ · · · ∪ Bk

is a basis of V . Equations (295), (296), (303), and (304) imply

[ϕ]B =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 .

Equation (303) shows that Ai has the desired form for i = 1, . . . , k. Moreover, Ai
is ni × ni with ni ≥ qi by (300). This completes the proof. �
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Corollary 13.49. Let V be a complex vector space and let ϕ : V → V be a

linear map. Let

mϕ(x) = (x− λ1)q1(x− λ2)q2 · · · (x− λk)qk

be the minimal polynomial of ϕ with λi 6= λj for i 6= j. Also, let

ni := dim ker(ϕ− λiidV )qi

and let pϕ be the characteristic polynomial of ϕ. Then

(i) ni ≥ qi
(ii) pϕ(x) = (x− λ1)n1(x− λ2)n2 · · · (x− λk)nk

In particular, mϕ and pϕ have the same roots (i.e., the eigenvalues of ϕ)

and mϕ | pϕ.

Proof. Let Vi := ker(ϕ − λiidV )qi . In the proof of Theorem 13.48, we let ni :=

dimVi and we showed that ni ≥ qi for i = 1, . . . k. This proves (i).

In the proof of Theorem 13.48, we constructed a basis B such that the matrix

representation of ϕ with respect to B is

[ϕ]B =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

 ,

where, for each i, Ai is an ni × ni block diagonal matrix with Jordan blocks of

the form Jp(λi) for various p ≥ 1. In particular, Ai is an upper triangular matrix

whose diagonal elements are all λi. This implies that [ϕ]B is an upper triangular

matrix as well. From our study of determinants, the determinant of an upper trian-

gular matrix is just the product of its diagonal elements. Hence, the characteristic

polynomial of [ϕ]B is easily found to be

pϕ(x) = det(xIn − [ϕ]B)

= (x− λ1)n1(x− λ2)n2 · · · (x− λk)nk

where n =
∑k
i=1 ni is the dimension of V . �

Corollary 13.49 shows that the roots of the minimal polynomial of a linear map

ϕ : V → V are precisely the eigenvalues of ϕ. Strictly speaking, we only proved

this for the case of complex vector spaces. However, it turns out to be true for real

vector spaces as well. We will verify this later. The proof for the real case hinges on

Corollary 13.49. The upshot of Corollary 13.49 and its real version is a result called

the Cayley-Hamilton Theorem. We will present the Cayley-Hamilton Theorem

later in this chapter. For now, here is one simple application of Corollary 13.49:
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Corollary 13.50. Let A be an n×n strictly upper triangular real or complex

matrix. Then An = 0. In particular, a strictly upper triangular matrix is

nilpotent.

Proof. Let A be an n× n strictly upper triangular matrix. Let

TA : Cn → Cn

be the linear map defined by TA(~v) := A~v. Since A is strictly upper triangular,

the characteristic polynomial of TA (and hence A) is p(x) = xn. Let m(x) be the

minimal polynomial of TA. By Corollary 13.49, m(x) | p(x). Hence, m(x) = xk for

some k ≤ n. Hence,

m(TA) = T kA = TAk = 0.

This implies that Ak = 0. In particular, An = 0. �

Example 13.51. As a simple example of Corollary 13.50, consider the

matrix

A =

 0 2 1

0 0 3

0 0 0

 .

The characteristic polynomial of A is x3. Hence, the minimal polynomial

must be x, x2, or x3. Since A is nonzero, x is ruled out. For x2, we have

A2 =

 0 2 1

0 0 3

0 0 0

 0 2 1

0 0 3

0 0 0

 =

 0 0 6

0 0 0

0 0 0

 .

From this, we conclude that x3 is the minimal polynomial of A.

At this point, we would like to take a closer look at the Jordan basis constructed

in the proof of Theorem 13.48. The following definition will prove useful for this

discussion:

Definition 13.52. Let ϕ : V → V be a linear map and let λ be an eigenvalue

of ϕ. The generalized eigenspace of ϕ associated to λ is the subspace

GEλ := {v ∈ V | (ϕ− λidV )k(v) = 0 for some k ≥ 1}

Note that GEλ necessarily contains the eigenspace associated to λ. (This is just

k = 1 in the above definition.) We will hold off on an example until we learn more

about generalized eigenspaces.
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Proposition 13.53. Let V be a complex vector space and let ϕ : V → V be

a linear map. Also, let

mϕ(x) = (x− λ1)q1(x− λ2)q2 · · · (x− λk)qk

pϕ(x) = (x− λ1)n1(x− λ2)n2 · · · (x− λk)nk

be the minimal and characteristic polynomials of ϕ respectively with λi 6= λj
for i 6= j. Then

(a) GEλi = ker(ϕ− λiidV )qi

(b) dimGEλi = ni

Proof. (a): Without loss of generality, we take i = 1 and show that

GEλ1
= ker(ϕ− λ1idV )q1 .

From Definition 13.52, we immediately have

ker(ϕ− λ1idV )q1 ⊂ GEλ1
.

Suppose that GEλ1 6= ker(ϕ−λ1idV )q1 . Then there exists v ∈ GEλ1 and an r > qi
such that

ker(ϕ− λ1idV )r(v) = 0

and

ker(ϕ− λ1idV )q1(v) 6= 0.

Let

Vi := ker(ϕ− λiidV )qi ,

for i = 1, . . . , k. Also, let V̂1 := ker(ϕ − λ1idV )r. Then V1 ⊂ V̂1. However, since

v ∈ V̂1 and v /∈ V1, we have

dimV1 < dim V̂1.

Let

m′(x) = (x− λ1)r(x− λ2)q2 · · · (x− λk)qk .

Since mϕ(x) | m′(x), we have m′(ϕ) = 0. The Primary Decomposition Theorem

(Theorem 13.9) applied to the factors of mϕ and m′ respectively yield the following

direct sum decompositions:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
and

V = V̂1 ⊕ V2 ⊕ · · · ⊕ Vk.
The above direct sum decompositions imply

dimV = dimV1 +

k∑
i=2

dimVi = dim V̂1 +

k∑
i=2

dimVi,

which in turn imply dimV1 = dim V̂1, a contradiction. Hence, we must have

GEλ1 = ker(ϕ− λ1idV )q1 .



392 13. The Minimal Polynomial and its Consequences

(b): This follows from statement (a) of Proposition 13.53 and statement (ii) of

Corollary 13.49. �

Corollary 13.54. Let V be a complex vector space and let ϕ : V → V be a

linear map. Let λ1, . . . , λk be the distinct eigenvalues of ϕ.

(i) V is a direct sum of the generalized eigenspaces of ϕ:

V = GEλ1 ⊕ · · · ⊕GEλk .

(ii) ϕ(GEλi) ⊂ GEλi for i = 1, . . . , k

Proof. By Corollary 13.49, the roots of the minimal polynomial of ϕ are precisely

the eigenvalues of ϕ. Let

mϕ(x) = (x− λ1)q1(x− λ2)q2 · · · (x− λk)qk

be the minimal polynomial of ϕ. Let

Vi := ker(ϕ− λiidV )qi .

The proof of Theorem 13.48 shows that ϕ(Vi) ⊂ Vi for i = 1, . . . , k and

V = V1 ⊕ · · · ⊕ Vk.

(i) and (ii) of Corollary 13.54 now follows from Proposition 13.53 which shows that

Vi = GEλi . �

Let us now revisit the proof of Theorem 13.48 in light of Proposition 13.53 and

Corollary 13.54. Let ϕ : V → V be a linear map on a complex vector space and let

λ1, . . . , λk denote its distinct eigenvalues.

In the proof of Theorem 13.48, we constructed a Jordan basis of V for ϕ by

constructing a Jordan basis Bi of GEλi for the restriction

ϕ|GEλi : GEλi → GEλi

for i = 1, . . . , k. The matrix representation

Ai := [ϕ|GEλi ]Bi

consisted of Jordan blocks of the form Jp(λi). The Jordan basis of V for ϕ was

then the union of these smaller bases:

B = B1 ∪ · · · ∪ Bk.

The question now is whether all Jordan bases are constructed in this manner. The

answer to this question is yes.
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Theorem 13.55. Let V be a complex vector space and let ϕ : V → V

be a linear map. Let λ1, . . . , λk be the distinct eigenvalues of ϕ. Let B be

a Jordan basis of V for ϕ and let Ai be the block diagonal matrix in [ϕ]B
whose diagonal blocks are Jordan blocks of the form Jp(λi). Let Bi ⊂ B be

the subset of basis elements associated to Ai. Then

GEλi = span Bi

Proof. Let Ui := span Bi and let ni := dimUi. Then n =
∑k
i=1 ni is the dimension

of V . Without loss of generality, we take i = 1 and we show that GEλ1
= span B1.

Let

ψ := ϕ− λ1idV

and

C := [ψ]B.

Let r ≥ 1 be an integer. Then the matrix representation of

ψr = (ϕ− λ1idV )r

with respect to B is

[ψr]B = Cr

=


(A1 − λ1In1

)r 0 · · · 0

0 (A2 − λ1In2
)r · · · 0

...
...

. . . 0

0 · · · 0 (Ak − λ1Ink)r

 .

For j > 1, the matrix Aj−λ1Inj is an upper triangular matrix with nonzero diagonal

elements since λj 6= λ1. Hence, det(Aj − λ1Inj ) 6= 0. Using the multiplicative

property of determinants, it follows that

det
(
(Aj − λ1Inj )r

)
=
(
det(Aj − λ1Inj )

)r 6= 0.

Hence, the columns of (Aj − λ1Inj )r for j > 1 are linearly independent. This in

turn implies

(Aj − λ1Inj )r~u = ~0⇐⇒ ~u = ~0 ∈ Cnj for j > 1.

Now let ~uj ∈ Cnj for j = 1, . . . , k (expressed as column vectors) and let

~u =


~u1
~u2
...

~uk

 .
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Then

Cr~u =


(A1 − λ1In1

)r~u1
(A2 − λ1In2

)r~u2
...

(Ak − λ1Ink)r~uk

 .

From this, we see that if ~uj 6= ~0 for any j > 1, then Cr~u 6= ~0.

Let v ∈ V . By Theorem 6.19, we have

[ψr(v)]B = [ψr]B[v]B

= Cr[v]B.

Hence, if ψr(v) = 0, it follows that [v]B must be of the form

[v]B =


~u1
~0
...
~0

 .

This in turn implies that

ψr(v) = 0⇒ v ∈ span B1.

Since r ≥ 1 is arbitrary and ψr = (ϕ− λ1idV )r, this implies that

GEλ1
⊂ span B1.

