Generation of an Object-based Nowcasting Ensemble

Robert Feger, Manuel Werner, Rafael Posada, Kathrin Wapler, Ulrich Blahak Deutscher Wetterdienst (DWD), Germany

European Nowcasting Conference 2019 Madrid, 25. April 2019

Contents

Object-based Nowcasting at DWD

Motivation

Probabilistic Object-based Nowcasting

- Kalman-Filter Principle
- Kalman-Filter in KONRAD3D

Object-based Nowcasting Ensemble

Prototype Object-based Nowcasting Ensemble

- Concept
- Ensemble Kalman Filter
- Example Nowcasting Ensemble
- Implementation Cell Life Cycle

Object-Based Nowcasting at DWD

KONRAD3D (KONvektive Entwicklung in RADarprodukten)

- Object detection, tracking and forecasting system
- In-house development by Manuel Werner (Poster 19)
- Entering test phase soon
- Implemented in POLARA framework
- Will replace legacy system KONRAD

Features

- Based on 3D quality-assured radar data
- Adaptive thresholding
- Kalman filtering of cell-centroid position

Mode of Operation and Limitations

- Cell detection in sweeps and 2D projection
- Cell heading from optical-flow method and cellcentroid relocation
- No account for changes in heading or evolution

previous,

predicted and

subsequent cell-centroid positions

Motivation

Goal

→ Correct representation of nowcasting uncertainties

Major Uncertainties

- → Detection method and its parameters, esp. detection thresholds
- Tracking and forecasting method, especially process model and noise assumption
- Cell evolution

Possible Approaches

- Probabilistic system:
 - Harness techniques with pure probabilistic output, e.g. Kalman Filter
- Ensemble system:
 - → Generate ensemble of forecasts through perturbation or variation

Kalman-Filter Principle

- Modelling of stochastic process in state space as Markov chain
- Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - → Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

Kalman-Filter Principle

- → Modelling of stochastic process in state space as Markov chain
- Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - Gaussian process and measurement noise,
 - → Few measurements and state variables

Kalman-Filter Principle

- → Modelling of stochastic process in state space as Markov chain
- Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

Kalman-Filter Principle

- Modelling of stochastic process in state space as Markov chain
- → Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

Kalman-Filter Principle

- Modelling of stochastic process in state space as Markov chain
- → Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

Kalman-Filter Principle

- Modelling of stochastic process in state space as Markov chain
- → Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - Gaussian process and measurement noise,
 - → Few measurements and state variables

One-dimensional example with measurements

- Initial position
- Prediction
- Measurement
- Correction

Kalman-Filter Principle

- → Modelling of stochastic process in state space as Markov chain
- → Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - → Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

One-dimensional example without measurements

- Initial position
- Prediction
- Measurement
- Correction

True positions

Kalman-Filter Principle

- → Modelling of stochastic process in state space as Markov chain
- → Iterative Bayesian combination of prediction and measurement to an analysis, which is more accurate than the combination ingredients
- Prerequisite:
 - Linear process model,
 - → Gaussian process and measurement noise,
 - → Few measurements and state variables

Two-dimensional example

Kalman Filter in KONRAD3D

Process Model

- → Kalman filtering of the 2D-projected cell centroid (3D dBZ-weighted cell mean)
- Constant acceleration model: forecasting of curved tracks possible

Measurement

- Measurement error as covariance of the dBZ-weighted cell mean
- Optical-flow motion vectors only as first guess of the velocity of newly detected cells

Presentation

- → 60-min forecast in 5-min steps
- Uncertainty ellipse for analysis (previous in black, subsequent in blue) and forecast (red)

Object-based Nowcasting Ensemble

Motivation

KONRAD3D ensemble members using different detection thresholds (29.5.2016 6:50-8:15)

Object-based Nowcasting Ensemble

Motivation

Shortcomings of Pure Probabilistic Approach

- Uncertainties due to range of suitable method parameters only through additional noise
- Cell evolution as non-linear function cannot be implemented in basic Kalman filter
- Error ellipse as uncertainty of cell centroid position difficult to understand

Advantages of Ensemble Approach

- Uncertainties from parameter variation can be captured by an ensemble of detection and tracking runs with different settings
- Cell evolution as non-linear function can be implemented in Ensemble Kalman filter
- Ensemble members as cell realizations easy to understand and reason about

