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ABSTRACT 
 

Wood, Nicole. The Effects of Exercise Training on Cachexia in Mice Bearing the Colon-
26 Carcinoma. Published Doctor of Philosophy dissertation, University of 
Northern Colorado, 2019. 

 
 Colon cancer is third the most prevalent cancer in the United States in both men 

and women. However, it is also a largely preventable disease, as colorectal cancer (CRC) 

risk is increased by environmental factors such as poor diet and physical inactivity. 

Furthermore, CRC patients are highly susceptible to significant muscle wasting. Cachexia 

is classified as a multifactorial metabolic syndrome associated with impairments in 

immune function, fatigue, and overall weakness, that lead to increased morbidity and 

mortality. To date, multiple studies have shown that both aerobic and resistance training, 

individually, are highly effective in their ability to attenuate the deleterious effects of 

cachexia. However, little research has focused on the inclusion of a program that 

combines both modes of exercise, which may be more clinically relevant. 

 The purpose of the study was to examine the effects of multiple modes of exercise 

training on markers of cachexia to determine if treadmill training (TM), resistance 

training (RT), or a combination of the two (TM+RT) can effectively attenuate cachexia. 

A secondary purpose was to examine the involvement of interleukin-6 (IL-6) in the 

muscle wasting process and to determine if exercise training would reduce markers of 

systemic inflammation. 

 Six-week old male Balb/c mice were randomly selected to sedentary (SED; n = 

24) or exercise (EX; n = 36) groups. Mice in the EX group were further randomized to 
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either a treadmill training (TM; n = 12), resistance training (RT; n = 12), or a 

combination (TM+RT; n = 12) group. At 11 weeks of age, half of the SED animals and 

all EX animals were inoculated with C26 cells; all EX mice continued their respective 

exercise protocols. Animals were sacrificed at 14 weeks of age. Cachexia was assessed 

via body mass, gastrocnemius mass and CSA, forelimb grip strength, and systemic 

inflammation. 

 Colon-26 carcinoma induced cachexia in SED+Tumor mice, as evident by 

significant decreases in body mass, gastrocnemius mass and CSA, declines in muscle 

function, and increases in systemic inflammation markers. Exercise, specifically RT, was 

able to provide significant improvements in all examined markers of cachexia, with the 

exception of relative body mass. Significant improvements also existed in TM+Tumor 

and TM+RT+Tumor in regard to gastrocnemius CSA and muscle function when 

compared to SED+Tumor. 

 These data suggest that exercise training, regardless of mode are able to provide 

significant benefit to cachectic mice and this may be due, in part, to decreases in systemic 

inflammation. 
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CHAPTER I 

INTRODUCTION 

 According to recent data from the American Cancer Society, more than 1.7 

million people in America will be diagnosed with cancer, and nearly 600,000 people are 

estimated to die from the disease this year (Siegel, Miller, & Jemal, 2018). Though 

cancer-related deaths have decreased in recent years, due to advancements in detection 

and treatment, more people are living with cancer than ever before. Colorectal cancer 

(CRC) is among the highest in cancer death rates in the U.S. for both men and women 

(Mehl, Davis, Clements, et al., 2005a). Colorectal cancer risk is associated with 

environmental factors, such as diet and exercise. In fact, many studies have shown a 

decreased risk with increased physical activity (Aoi et al., 2010; Demarzo et al., 2008; 

Mehl, Davis, Clements, et al., 2005a; Puppa et al., 2012; Shin & Lee, 2011). 

 Cachexia, which is associated with an unintentional loss in body mass, is 

diagnosed in nearly 80% of cancer patients, and plays a role in 20% of cancer-related 

deaths (Baltgalvis, Berger, Pena, Davis, & Carson, 2008; Puppa et al., 2012). Cachexia 

contributes to not only muscle wasting, but also diminished adipose tissue and is 

associated with chronic inflammation, fatigue, and weakness, contributing to increased 

patient morbidity and mortality (Baltgalvis et al., 2008; Puppa et al., 2012). Cancer-

related cachexia is especially prominent in gastrointestinal cancers, and patients can lose 

up to 30% of their original body weight (Baltgalvis et al., 2008). Though specific 

mechanisms behind cancer-induced cachexia remain unclear, evidence suggests that the 
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local release of pro-inflammatory cytokines may play a role, leading to changes in muscle 

protein metabolism. Alterations in muscles protein metabolism, in this case, result in an 

imbalance where protein degradation exceeds protein synthesis (Al-Majid & McCarthy, 

2001). 

 Inflammatory mediators in the tumor microenvironment activate paracrine 

immune responses that can, in turn, promote tumor growth, proliferation, and 

angiogenesis, thus it is important to examine mechanisms that will help decrease chronic 

inflammation (Di Caro et al., 2016). Both systemic and intestinal inflammation contribute 

to the onset and severity of colon cancer (Mehl, Davis, Berger, & Carson, 2005b). 

Interleukin-6 (IL-6) is an inflammatory cytokine that plays a key role in mediating 

chronic inflammation and metabolic disturbances, therefore, an increase in circulating IL-

6 can contribute to a reduction in overall body mass, muscle mass, and increase in protein 

degradation (Baltgalvis et al., 2008). Recent studies have shown that inhibiting IL-6 can 

attenuate muscle wasting (Baltgalvis et al., 2008). IL-6 is known to have both anti- and 

pro-inflammatory properties  

 Interventions that address muscle wasting are of particular interest to researchers. 

Evidence suggests that exercise may counteract some of the muscle metabolism 

imbalances caused by cancer-induced cachexia. Resistance training has a significant 

impact on muscle weight in tumor bearing mice. Al-Majid & McCarthy (2001) examined 

the effects of muscle stimulation to mimic resistance training in the Colon-26 (C-26) 

adenocarcinoma mouse model. Results indicated that tumor bearing animals had extensor 

digitorum longus (EDL) weights that were significantly smaller than their contralateral 

control muscles. Furthermore, EDL weights were significantly greater in the stimulated 
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EDL muscles of C-26 mice when compared to their contralateral control muscles, 

indicating that this repeated muscle contraction may, in fact, attenuate muscle wasting. 

 Many studies have shown that physical activity has an antitumor effect. Low to 

moderate-intensity exercise can trigger inhibition, or activation, of appropriate cellular 

signaling pathways that may slow carcinogenesis (Demarzo et al., 2008). The antitumor 

effects of physical activity appear to be the result from prevention during early stages of 

CRC, suggesting that individuals who exercise regularly are at a decreased risk (Aoi et 

al., 2010). Though exact mechanisms have not been completely clear, many potential 

mechanisms, such as immune system activation and metabolic improvements, have been 

identified in past research (Demarzo et al., 2008). In regard to CRC, it is thought that one 

potential mechanism behind decreased cancer risk may be due to exercise-induced 

gastrointestinal motility (Aoi et al., 2010). Another potential mechanism to examine is 

local inflammation. Inflammatory responses occur as a result of local tissue ischemia that 

is induced by exercise and can result in a stimulus to trigger long-term anti-inflammatory 

mechanisms (Demarzo et al., 2008). These mechanisms are mediated, in part, by muscle-

derived IL-6, which can stimulate the release of anti-inflammatory cytokines, such as IL-

10, and inhibit pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α). 

Furthermore, moderate physical activity has been shown to decrease macrophage IL-6, 

resulting in a decrease in colon cancer development (Mehl, Davis, Clements, et al., 

2005a).  

 It is suggested that CRC is likely induced by environmental factors, such as 

physical inactivity, therefor, it is imperative to elucidate methods to prevent such a 

disease from occurring. For cancer patients who develop cachexia, it is crucial to identify 
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underlying mechanisms by which the disease occurs and increasing muscle mass is likely 

to offset the damaging effects, thus leading to decreases in morbidity and mortality. 

Statement of Purpose 

 The purpose of this study was twofold: (a) to examine the effects of three 

different exercise training protocols on skeletal muscle wasting in male Balb/c mice 

bearing the C26 carcinoma and (b) to examine the role of circulating IL-6 in the severity 

of skeletal muscle wasting. 

Research Questions and Hypotheses 

Q1 Will endurance exercise, resistance exercise, or a combination of both be 
associated with a reduced severity of skeletal muscle wasting in cachectic 
mice? 

 
H1 Chronic endurance exercise will attenuate cachexia-induced 

decreases in gastrocnemius muscle cross sectional area and wet 
muscle mass. 

 
H2 Resistance training will attenuate cachexia-induced skeletal muscle 

wasting to a greater extent than endurance exercise. 
 
H3 A combination of both resistance training and endurance training 

will attenuate skeletal muscle wasting to a greater extent than with 
either protocol alone. 

 
Q2 Does IL-6 play a significant role in cachexia-induced skeletal muscle 

wasting? 
 