For the reverse inclusion, note that the matrix A1 − λ1In1
is a block diagonal

matrix whose diagonal blocks are Jordan blocks of the form Jp(0). In particular,

A1 − λ1In1
is strictly upper triangular. By Corollary 13.50, we have

(A1 − λ1In1)n1 = 0.

This implies that Cni~u = ~0 for all ~u of the form

~u =


~u1
~0
...
~0

 ,

where ~u1 ∈ Cn1 is arbitrary. By the above discussion, this implies that ψn1(v) = 0

for all v ∈ span B1. Hence,

GEλ1
⊃ span B1.

Putting the two inclusions together yields GEλ1 = span B1. �

The following result will prove useful for finding a Jordan basis of a linear endo-

morphism of a complex vector space:
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Theorem 13.56. Let V be a complex vector space and let ϕ : V → V be a

linear map with distinct eigenvalues λ1, . . . , λk. Let

B = B1 ∪ · · · ∪ Bk
be a Jordan basis of V for ϕ, where Bi is a basis of GEλi .

(a) The number of Jordan blocks of the form Jp(λi) in the matrix repre-

sentation [ϕ]B is equal to dimEλi , where Eλi is the eigenspace of ϕ

associated to λi.

(b) Let C ⊂ Bi be a subset of basis elements which correspond to some

Jordan block Jp(λi) in [ϕ]B. Let U := span C and ψ := ϕ − λidV .

Then there exists u ∈ U such that

C = {ψp−1(u), . . . , ψ(u), u}.

Proof. (a): Without loss of generality, we take i = 1. By Corollary 13.54, GEλ1

is invariant under ϕ, that is,

ϕ(GEλ1) ⊂ GEλ1 .

Let ϕ1 be the restriction of ϕ to GEλ1
. By Theorem 13.55, all of the Jordan blocks

of the form Jp(λ1) in [ϕ]B are contained in the matrix

[ϕ1]B1
.

Hence, to prove (a), it suffices only to consider the linear map ϕ1 : GEλ1
→ GEλ1

.

Also, let

ψ := ϕ− λ1idV
and note that ψ(GEλ1) ⊂ GEλ1 . Let ψ1 be the restriction of ψ to GEλ1 . Let

n1 := dimGEλ1
.

Then

[ψ1]B1 = [ϕ1]B1 − λ1In1 ,

which shows that [ψ1]B1 is a block diagonal matrix whose diagonal blocks are Jordan

blocks of the form Jp(0) for various p ≥ 1. In particular, B1 is a Jordan basis for

ψ1. Clearly, [ϕ1]B1
and [ψ1]B1

have the same number of Jordan blocks.

Since [ψ1]B1 is a block diagonal matrix whose diagonal blocks are Jordan blocks

of the form Jp(0), [ψ1]Bλ is, in particular, a strictly upper triangular matrix. Hence,

[ψ1]B1
is a nilpotent matrix by Corollary 13.50. This in turn implies that

ψ1 : GEλ1 → GEλ1

is a nilpotent map. Let E0 denote the eigenspace of ψ1 associated to (its only)

eigenvalue 0. Statement (b) of Theorem 13.44 shows that the number of Jordan

blocks in [ψ1]B1
is equal to dim E0. However, E0 consist of all vectors v ∈ GEλ1

satisfying

ψ(v) = ϕ(v)− λ1v = 0.
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This implies that E0 ⊂ Eλ1 . On the other hand, since Eλ1 ⊂ GEλ1 , we conclude

that E0 = Eλ1
. Hence, the number of Jordan blocks in both [ψ1]B1

and [ϕ1]B1
is

dim E0 = dimEλ1 .

This proves (a).

(b): Once again, we take i = 1. Since C ⊂ B1, we have U ⊂ GEλ1
. As we

noted in (a), the map ψ1 := ψ|GEλ1 is a nilpotent map. Since

[ϕ|U ]C = Jp(λ1),

it follows that

[ψ|U ]C = Jp(0),

where we note that

ψ1|U = (ψ|GEλ1 )|U = ψ|GEλ1∩U = ψ|U .

Statement (a) of Theorem 13.44 applied to the nilpotent map ψ1 shows that there

exists an element u ∈ U such that

C = {ψp−1(u), . . . , ψ(u), u}.

This completes the proof. �

We now outline the general strategy for finding a Jordan basis for a general

linear map ϕ : V → V . The strategy is essentially an application of the strategy

for finding a Jordan basis of a nilpotent map.

Finding a Jordan basis for a linear map ϕ : V → V .

1. Find all the distinct eigenvalues of ϕ. Let λ1, . . . , λk denote the distinct

eigenvalues of ϕ.

2. Find the generalized eigenspace GEλi for i = 1, . . . , k.

3. For i = 1, . . . , k, let

ψi := (ϕ− λiidV )|GEλi .

Note that ψi is a nilpotent map.

4. For i = 1, . . . , k, find a Jordan basis Bi of GEλi for the nilpotent map

ψi.

5. The basis B = B1 ∪ · · · ∪ Bk is the Jordan basis of V for ϕ.
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Example 13.57. Consider the vector space C3 and let S = {~e1, ~e2, ~e3}
denote the standard basis on C3. Let ϕ : C3 → C3 be the linear map defined

by

ϕ(~e1) = 3~e1 + 3~e2 − ~e3,
ϕ(~e2) = −~e2
ϕ(~e3) = ~e1 + 3~e2 + ~e3

The characteristic polynomial of ϕ is found to be

pϕ(x) = (x− 2)2(x+ 1).

Hence, the eigenvalues of ϕ are 2 and −1. By Proposition 13.53, we

have dimGE2 = 2 and dimGE−1 = 1. Let’s calculate their generalized

eigenspaces. For the purpose of calculation, its helpful to work with a ma-

trix representation of ϕ. So lets take the matrix representation of ϕ with

respect to S:

[ϕ]S =

 3 0 1

3 −1 3

−1 0 1

 .

Let

ψ2 := ϕ− 2idC3 , ψ−1 := ϕ+ idC3 .

The matrix representation of these maps with respect to S are

[ψ2]S =

 1 0 1

3 −3 3

−1 0 −1

 , [ψ−1]S =

 4 0 1

3 0 3

−1 0 2

 .

Let E2 and E−1 denote the eigenspaces of ϕ associated to 2 and −1 respec-

tively. From the above matrices, it follows that

E2 = span{~e1 − ~e3}, E−1 = span{~e2}.

Since dimE2 = dimE−1 = 1, it follows that there is one Jordan block

associated to both 2 and −1. Also, since dimC3 = 3, our Jordan basis must

give a matrix representation consisting of one Jordan block of size 2 and one

of size 1. Since dimGE2 = 2, it follows that our Jordan basis must give a

matrix representation consisting of the blocks J2(2) and J1(−1). Let’s go

ahead and compute GE2. This amounts to finding the kernel of (ψ2)2. To

do this, we first compute the matrix representation of (ψ2)2 with respect to

S:

[(ψ2)2]S = [ψ2]2S =

 0 0 0

−9 9 −9

0 0 0


From this, we see that the kernel of (ψ2)2 has dimension 2 (as expected).

From the above matrix, we see that
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GE2 = span{~e1 − ~e3, ~e1 + ~e2}.
Since dimGE−1 = 1, we have GE−1 = E−1. Moreover, any nonzero

vector in GE−1 will serve as a Jordan basis of GE−1 for ψ−1|GE−1 . We

choose B−1 = {~e2} for its basis. The associated Jordan block is then J1(−1).

Let us find a Jordan basis of GE2 for ψ2|GE2
. Note that

(ψ2)2|GE2 = 0, ψ2|GE2 6= 0.

Since

ψ2(~e1 + ~e2) = ~e1 − ~e3 6= ~0,

we take the following as a Jordan basis of GE2 for ψ2|GE2
:

B2 := {ψ2(~e1 + ~e2), ~e1 + ~e2} = {~e1 − ~e3, ~e1 + ~e2}.

A Jordan basis of C3 for ϕ is then

B = B2 ∪ B−1 = {~e1 − ~e3, ~e1 + ~e2, ~e2}.

The matrix representation of ϕ with respect to B is then

[ϕ]B =

 2 1 0

0 2 0

0 0 −1

 .

Corollary 13.58. Let A be an n× n complex matrix. Then there exists an

n× n invertible matrix P such that P−1AP is in Jordan Canonical Form.

Proof. Let TA : Cn → Cn the linear transformation associated to A. Since TA is

a complex endomorphism, Theorem 13.48 shows that there exists a basis

B = {~p1, ~p2, . . . , ~pn} ⊂ Cn

such that the matrix representation [TA]B is in the Jordan canonical form. Let

S = {~e1, ~e2, . . . , ~en} be the standard basis on Cn and let P be the n × n matrix

whose ith column is ~pi. Also, let PSB be the transition matrix from B to S. Then

PSB = P, [TA]S = A.

From this, we have

P−1AP = PBS [TA]SPSB = [TA]B.

�
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Example 13.59. Let

A =


2 1/2 1/2 0

0 −7/2 −1/2 5

0 11/2 5/2 −5

0 −1/2 −1/2 2

 .

The characteristic polynomial of A is then

pA(x) = (x− 2)3(x+ 3).

With a little calculation, we see that the eigenspace associated to 2 has di-

mension 2 and basis

{~e1, ~e2 − ~e3 + ~e4}.
From pA(x), we see that dimGE2 = 3.

Hence, if B is a Jordan basis of the linear transformation TA : C4 → C4,

then the matrix representation [TA]B must contain the Jordan blocks J2(2)

and J1(2).

A basis for the Jordan block associated to J1(2) is {~e1} and a basis for the

Jordan block J2(2) is

{(A− 2I2)2~e3, 2~e3} = {~e1 − ~e2 + ~e3 − ~e4, 2~e3}.

Looking at pA(x) again, we see that for the eigenvalue −3, we have

dimGE−3 = 1. Hence, the Jordan block associated to −3 is J1(−3). A

basis for this Jordan block is {~e2−~e3}. So a Jordan basis for TA : C4 → C4

is

{~e1, ~e1 − ~e2 + ~e3 − ~e4, 2~e3, ~e2 − ~e3}.
From the proof of Corollary 13.58, let

P =


1 1 0 0

0 −1 0 1

0 1 2 −1

0 −1 0 0

 .

Then

P−1AP =


2 0 0 0

0 2 1 0

0 0 2 0

0 0 0 −3

 .

Corollary 13.60. Let A be a complex n × n matrix. Let λ1, λ2, . . . , λn be

the eigenvalues of A with multiplicities. Then Tr(A) =
∑n
i=1 λi.
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Proof. By Corollary 13.58, there exists a matrix P such that P−1AP is in Jordan

Canonical Form. The diagonal elements of P−1AP are precisely the eigenvalues of

A with multiplicities. Corollary 13.60 now follows from the fact that

Tr(P−1AP ) = Tr(APP−1) = Tr(A).

