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Object-based Nowcasting at DWD

Motivation

Probabilistic Object-based Nowcasting
= Kalman-Filter Principle

= Kalman-Filter in KONRAD3D
Object-based Nowcasting Ensemble

Prototype Object-based Nowcasting Ensemble
= Concept

= Ensemble Kalman Filter
= Example Nowcasting Ensemble

= Implementation Cell Life Cycle
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KONRAD3D (KONvektive Entwicklung in RADarprodukten)

= Object detection, tracking and forecasting
system KON RAD3D JPOLARA

Polarimetric Radar Algorithms

= In-house development by Manuel Werner

(Poster 19) ! 20.5.2016
§ 20:05-22:30

= Entering test phase soon
= Implemented in POLARA framework

= Will replace legacy system KONRAD
Features
= Based on 3D quality-assured radar data

= Adaptive thresholding
> Kalman filtering of cell-centroid position | g —_—s s ey

:
:
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Mode of Operation and Limitations

= Cell detection in sweeps and 2D projection B previous,
. . M predicted and
= Cell heading from optical-flow method and cell- ] Qubsequem cell-centroid positions

centroid relocation
= No account for changes in heading or evolution
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Goal

= Correct representation of nowcasting uncertainties

Major Uncertainties

= Detection method and its parameters, esp. detection thresholds

= Tracking and forecasting method, especially process model and
noise assumption

= Cell evolution

Possible Approaches
= Probabilistic system:

= Harness techniques with pure probabilistic output, e.g. Kalman Filter
= Ensemble system:
= Generate ensemble of forecasts through perturbation or variation
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,

= Few measurements and state variables
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,

= Few measurements and state variables

One-dimensional example: position tracking

Initial position
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,
= Few measurements and state variables

One-dimensional example: position tracking

Initial position

Prediction
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,
= Few measurements and state variables

One-dimensional example: position tracking

Initial position

Measurement

Prediction
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,
= Few measurements and state variables

One-dimensional example: position tracking

Correction

Initial position

Measurement

Prediction
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,
= Few measurements and state variables
One-dimensional example with measurements
Initial position
Bl Prediction

B Measurement
B Correction
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,
= Few measurements and state variables
One-dimensional example without measurements
Initial position
Bl Prediction

B Measurement
B Correction
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Kalman-Filter Principle

= Modelling of stochastic process in state space as Markov chain

=» lIterative Bayesian combination of prediction and measurement to an analysis, which is
more accurate than the combination ingredients

= Prerequisite:
=» Linear process model,
=» Gaussian process and measurement noise,

= Few measurements and state variables

Two-dimensional example .O True positions
-} Kalman-Filter prediction

Kalman-Filter analysis
Measurement
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Kalman Filter in KONRAD3D R

Process Model

= Kalman filtering of the 2D-projected cell
centroid (3D dBZ-weighted cell mean)

= Constant acceleration model: forecasting
of curved tracks possible

Measurement

= Measurement error as covariance of the
dBZ-weighted cell mean

= Optical-flow motion vectors only as first
guess of the velocity of newly detected
cells

Presentation
= 60-min forecast in 5-min steps

i
;
%
i

= Uncertainty ellipse for analysis ;
(previous in black, subsequent in blue) M previous,

B predicted and
and forecast (red) Bl subsequent cell-centroid positions
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Motivation

Bl previous,
M predicted and

B subsequent cell-centroid positions .
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KONRADS3D ensemble members using different detection thresholds (29.5.2016 6:50-8:15)
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Motivation
Shortcomings of Pure Probabilistic Approach
= Uncertainties due to range of suitable method parameters only through additional noise

= Cell evolution as non-linear function cannot be implemented in basic Kalman filter

= Error ellipse as uncertainty of cell centroid position difficult to understand

Advantages of Ensemble Approach

= Uncertainties from parameter variation can be captured by an ensemble of detection and
tracking runs with different settings

= Cell evolution as non-linear function can be implemented in Ensemble Kalman filter
= Ensemble members as cell realizations easy to understand and reason about
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Concept

Cell Detection

= Runs of KONRADS3D detections from variations of algorithm parameters
(thresholds and Kalman filter noise) to capture the parameter uncertainty

=» Clustering of detected KONRAD3D cells

= Cell cluster centroid and its variance from mean and variance of single detections

Ensemble Generation
= Stochastic ensemble generation for every cell cluster

= Application of Ensemble Transform Kalman Filters:
=>» Currently constant velocity model for cell cluster centroid motion
= KONRAD3D cell cluster used as measurement
Cell Life Cycle
= Cell life cycle as parabola shape opening down for cell area over cell age