H1 Circulating plasma IL-6 is associated with skeletal muscle wasting.  
 
H2 Chronic exercise training will reduce circulating IL-6 in cachectic 

mice, regardless of training mode, thus reducing the severity of the 
atrophy.  
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Table 1 
 
Abbreviations Used in This Study 
 

Abbreviation Explanation Abbreviation Explanation 

 

AMP adenosine
 monophosphate 

AMPK AMP-activated 
 protein kinase 

Apc adenomatous 
 polyposis coli 

ATP adenosine 
 triphosphate 

C26 Colon-26 tumor cell 
CRC colorectal cancer   

CSA cross-sectional area  
EDL extensor digitorum 
 longus 
EDTA ethylenediaminetetra- 
 acetic acid 
EX exercise training 

HFES high frequency 
 electrical stimulation 

IGF-1 insulin-like growth 
 factor-1 

IGF-1 insulin-like growth 
 factor-1 receptor 

IL-6 interleukin 6 
IL-10 interleukin 10 

ELISA enzyme-linked
 immunosorbent assay 

Jak janus kinase 
Kras Kristen rat sarcoma 
 virus 
MHC myosin heavy chain  

 

mRNA             messenger ribonucleic 
 acid 

O.C.T. optimal cutting 
 temperature 

RNA ribonucleic acid   
SED sedentary 

STAT signal transducer and 
 activator of transcription 

TA tibialis anterior 
TM treadmill 

RT resistance training 

TNF-α tumor necrosis factor- 
 alpha 
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Definitions of Terms 
 
 Atrophy - wasting, or degeneration, of cells that leads to a decrease in the cell size 
 
 Cachexia - unintentional loss in body mass that is associated with impaired 
immune function, chronic inflammation, fatigue, muscle wasting, and overall weakness. 
 
 Cell Culture - a process by which cells are grown under controlled conditions 
outside of their natural environment. 
 
 Cytokine - cell signaling molecules that aid in cell-to-cell communication in 
response to inflammation, infection, or trauma. 
 
 Electrical Stimulation - use of electrodes to induce a tetanic or fatiguing muscle 
contraction. 
 
 Hypertrophy - the enlargement of a tissue, such as skeletal muscle, that increases 
the size of its cells. 
 
 Myosin Heavy Chain - the motor protein of skeletal muscle thick filaments 
 
 Oncogene - a gene that has the potential to cause cancer. 
 
 Splenomegaly - abnormal enlargement of the spleen.  
 
 Tumor-Suppressor - an anti-oncogene that protects a cell from one step on the 
path to cancer. 
 
 Tumorigenesis - the formation of a tumor, or tumors. 
 
 Ubiquitination - the addition of a ubiquitin to a substrate protein that marks the 
protein for degradation via the proteasome. 
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CHAPTER II 
 

REVIEW OF LITERATURE 
 

 In 2018, it is estimated, by the American Cancer Society, that nearly 1.7 million 

new cancer cases will be diagnosed and greater than 600,000 cancer-related deaths will 

occur (Siegel et al., 2018). Colon cancer is among the highest in new cancer cases and 

mortality, among men and women, ranking third in the United States (Tan & Du, 2012). 

Nearly 80% of colon cancer cases are attributed to environmental factors, such as poor 

diet and physical inactivity, suggesting that colon cancer is also largely preventable 

(McClellan et al., 2014). Colorectal cancer (CRC) patients are highly susceptible to 

significant skeletal muscle wasting. Research suggests that nearly 80% of all cancer 

patients are diagnosed with cachexia, which plays a significant role in 20% of cancer-

related deaths (Aulino et al., 2010; Bonetto et al., 2011; Bonetto et al., 2012; Coletti et 

al., 2016; Puppa et al., 2012). Low- to moderate-intensity exercise is effective in lowering 

the risk of cancer and may slow the progression of, or prevent, the development of cancer 

cancer (Demarzo et al., 2008; Puppa et al., 2012). In addition, exercise is known to lower 

chronic inflammation, has been shown to be a significant factor in cancer prevention, and 

may play a role in attenuating the effects of cancer-induced cachexia (Puppa et al., 2012).  

Colon Cancer 

 The colon, or large intestine, is a fundamental part of the gastrointestinal tract. It 

functions to absorb water, minerals, and nutrients, and to serve as a storage area for 

waste. The colon plays an important role in physiological economy of the host organism 
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and its biological nature increases susceptibility to development of diverse pathologies, 

such as cancer (Arvelo, Sojo, & Cotte, 2015). Generally speaking, colon cancer 

diagnoses occur late and detection is often difficult due to the rapid formation and rate of 

transfer through the bloodstream. Development of CRC can occur through the mutation 

of oncogenes, which affect cell proliferation and apoptosis, or through the inactivation of 

tumor suppressor genes. 

 The Colon-26 (C26) tumor was first developed in 1975 in an effort to establish a 

suitable murine colon cancer model to be used in biological and chemotherapy research 

(Corbett, Griswold, Roberts, Peckham, & Schabel, 1975). In their studies, 82 colon 

tumors were induced and transplanted in four different strains of inbred mice. Only four 

tumors, one of which was C26 (number 26 of 82), originating from female Balb/c mice, 

survived and were subject to serial passaging (Corbett et al., 1975). In regard to tumor 

formation, the C26 animal model provides similarities to human colon cancer, in that 

tumors are likely chemically induced, rather than spontaneously formed (Corbett et al., 

1975). The C26 cell line is an N-nitroso-N-methylurethane induced, undifferentiated, 

grade IV colon carcinoma (Bhadury, López, Muralidharan, Nilsson, & Nilsson, 2013; 

Castle et al., 2014; Corbett et al., 1975). C26 is known to be highly tumorigenic, with a 

low tendency to metastasize, and exhibits high mortality in mice bearing the carcinoma 

(Aulino et al., 2010). This cell line expresses an oncogene mutation to the Kras, or p21, 

protein, which is observed in 35-45% of all CRC incidences (Castle et al., 2014; Tan & 

Du, 2012). This mutation increases activity of the epidermal growth factor receptor 

signaling pathway, leading to uncontrolled cell growth. Rodent models are widely used in 

the study of a variety of cancers, including CRC. The C26 cell line may be implanted 



 

 

9 

orthotopically or ectopically, as a solid tumor fragment (Aulino et al., 2010) or from cell 

culture (Khamoui, 2014). Furthermore, though C26 is a colon cancer, the cell line may be 

implanted in various locations, such as in the hind limbs (Hiroux et al., 2016), dorsally 

between the scapulae (Aulino et al., 2010; Khamoui, 2014), or into a skeletal muscle of 

interest (Hiroux et al., 2016). Additionally, mice bearing the C26 colon carcinoma are a 

well-characterized, extensively studied model of cancer-induced cachexia (Bonetto, 

Rupert, Barreto, & Zimmers, 2016). Mice implanted with the C26 carcinoma exhibit 

significant declines in body mass, with wasting of skeletal muscle and adipose tissue, 

without alterations in food intake (Al-Majid & McCarthy, 2001; Aulino et al., 2010; 

Bonetto et al., 2017). 

Cachexia 

 Cachexia is identified as an unintentional loss of body mass, resulting from the 

progressive wasting of both skeletal muscle and adipose tissue (Baltgalvis et al., 2010; 

Bonetto et al., 2011; Khamoui, 2014; Puppa et al., 2012). The disorder occurs with many 

chronic diseases, including HIV and cancer, and is associated with poor prognosis and is 

implicated in at least 20% of cancer-related deaths (Aulino et al., 2010; Coletti et al., 

2016). Cachexia can be defined as a metabolic syndrome that is associated with chronic 

inflammation, impaired immune function, hypermetabolism, fatigue, and overall 

weakness, leading to increased morbidity and mortality (Baltgalvis, et al., 2010; Hardee 

et al., 2016; Mehl, Davis, Berger, et al., 2005b; Puppa et al., 2012). One hallmark of this 

disorder is marked skeletal muscle atrophy that leads to significant declines in muscle 

strength and overall quality of life. Nearly 80% of all cancer patients are diagnosed with 
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cachexia, which is identified in those individuals exhibiting >5% loss of body weight 

(Mehl, Davis, Berger, et al., 2005b). 

 Skeletal muscle mass in humans is difficult to measure, as muscles cannot be fully 

excised, weighed, and examined. Though measurements of whole muscle volume, such 

as cross-sectional area (CSA), are often examined via imaging, the equipment required 

for such analysis is costly. This methodology is advantageous, as it allows researchers to 

investigate intact muscle which can then be complimented by examining skeletal muscle 

morphology via muscle biopsy. Muscle biopsies are, however, highly invasive. As a 

result, animal models have been widely used in cachexia research and have provided 

greater insight to the muscle wasting process.  