�

13.8. Complexification

In general, the Jordan Canonical Form Theorem (Theorem 13.48) does not work

for linear endomorphisms on a real vector space. Ultimately, the reason for this

is the fact that real polynomials do not always have real roots. The upshot of

this is that a linear endomorphism of a real vector space does not always have

eigenvalues. Consequently, a Jordan basis does not always exist for real linear maps.

The opposite is true for the complex case. In the complex case, polynomials can

always be decomposed as a product of linear factors. Hence, a linear endomorphism

of a complex vector space has all its eigenvalues. This in turn allows the domain

of the endomorphism to be expressed as a direct sum of its generalized eigenspaces

thus making a Jordan basis possible.

The existence of a Jordan basis for a linear endomorphism of a complex vector

space leads to Corollary 13.49, which shows that the characteristic polynomial

and the minimal polynomial of the endomorphism have the same roots (namely

the eigenvalues of the endomorphism), but with possibly different multiplicities.

Corollary 13.49 also shows that the minimal polynomial of a complex endomorphism

must divide its characteristic polynomial. It turns out that these same facts are

also true for endomrophisms of a real vector space. One way to show this is through

the idea of complexification, which will allow us, ultimately, to apply Corollary

13.49 to the real case.

Complexification is a very simple way of turning real vector spaces and real

linear maps into complex vector spaces and complex linear maps. To a real vector

space V , we associate a complex vector space V C as follows. As a set,

V C := {v1 + iv2 | v1, v2 ∈ V },

where i :=
√
−1. An element v1 + iv2 in V C is to be viewed as a formal sum with

real part

R(v1 + iv2) := v1

and imaginary part

I(v1 + iv2) := v2.

Two elements of V C are then equal if and only if they have the same real parts and

the same imaginary parts. The complex vector space structure on V C is defined as

follows:
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(1) vector addition:

(u1 + iu2) + (v1 + iv2) := (u1 + v1) + i(v1 + v2)

(2) scalar multiplication:

(a+ ib)(v1 + iv2) := (av1 − bv2) + i(bv1 + av2)

where a, b ∈ R, v1, v2 ∈ V .

The following is a straightforward exercise which we leave to the reader:

Exercise 13.61. Verify that V C satisfies all the conditions a vector space

over C from Definition 5.4.

Definition 13.62. Let V be a real vector space. The complex vector space

V C is called the complexification of V .

The zero vector of V C is technically

0 + i0.

However, for the sake of notational simplicity, one simply denotes the zero vector of

V C as 0. Also, the real vector space V (viewed as a set) can be naturally regarded

as a subset of V C by identifying the element v ∈ V with the element

v + i0 ∈ V C.

In this way, we have

V ⊂ V C.

Example 13.63. The one dimensional complex vector space C is just the

complexification of the one dimensional real vector space R:

RC = C.

Proposition 13.64. Let V be a real vector space. Let B be a basis of V .

Then B is also a basis of V C. In particular, dimV C = dimV .

Proof. Let B = {b1, . . . , bn} be a basis of V . Consider the element v1 + iv2 ∈ V C.

Express v1 and v2 as a linear combination of the basis elements of B:

v1 = α1b1 + · · ·+ αnbn

and

v2 = β1b1 + · · ·+ βnbn,
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for some αi, βi ∈ R. Then

v1 + iv2 = (α1b1 + · · ·+ αnbn) + i(β1b1 + · · ·+ βnbn)

= (α1 + iβ1)b1 + · · ·+ (αn + iβn)bn.

This shows that V C = span{b1, . . . , bn}.
We now show that B is linearly independent in V C. To do this, suppose that

z1b1 + · · ·+ znbn = 0 = 0 + i0.

Since zj = R(zj) + iI(zj) for j = 1, . . . , n, the above sum can be rewritten as

(R(z1)b1 + · · ·+ R(zn)bn) + i(I(z1)b1 + · · ·+ I(zn)bn) = 0 + i0.

The left and right hand sides agree if and only if

R(z1)b1 + · · ·+ R(zn)bn = 0

and

I(z1)b1 + · · ·+ I(zn)bn = 0.

Since B is a basis on V and hence linearly independent over R, it follows that

R(zj) = I(zj) = 0, for j = 1, . . . , n,

which in turn implies that zj = 0 for j = 1, . . . , n. �

A linear map ϕ : V →W between two real vector spaces can also naturally be

turned into a linear map

ϕC : V C →WC,

by setting

ϕC(v1 + iv2) := ϕ(v1) + iϕ(v2),

for v1, v2 ∈ V . The following is another very simple exercise which we leave to the

reader:

Exercise 13.65. Verify that ϕC : V C → WC is a linear map between com-

plex vector spaces.

Definition 13.66. Let V and W be real vector spaces and let ϕ : V → W

be a linear map. The linear map ϕC : V C → WC is called the complexifi-

cation of ϕ.

Lemma 13.67. Let V be a real vector space and let ϕ : V → V be a linear

map. Let q(x) ∈ R[x] ⊂ C[x]. Then

q(ϕC) = (q(ϕ))
C
.
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Proof. We first show

(ϕC)k = (ϕk)C

by induction on k. For k = 1, the above equality clearly holds. So let us suppose

that the above equality holds for some k ≥ 1. Let v1, v2 ∈ V . Then

(ϕC)k+1(v1 + iv2) = (ϕC)kϕC(v1 + iv2)

= (ϕC)k(ϕ(v1) + iϕ(v2))

= (ϕk)C(ϕ(v1) + iϕ(v2))

= ϕkϕ(v1) + iϕkϕ(v2)

= ϕk+1(v1) + iϕk+1(v2)

= (ϕk+1)C(v1 + iv2),

where we use the induction hypothesis in third equality. This completes the induc-

tion step.

Now let

q(x) = akx
k + ak−1x

k−1 · · ·+ a1x+ a0 ∈ R[x] ⊂ C[x].

Then

q(ϕC) = ak(ϕC)k + ak−1(ϕC)k−1 · · ·+ a1ϕ
C + a0idV C

= ak(ϕk)C + ak−1(ϕk−1)C · · ·+ a1ϕ
C + a0(idV )C

=
(
ak(ϕk) + ak−1(ϕk−1) · · ·+ a1ϕ

C + a0(idV )
)C

= (q(ϕ))
C
.

�

Theorem 13.68. Let V be a real vector space and let ϕ : V → V be a linear

map.

(i) The characteristic polynomial of ϕ and ϕC are equal.

(ii) The minimal polynomial of ϕ and ϕC are equal.

Proof. (i): Fix a basis B = {b1, . . . , bn} on V . Then

ϕ(bk) =

n∑
j=1

αjkbj

for some αjk ∈ R. The matrix representation [ϕ]B is then the n× n matrix whose

(j, k)-element is ajk.

By Proposition 13.64, B ⊂ V is also a basis of V C. From the definition of ϕC,

we have ϕC(bk) = ϕ(bk) ∈ V . This implies that the matrix representation of ϕC
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with respect to B is

[ϕC]B = [ϕ]B =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

Hence, the characteristic polynomial of ϕC and ϕ must be equal:

pϕC = det(xIn − [ϕC]B) = det(xIn − [ϕ]B) = pϕ

(ii): Let mϕC(x) be the minimal polynomial of ϕC. Let

k := degmϕC(x)

Since ϕC is a complex linear map, we have mϕC ∈ C[x]. Hence,

mϕC(x) = xk + zk−1x
k−1 + · · · z1x+ z0

for some z0, z1, . . . , zk−1 ∈ C. Write zj = αj + iβj and decompose mϕC into its real

and imaginary parts:

mϕC(x) = p1(x) + ip2(x),

where

p1 := xk + αk−1x
k−1 + · · ·α1x+ α0 ∈ R[x] ⊂ C[x]

and

p2 := βk−1x
k−1 + · · ·β1x+ β0 ∈ R[x] ⊂ C[x].

Let v ∈ V be arbitrary. By Lemma 13.67, we have

mϕC(ϕC)(v) = p1(ϕC)(v) + ip2(ϕC)(v)

0 = (p1(ϕ))C(v) + i(p2(ϕ))C(v)

0 = p1(ϕ)(v) + ip2(ϕ)(v)

The last equality implies that p1(ϕ)(v) = p2(ϕ)(v) = 0. Since v ∈ V is arbitrary,

we conclude that

p1(ϕ) = p2(ϕ) = 0

This fact along with Lemma 13.67 implies that for a general element v1 + iv2 ∈ V C,

we have

p1(ϕC)(v1 + iv2) = p1(ϕ)C(v1 + iv2)

= p1(ϕ)(v1) + ip1(ϕ)(v2)

= 0 + i0

= 0.

Hence, p1(ϕC) = 0. Since p1(x) has degree k, like mϕC(x), the uniqueness of the

minimal polynomial (see Theorem 13.2) implies that

mϕC(x) = p1(x).
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In particular, p2(x) = 0. We have thus shown that mϕC(x) is a real polynomial

which

mϕC(ϕ) = 0.

Now let mϕ(x) ∈ R[x] ⊂ C[x] be the minimal polynomial of ϕ. Since mϕ(ϕ) =

0, the same argument used above for p1(x) shows that

mϕ(ϕC) = 0.

This implies that

degmϕC(x) ≤ degmϕ(x).

On the other hand, since mϕC(ϕ) = 0, we also have

degmϕC(x) ≥ degmϕ(x).

From this, we conclude that mϕ(x) and mϕC(x) have the same degree. The unique-

ness of the minimal polynomial now implies

mϕ(x) = mϕC(x).

�

13.9. The Cayley-Hamilton Theorem

We begin this section by proving the real version of Corollary 13.49:

Proposition 13.69. Let V be a real vector space and let ϕ : V → V

be a linear map. Let pϕ(x) and mϕ(x) be the characteristic and minimal

polynomials of ϕ respectively.

(i) pϕ(x) and mϕ(x) have the same roots (namely the eigenvalues of ϕ).

(ii) mϕ(x) | pϕ(x)

Proof. Let pϕ(x) and mϕ(x) be the characteristic and minimal polynomials of ϕ

respectively. Consider the complexification

ϕC : V C → V C.

By Theorem 13.68, the characteristic and the minimal polynomials of ϕC are

pϕ(x)and mϕ(x) respectively. By Corollary 13.49, pϕ(x) and mϕ(x) have the same

roots. This proves (i).