= Cell life time and maximum cell area as parabola parameters are Monte-Carlo generated
for ensemble members
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Ensemble Kalman Filter

Properties

= Kalman-Filter works directly on Gaussian distributions,
while Ensemble Kalman Filter (EnKF) works on samples, i.e., ensemble members

= EnKF turns into Kalman-Filter for large number of members

7

EnKF avoids expensive matrix inversion

= EnKF is robust against non-linearities and thus deviations from Gaussian distributions
(alternatively Extended Kalman Filter)

Example: Ensemble Kalman Filter

® - True positions

-@- Ensemble-Kalman-filter prediction

-@- Ensemble-Kalman-filter analysis
Measurement
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Ensemble Kalman Filter

Properties

= Kalman-Filter works directly on Gaussian distributions,
while Ensemble Kalman Filter (EnKF) works on samples, i.e., ensemble members

= EnKF turns into Kalman-Filter for large number of members

7

EnKF avoids expensive matrix inversion

= EnKF is robust against non-linearities and thus deviations from Gaussian distributions
(alternatively Extended Kalman Filter)

Example: Ensemble Kalman Filter vs. Kalman Filter

° - True positions

-@- Ensemble-Kalman-filter prediction
-@- Ensemble-Kalman-filter analysis
-l Kalman-Filter prediction

Kalman-Filter analysis
Measurement
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Example Ensemble
P " 15.6,2016

12: 6:45
Stuttgart
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Implementation Cell Life-Cycle

= Ansatz from life-cycle analysis by Kathrin Wapler (Poster 3):
Cell area a versus cell age t as parabola opening down:

4a T\ 2
a(t) = - Trrzlax (t - _) + Amax

2
with lifetime  and maximum cell area a, .

= KONRAD3D only measures cell area
= Lifetime t and maximum area a,,,x Sampled from large variance Gaussian distribution
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Probabilistic Nowcasting with Kalman Filter

= KONRAD3D extended by Kalman filter,

= Cell centroid forecast with uncertainty ellipse

Prototyp Object-based Nowcasting Ensemble

= KONRAD3D detection with variation of thresholds and Kalman-filter noise
=» Clustering of detections and sample ensemble from cluster mean and variance
= Ensemble Kalman filter applied to cluster

= Implementation of cell evolution as down-facing parabola for cell-area time series

Outlook

= Consider other properties for life-cycle modeling than cell size
= Improve handling of cell splits and merges

= Tuning and Verification of prototype
>

Implementation of prototype in C++ framework POLARA
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Contact:

Robert Feger

Referat 23

Strahlenberger Stral3e 17 Haus C
63067 Offenbach

E-Mail: robert.feger@dwd.de
Tel.: +49 (0) 69 / 8062 -3144
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Backup
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Uncertainties in Nowcast Predictions

Measured Data

= Weather radars yield a spatially
smoothed, indirect and time-singular
image

=» Positioning and intensity errors,
jamming and artefacts

Method

= Uncertainty in object identification:
used properties, thresholds, method

= Tracking and forecast uncertainties:
e.g. predecessor—successor matching

= (No) modeling of physical processes
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Uncertainties in Nowcast Predictions

Measured Data

Measurement Principle

Measurement Error

Method

Object Identification

Tracking and Prediction

Process Model
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Uncertainties in Nowcast Predictions Ensemble-Generation Approaches

Measured Data Data Perturbation

=» Stochastical perturbation of data,

Measurement Principle : :
e.g. though noise analysis

Measurement Error Method and Parameter Variation
= Optical-Flow algorithm for the
Method computation of motion vectors:

e.g. method, thresholds, smoothing

= KONRAD3D: e.g. methods, thresholds,
Tracking and Prediction predecessor matching, Kalman-filter
parameters

NWP Information

= Motion vectors averaged from observation
and NWP ensemble

Object Identification

Process Model

= Cell evolution from NWP ensemble
Dynamics

= Cell evolution from results of life-cycle
analysis (Kathrin Wapler)
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Uncertainties in Nowcast Predictions Ensemble-Generation Approaches
Measured Data ——9 Data Perturbation
Measurement principle Stochastical perturbation

Measurement error

» Parameter Variation

Method Optical-flow algorithm
Obiject identification KONRAD3D
Tracking and prediction )
L NWP Information
Process model » Motion vectors

4[» Cell evolution

Dynamics

4’» Life-cycle analysis
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