 Al-Majid and McCarthy (2001) found that C26 tumors induced significant 

wasting of the gastrocnemius and extensor digitorum longus (EDL) within 17-days post 

tumor inoculation in 7- to 8-week old female CD2F1 mice. It was reported that tumor-

bearing mice experienced a significant loss in overall body mass by day 15 after 

inoculation, while control animals gained weight slightly. On day 17, tumor-bearing mice 

had a 10% lower body mass than controls (Al-Majid & McCarthy, 2001). Aulino et al. 

(2010) examined CSA in 7-week old Balb/c mice bearing the C26 carcinoma. Tumor-

bearing mice displayed a marked decrease in muscle mass and CSA in the EDL and 

tibialis anterior (TA). It was also reported that tumor-bearing animals had a catastrophic 

loss in body weight (-30%) in the third week following tumor induction, and death 

ensued in 90% of mice within 32 days of transplantation. 
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Cachexia & Systemic Inflammation:  
Interluekin-6 & Signal Transducer  
and Activator of Transcription  
(STAT3) Signaling 
 
 In both human and rodent models, nearly 80% of CRC cases are attributed to 

environmental factors, such as poor diet and physical inactivity (Baltgalvis et al., 2007; 

McClellan et al., 2014). The onset of cachexia is identified as multifactorial and research 

suggests it can be linked to increases in reactive oxygen species, metabolic abnormalities, 

changes in skeletal muscle protein turnover, and systemic inflammation. Multiple pro-

inflammatory cytokines, such as IL-6, TNF-α, C-reactive protein, have been implicated in 

association with both the risk of CRC and cachexia. 

 IL-6 is a multifunctional cytokine, with pro- and anti-inflammatory properties, 

that is involved in a variety of host defenses and pathological processes. It can activate 

the transcription of genes involved in cellular proliferation, differentiation, and apoptosis.  

This is accomplished by binding to a plasma membrane receptor complex which contains 

the common signal transducing receptor chain glycoprotein 130 that induces signal 

transducer and activator of transcription 3 (STAT3) signaling with ligation (Baltgalvis et 

al., 2007). While transient increases in STAT3 activation provides anti-inflammatory 

effects, prolonged activation can induce pro-inflammatory effects. Under normal 

conditions, circulating levels of IL-6 are very low but can dramatically increase in 

response to tissue injury or other inflammatory conditions. In tumors, an inflammatory 

microenvironment is maintained. Heinrich, Behrmann, Haan, Hermanns, & Uller-newen 

(2003) identified mechanisms of IL-6 cytokine signaling and its regulation in a 

comprehensive review. Though IL-6 signaling is not completely understood due to the 

complexity of the cytokine and its signaling network, researchers continue to seek to 
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better understand the pathway. Circulating levels of IL-6 have been shown to increase 

significantly in both C26 and ApcMin/+ mice.  

 Puppa et al. (2012) investigated the effects of IL-6 overexpression on the 

development of cachexia in ApcMin/+ mice. At 12 weeks of age, animals were 

electroporated with either an empty vector or an IL-6 plasma used to increase 

endogenous IL-6 production and were sacrificed two weeks later. Results of the study 

confirmed that systemic IL-6 overexpression leads to a significant decrease in both body 

weight and skeletal muscle mice in sedentary ApcMin/+ mice. STAT3 and nuclear factor-κ 

B (NFκB) signaling were also examined to understand how IL-6 overexpression might 

alter inflammatory signaling in muscle. STAT3 and NFκB activation was induced in 

mice overexpressing IL-6, leading to increased inflammation in the quadriceps muscle. In 

another study, Baltgalvis et al. (2007) sought to determine the relationship between 

circulating IL-6 and tumor burden for the development of cachexia in ApcMin/+ mice. In 

this study, ApcMin/+ mice were compared to ApcMin/+/IL-6-/- mice. Cachexia was scored 

based on body mass, gastrocnemius muscle weight, and epididymal fat weight. In 

ApcMin/+ mice, there was a 61% decrease in gastrocnemius muscle weight and complete 

elimination of the epididymal fat pad in severely cachectic mice when compared to mice 

classified as mildly cachectic. Plasma IL-6 saw approximately a 10-fold increase in 

severely cachectic mice. Phosphorylated STAT3 increased 4.5-fold in severely cachectic 

mice when compared to mildly cachectic mice, showing there is, in fact, a significant 

increase in activation of the STAT3 signaling pathway. Data also revealed a significant 

inverse relationship between STAT3 activation and gastrocnemius muscle weight. 

Interestingly, IL-6 mRNA did not change with IL-6 overexpression, suggesting that the 
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STAT3 activation in skeletal muscle appears to be the result of changes in circulating IL-

6 rather than muscle-derived IL-6. Together, these data suggest that elevated IL-6 

significantly alters muscle weight and can induce cachexia in the mouse model. 

Effects of Cachexia on Skeletal  
Muscle Structure  
and Function 
 
 Though cachexia is marked by a loss in both skeletal muscle and adipose tissue, 

skeletal muscle degradation will be the topic of focus here. Cachectic patients can lose up 

to 30% of their total body mass, of which muscle mass accounts for a large portion 

(Mehl, Davis, Clements, et al., 2005a). As skeletal muscle degrades, muscle function and 

overall strength decline, leading to a decreased quality of life and increased mortality. 

Increases in protein degradation are often accompanied by decreases in protein synthesis, 

thus altering overall protein turnover. In addition to IL-6 and STAT3 signaling, the 

ubiquitin-proteasome pathway is also implicated in protein degradation and its 

constituents are often upregulated in cachectic muscles (Mehl, Davis, Clements, et al., 

2005a). The ubiquitin-proteasome pathway is an ATP-dependent pathway that plays a 

predominant role in degradation of myofibrillar proteins. In this pathway, myosin heavy 

chain (MHC) is selectively targeted, leading to the degradation of thick myofilaments and 

a change in myosin isoform expression. In this pathway, E3 ligases atrogin-1/MAFbx and 

MuRF-1 regulate muscle atrophy during cachectic conditions (Mehl, Davis, Clements, et 

al., 2005a). Conversely, depletion of these E3 ligases results in hypertrophy (Hanai et al., 

2007) 
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Myosin Heavy Chain Expression 

 Muscle fibers can be classified based on contractile speed, MHC, and metabolic 

capacity. MHC isoforms are critical in determining functional variations among skeletal 

muscles (Wells, Edwards, & Bernstein, 1996). In rodent skeletal muscles, four MHC 

types have been identified, including MHCI (slow twitch), and three isoforms of MHCII 

(fast twitch), including IIa, IIx, and IIb. MHC is a major target of protein degradation, 

and in cachectic muscles, type II fibers are compromised, while type I fibers are largely 

unaffected (Mehl, Davis, Clements, et al., 2005a). White, Baynes, et al. (2011b) showed 

that, at the initiation of cachexia (< %5 loss in body weight), there was a 19% reduction 

in the rate of myofibrillar protein synthesis that continued to decline further with the 

progression of cachexia. Furthermore, the gastrocnemius, specifically, displayed a 17% 

decrease in mass during this same period that also continued to decline with the 

progression of cachexia. White, Baynes, et al., (2011b) also found that total protein 

degradation was increased by 45% in ApcMin/+ mice at initial weight loss (mild cachexia), 

while ApcMin/+ mice who were identified as severely cachectic, with extreme weight loss, 

had a total protein degradation increase of 188%. In addition, Acharyya et al. (2004) 

found significant alterations in MHCIIb in the TA and gastrocnemius muscles of C26 

tumor-bearing mice when compared to non tumor-bearing controls, while MHCI 

dominant muscles, such as the soleus, saw very little change. It was also reported that no 

other myofibrillar proteins were observed to be altered in C26 tumor-bearing mice 

(Acharyya et al., 2004).  

 Diffee, Kalfas, Al-Majid, & McCarthy (2002) examined changes to myosin 

isoform expression with cachectic condition in CD2F1 mice bearing the C26 carcinoma. 
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In tumor-bearing mice, there was a shift in MHC expression in the soleus, with an 

increase in the expression of MHCIIb and a decrease in the expression of MHCI. In 

control animals, soleus muscles had no traceable expression of MHCIIb. Furthermore, no 

shifts in MHC expression in the gastrocnemius, an already highly glycolytic fiber, 

occurred. Similar to findings from several other studies (Baltgalvis et al., 2010; Hardee et 

al., 2016; Khamoui, 2014; Mehl, Davis, Berger, et al., 2005b), the atrophy seen in 

cachectic muscles preferentially occurs in glycolytic fibers rather than oxidative. This is 

supported by the significant loss of mass observed in muscles containing mostly MHCII 

fibers, such as the EDL and gastrocnemius, and shift in fiber type found in highly 

oxidative muscles, such as the soleus (Al-Majid & McCarthy, 2001; Diffee et al., 2002). 