Corollary 13.49 also implies that mϕ(x) | pϕ(x). Here, we have to be a little

bit careful. We are applying Corollary 13.49 to the complex linear map ϕC. Hence,

pϕ(x) and mϕ(x) are regarded as elements of C[x] (even though they are both real

polynomials). The condition mϕ(x) | pϕ(x) in this case means that there exists

q(x) ∈ C[x] such that

pϕ(x) = q(x)mϕ(x).
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What we want to do now is show that q(x) is actually a real polynomial. This

is easy to do. Since q(x) ∈ C[x], we can express q(x) as a sum of its real and

imaginary parts:

q(x) = q1(x) + iq2(x),

where q1(x), q2(x) ∈ R[x]. Then

pϕ(x) = q(x)mϕ(x)

= q1(x)mϕ(x) + iq2(x)mϕ(x).

Since pϕ(x) is real, the imaginary part on the right side must be zero. Since mϕ(x),

q1(x), and q2(x) are real, it follows that we must have

q2(x)mϕ(x) = 0.

Since mϕ(x) is monic, it follows that degmϕ(x) ≥ 1. In particular, mϕ(x) 6= 0.

This implies that q2(x) = 0. Hence, q(x) = q1(x) is a real polynomial. We therefore

conclude that mϕ(x) | pϕ(x) as real polynomials. This proves (ii). �

We now state the Cayley-Hamilton Theorem:

Theorem 13.70 (Cayley-Hamilton Theorem). Let V be a real or complex

vector space and let ϕ : V → V be a linear map. Let pϕ(x) be the charac-

teristic polynomial of ϕ. Then pϕ(ϕ) = 0.

Proof. Let mϕ(x) be the minimal polynomial of ϕ. If V is a complex vector space,

Corollary 13.49 shows that mϕ(x) | pϕ(x). Likewise, if V is a real vector space,

Proposition 13.69 also shows that mϕ(x) | pϕ(x). Hence, for the real or complex

case, there exists a polynomial q(x) ∈ F[x] (where F = R or C depending on whether

V is a real or complex vector space) such that

pϕ(x) = q(x)mϕ(x).

Hence,

pϕ(ϕ) = q(ϕ)mϕ(ϕ) = q(ϕ)0 = 0.

�

At the same time, let us also give the more familiar matrix version of the

Cayley-Hamilton Theorem (which is really just a corollary of Theorem 13.70):

Theorem 13.71. Let A be a real or complex square matrix and let pA(x)

be the characteristic polynomial of A. Then pA(A) = 0.
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Proof. Let A be a square matrix of size nand let F = R or C depending on whether

A is real or complex. Let

TA : Fn → Fn

be the natural linear map associated to A, that is, TA(~v) = A~v. Now for any

polynomial q(x) ∈ F[x], we have

q(TA) = Tq(A),

that is, the linear map q(TA) is precisely the linear map associated to the matrix

q(A). In particular, this means that q(TA) = 0 if and only if q(A) = 0.

Let S = {~e1, . . . , ~en} denote the standard basis on Fn. Then the matrix repre-

sentation of TA with respect to S is just A. Hence, the characteristic polynomial

of TA is just

pTA(x) = det(xIn −A) = pA(x).

Combining this observation with Theorem 13.70 gives

pTA(TA) = pA(TA) = 0.

In light of the above remarks, we have pA(A) = 0. �

Remark 13.72. There is a very quick, but wrong way to prove the Cayley-

Hamilton Theorem that may have entered your mind. For concreteness, let’s

consider the matrix version. Let A be an n × n matrix. The characteristic

polynomial of A is

pA(x) = det(xIn −A).

The incorrect way is simply to substitute A in for x which of course gives

pA(A) = det(AIn −A) = det(A−A) = det(0) = 0.

The reason this “proof” is incorrect has to do with the meaning of x in the

definition of the characteristic polynomial. In the definition, x represents a

scalar, not a matrix. The roots of pA are then the eigenvalues of A. Hence,

substituting an n× n matrix in for x makes no sense here.

Another way to get a sense that the above “proof” is wrong is by considering

the value of pA(A) itself. Indeed, under the quick “proof”, the value of pA(A)

is a scalar (namely 0 ∈ R). On the other hand, when we substitute A in for

x in the polynomial pA(x), the value of pA(A) is not a scalar. The value

of pA(A) in this case is the n × n zero matrix 0. This should tell you that

something is not quite right with the quick “proof”.
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Example 13.73. Consider the real matrix

A =

(
2 −1

−5 3

)
.

The characteristic polynomial is then

pA(x) = det(xI2 −A) = x2 − 5x+ 1.

By the Cayley-Hamilton Theorem, we have

p(A) = A2 − 5A+ I2

=

(
9 −5

−25 14

)
−
(

10 −5

−25 15

)
+

(
1 0

0 1

)
=

(
0 0

0 0

)
.

Example 13.74. Consider the complex matrix

A =

(
3 + 2i 5

1− i 4− 7i

)
.

The characteristic polynomial is then

pA(x) = det(xI2 −A) = x2 + (−7 + 5i)x+ (21− 8i).

By the Cayley-Hamilton Theorem, we have

p(A) = A2 − (−7 + 5i)A+ (21− 8i)I2

=

(
10 + 7i 35− 25i

2− 12i −28− 61i

)
+

(
−31 + i −35 + 25i

−2 + 12i 7 + 69i

)
+

(
21− 8i 0

0 21− 8i

)
=

(
0 0

0 0

)
.

We conclude this chapter with the following observation:

Theorem 13.75. Let V be a real or complex vector space of dimension n

and let ϕ : V → V be a linear map. Then ϕ is nilpotent if and only if its

characteristic polynomial is pϕ(x) = xn.

Proof. (⇒) Suppose ϕ is nilpotent. By Theorem 13.35, the minimal polynomial

of ϕ is of the form mϕ(x) = xk for some integer k ≥ 1. Let

ϕC : V C → V C

be the complexification of ϕ. By Theorem 13.68, ϕ and ϕC have the same minimal

polynomial and the same characteristic polynomial. Hence, the minimal polynomial
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of ϕC is also xk. Corollary 13.49 implies that the characteristic polynomial of ϕC

is xn. This in turn implies that the characteristic polynomial of ϕ is xn.

(⇐) If the characteristic polynomial of ϕ is pϕ(x) = xn, then by the Cayley-

Hamilton Theorem we have pϕ(ϕ) = 0. Hence, ϕ is nilpotent. �

Corollary 13.76. Let A be a real or complex n × n matrix. Then A is

nilpotent if and only if its characteristic polynomial is pA(x) = xn.

Proof. Let F = R or C depending on whether A is real or complex. Let TA : Fn →
Fn be the natural linear map defined by TA(~v) = A~v. Then A is a nilpotent matrix

if and only if TA is a nilpotent map.

By Theorem 13.75, TA is a nilpotent map if and only if its characteristic poly-

nomial is pTA(x) = xn. The proof of Theorem 13.71 shows that one always has

pTA(x) = pA(x).

Putting the above statements together proves Corollary 13.76. �

Chapter 13 Exercises

1. Show that the Jordan block Jk(0)n = 0 if and only if n ≥ k.

2. Find the minimal polynomial of

A =

1 1 0

0 1 0

0 0 2



3. Let A be an n × n matrix and let pA(x) and mA(x) be the characteristic

polynomial and the minimal polynomial of A respectively. Show that

pA(x) | (mA(x))n

4. Let A be an n × n complex matrix and let λ ∈ C. Let GEλ(A) denote the

generalized eigenspace of A. Let c ∈ C be nonzero.

(a) Show that cλ is an eigenvalue of cA.

(b) Show that GEλ(A) = GEcλ(cA).

(c) Suppose Jk(λ) is a Jordan block appearing in the Jordan Canonical Form

of A. Show that Jk(cλ) is a Jordan block appearing in the Jordan Canon-

ical form of cA.
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5. Let

A =

 7 −5 −2

1 5 −2

−2 6 12

 .

(a) Compute the characteristic polynomial of A and its eigenvalues.

(b) For each eigenvalue λ of A, compute GEλ.

(c) Find an invertible matrix P such that P−1AP is in Jordan Canonical

Form.

(d) Determine the minimal polynomial of A.

6. Let

A =

 −27 −42 −29

18 30 22

15 30 9

 .

(a) Compute the characteristic polynomial of A and its eigenvalues.

(b) For each eigenvalue λ of A, compute GEλ.

(c) Find an invertible matrix P such that P−1AP is in Jordan Canonical

Form.

(d) Determine the minimal polynomial of A.

7. Let

A =

 17 −2 11

−4 10 −4

3 6 9

 .

(a) Compute the characteristic polynomial of A and its eigenvalues.

(b) For each eigenvalue λ of A, compute GEλ.

(c) Find an invertible matrix P such that P−1AP is in Jordan Canonical

Form.

(d) Determine the minimal polynomial of A.

8. Determine if the following matrices are nilpotent by calculating their charac-

teristic polynomials:

(a)

A =

 15 18 1

−6 −6 −2

−3 −6 3

 .

(b)

B =

 −2 1 0

−2 2 2

2 −1 0

 .

9. Let ϕ : V → V be a linear map, and ϕ2 = I, where I is identical map.
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(a) Show that the eigenvalues of ϕ can only be ±1.

(b) Let E1 and E−1 denote the eigenspace of ϕ associated to 1 and −1 re-

spectively. Show that

V = E1 ⊕ E−1

and thus ϕ is diagonalizable.

10. Are the two matrices (
−1 3

3 0

) (
0 3

3 −1

)
simultaneously diagonalizable?

11. Find all symmetric matrices that are simultaneously diagonalizable with(
3 −1

−1 0

)
.

12. Given two matrices

A =

(
1 1

1 2

)
and B =

(
1 2

2 3

)
are A and B simultaneously diagonalizable? If yes, please find an orthogonal

matrix Q such that both QTAQ and QTBQ are both diagonal matrices.

13. Let ϕ ∈ End(R2) be the linear maps defined by

ϕ(~e1) = ~e1 + ~e2, and ϕ(~e2) = ~e2

(a) Calculate all eigenvalues of ϕ.

(b) Calculate the geometric multiplicity and algebraic multiplicity of each

eigenvalue.

(c) Determine whether A is diagonalizable.

14. Let ϕ ∈ End(R3) be the linear maps defined by

ϕ(~e1) = 2~e2 + 3~e3, ϕ(~e2) = ~e3, and ϕ(~e3) = 0

(a) Show that ϕ is a nilpotent map.

(b) Calculate E0, the eigenspace of ϕ associated to 0.

(c) Finding a Jordan basis of ϕ.

