

Blended probabilistic nowcasting with the IMPROVER post-processing system

Thursday 25 April 2019

Caroline Sandford, Stephen Moseley

IMPROVER Team

Project planning: Nigel Roberts, Jonathan Flowerdew, Ben Fitzpatrick, Dan Brierley, Simon Jackson, Bruce Wright

Developers: Paul Abernethy, Ben Ayliffe, Mark Baker, Laurence Beard, Anna Booton, Gavin Evans, Aaron Hopkinson, Katie Howard, Caroline Jones, Stephen Moseley, Fiona Rust, Caroline Sandford, Tomasz Trzeciak

© Crown Copyright 2018 Met Office

Context: the IMPROVER project

Current Met Office post-processing & nowcasting systems (UKFP / STEPS)	New systems in development (IMPROVER / MONOW)
 Not designed to cope with ensembles Deterministic (processes individual diagnostic fields) Blending in parameter space Complex code design Fortran Proprietary 	 Designed to fully exploit ensemble forecasts Probabilistic processing chains for different models Blending in probability space Simple, modular processing chains Python Open source: https://github.com/metoppv/improver

IMPROVER post-processing: simplified chains

Multi-model probabilistic blending

Radar extrapolation nowcasting: MONOW

Masked radar T+0
Nowcast T+15 mins
Nowcast T+30 mins
Nowcast T+45 mins

Nowcast T+6 hours

Deriving advection velocities: optical flow (1)

Example: 27 November 2018:

- Forecast start time 14:00
- Optical flow advection velocities calculated from radar data at 13:30, 13:45 and 14:00

(Bowler et al 2004, STEPS)

Deriving advection velocities: optical flow (2)

Advection velocities: model steering flow

Neighbourhood processing (1)

1	1	0	0	Mean over square	1	2/3	1/3	0
1	1	0	0	neighbourhood	2/3	4/9	2/9	0
0	0	0	0	(radius of 1 grid cell)	1/3	2/9	2/9	1/6
0	0	0	1		0	0	1/6	1/4

- Increases ensemble spread / creates spread in deterministic forecasts by representing spatial uncertainty
- Probability of occurrence in one grid cell refined by considering fraction of occurrences (P=1) in surrounding grid cells
- Radii empirically tuned to optimise verification metrics

Neighbourhood processing (2)

Nowcast-UKV blend weights

Mainland UK: 25% UKV, 75% nowcast at T+1

Linear increase in UKV weighting with lead time (100% at T+4)

Smooth increase to 100% UKV outside nowcast coverage

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Nowcast-UKV probabilistic blend

0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Comparison with "truth" at 1 hr lead time

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.0

Conclusions

- The current Met Office post-processing systems (STEPS & UKPP) are complex and expensive to maintain, and aren't designed to exploit ensemble models
- IMPROVER will generate post-processed probabilistic forecasts and nowcasts from deterministic and ensemble models via a simple modular processing chain
- Spatial uncertainty in the MONOW nowcast is represented via neighbourhood processing, rather than stochastic noise at different scales, and the IMPROVER framework provides opportunities to tune neighbourhood radii and multi-model blend weights according to skill
- "Proof of concept" shows sensible-looking nowcast probability fields with no visible artefacts
- Quantitative validation is a work in progress