Protein Degradation Mechanisms  
and Pathways 

 As discussed previously, many cellular signaling pathways are involved in protein 

degradation and many have been specifically implicated in cancer cachexia. The 

ubiquitin-proteasome pathway has been identified as one of the major mechanisms 

involved in the regulation in skeletal muscle wasting (Acharyya et al., 2004; Diffee et al., 

2002; Khal, Wyke, Russell, Hine, & Tisdale, 2005). In C26 tumor-bearing mice, the 

expression of ubiquitin and muscle-specific E3 ligases, MuRF1 and atrogin-1/MAFbx are 

markedly increased in cachectic muscles when compared to controls (Acharyya et al., 

2004; Mota et al., 2017). Similarly, Aulino et al. (2010) noted significant up-regulation of 

atrogin-1 expression in tumor-bearing mice. Western blot analysis also revealed protein 

ubiquitination was both qualitatively and quantitatively affected by C26 tumors. In 

addition, protein ubiquitination led to impairments in muscle function. EDL and soleus 

muscles of C26 mice demonstrated a lower maximal force and a diminished resistance to 
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fatigue than their control counterparts. Together, these findings support the involvement 

of the ubiquitin-proteasome pathway in cancer-induced muscle wasting and muscle 

dysfunction. 

 In addition to E3 ligases, the ubiquitin-activating enzyme (E1) and ubiquitin-

conjugating enzyme (E2) can be quantified to demonstrate activation of the ubiquitin-

proteasome pathway. Khal et al. (2005) investigated the effects of cachexia on E2 and 

found that its mRNA expression was increased two-fold in mice exhibiting a 12% weight 

loss and remained elevated up to a 20% weight loss. C2 and C5 (α and β proteasome 

regulatory subunits, respectively), also demonstrated significant increases in mRNA 

expression with the same weight loss range. Interestingly, E2, C2, and C5 were not 

significantly increased with weight losses greater than 20%. Furthermore, in agreement 

with other cancer cachexia studies, Khal et al. (2005) reported a direct relationship 

between loss in body weight and decreases in gastrocnemius mass, signifying that type II 

fibers are, in fact, the most affected by cachexia and that the ubiquitin-proteasome 

pathway is primarily responsible for protein degradation in tumor bearing mice. 

Exercise Training 

 To date, numerous studies have reported the anti-tumor effects of physical 

activity, as low- to moderate-intensity exercise can trigger inhibition, or activation, of 

appropriate cellular signaling pathways that may slow carcinogenesis (Demarzo et al., 

2008). In CRC, the anti-tumor effect appears to result from prevention during early stages 

of the disease, suggesting that individuals who exercise regularly have a reduced risk 

(Aoi et al., 2010). Although exact mechanisms for the anti-tumor effects of exercise are 

not completely understood, several potential mechanisms have been identified, including 
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immune system activation and metabolic improvements that occur with physical activity. 

In regard to CRC, it has been suggested that exercise-induced improvements in 

gastrointestinal motility may play a role in the decreased risk of the disease (Aoi et al., 

2010). Chronic systemic inflammation has been widely regarded as major cause of CRC 

(Baltgalvis et al., 2007; Mehl, Davis, Clements, et al., 2005a, 2010). In addition, transient 

inflammation that results from exercise-induced local tissue ischemia can trigger long-

term anti-inflammatory responses (Demarzo et al., 2008). These mechanisms are 

mediated, in part, by muscle-derived IL-6, which can stimulate the release of anti-

inflammatory cytokines, such as IL-10, and inhibit pro-inflammatory cytokines, such as 

tumor necrosis factor-α (TNF-α). Furthermore, moderate physical activity has been 

shown to decrease macrophage IL-6, resulting in a decrease in colon cancer development 

(Mehl, Davis, Clements, et al., 2005a). These aforementioned mechanisms, in addition to 

skeletal muscle hypertrophy that occurs with exercise training, may also help to offset the 

effects of cancer-induced cachexia, thus reducing morbidity and mortality in individuals 

with cancer. 

Effects of Endurance Exercise on  
Tumorigenesis  

 It has been suggested that physical inactivity is one of the leading environmental 

factors increasing the risk for CRC (McClellan et al., 2014). As such, endurance exercise 

has been used in numerous studies to assess the effects of exercise on tumorigenesis and 

the development of cancer-induced cachexia and it has been shown that exercise can 

prevent colon tumor formation and progression (Baltgalvis et al., 2007). Though tumors 

arise from various tissue types, all have similar characteristics in that they produce 
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growth factors, escape apoptosis, and have uncontrolled cell division and growth and 

exercise can offer protection through various mechanisms. 

 In ApcMin/+ mice, several studies have demonstrated the anti-tumor effects of 

exercise. Baltgalvis et al. (2008) proposed that exercise may play a critical role in 

regulating pathways that lead to the development and growth of intestinal polyps. Nine 

weeks of treadmill running reduced macrophage infiltration, as identified by a decrease in 

F4/80-positive cells, a macrophage marker, in intestinal polyps. Using a similar 

experimental design, McClellan et al. (2014) reported 48% fewer larger intestinal polyps 

in ApcMin/+ mice. However, no differences were detected in the number of small- or 

medium-sized polyps, and no difference were seen in the overall number of polyps. 

These results indicate that while exercise may not completely attenuate colon cancer, it 

may serve to reduce the number of large polyps, which could aide in improving 

gastrointestinal motility. Furthermore, investigators also found that F4/80 mRNA 

expression decreased. Researchers from this laboratory found similar results in ApcMin/+ 

mice performing wheel running activity (Baltgalvis et al., 2010). Similarly, Hiroux et al. 

(2016) investigated the ability of exercise to counteract tumor cell growth in C26 tumor-

bearing Balb/c mice. In this experimental design, C26 cells were injected into the TA of 

the animals. There were no differences in wheel running activity between tumor-bearing 

animals and controls, suggesting that tumor induction did not affect physical activity. The 

wheel run activity was determined to be of low-intensity, which still lead to a significant 

reduction of tumor growth when compared to sedentary animals. 
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Effects of Exercise on Cachexia 

 In addition to the investigations on tumorigenesis with exercise, researchers have 

examined the effects of cachexia with exercise. As previously discussed, mechanisms for 

both incidence of CRC development and skeletal muscle wasting largely occur as a result 

of increases in local and systemic inflammation, so it is likely that using exercise to 

reduce inflammation would be an effective modality for both. By examining muscle mass 

and skeletal muscle morphology, researchers can identify adaptations that occur with 

exercise. Resistance and endurance training have both been shown to be effective in 

attenuating the muscle wasting process that occurs with cachexia (Al-Majid & McCarthy, 

2001; Coletti et al., 2016; Hardee et al., 2016; Pigna et al., 2016).  

 In 2013, investigators examined the effects of resistance training on C26 tumor-

bearing mice (Al-Majid & McCarthy, 2001). Though morphology was not assessed in 

this study, researchers did report significant increases in muscle weights when comparing 

sedentary versus exercised, tumor-bearing animals. This suggests that cachexia was 

attenuated via the use of electrical stimulation to mimic resistance training. To investigate 

muscle morphology alterations with exercise, Hardee et al. (2016) examined CSA in the 

TA of tumor-bearing mice. Animals in this study were also subjected to high-frequency 

electrical stimulation (HFES) as a form of resistance training. Over a two-week exercise 

training period, ApcMin/+ mice experienced multiple bouts of HFES that generated tetanic 

contractions. Myofiber CSA was significantly increased in the TA of tumor-bearing mice 

who underwent HFES, when compared to mice who did not receive HFES, suggesting 

that repeated bouts of tetanic contractions are sufficient to induce hypertrophy and reduce 

the severity of muscle wasting. 
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 Endurance exercise has been shown to exhibit similar effects. In 2016, Pigna et al. 

examined the effects of voluntary wheel running on cancer cachexia in C26 tumor-

bearing mice. Groups performed 19 days of wheel running. C26 mice in wheel running 

cages had significantly greater TA CSA, when compared to C26 mice housed in cages 

without wheels. Similar to other studies, mean body mass was also significantly greater 

in tumor-bearing mice when subjected to endurance exercise. 

Exercise-Induced Skeletal Muscle  
Hypertrophy 

 Since skeletal muscle atrophy is a central hallmark of cachexia, it is essential that 

researchers investigate interventions that may help attenuate the wasting process. By 

mitigating muscle atrophy, individuals with cachexia have a significantly increased 

quality of life and reduced rate of mortality (White, Baltgalvis, et al., 2011a). By better 

understanding the mechanisms responsible for skeletal muscle wasting, researchers and 

clinicians can develop appropriate exercise training programs to induce hypertrophy. 