(d) Find the minimal polynomial of ϕ.
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15. Denote by

A =

 1 + i 2 2 + 3i

1− i 2i 3− 3i

2 −i 1− i


Calculate the characteristic polynomial of A, pA(x), and then evaluate pA(A)

to verify the Cayley-Hamilton Theorem.



Chapter 14

Applications

14.1. Fibonacci numbers

Probably you are familiar with the sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

Its called the sequence of Fibonacci numbers after someone who supposedly brought

Arabic numbers to Europe in the 14th century. It has something to do with botany

and the numbers of petals or seeds on a plant such as a sunflower plant. Of course,

you can guess the next number in the sequence: its 13 + 21 = 34 . Obviously each

number in the sequence equals the sum of the previous two. If Fn denotes the nth

number in the sequence, so that F0 = 0 , F1 = 1 , F9 = 34 , and so on, then

Fn+1 = Fn + Fn−1 .

Consider the sequence of ratios Fn+1/Fn , starting with F2/F1 :

1, 2,
3

2
= 1.5,

5

3
= 1.6,

8

5
= 1.6,

13

8
= 1.625,

21

13
= 1.615,

and so on. It appears to be converging, and in fact it is to the value

λ1 =
1 +
√

5

2
= 1.618 . . . .

For some reason someone thought that this value λ1 was particularly pleasing so

they named it the golden ratio. For example, a room whose floor dimensions are

in this ratio is the most attractive. More importantly, λ1 is an eigenvalue of the

matrix (
1 1

1 0

)
. (305)

Indeed, the characteristic polynomial of the matrix is (1− t)(−t)− 1 = t2 − t− 1 ,

which has roots λ1 and its conjugate λ2 = 1−
√
5

2 . This matrix describes the relation

413
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that recursively generates the Fibonacci numbers because(
1 1

1 0

)(
Fn
Fn−1

)
=

(
Fn+1

Fn

)
. (306)

But why should Fn+1/Fn converge to λ1 ? In order to explain this let us first

determine a formula for Fn . We shall organize things by introducting a vector

notation:

~vn =

(
Fn
Fn−1

)
; 1 ≤ n ,

so that equation (306) reads (
1 1

1 0

)
~vn = ~vn+1 . (307)

Therefore,

~vn+1 =

(
1 1

1 0

)n
~v1 =

(
1 1

1 0

)n(
1

0

)
. (308)

It is clear what we must do now: diagonalize the matrix (305) so that we may

calculate its nth power, and thereby find a formula for Fn for this is the second

coordinate of ~vn+1 . If λ is an eigenvalue (either one), then λ2 = λ+ 1 , so that(
1 1

1 0

)(
λ

1

)
=

(
λ+ 1

λ

)
= λ

(
λ

1

)
.

Thus, (λ, 1) is an eigenvector for the eigenvalue λ . We have(
1 1

1 0

)(
λ1 λ2
1 1

)
=

(
λ1 λ2
1 1

)(
λ1 0

0 λ2

)
.

Whence, by (307) we have

~vn+1 =

(
λ1 λ2
1 1

)(
λn1 0

0 λn2

)(
λ1 λ2
1 1

)−1(
1

0

)

=
1

λ1 − λ2

(
λ1 λ2
1 1

)(
λn1 0

0 λn2

)(
1 −λ2
−1 λ1

)(
1

0

)
=

1

λ1 − λ2

(
λ1 λ2
1 1

)(
λn1 0

0 λn2

)(
1

−1

)
=

1

λ1 − λ2

(
λ1 λ2
1 1

)(
λn1
−λn2

)
=

1

λ1 − λ2

(
λn+1
1 − λn+1

2

λn1 − λn2

)
.

Therefore, noting λ1 − λ2 =
√

5 , we have

Fn =
λn1 − λn2√

5
.

This formula might not look like an integer, but it is. On closer inspection we see

that because λ2 ≈ −.618 is less than 1 in absolute value the power λn2 approaches
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0 as n increases. In fact, for n > 0 the nth Fibonacci number Fn is therefore the

nearest integer to
λn1√

5
.

For example,

λ91√
5

=
(1 +

√
5)9

29
√

5
≈ 33.99 ,

so that F9 = 34 . Furthermore, the ratio

Fn+1

Fn
=
λn+1
1 − λn+1

2

λn1 − λn2
≈ λn+1

1

λn1
= λ1 ,

answering our initial question.

This little excursion into Fibonacci numbers introduces us to a concept called

a difference equation, or recurrence relation: equation (307) is an instance of a

difference equation. The concept is like a differential equation except that for a dif-

ference equation change occurs in discrete steps rather than continuously. Generally

speaking, a difference equation is a matrix equation

~vn+1 = A ~vn (309)

together with an initial value ~v1 . It can be thought of as describing an evolving

system. The matrix A encodes how the next generation of the state vector ~v is

obtained. For example, a linear difference equation, generalizing the Fibonacci

numbers, is one

Fn+1 = aFn + bFn−1 .

To solve the difference equation means finding an expression for Fn as we did above

for a = b = 1 . We may proceed just as before starting with the difference equation(
a b

1 0

)(
Fn
Fn−1

)
=

(
Fn+1

Fn

)
. (310)

We shall leave to the reader further analysis of generalized Fibonacci numbers (310)

as it is just the same as before.

Exercise 14.1. Complete the analysis of generalized Fibonacci numbers

(310). Solve (310), meaning find a formula for Fn . Does Fn+1/Fn always

converge to an eigenvalue? How does it depend on a and b ?

14.2. Markov processes

Another interesting and important example of a recurrence relation (309) is when:

+ the entries of A are all non-negative, and

+ every column of A sums to 1 .



416 14. Applications

Such a system is called a Markov process. The (nth generation of the) state vector

~v may consist of probabilities, as numbers between 0 and 1 , assigned to the states

of the system, which also sum to 1 . It is not strictly necessary that the coordinates

of a state vector sum to 1 , as this is for probabilities, but rather they may sum to

any positive number, which is a constant of the system. Our illustrating example

to follow has this feature. It follows directly that if ~vn is such a state vector, then

so is ~vn+1 .

Let us explain a typical example of a Markov process. Suppose that we wish to

model population migration within the New York City. In particular, we wish to

examine how people move in and out of Manhattan, but staying in New York City.

Let us make the simplifying (but unrealistic) assumption that, although people are

moving around within the city, no one is migrating to and from it so that the total

population of New York City remains constant. Of course, an individual is either in

Manhattan or not. Let x0 denote the number of people in Manhattan in an initial

year 0 , and y0 the number of those in the other four burroughs: this is the initial

state of the system. We are assuming that the sum

C = x0 + y0

remains constant. Suppose that every year 3/10 of the people outside Manhattan

move to Manhattan, and 1/10 of the people inside Manhattan leave for the other

burroughs. Thus, the next year we have x1 = .9x0 + .3y0 and y1 = .1x0 + .7y0 .

The matrix

A =

(
.9 .3

.1 .7

)
therefore describes the situation in the sense that if

~vn =

(
xn
yn

)
is the state of the population after n years, then

~vn+1 = A ~vn

describes the population one year later. The matrix A is a Markov process in the

sense that we have defined. Our main question is what is the ultimate behaviour

of the system? In order to answer this we need to calculate the power An because

we have

~vn = An~v0 .

Of course, we are going to do this by diagonalizing A . The characteristic polynomial

of A is

t2 − 1.6t+ .6 = (t− 1)(t− .6) .

The eigenvalues of A are therefore 1 and .6 . We are in luck: the matrix A may be

diagonalized over R as it has two distinct real eigenvalues.



14.2. Markov processes 417

Exercise 14.2. Prove that 1 is always an eigenvalue of a Markov process,

and that the other eigenvalue is always a positive number less than 1 , pro-

vided that the entries of A are positive. Thus, a (two-dimensional) Markov

process always has two distinct (positive) eigenvalues. Therefore, a Markov

process can always be diagonalized.

The eigenspace of 1 is the null space of(
−.1 .3

.1 −.3

)
which is the line t(3, 1) , and the eigenspace of .6 is the null space of(

.3 .3

.1 .1

)
which is the line t(1,−1) . Thus,

A

(
3 1

1 −1

)
=

(
3 1

1 −1

)(
1 0

0 .6

)
so that

An =

(
3 1

1 −1

)(
1 0

0 .6n

)(
3 1

1 −1

)−1
=

1

4

(
3 1

1 −1

)(
1 0

0 .6n

)(
1 1

1 −3

)
At this point let us pause and think that since we are interested in the ultimate

behaviour of the system we may as well assume that n is large, so that .6n is almost

0 . Certainly this will make the calculation easier for if we replace .6n by 0 , then

for large n we have

An ≈ 1

4

(
3 1

1 −1

)(
1 1

0 0

)
=

1

4

(
3 3

1 1

)
.

Thus, after n years, we have(
xn
yn

)
≈ 1

4

(
3 3

1 1

)(
x0
y0

)
=

(
3
4 (x0 + y0)
1
4 (x0 + y0)

)
and therefore

xn ≈
3

4
C ; yn ≈

1

4
C .

This is the proportion of people inside and outside Manhattan that the system

tends toward. Notice that as far as the ultimate proportion xn/yn goes, which in

this case is 3 , it does not matter what the initial populations x0 and y0 are as the

ultimate proportion depends only on A .

Thus, the idea of a Markov process is exceedingly basic and natural, and it

lends itself to an insightful analysis. The reader may rightfully guess that there are

countless examples of Markov processes found in subjects ranging from economics

to operations research, and that the idea has been studied in great detail. We
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shall leave it there, but the interested reader may wish to consult Gilbert Strang’s

book “Linear Algebra and its Applications” to get a start on the subject. A. T.

Bharucha-Reid presents an expert exposition in his book “Elements of the Theory

of Markov Processes and Their Applications.”

Exercise 14.3. Create or find another example of a Markov process.

14.3. Conic sections

Imagine a cone. It is a surface with a pointed end called the vertex of the cone,

created by revolving a line through the vertex around another ‘axis of symmetry.’

Imagine the curve formed by the intersection of the cone with a plane not containing

the vertex of the cone. If the plane is perpendicular to the axis of symmetry, then

this curve of intersection is a circle. If the plane is tilted slightly, then this curve

of intersection is elongated forming what is called an ellipse. Continue tilting the

plane until it is parallel with a line on the cone through the vertex: the curve of

intersection now forms a parabola. Tilt the plane even more until now it is parallel

with the axis of symmetry: now the plane intersects the cone in a hyperbola as its

called. These three types of curve, ellipse, parabola, and hyperbola, are known as

the conic sections, naturally enough.

The conic sections are planar curves that have x, y-equations. These equations

can be derived from their geometric definition just given although this is not trivial.