Concept

Cell Detection

- Runs of KONRAD3D detections from variations of algorithm parameters (thresholds and Kalman filter noise) to capture the parameter uncertainty
- Clustering of detected KONRAD3D cells
- → Cell cluster centroid and its variance from mean and variance of single detections

Ensemble Generation

- Stochastic ensemble generation for every cell cluster
- Application of Ensemble Transform Kalman Filters:
 - Currently constant velocity model for cell cluster centroid motion
 - → KONRAD3D cell cluster used as measurement

Cell Life Cycle

- Cell life cycle as parabola shape opening down for cell area over cell age
- Cell life time and maximum cell area as parabola parameters are Monte-Carlo generated for ensemble members

Ensemble Kalman Filter

Properties

- → Kalman-Filter works directly on Gaussian distributions, while Ensemble Kalman Filter (EnKF) works on samples, i.e., ensemble members
- EnKF turns into Kalman-Filter for large number of members
- EnKF avoids expensive matrix inversion
- → EnKF is robust against non-linearities and thus deviations from Gaussian distributions (alternatively Extended Kalman Filter)

Example: Ensemble Kalman Filter

Ensemble Kalman Filter

Properties

- → Kalman-Filter works directly on Gaussian distributions, while Ensemble Kalman Filter (EnKF) works on samples, i.e., ensemble members
- EnKF turns into Kalman-Filter for large number of members
- EnKF avoids expensive matrix inversion
- → EnKF is robust against non-linearities and thus deviations from Gaussian distributions (alternatively Extended Kalman Filter)

Example: Ensemble Kalman Filter vs. Kalman Filter

Example Ensemble

Implementation Cell Life-Cycle

→ Ansatz from life-cycle analysis by Kathrin Wapler (Poster 3): Cell area a versus cell age t as parabola opening down:

$$a(t) = -\frac{4a_{\text{max}}}{\tau^2} \left(t - \frac{\tau}{2}\right)^2 + a_{\text{max}}$$

with lifetime τ and maximum cell area a_{max} .

- → KONRAD3D only measures cell area
- \rightarrow Lifetime τ and maximum area a_{max} sampled from large variance Gaussian distribution

Summary

Probabilistic Nowcasting with Kalman Filter

- → KONRAD3D extended by Kalman filter,
- Cell centroid forecast with uncertainty ellipse

Prototyp Object-based Nowcasting Ensemble

- KONRAD3D detection with variation of thresholds and Kalman-filter noise
- Clustering of detections and sample ensemble from cluster mean and variance
- Ensemble Kalman filter applied to cluster
- → Implementation of cell evolution as down-facing parabola for cell-area time series

Outlook

- Consider other properties for life-cycle modeling than cell size
- Improve handling of cell splits and merges
- Tuning and Verification of prototype
- Implementation of prototype in C++ framework POLARA

Contact:

Robert Feger Referat 23 Strahlenberger Straße 17 Haus C 63067 Offenbach

E-Mail: robert.feger@dwd.de Tel.: +49 (0) 69 / 8062 -3144

Backup

Uncertainties in Nowcast Predictions

Measured Data

- Weather radars yield a spatially smoothed, indirect and time-singular image
- Positioning and intensity errors, jamming and artefacts

Method

- Uncertainty in object identification: used properties, thresholds, method
- Tracking and forecast uncertainties:
 e.g. predecessor-successor matching
- → (No) modeling of physical processes

Uncertainties in Nowcast Predictions

Measured Data

Measurement Principle

Measurement Error

Method

Object Identification

Tracking and Prediction

Process Model

Uncertainties in Nowcast Predictions

Measured Data

Measurement Principle

Measurement Error

Method

Object Identification

Tracking and Prediction

Process Model

Ensemble-Generation Approaches

Data Perturbation

Stochastical perturbation of data,
 e.g. though noise analysis

Method and Parameter Variation

- Optical-Flow algorithm for the computation of motion vectors:
 e.g. method, thresholds, smoothing
- → KONRAD3D: e.g. methods, thresholds, predecessor matching, Kalman-filter parameters

NWP Information

- Motion vectors averaged from observation and NWP ensemble
- Cell evolution from NWP ensemble

Dynamics

Cell evolution from results of life-cycle analysis (Kathrin Wapler)