Resistance exercise is one such approach to address the increase in protein degradation 

and reduction in protein synthesis that accompanies cancer-induced cachexia (Al-Majid 

& McCarthy, 2001; Hardee et al., 2016; Khamoui, 2014; Wong & Booth, 1988). In 1988, 

Wong & Booth examined a weight training intervention to produce skeletal muscle 

hypertrophy. Electrical stimulation was used to mimic near maximal muscle contractions, 

without inducing fatigue, which would be similar to that seen in humans during a bout of 

resistance training. In this protocol, rats underwent low repetitions and high training loads 

in 20 second intervals, with 5-minutes rest between sets. Each training bout consisted of a 

progression in which load increased by 200 g per set. In resistance-trained rats, wet 

muscle weight increased in plantar flexors by 13-18%. The gastrocnemius of resistance 
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trained rats experienced significant increases in wet weight, protein content, and RNA 

content following 16 weeks of training (Wong & Booth, 1988).  

 Al-Majid & McCarthy (2001) investigated the effects of electrical stimulation, to 

mimic resistance exercise, as an intervention for cachexia by way of induction of skeletal 

muscle hypertrophy. C26 tumor-bearing mice were subject to electrical stimulation of the 

sciatic (motor) nerve that would induce simultaneous eccentric contraction of dorsiflexor 

muscles, such as the EDL and TA, and concentric contraction of plantar flexor muscles, 

such as the soleus and gastrocnemius. Results of this study showed significant increases 

in the weight of the TA and gastrocnemius. In the EDL, tumor-bearing mice displayed 

significantly lower muscle weights, but exercise training did not attenuate that wasting. It 

was suggested that this may be due to dorsiflexor muscles contracting against a higher 

load than plantar flexors, since the plantar flexor muscles are larger.  

 The use of electrical stimulation has often been used by researchers in an attempt 

to mimic resistance training (Al-Majid & McCarthy, 2001; Aulino et al., 2010; Khamoui, 

2014; Wong & Booth, 1988). However, in 2001, Yao, Jee, Chen, Li, & Frost developed a 

novel method to mimic such exercise training. It was speculated that this new 

methodology would provide a less stressful environment for rodents, while still 

producing resistance training adaptations seen with more invasive and stressful methods 

such as electrical stimulation. This novel methodology can be considered a raised cage 

method, by which rats are initially housed in normal height cages and subsequently 

subject to progressive increases in the height of food and water by placing spacers 

between the standard cage and cage lid. By raising the height of food and water, rats 

would be forced to assume an erect bipedal stance in order to feed. Yao et al. (2001) 
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suggested this method would mimic the upright stance seen in humans, and thus may be 

translatable to resistance training methods used in human subjects. Results of this study 

demonstrated significant increases in both whole body and hind limb muscle weights by 

an average of 6% over a period of four weeks and 12% at 12-weeks.  

 Khamoui (2014) described the use of high tension exercise, where rats were 

subjected to ladder climbing. In this study, exercise training was conducted on a 100 cm 

long ladder with grips that were spaced 1 cm apart. Weight loading was progressively 

increased by attaching weights to the animal’s tail. Muscle function and CSA were then 

measured. In non-tumor bearing animals, high tension exercise increased grip strength 

when compared to both control animals and animals performing low tension exercise, 

while tumor-bearing animals experienced significant decreases in grip strength, 

regardless of exercise training. Tumor bearing animals exhibited significantly lower 

gastrocnemius weights, when compared to controls and myofiber CSA was significantly 

lower in tumor-bearing mice relative to controls. Though investigators did not see any 

significant changes in myofiber CSA with low- or high-tension exercise, there was a 

trend towards increasing CSA. Collectively, results of these studies demonstrate the 

effectiveness in using various resistance training modalities to improve both function and 

structure of skeletal muscle. 

Mechanisms Responsible for  
Exercise-Induced Cachexia  
Protection 

 As discussed, many studies have reported that exercise, both resistance and 

endurance, can provide protection from the skeletal muscle wasting that occurs with 

cancer cachexia. Many mechanisms have been suggested for this attenuation, but most 
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revolve around the idea of reducing chronic inflammation and activation of cellular 

signaling pathways that promote muscle hypertrophy, by either activating protein 

synthesis pathways or inactivating protein degradation pathways. Muscle contraction 

results in a rapid and transient, localized inflammatory response (Trenerry, Carey, Ward, 

Farnfield, & Cameron-Smith, 2008). During recovery, pro-inflammatory cytokines that 

have been released in response to tissue ischemia, are mobilized and activated. This 

response can trigger mechanisms that elicit a long-term anti-inflammatory response and 

induce myogenesis.   

 Signal transducer and  activator of transcription, through the Janus kinase 

(Jak)/STAT signaling cascade, has been implicated in the mediation of cellular 

proliferation, differentiation, and may play a key role in the muscle regeneration process 

through activation of satellite cell proliferation during damaging stimuli. IL-6 levels play 

a significant role in the progression of cachexia and muscle-derived IL-6 causes a 

transient increase in circulating IL-6 that has been linked to metabolic signaling with 

exercise (Puppa et al., 2012). This differs from chronically elevated IL-6, which has been 

associated with inflammation. Using an IL-6 overexpression mouse model, Puppa et al. 

(2012) evaluated the effects of regular treadmill exercise on cachexia. In prior studies, it 

has been shown that IL-6 overexpression can accelerate muscle wasting in ApcMin/+ mice, 

but does not induce cachexia in wild-type mice (Baltgalvis et al., 2007). Here, it was 

reported that IL-6 overexpression significantly reduced the body mass in ApcMin/+ mice 

and that exercise was able to effectively prevent this loss in body mass. AMP-activated 

protein kinase (AMPK) has been shown to exhibit catabolic effects as it can inhibit 

protein synthesis. Puppa et al. (2012) found that AMPK activation was also increased 
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threefold in IL-6 overexpressed ApcMin/+ mice, while exercise was able to mitigate this 

increase.  

 Insulin-like growth factor-1 (IGF-1) has also been suggested as a mechanism 

responsible for exercise-induced skeletal muscle growth in cachexia. When IGF-1 binds 

to its receptor, it induces a signaling cascade involving the activation of protein kinase B 

and mammalian target of rapamycin. In addition, IGF-1 stimulates cellular proliferation 

and differentiation of satellite cells and can act to inhibit the ubiquitin-proteasome 

pathway that is responsible for protein degradation (Costelli et al., 2006). In cancer 

cachexia, IGF-1 is shown to be downregulated. The gastrocnemius of male Wistar rats 

inoculated with Yoshida AH-130 ascites hepatoma cells displayed significant loss of 

body mass and muscle mass of the gastrocnemius, EDL, TA, and soleus. In addition, 

IGF-1 and IGF1-R mRNA expression exhibits a marked decrease of 80% in the 

gastrocnemius of cachectic rats, when compared to controls (Costelli et al., 2006). In a 

study conducted by Kido et al. (2016), resistance training was shown to increase IGF-1 

expression in skeletal muscle by 63%. Interestingly, IGF-1 expression was shown to be 

decreased with treadmill running. Conversely, Khamoui (2014) reported increases in 

IGF-1 expression in the gastrocnemius and plantaris in C26 cachectic mice. Though these 

results differ, it demonstrates the ability of physical activity, resistance and endurance, to 

increase IGF-1, thus inducing myofiber growth. 

Human Models of Cancer Cachexia 

 In addition to rodent models, researchers have also examined cachexia in humans 

(Blauwhoff-Buskermolen, Langius, Becker, Verheul, & de van der Schueren, 2017). 

Researchers often induce cachexia in rodents, via tumor inoculation, as it provides a 
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quick and efficient way to study the disease. However, translation of this model into 

humans is the ultimate goal, as cachexia leads to a reduced quality of life and reduced 

survival (Blauwhoff-Buskermolen et al., 2017). In addition, it is often difficult to assess 

and identify cachexia in humans. Measurement of muscle mass in humans can be both 

expensive and invasive. A framework of measurement options has been provided by 

Fearon et al. (2011), including dual energy X-ray imaging, computed tomography, 

bioelectrical impedance analysis, and mid-upper arm muscle area. Muscle biopsies can 

also be performed in an effort to quantify CSA, but this methodology is highly invasive. 

 The rodent model displays mechanisms of cancer cachexia and adaptations to 

exercise that mimic those seen in humans, such as alterations in IL-6 and STAT3. 