We shall define the conic sections strictly in terms that can be put without leaving

the plane. Let us start with the ellipse. Define an ellipse as the set of points P such

that the combined distance from P to two other fixed points F1 and F2 , called the

foci of the ellipse, equals a fixed given positive constant 2a . Thus, for every such

point P we have

2a = |PF1|+ |PF2| . (311)

Imagine a string of length 2a whose ends are fixed at F1 and F2 . When the

string is pulled taught through another point P , then P lies on the ellipse. If the

perpendicular from a point P on the ellipse to the line on the foci bisects the line

segment F1F2 , then P has distance a to each foci. If this same point P has distance

b to the line on the foci, then

a2 = b2 + c2 , (312)

where the length |F1F2| = 2c , for c < a . We now introduce x, y-coordinates placing

the x-axis on the line containing the foci, and the origin (0, 0) at the midpoint

between F1 and F2 , so that F1 has coordinates (−c, 0) and F2 is (c, 0) . The points

(−a, 0) , (a, 0) , (0, b) , and (0,−b) all lie on the ellipse, which we call the vertices of

the ellipse. Notice from (312) that we must have b ≤ a . A straightforward analysis
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of the distance equation (311) brings us to the equation

x2

a2
+
y2

b2
= 1 , (313)

for any point P (x, y) lying on the ellipse. If a = b , then the ellipse is a circle of

radius a , so that c = 0 and the two foci coincide with the origin.

Example 14.4. The quantity e = c
a = cos(θ) is called the eccentricity of

the ellipse, where θ is the angle at a focal point formed by the line on it and

the vertex (0, b) with the x-axis. We have 0 ≤ e < 1 . The eccentricity of a

circle is 0 . At the other extreme when b is small, so that the foci are near

the vertices (±a, 0) , then e is closer to 1 .

Example 14.5. The ellipse (see Figure 1)

x2

9
+
y2

4
= 1 ,

has vertices at (±3, 0) and (0,±2) . We have c =
√

9− 4 =
√

5 , so that the

foci lie at (±
√

5, 0) . Its eccentricity is e =
√
5
9 .

Figure 1. The ellipse x2

9
+ y2

4
= 1

Of course, any equation

Ax2 +By2 = C ; 0 < A,B,C , (314)

also describes an ellipse because it can be put in the form (313), with a2 = C/A for

instance. We recognize that (314) is a level set of a quadratic form. Thus, linear
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algebra enters the picture: we may put (314) as a matrix equation.(
x y

)( A 0

0 B

)(
x

y

)
= C . (315)

Exercise 14.6. Write the ellipse equation

x2 + 4y2 = 16 (316)

as a matrix equation (315). Put the equation into its standard form (313).

Sketch the ellipse indicating the foci and vertices. What is its eccentricity?

Suppose the ellipse (316) is rotated about the origin in the plane. Of course,

the rotated ellipse is still an ellipse, but how has its equation changed in terms

of the same coordinates? Suppose that the rotation is 45o counterclockwise: let

R = R(45o) denote this rotation, so that its transpose

RT = R−1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
rotates the plane 45o clockwise. Then (x, y) lies on the rotated ellipse if and only

if the vector

RT
(
x

y

)
=

( √
2
2

√
2
2

−
√
2
2

√
2
2

)(
x

y

)
lies on (316). Thus, (x, y) lies on the rotated ellipse if and only if(

x y
)
R

(
1 0

0 4

)
RT
(
x

y

)
= 16 . (317)

This simplifies to(
x y

)( 1 −1

1 1

)(
1 0

0 4

)(
1 1

−1 1

)(
x

y

)
= 32 , (318)

whence (
x y

)( 5 −3

−3 5

)(
x

y

)
= 32 , (319)

which comes to

5x2 − 6xy + 5y2 = 32 .

This is the equation of the ellipse (316) rotated 45o counterclockwise. Notice that

rotating the ellipse not only changes the coefficients A,B,C , but also introduces

an xy-term in the quadratic form.

What interests us now is the reverse problem. How do we recognize what kind

of curve a given equation such as

6x2 − 4xy + 9y2 = 10 (320)
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Figure 2. The ellipse 5x2 − 6xy + 5y2 = 32

describes? Let us write it as a matrix equation.(
x y

)( 6 −2

−2 9

)(
x

y

)
= 10 . (321)

Of course, we would like to diagonalize this matrix, which we know can do because

it is symmetric, finding a rotation matrix R such that(
6 −2

−2 9

)
R = R

(
λ1 0

0 λ2

)
,

where λ1, λ2 are the eigenvalues of the matrix above, and the columns of R are their

normalized eigenvectors. Then the equation (320) we started with is the equation

of the ellipse

λ1x
2 + λ2y

2 = 10

rotated counterclockwise by R . Let us complete the problem for the given quadratic

equation (320). The characteristic equation of its matrix (321) is

t2 − 15t+ 50 = 0 ,

so that the eigenvalues are 5 and 10 . The equation of the unrotated ellipse we seek

is therefore

5x2 + 10y2 = 10 .

Notice that this equation does indeed describe an ellipse because both eigenvalues

are positive. In standard form this equation reads

x2

2
+ y2 = 1 . (322)

The vertices of this ellipse are (±
√

2, 0) and (0,±1) . From 2 = 1 + c2 , we see that

the foci lie at (±1, 0) .
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It remains to determine the angle θ of rotation that recovers the original ellipse

(320). We shall do this by explicitly determining R(θ) = R as the matrix whose

columns are normalized eigenvectors. The eigenspace of 5 is the null space of(
1 −2

−2 4

)
which is t(2, 1) . The other eigenspace must be orthogonal to this so we have

R =

√
5

5

(
2 −1

1 2

)
=

(
cos(θ) − sin(θ)

sin θ cos(θ)

)
,

where θ is the angle of counterclockwise rotation. Thus, cos(θ) = 2
√
5

5 , which gives

θ ≈ 27o . Summing up, the ellipse (320) is the ellipse (322) rotated approximately

27o degrees counterclockwise.

Exercise 14.7. Determine the coordinates of the vertices and foci of the

ellipse (320) by applying the rotation R to the vertices and foci of (322).

Determine the eccentricity of the ellipse.

Remark 14.8. The conic sections can be analyzed in an elementary way

not using linear algebra. However, the power of the linear algebra approach

is that it applies equally well in higher dimensions. For example, in three

dimensions the equation of an ellipsoid, which is a football shaped surface,

has the form
x2

a2
+
y2

b2
+
z2

c2
= 1 .

Of course, the kinds of rotations in space that can be applied to such a sur-

face are more plentiful than in the plane, but nevertheless it can be handled

by the matrix and eigenvalue approach that we have demonstrated in two

dimensions.

We turn our attention to the hyperbola. Similar to the ellipse, we may define a

hyperbola strictly in planar terms: it is the set of points P such that the difference

in the distance from P to two other given and fixed points F1 and F2 , also called

the foci of the hyperbola, equals a fixed given positive constant 2a . Thus, a point

P lies on the hyperbola (defined by its foci and the positive number a) just when

2a = |PF1| − |PF2| . (323)

The point P must be closer to F2 than to F1 for this difference to be positive, so

that really equation (323) defines just one piece of the whole hyperbola: remember

a hyperbola has two pieces. The other piece is described by

2a = |PF2| − |PF1| .
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If you live at F2 and your friend lives at F1 , then (323) describes all the locations

P that are distance 2a farther from him than from you.

Let P be the point at distance a from the midpoint of the line segment on F1

and F2 (closer to F2). Then P satisfies (323), so that P lies on the hyperbola: this

is one of the vertices of the hyperbola. Let 2c = |F1F2| . We must have a < c , so

that there is b > 0 such that

c2 = a2 + b2 . (324)

As with the ellipse we introduce x, y-coordinates placing the x-axis on the line

containing the foci, and the origin (0, 0) at the midpoint between F1 and F2 , so

that the foci have coordinates F1(−c, 0) and F2(c, 0) . The vertex defined above

has coordinates (a, 0) . The other vertex lying on the other piece of the hyperbola

has coordinates (−a, 0) . Similar to the ellipse an analysis of the distance equation

(323) brings us to the equation

x2

a2
− y2

b2
= 1 , (325)

for any point P (x, y) lying on the hyperbola. Finally, notice that for points (x, y)

on the hyperbola we have

lim
x→∞

y2

x2
=
b2

a2

so that

lim
x→∞

y

x
=
b

a
.

The two lines y = ± b
ax are called (slant) asymptotes of the hyperbola.

Example 14.9. Choose foci F1 and F2 such that 2c = |F1F2| = 2
√

2 , so

that c =
√

2 . Let a = 1 so that from (324) we have b = 1 . Therefore, the

equation of the hyperbola is

x2 − y2 = 1 . (326)

The lines y = ±x are the asymptotes of the hyperbola. (See Figure 3.)

Let us determine the equation of the hyperbola (326) rotated 45o counterclock-

wise, as we did with the ellipse. As before R = R(45o) denotes this rotation, whose

inverse is R−1 = RT . Then (x, y) lies on the rotated hyperbola if and only if the

vector

RT
(
x

y

)
=

( √
2
2

√
2
2

−
√
2
2

√
2
2

)(
x

y

)
lies on (326). Thus, (x, y) lies on the rotated hyperbola if and only if

(
x y

)
R

(
1 0

0 −1

)
RT
(
x

y

)
= 1 . (327)
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Figure 3. The hyperbola x2 − y2 = 1

This simplifies to(
x y

)( 1 −1

1 1

)(
1 0

0 −1

)(
1 1

−1 1

)(
x

y

)
= 2 , (328)

whence (
x y

)( 0 2

2 0

)(
x

y

)
= 2 , (329)

which comes to

2xy = 1 .

This is the equation of the hyperbola (326) rotated 45o counterclockwise. Perhaps

it is more familiar to you in the form y = 1
2x , which is a function you may have

encountered in calculus. (See Figure 4.)

Exercise 14.10. Determine the coordinates of the vertices and foci of the

hyperbola 2xy = 1 by applying the rotation R to the vertices and foci of

(326).

Let us consider the reverse problem for hyperbolas. The solution is just the

same as for the ellipse: by diagonalization. Suppose we wish to identify the conic

section

−5x2 + 6
√

6xy − 2y2 = 22 . (330)

As always we begin by writing it as a matrix equation.(
x y

)( −5 3
√

6

3
√

6 −2

)(
x

y

)
= 22 . (331)
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Figure 4. The hyperbola 2xy = 1

We seek a rotation matrix R such that(
−5 3

√
6

3
√

6 −2

)
R = R

(
λ1 0

0 λ2

)
,

where λ1, λ2 are the eigenvalues of the matrix above, and the columns of R are their

normalized eigenvectors. Then the equation (330) we started with is the equation

of

λ1x
2 + λ2y

2 = 22

rotated counterclockwise by R . Let us complete the problem for the given quadratic

equation (330). The characteristic equation of its matrix (331) is

t2 − 7t− 44 = 0 ,

so that the eigenvalues are 4 and −11 . The equation of the unrotated conic section

we seek is therefore

4x2 − 11y2 = 22 .

This is the equation of a hyperbola because the eigenvalues are opposite in sign. In

standard form this equation reads

x2

11
2

− y2

2
= 1 . (332)

The vertices of this hyperbola are (±
√

11
2 , 0) . From c2 = 11

2 + 2 = 15
2 , we see that

the foci lie at (±
√

7.5, 0) . The asymptotes are y = ± 2√
11
x . (See Figure 5.)

Finally, we determine the angle θ of rotation that recovers the original hyper-

bola (330). The eigenspace of 4 is the null space of(
−9 3

√
6

3
√

6 −6

)
∼
(
−3

√
6√

6 −2

)
∼
(
−3

√
6

0 0

)
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Figure 5. The hyperbola 4x2 − 11y2 = 22

which is t(
√

6, 3) . The other eigenspace must be orthogonal to this so we have

R =

√
15

15

( √
6 −3

3
√

6

)
=

(
cos(θ) − sin(θ)

sin θ cos(θ)

)
,

where θ is the angle of counterclockwise rotation. Thus, cos(θ) =
√
10
5 , which gives

θ ≈ 51o . Summing up, the hyperbola (330) is the hyperbola (332) rotated approx-

imately 51o degrees counterclockwise.

Exercise 14.11. Determine the coordinates of the vertices and foci of the

hyperbola (330) by applying the rotation to the vertices and foci of (332).

Determine the asymptotes of (330).

Naturally, our third and last conic section the parabola also has a planar de-

scription. For it we require a line D , called the directrix of the parabola, and a

single focus F . Then the set of all points P such that

|PF | = |PD| (333)

forms a parabola, where by |PD| we mean the shortest distance from P to D . For

instance, if you live at F and D is Main Street, then the parabola consists of all

locations in town whose distance from Main Street equals its distance to you.

The midpoint V between F and D satisfies (333), so that it lies on the parabola:

we call V the vertex of the parabola. We next impose coordinates, making the x-

axis parallel to the directrix and placing the origin at the vertex V , so that the

directrix is the line y = −p . Therefore, the focus F must have coordinates (0, p) .
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Then a point P (x, y) satisfies (333) if and only if (x, y) satisfies

4py = x2 . (334)

Like the ellipse and hyperbola (334) is a quadratic equation, but its different because

of course in this case there is a linear term; however we may treat it in just the

same way using matrices.

Exercise 14.12. Derive (334) from (333).

Exercise 14.13. In calculus you may seen a parabola defined by an equation

such as y = 4x2 . Use (334) to determine the directrix and focus of this

parabola.

Let us put (334) in matrix form.

(
x y

)( 1 0

0 0

)(
x

y

)
=
(

0 4p
)( x

y

)
. (335)

We may rotate the parabola just as we did with the other conic sections. If again R

denotes a rotation of 45o counterclockwise, then (x, y) lies on the rotated parabola

if and only if (x, y) satisfies

(
x y

)
R

(
1 0

0 0

)
RT
(
x

y

)
=
(

0 4p
)
RT
(
x

y

)
. (336)

This simplifies to

(
x y

)( 1 −1

1 1

)(
1 0

0 0

)(
1 1

−1 1

)(
x

y

)

=
(

0 4
√

2p
)( 1 1

−1 1

)(
x

y

)
whence (

x y
)( 1 1

1 1

)(
x

y

)
= 4
√

2p
(
−1 1

)( x

y

)
(337)

which comes to

x2 + 2xy + y2 + 4
√

2px− 4
√

2py = 0 .

This is the equation of (334) rotated 45o counterclockwise.
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Example 14.14. Let p =
√

2 . Then the equation of the parabola 4
√

2y = x2

rotated 45o counterclockwise is

x2 + 2xy + y2 + 8x− 8y = 0 .

What is the equation of the rotated directrix? We may determine this by

observing that (x, y) lies on the rotated directrix if and only if

RT
(
x

y

)
satisfies y = −

√
2 . This gives

√
2
2 (−x+ y) = −

√
2 , which gives y = x− 2 .

Likewise, the focus of the rotated parabola lies at (−1, 1) . (See Figure 6.)

Figure 6. The parabola x2 + 2xy + y2 + 8x− 8y = 0

Conic sections introduce us to a subject called analytic geometry: the term

analytic emphasizes how coordinates mediate the connection between geometry and

algebra. In particular, we hope the reader is convinced that the general quadratic

equation

Ax2 +Bxy + Cy2 +Dx+ Ey = F

describes a conic section, possibly rotated out of standard position, but also possi-

bly shifted vertically or horizontally.

Exercise 14.15. How shall we treat vertical and horizontal shifts of a conic

section?
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14.4. Algebraic numbers and other things

This section depends on some basic ring theory covered in Chapter 12. We have

seen that ring theory serves the purpose of providing a more conceptual foundation

for linear algebra, but this section illustrates how linear algebra may be used in the

service of algebra. Indeed, let us motivate the discussion by asking a basic question

of algebra: what exactly is the number
√

2 ? For instance, this quantity occurs

naturally as the length of the hypotenuse on a right isosceles triangle whose shorter

side has length 1 .

√
2

1

1

Or perhaps someone in your mathematical past has said that
√

2 is the quantity

which when squared gives 2 and that is that. In a way this might even be the best

answer one can offer, but the details matter. For instance, what is a ‘quantity’ in the

first place, and even if we knew how do we identify
√

2 ? For example, a calculator

gives
√

2 = 1.41421 . . . , which expresses
√

2 as a limit of rational numbers. This

says that you can calculate
√

2 only up to a given error, but it can always be done

and to within any given error no matter how small. If you’re not familiar with

this idea, then perhaps it is not easy to understand or express in a precise manner.

Once a clever someone proposed that
√

2 is the collection of rational numbers whose

square is less than 2 . At first this proposal might sound prepostorous because that’s

not even a number, its a set of numbers; however, let us not rush to judgement for

it turns out that the proposal makes perfect sense. Here is another proposal using

matrices:
√

2 =

(
0 2

1 0

)
.

The square of this matrix(
0 2

1 0

)(
0 2

1 0

)
=

(
2 0

0 2

)
.

is indeed 2 provided of course that we identify 2 with the constant matrix above

(right). What could be simpler? We have identified
√

2 as a matrix. It is therefore

no problem to find
√

2 after all, but we have to look to matrices to find it. Thus,

linear algebra enters the picture in a natural way.

We are going to explore our matrix solution to the question more thoroughly

and try to make sense of it. Our exploration brings into play the Cayley-Hamilton

theorem and also several other ideas from algebra. Incidentally, these other ideas

from algebra are more basic than even linear algebra, so every aspiring student of

linear algebra should learn them. In other words, our understanding of linear alge-

bra improves, and ultimately it depends, on a broader perspective. In fact, we have

already encountered these ideas, such as rings, fields, ideasl, and homomorphisms,

in one way or another previously in this book.
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We would like to produce roots of integral polynomials, or what are called

algebraic numbers. For example, the number
√

2 is algebraic because it is a root

of the polynomial t2 − 2 . We would like to do this in an algebraically consistent

manner in the sense that we would like to also create a system of numbers in which

the root lives (formally called a ring in Chapter 12). In other words, the basic

problem we address is how to invent a root α of an integral polynomial and another

field Q ⊆ Q(α) in which α lives. We shall find that such a field can be identified as

a subring of matrices over Q . In the process we encounter the minimal polynomial

of a matrix.

Probably the most basic connection between polynomials and matrices, which

we have already encountered in this book, is the fact that it makes sense to evaluate

a polynomial at a (square) matrix A . Indeed, if A has dimension n , then the

function

evA : Q[t]→Mn ; f(t) 7→ f(A) , (338)

is a ring homomorphism, where Mn denotes the ring of all n× n rational matrices.

To say that evA is a ring homomorphism means that it respects addition and

multiplication. For instance, we have

evA(f(t)g(t)) = f(A)g(A) = evA(f(t))evA(g(t)) ,

and likewise for addition.

Definition 14.16. Let Q[A] denote the image of evA . It consists of all

matrices that equal f(A) for some rational polynomial f(t) .

Exercise 14.17. Show that Q[A] is subring of Mn . Show that it is com-

mutative with respect to matrix multiplication.

The kernel of evA is by definition the subset of polynomials

Ker(evA) = {f(t) | evA(f(t)) = f(A) = 0} .

Recall from our study of rings that the kernel of a ring homomorphism is an ideal.

Hence, ker evA is an ideal Q[t].

Exercise 14.18. Prove that the subring Q[A] is isomorphic to the quotient

ring Q[t]/Ker(evA) . Hint: this is an instance of a general fact about ring

homomorphisms. Which fact is this?

An important fact from our study of rings is that every ideal of a polynomial ring

over a field is principle, that is, it is generated by a single polynomial. Hence,

Ker(evA) = (m(t) ) .
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In other words, f(A) = 0 if and only if f(t) is a multiple of m(t) , or as they say

m(t) divides f(t) (Recall that we denote the latter by m(t) | f(t)).

Of course, we may always take m(t) to be monic in the sense that its lead-

ing coefficient is 1 . In fact, the polynomial m(t) is the unique monic polynomial

of least degree such that m(A) = 0 . We already know this polynomial m(t) by

its name: the minimal polynomial of A over Q (Here, we can regard A as a linear

endomorphism of Qn in the usual way, where n is the size of the square matrix A.) .

Exercise 14.19. Show that similar matrices have the same minimal poly-

nomial.

Exercise 14.20. Find the minimal polynomial of the matrix 3 −1 0

0 2 0

1 −1 2

 .

By the Cayley-Hamilton theorem the characteristic polynomial of a matrix A

is a member of Ker(evA) . Thus, we deduce that the minimal polynomial m(t) of a

matrix divides the characteristic polynomial of the matrix.

Exercise 14.21. Prove that the image subring Q[A] is isomorphic to the

quotient ring Q[t]/(m(t)) . Hint: Exercise 14.18.

Recall from our study of rings that a polynomial f(t) ∈ Q[t] of positive degree is

irreducible if it does not factor over Q, that is, there does not exist polynomials

g(t) and h(t) of positive degree such that f(t) = g(t)h(t).

Proposition 14.22. A polynomial p(t) over Q is irreducible over Q if and

only if the quotient ring Q[t]/(p(t)) is a field.