Trenerry, Carey, Ward, & Cameron-Smith (2007) investigated the impact of resistance 

training on protein levels of Jak/STAT3 and IL-6. Thirteen active, but untrained, males 

participated in an acute bout of resistance training, followed by a 12-week resistance 

training program. The acute bout assessed maximal voluntary contraction and peak 

torque. Investigators collected muscle biopsies from participants at rest and again three 

hours following completion of the exercise test. The 12-week training program consisted 

of progressive resistance training on 3 days each week, with a minimum of a 48-hour rest 

period in between sessions. Participants started with a relatively light load, at 50%, and 

then progressively increased to training at 80% of their 1-repetition maximum (1-RM). 

All participants showed significant increases in their 1-RM for leg press, bench press, 

seated row, and leg extension at the end of the program. IL-6 protein expression 

significantly increased following the acute bout of exercise performed on an isokinetic 

dynamometer. STAT3 phosphorylation was examined in the vastus lateralis and 
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significant increases were reported in both trained and untrained muscle biopsy samples. 

Trenerry, Della Gatta, Larsen, Garnham, & Cameron-Smith (2011) also investigated 

STAT3 responsive genes to assess the potential for resistance training to affect 

downstream targets. C-FOS, c-MYC, and SOCS3 were all significantly increased 3 hours 

following an acute bout of resistance exercise. Similarly, in 2008, Trenerry et al. found 

that exercise-induced STAT3 signaling increases with age. In this study, healthy young 

mean (age 20.4 +/- 0.8) and healthy older men (age 67.4 +/- 1.3) performed an acute bout 

of resistance exercise using an isokinetic dynamometer. Muscle biopsies were performed 

on each participant at rest and two hours following the bout of exercise. STAT3 

phosphorylation was significantly increased in both younger and older males. However, 

older males had significantly greater increases in JUNB (16-fold increase) and c-MYC 

(44-fold increase), which are downstream targets of STAT3. The Jak/STAT3 signaling 

pathway has been identified as a mediator of skeletal muscle adaptation and these data 

support that idea. These data also support the application of exercise training of offset 

muscle wasting conditions, such as cancer cachexia. 

Summary 
 

 CRC is one of the most common cancers and it is responsible for the third most 

cancer-related deaths among men and women in the U.S. Environmental factors, such as 

lack of physical activity and diet, are highly associated with an increased risk of 

developing CRC. Unfortunately, CRC patients are at a high risk for developing cachexia, 

a metabolic disease linked to increased morbidity and mortality. Cachexia contributes to 

skeletal muscle and adipose tissue wasting and is associated with chronic inflammation. 

The unintentional loss in body mass that occurs with cachexia increases overall fatigue 
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and weakness. Fortunately, exercise training can lead to activation of cellular signaling 

pathways that ultimately induce an anti-inflammatory response. In tumor-bearing rodent 

models, chronic exercise training is shown to decrease systemic inflammation and 

decrease tumor growth. Additionally, both resistance and endurance exercise have been 

shown to increase protein synthesis and decrease protein degradation via mechanisms 

that inhibit the ubiquitin-proteasome pathway. In cachectic patients, physical activity may 

increase skeletal muscle CSA, thus increasing function and overall quality of life. 
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CHAPTER III 
 

MATERIALS AND METHODS 
 

Experimental Design 
 

 The primary purpose of this study was to examine both endurance and resistance 

training modalities to identify the effects of exercise on varying skeletal muscle 

morphological properties in mice with cancer-induced cachexia. A secondary purpose of 

this study was to determine the relationship between inflammation and the severity of 

cachexia. These exercise effects were examined using an 8-week exercise training 

protocol that consisted of endurance training, resistance training, or a combination of 

both. At six weeks of age, Balb/c mice were randomly selected to sedentary or exercise 

training groups. At 11 weeks of age, mice selected to tumor bearing groups (n = 48) were 

inoculated with 1x106 C26 tumor cells. Control animals (n = 12) remained sedentary, 

with no tumor cell inoculation. Upon sacrifice of control and experimental animals, the 

gastrocnemius was harvested, weighed, and prepared for histology, while the spleen was 

harvested and weighed to determine splenomegaly. Blood was collected via left 

ventricular puncture, following sacrifice, and centrifuged for plasma collection. Table 2 

outlines the experimental design of this study. 
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GROUP  
n 

Timeline 

Sed+Con 12 
 

Begin EX intervention (6 wks of age) 
Sed+Tumor 12                                          ↓ 
TM+Tumor 12  C26 tumor inoculation (11 wks of age) 
RT+Tumor 12                                          ↓ 

TM+RT+Tumor 12  
Sacrifice/Tissue Harvest (14 wks of 

age) 
 
Figure 1. Experimental Design. Note. Sed, sedentary; TM, treadmill; RT, resistance 
trained 
 

 

Animals and Animal Care 

 Male Balb/c mice (The Jackson Laboratory; Bar Harbor, ME; stock #000651; n = 

60) were housed one per cage in a temperature-controlled facility with a 12:12-hour light-

dark cycle at the University of Northern Colorado Animal Research Facility. Mice were 

provided standard chow and water ad libitum. All procedures for the study were approved 

by the University of Northern Colorado Institutional Animal Care and Use Committee 

(IACUC) and were in compliance with the Animal Welfare Act guidelines.  

Exercise Training Protocol 
 

Resistance Training  
 
 Animals randomly selected to the RT group were initially housed in standard, 

12.5 cm, cages. Cage height was progressively increased, forcing mice to raise up onto 

their hind limbs to reach food and water. On day one of the exercise protocol, mice were 

moved to cages with a height of 15.5 cm, where they remained for one week. Following 

the first week of the protocol, the cage height was increased by 2.5 cm, resulting in a total 

cage height of 18 cm. This final cage height was maintained for the remainder of the 

eight-week intervention. During the first three weeks of the exercise protocol, food and 
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body mass were measured and water monitored daily to ensure animals were able reach 

both food and water. Thereafter, food and water were monitored three days per week and 

body mass measured weekly.  

Endurance Training  
 
 Animals randomly selected to the TM group were housed in cages that were of 

the standard 12.5 cm height for the entirety of the eight-week intervention. All TM 

animals were acclimated to the treadmill for 3 days prior to the beginning of the 

intervention. Acclimatization consisted of running on the treadmill at gradually increased 

speeds (10-15 m/min) for 20 minutes. The running protocol for the intervention consisted 

of a brief 5-minute warm-up at a speed of 10 m/min and 5% grade, followed by 55-

minutes of running at 15 m/min and 5% grade. Mice ran during their dark cycle, under 

red lights, 5 days/wk, for a total of 8 weeks.  

Combination Training  

 Animals randomly selected to the combination group (TM+RT) followed both the 

RT and TM protocols described above. Mice in the combination group were continuously 

housed in cages with the progressive height increase, to mimic resistance training, and 

removed for treadmill running 5 days/wk for 8 weeks.  

Colon-26 Cell Culture and Inoculation 

 Colon-26 cells (DCTD Tumor Repository, National Cancer Institute; Frederick, 

MD) were suspended in Roswell Park Memorial Institute (RPMI) 1640 complete growth 

medium containing 10% FB Essence, 1% L-glutamine, and 1% streptomycin/penicillin 

and grown in an incubator at 37°C in a humidified atmosphere of 5% CO2 in air. Cells 

were counted using a commercially available cell counter (Invitrogen; Carlsbad, CA). 
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 On the day of implantation, adherent cells were dissociated with a trypsin-EDTA 

solution and cell concentration in cells/m2 were determined. 1x106 cells were 

resuspended in sterile PBS for tumor cell inoculation. Prior to injection, mice were 

anesthetized using isoflurane by inhalation, and maintained under anesthesia during the 

time necessary to perform the tumor inoculation. Cells were injected subcutaneously, 

between the scapulae, using a sterile 1-mL insulin syringe with a 25-guage needle. 

 Following implantation of the C26 cells, until time of sacrifice, animals and 

tumors were monitored daily for end point criteria, including relative tumor size, 

significant loss in body mass, body score condition (Figure 2), and tumor ulceration. 

Body weight measurements were taken daily. Once palpable, tumors were also measured 

daily. At the time of sacrifice, tumors were removed and weighed. 
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Figure 2. Body condition and assessment score (Ullman-Cullere & Foltz, 1999) 
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In-Vivo Skeletal Muscle Function 

 As weakness is one common hallmark of cachexia, in-vivo skeletal muscle 

function was measured via force production prior to sacrifice. Force production was 

measured using a commercially available grip strength meter designed for rodents 

(Columbus Instruments, Columbus, OH). Forelimb grip strength was measured as mice 

grasped on to a metal grid attached to a force transducer with both front paws. Mice were 

placed onto the metal grid and once the mouse had a firm, and secure, grasp on the grid, 

the mouse was gently pulled away, by the distal end of the tail, in a slow and steady 

manner until the mouse released its grip on the metal grid (Tan et al., 2013; Wang, 

Sorenson, Spinner, & Windebank, 2008). The force produced at the point of release was 

recorded as a single trial. After each trial, mice were returned to their cage for a 5-minute 

recovery period. Each mouse performed this procedure the exact same way for a total of 

five trials. Grip strength for each animal was calculated as the mean score from the five 

trials. The mean value for each animal was then converted to a relative strength value, 

taking into account body mass. 

Sacrifice and Tissue Collection 

Upon completion of the exercise intervention, mice were weighed to obtain final 

body mass, sedated using isoflurane, and euthanized by cervical crush. The 

gastrocnemius, spleen, and tumor were excised and blood collected via left ventricular 

puncture. All excised tissues were weighed prior to preparation and storage. The 

gastrocnemius was placed in optimal cutting temperature (O.C.T) and frozen in 

isopentane cooled in liquid nitrogen. Blood was centrifuged to collect plasma and then 

flash frozen in liquid nitrogen and stored at -80°C until further biochemical analysis. 
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Histochemical Analyses 

 Transverse sections from the midbelly region of the gastrocnemius were sectioned 

at 10 µm on a cryostat (Leica; CM1950) at -20°C. Hematoxylin & Eosin (H&E) staining  

was done on muscle sections to measure cross-sectional area (CSA). Digital images were 

taken (Olympus DP21) and imaging software (ImageJ, NIH; Bethesda, MD) was used to 

trace fibers using a handheld computer mouse. The number of pixels traced was 

calibrated to a defined area in square micrometers. Immunofluorescence was used to 

determine skeletal muscle fiber type via identification of myosin heavy chain IIA (SC-71) 

and IIB (BF-F3) expression. Myosin heavy chain (MHC) primary antibodies were 

purchased from the Developmental Studies Hybridoma Bank (University of Iowa; Ames, 

IA). Muscle sections were air dried and placed in a blocking solution containing 1% 

bovine serum albumin (BSA), 1% dry milk, 1% Triton-x, and 10% natural goat serum for 

one hour at room temperature and then incubated in MHC primary antibodies (IIa, 1:600; 

IIb, 1:100) for two hours at room temperature. Muscle sections were rinsed in phosphate 

buffered solution (PBS) 3 x 5 minutes and then incubated in a secondary antibody 

containing AlexaFluor 488 (ThermoFisher Scientific; Waltham, MA; 1:500) for one hour 

at room temperature. Digital images (Leica Microsystems DM1RB) at 40X magnification 

were taken and MHC types IIA and IIB were visualized and measured using imaging 

software (Image J; NIH; Bethesda, MD). 

Biochemical Analysis 

Upon sacrifice, blood samples were collected from all subjects via left ventricular 

puncture. Samples were kept on ice and centrifuged at 1,000 g for 10 minutes and 4°C. 

Plasma was aliquotted and stored at -80° C until further analysis. Plasma IL-6 was 
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analyzed via enzyme-linked immunosorbent assay (ELISA) according to manufacturer’s 

instructions (Abcam, ab100712; Cambridge, MA).  

Statistical Analyses 

Statistical analyses were completed using GraphPad Prism statistical software. All 

data are presented as means ± standard deviation (M ± SD). For body mass and 

gastrocnemius wet mass, a one-way analysis of variation (ANOVA) was performed to 

identify differences between SED, SED+Tumor, TM+Tumor, RT+Tumor, and 

TM+RT+Tumor groups. For CSA, a one-way ANOVA was performed to identify 

differences in gastrocnemius myofiber size between groups. Additionally, a one-way 

ANOVA was performed to identify any differences in IL-6 concentrations between SED 

and EX groups. For ANOVA analyses detecting significant differences (P < 0.05), a 

Tukey’s post hoc test was performed to identify where significant differences existed. 

The alpha level was set at 0.05. 
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CHAPTER IV 
 

RESULTS 
 

 The purpose of this study was to examine the effects of endurance and resistance 

training on skeletal muscle wasting in C26 tumor-bearing mice. A secondary purpose was 

to examine what, role, if any, IL-6 has on the severity of skeletal muscle wasting in 

tumor-bearing mice.  

General Observations 
 

 All animals were acclimated to treadmill exercise prior to onset of the endurance 

training protocol and no animals were removed from the study for non-compliance. 

Chow-consumption was measured for resistance-trained animals to ensure their ability to 

reach the raised food and water and to ensure that body or muscle wasting did not occur 

due to lack of food intake. All RT animals were able to reach food and water throughout 

the study, and intake did not decline with tumor condition (Table 2). Furthermore, all 

animals inoculated with the C26 carcinoma cells developed measureable tumors, though 

relatively small and TM running did not decline with tumor growth. No significant 

differences were observed in tumor mass between any groups (P>0.05) and exercise did 

not significantly reduce tumor mass when compared to SED+Tumor (Figure 3). 

However, TM+Tumor had a -21% difference in tumor mass when compared to 

SED+Tumor. No animals were euthanized according to tumor end-point criteria or body 

condition score as outlined in the Methods section. There were no significant differences 

in animal body mass at the time of tumor inoculation. However, at the time of sacrifice, 
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SED+Tumor body mass was significantly lower than SED+Con body mass (P<0.05). 

General body mass observations are presented in Table 3. SED+Con relative 

gastrocnemius wet mass was significantly lower than SED+Tumor (P<0.05), while no 

other significant differences between groups were observed in relative gastrocnemius wet 

mass.  

 

Table 2 
 
Food Consumption During a 21-day Period After C26 Inoculation 
 

 
SED+ 
Con 
(g) 

 

 
SED+ 
Tumor 

(g) 
 

 
TM+ 

Tumor 
(g) 

 

 
RT+ 

Tumor 
(g) 

 

 
TM+RT+ 

Tumor 
(g) 

 
 

    81.3 ± 4.7 
 

81 ± 2.9 
 

84.3 ± 5.5 
 

85.9 ± 4.5 
 

83.3 ± 9.2 
 

Note: Data are represented as M ± SD. Con = control; TM = treadmill trained; RT = 
resistance trained 
 

 

 
Figure 3. Tumor Mass. p > 0.05. 
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Table 3 
 
Animal Characteristics 

 
  

 
N 

 
Initial body 

mass  
(g) 

M ± SD 
 

 
Injection day 

body mass  
(g) 

M ± SD 
 

 
Final body 
mass with 

tumor  
(g) 

M ± SD 
 

 
Final body mass 

  (g) 
M ± SD 

 

 
Sed+ 
Con 

 
12 

 
20.5 ± 1.7 

 
26.5 ± 3.2 

 
-  

 
29.75 ± 3.6 

 
Sed+ 
Tumor 

 
12 

 
20.3 ± 1.4 

 
27.2 ± 2.4 

 
26.2 ± 2.4 

 
25.8 ± 2.5* 

 
TM+ 
Tumor 

 
12 

 
21.3 ± 1.4 

 
25.8 ± 2.3 

 
29.0 ± 2.3 

 
28.6 ± 2.4 

 
RT+ 
Tumor 
 
TM+RT+ 
Tumor          

 
12 
 
    
12 

 
21.6 ± 1.9 

 
 

22.3 ± 1.3 

 
25.4 ± 2.0 

 
 

25.7 ± 0.8 

 
29.2 ± 1.8 

 
 

28.9 ± 0.7 

 
28.7 ± 2.0†  

 
 

28.3 ± 1.1 
 

 
Note. All EX groups are tumor-bearing. Final body mass obtained after subtracting tumor 
mass. Data are represented as M ± SD.  SED = sedentary; Con = control; TM = treadmill 
trained; RT = resistance trained.  p < 0.05.  
*p < 0.05 versus SED+Con. 
†p < 0.05 versus SED+Tumor. 

 

Skeletal Muscle Function 
  
 Forelimb muscular strength was measured via a grip strength meter (Columbus 

Instruments; Columbus, OH). Grip strength was measured in all animals prior to sacrifice 

in order to assess any loss in muscle function that may be attributable to cachexia. At the 

time of sacrifice, SED+Tumor grip strength was significantly lower (P < 0.05) when 

compared to SED+Con. Additionally, handgrip for TM+Tumor and TM+RT+Tumor 

were also significantly lower (P < 0.05) when compared to SED+Con. Furthermore, 
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RT+Tumor had a significantly greater grip strength (P < 0.05) when compared to 

SED+Tumor. Additionally, RT+Tumor was not  

significantly different (P > 0.05) when compared to SED+Con. Absolute and relative 

forelimb grip strength data are presented in Figures 4 and 5, respectively. 