Proof. This is a special case of Theorem 12.54. �

Corollary 14.23. Q[A] is a field if and only if the minimal polynomial of

A is irreducible over Q .

Proof. Let m(t) denote the minimal polynomial of A . Then Q[A] is field if and

only if Q[t]/(m(t)) is a field (Exercise 14.21) if and only if m(t) is irreducible over

Q (Proposition 14.22). �
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When Q[A] is a field we use the notation Q(A) .

Example 14.24. The minimal polynomial of a matrix need not be irre-

ducible. For instance, the minimal polynomial of

A =

(
0 4

1 0

)
equals its characteristic polynomial t2 − 4 = (t + 2)(t − 2) . Thus, Q[A] is

not a field. For instance, the matrix evA(t + 2) = A + 2I is a member of

Q[A] , but it is not invertible.

We have assembled the tools and concepts sufficient to explain our initial ex-

ample
√

2 . Let Q(
√

2) denote the image subring Q[A] for

√
2 = A =

(
0 2

1 0

)
.

The characteristic polynomial of A is t2−2 . By Cayley-Hamilton, we have A2−2I =

0 , but of course we have already verified A2 = 2I directly by hand. In any case,

the minimal polynomial of A must therefore divide t2 − 2 .

Exercise 14.25. Show that t2 − 2 is irreducible over Q . Show that the

minimal polynomial of A equals t2 − 2 .

Exercise 14.26. Show that Q(
√

2) equals the collection of matrices

aI + bA =

(
a 2b

b a

)
. (339)

As a matter of fact, we may define Q(
√

2) as the collection of the matrices

(339); however, defining Q(
√

2) as the image of the evaluation homomorphism evA
adds some perspective to the discussion; for instance Proposition 14.23 tells us

when Q[A] is a field.

Exercise 14.27. Show that Q(
√

2) is indeed a field, which contains Q . Of

course, we may appeal to Proposition 14.23, but it can be also be done directly

by finding an inverse for every non-0 element of Q(
√

2) . For instance, if√
2 denotes the above matrix A , then what matrix is 1/

√
2 ?

Exercise 14.28. Show that the field Q(
√

2) is isomorphic to the subfield of

R consisting of all real numbers a+ b
√

2 , a, b ∈ Q , where now we consider√
2 as a real number.
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Example 14.29. In this example, let us change base fields to the real num-

bers R . This takes us out of the realm of algebraic numbers, but the ideas

are the same. The characteristic polynomial of the matrix

A =

(
0 −1

1 0

)
is t2 + 1 . We have m(t) | t2 + 1 . Because t2 + 1 is irreducible over R we

have m(t) = t2 + 1 , and moreover the image subring of evA (for R), which

we denote R(i) , is therefore a field. In any case, this can be proved directly.

This field is the complex numbers: R(i) = C . We have used matrices to

invent i =
√
−1 , identifying i as the matrix A . Show that the field R(i)

equals the collection of all matrices

aI + bA =

(
a −b
b a

)
,

where a, b ∈ R . Thus, we identify the complex number a+bi with the matrix

aI + bA .

Example 14.30. We continue with base field R , but we start with the

polynomial

t3 − 1 = (t− 1)(t2 + t+ 1) .

The roots of this polynomial are called cube roots of unity. Of course, 1 is

such a root. The other two complex roots are the roots of t2 + t + 1 . It is

not too difficult to find a 2 × 2 matrix whose characteristic polynomial is

t2 + t+ 1 . Indeed, we seek a matrix whose trace equals −1 and determinant

equals 1 . For instance,

B =

(
0 −1

1 −1

)
is such a matrix. By the Cayley-Hamilton theorem we have B2 +B+ I = 0 ,

and because t2 + t+ 1 is irreducible over R , it is the minimal polynomial of

B . The image of the evaluation homomorphism for B

evB : R[t]→M2

into the ring M2 of real matrices equals the collection of matrices

aI + cB =

(
a −c
c a− c

)
.

In fact, to see this argue by induction on the degree of a polynomial, using

B2 = −B − I for the inductive step. Moreover, this ring is a field because

the minimal polynomial is irreducible over R . Indeed, this field is again the

complex numbers. For instance, i is the matrix
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1√
3
I +

2√
3
B =

1√
3

(
1 −2

2 −1

)
.

Indeed, by direct calculation, the square of this matrix equals the constant

matrix −1 . Thus, there is more than one way to present i as a real matrix.

Notice that

B2 =

(
−1 1

−1 0

)
is the third cube root of unity.

Perhaps it is appropriate to end by mentioning a fascinating subject called

group theory because the three matrices I,B,B2 collectively form what is

called a (cyclic) multiplicative group. In fact, the origins of group theory go

back to the problem of finding roots of a polynomial (and someone named

Galois), which is precisely the problem we have been discussing in this sec-

tion. We encourage the reader to begin his own investigations of the subject.

Almost any introduction to group theory will do: just google “introduction

to group theory”!

Chapter 14 Exercises

1. Solve the Fibonacci sequence

3, 3, 6, 9, 15 . . .

2. Solve the difference equation

Fn+1 = Fn − Fn−1 ,

where F1 = 0, F2 = 1 .

3. The matrix of a Markov process is also called a stochastic matrix. Prove that

the product of two stochastic matrices is again one.

4. How can we interpret a steady population growth in the population movement

Markov process? For instance, suppose that the population of New York City

increases by 2% each year. How do we change the model in order to account

for this?

5. Find the equation of the ellipse

2x2 + y2 = 16

rotated 60o counterclockwise. Sketch both ellipses, indicating the vertices and

foci.

6. Find the equation of the hyperbola

x2 − y2 = 1
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rotated 60o counterclockwise. Sketch both hyperbolas, indicating the vertices,

foci, and asymptotes.

7. Identify (ellipse or hyperbola) and sketch the graph of the following quadratic

equation.

x2 − 6xy + y2 = 8

Identify the vertices, foci, and asymptotes (hyperbola). What is the angle of

rotation out of standard position?

8. Find the general equation of the parabola

4py = x2

rotated 60o counterclockwise. Also find the focus and the directrix of the

rotated parabola.

9. Build as a subring of 2× 2 rational matrices a field Q(
√

5) that includes Q as

a subfield. How are the two fields Q(
√

2) and Q(
√

5) related?

10. Modular arithmetic is an interesting and important idea of number theory.

The ideas we have considered in § 14.4 apply to modular arithmetic. Consider

the finite field Z3 = {0, 1, 2} of numbers modulo 3 . Notice that 2 is not a

square in this field because 02 = 0, 12 = 1, 22 = 1 . Using the same approach

we used to build Q(
√

2) build a finite field Z3(
√

2) of 2 × 2 matrices over Z3

in which 2 has a square root. List the elements of this field.
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conjugate transpose, 75
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diagonalizable matrix, 133

dimension
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basis, 157

dimension, 158

linear combination, 152

linear independence, 156

spanning set, 155

generalized eigenspace, 390

generalized Pythagorean theorem, 44

geometric multiplicity, 366

Gram-Schmidt process, 50

complex inner product space, 250

real inner product space, 240

Hermitian inner product

standard on Cn, 246

Hermitian matrix, 76

relation to Hermitian inner

products, 252

homomorphism

evaluation, 430

image of evaluation, 430

kernel, 430

ideal, 330

ideals
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left, 330

proper, 331

right, 330

trivial, 331

identity map, 169

identity matrix, 85

induction proof

basic idea, 33

infimum, 63

inner product space

complex, 245

real, 234

inner products

Hermitian, 245

real, 234

integral domain, 337

invariant subspaces, 364

irreducible polynomial, 346

isomorphic vector spaces

definition, 170

isomorphism theorems

first, 311

second, 313

third, 316

Jordan basis, 374

Jordan canonical form, 372

Jordan Canonical Form Theorem,

386

linear combination, 25

linear equations

homogeneous, 17

meaning of name, 8

linear map

bijective, 169

definition, 161

image, 164

injective, 169

kernel, 164

linear isomorphism, 170

null space, 164

nullity, 167

rank, 167

surjective, 169

linear system

homogeneous

solution set is subspace, 28

linear transformation

contraction, 123

definition of, 121

dilation, 123

reflection, 122

rotation, 123

maps

one-to-one, 33

onto, 33

Markov process, 416

matrix

additive inverse, 73

cofactor, 106

elements, 69

invertible or nonsingular, 89

minor, 106

null space or kernel, 217

row equivalent, 98

scalar multiplication, 72

strictly upper triangular, 109

transpose, 74

upper triangular, 109

matrix inverse, 87

matrix multiplication

definition, 79

noncommutative, 80

matrix rank, 213

matrix representations

of a complex inner product, 252

of a linear map, 189

of a real inner product, 241

minimal polynomial, 352, 430

algebraic numbers, 431

for matrices, 355

multilinear map, 284

multlinear map

alternating, 286

nilpotent maps, 373
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nonlinear equations

definition, 8

norm of a vector, 39

distance between two points, 41

orthogonal basis, 46

orthogonal complement, 53

decomposition theorem, 60

real inner product space, 240, 251

orthogonal matrix

characterization, 125

definition of, 125

orthogonal projection, 47

complex inner product space, 249

of a vector onto a subspace, 61

real inner product space, 239

orthogonal set, 45

complex inner product space, 249

real inner product space, 239

orthonormal basis, 46

orthonormal set, 46

permutation

even, odd, 283

Primary Decomposition Theorem,

358

proof by contradiction, 305

quotient ring, 332

quotient set, 304

quotient vector space, 306

quotient vector spaces

canonical projection map, 310

factoring through, 318

Rank-Nullity Theorem, 168

matrix version, 217

Replacement Theorem, 33

ring homomorphism, 326

rings

definition, 324

direct product, 341

endomorphism ring, 326

First Isomorphism Theorem, 333

polynomial ring, 326

Second Isomorphism Theorem, 334

subrings, 329

Third Isomorphism Theorem, 336

zero ring, 325

row space, 211

relation to column space, 212

self-adjoint map

definiiton, 266

similar matrices, 131, 194

simultaneously diagonalizable, 363

skew-Hermitian matrix, 77, 237

skew-symmetric matrix, 77

span

definition, 30

square matrix, 71

definition, 71

order of, 71

stochastic matrix, 434

subspace

general definition, 151

symmetric matrix, 76

transition matrix, 183

main properties, 186

transpose, 74

transpose of a linear map

see dual of a linear map, 230

transposition, 282

triangle inequality, 44

trivial vector space, 37

unit vectors

definition, 40

unitary matrix, 253

definition of, 126

vector spaces

general definition, 147

other examples, 150

zero divisor, 337

zero matrix, 72
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