 
 
 

 
Figure 4. Absolute Grip Strength. Con = control; TM = treadmill trained; RT = resistance 
trained.  p < 0.05. 
*p < 0.01 versus SED+Con; **p < 0.01 versus SED+Tumor; †p < 0.05 versus 
TM+Tumor, TM+RT+Tumor 
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Figure 5. Relative Grip Strength. Con = control; TM = treadmill trained; RT = resistance 
trained.  p < 0.05. 
*p < 0.05 versus SED+Con; **p < 0.05 versus SED+Tumor; †p < 0.05 versus 
TM+Tumor, TM+RT+Tumor 
 
 

Gastrocnemius Mass and Cross-Sectional Area 
 

 Relative gastrocnemius mass and CSA data are summarized in Figure 6. Relative 

gastrocnemius mass was significantly lower (P < 0.05) in SED+Tumor when compared 

to SED+Con. No other groups displayed significant differences in wet mass of the 

gastrocnemius. Though relative gastrocnemius mass was not significantly different 

between SED and EX tumor groups, increases were seen in all EX groups, when 

compared to SED+Tumor. A 4% increase in gastrocnemius mass was observed in 

TM+Tumor, while there were 5.6% and 15% increases in gastrocnemius mass for 

RT+Tumor and TM+RT+Tumor, respectively. Histological analysis revealed that 

gastrocnemius CSA was also significantly lower (P < 0.01) in SED+Tumor when 

compared to SED+Con. All EX groups (TM+Tumor, RT+Tumor, and TM+RT+Tumor) 
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had significantly greater CSA (P < 0.01) than SED+Tumor and none of the EX groups 

(TM+Tumor, RT+Tumor, and TM+RT+Tumor) were significantly different (P > 0.05) 

than SED+Con. Additionally, immunofluorescence revealed no significant differences 

between MHCIIa and MHCIIb fiber CSA, within each group. Myosin heavy chain fiber 

type CSA data are presented in Table 4. 

 
 

 
Figure 6. Gastrocnemius Mass and CSA. (A) Relative gastrocnemius mass; *p < 0.05 
versus SED/Con, (B) Gastrocnemius cross-sectional area; *p < 0.01 versus SED+Con, 
**p < 0.01 versus SED+Tumor. Con = control; TM = treadmill trained; RT = resistance 
trained.  Values are M ± SD.  p < 0.05.  
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Table 4  
  
CSA of Myosin Heavy Chain IIa and IIb Fibers  
   

  

          
SED+Con SED+Tumor TM+Tumor RT+Tumor TM+RT+Tumor 

(µm2) 
 

(µm2) 
 

(µm2) 
 

(µm2) 
 

(µm2) 
 

Fiber Type M ± SD M ± SD M ± SD M ± SD M ± SD 

      
MHCIIa 435 ± 41 307± 48* 420 ± 31† 437 ± 38† 470 ± 44† 

      

MHCIIb 428 ± 51 290 ± 27* 410 ± 31† 455 ± 38† 463 ± 50† 

      
Note. Data are represented as M ± SD.  SED = sedentary; TM = treadmill trained; RT = 
resistance trained  
* p < 0.05 vs SED+Con     
† p < 0.05 vs SED+Tumor    

 

  
Systemic Inflammation 

 
 During infection and other inflammatory challenges, the spleen initiates an 

immune response directed towards the tissue in need of repair (Mehl, Davis, Clements, et 

al., 2005a). The spleen is known to increase in size during this response. Splenomegaly is 

a marker of increased systemic inflammation and was thus measured in all groups. A 

significant increase in spleen weight was observed in SED+Tumor (P < 0.01) when 

compared to SED+Con. Exercise (TM+Tumor, RT+Tumor, and TM+RT+Tumor) was 

able to significantly decrease splenomegaly (P < 0.01) in tumor-bearing mice when 

compared to their sedentary counterparts. Spleen mass data are summarized in Figure 7. 
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Figure 7. Splenomegaly. Con = control; TM = treadmill trained; RT = resistance trained.  
p < 0.05. 
*p < 0.01 versus SED+Con 
**p < 0.01 versus SED+Tumor 
 

 Systemic inflammation is also marked by increases in plasma IL-6. There was a 

significant increase in circulating IL-6 in SED+Tumor (P < 0.01) when compared to 

SED+Con. As shown in Figure 8, exercise was able to attenuate this increase in plasma 

IL-6. TM+Tumor, RT+Tumor, and TM+RT+Tumor had significantly lower plasma IL-6 

levels (P < 0.01) than SED+Tumor and the plasma IL-6 levels in the exercised groups 

were not significantly different than SED+Con 
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Figure 8. Plasma IL-6 Concentration; *p < 0.01 versus SED+Con, **p < 0.01 versus 
SED+Tumor. Values are M ± SD.  p < 0.05. Note. n=8. 
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CHAPTER V 
 

DISCUSSION 
 

 Colorectal cancer is the third most commonly diagnosed cancer and the second 

leading cause of cancer death in the U.S. for both men and women. Furthermore, CRC is 

largely preventable as the increase in risk can be attributed to lifestyle factors, including 

physical inactivity. Additionally, individuals with gastrointestinal cancers are more 

susceptible to developing cachexia, leading to significant loss in body weight, reducing 

overall quality of life, and increasing morbidity (Hardee et al., 2014; Puppa et al., 2012). 

It is imperative that all healthcare professionals promote strategies that prevent such 

disease. Numerous animal studies have examined not only the effects of exercise on 

cancer itself, but also its effects on muscle characteristics associated with cachexia 

(Demarzo et al., 2008; Puppa et al., 2012). In fact, research has demonstrated that both 

endurance and resistance training can attenuate skeletal muscle wasting, citing that both 

modes of exercise are effective in reducing cachectic symptoms (Al-Majid & McCarthy, 

2001; Hardee et al., 2016; Ranjbar, Ballarò, Bover, & Pin, 2019). Though considerable 

research has been conducted in this area, to date, there has been negligible exploration on 

the use of a combined exercise training protocol, in which rodents in a single group 

perform both endurance and resistance training. Therefore, the primary purpose of the 

present study was to examine the effects of two modes of exercise training, each 

independently and a combination of the two, on skeletal muscle wasting in cachectic 

mice. 
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 Colon-26 carcinoma is a well-characterized and extensively cited model for 

cancer cachexia in mice (Bonetto et al., 2016). In the present study, inoculation of mice 

with the C26 cells did in fact induce cachexia in the sedentary tumor-bearing group 

(SED+Tumor), with a nearly 14% difference in body mass between SED+Con and 

Sed+Tumor. This loss in body mass was not due to decreases in food consumption during 

the tumor-bearing period (Table 2). Previous works have defined cachexia as a loss of 

lean tissue mass that is associated with a decrease in body mass greater than 5% in the 

presence of chronic illness (Diffee et al., 2002; Martin et al., 2013; Mehl, Davis, Berger, 

et al., 2005b). In the present study, SED+Tumor mice lost 5.2% of their injection-day 

body mass. Though the loss in body mass in the present study is consistent with cachexia 

classifications, the degree of loss is considerably more mild than previous findings. 

Diffee et al. (2002) observed a 30% decrease in non-tumor body mass in C26 tumor-

bearing mice when compared to controls. Similarly, Al-Majid & McCarthy (2001) 

observed a 20% decline in carcass weight of tumor-bearing mice when compared to non 

tumor-bearing controls. Conversely, Khamoui (2014) discovered a mere (though still 

cachectic) 6% decline in body mass, using a similar model. These findings are consistent 

with the present study. Skeletal muscle mass is another key hallmark in identifying 

cachexia. Previous research has shown significant differences in muscle mass, with 

muscle loss ranging from to 20-40%, when comparing tumor-bearing mice to control 

mice. In the present study, relative gastrocnemius mass was more than 16% less in 

SED+Tumor, when compared to SED+Con. So, while the C26 tumor did produce 

significant wasting of both body mass and gastrocnemius mass, the degree of wasting 

was less than in previous studies. Together, these findings suggest that the degree of loss 
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is highly variable and likely multifactorial. In the above mentioned studies, though 

similar models and methodologies were used, all had slight variations in the animal 

strain, preparation of the C26 cells and number of cells injected. Additionally, each study 

used cells obtained from different laboratories, which can lead to considerable variability 

in the degree of cachexia. Murphy, Chee, Trieu, Naim, & Lynch (2012), reported mild to 

severe forms of cachexia when using different C26 adenocarcinoma cells from various 

laboratories, indicating that the cachectic phenotype can vary significantly even in the 

same cell line. Cachexia, while characterized as a weight loss >5%, may also appear in 

patients exhibiting a small tumor burden that is less than 0.01% of their total body mass 

(Yasumoto et al., 1995). In the present study, tumor burden was 0.02% of total body 

weight in the SED+Tumor group. Nevertheless, it is clear in the present study that mice 

inoculated with C26 cells exhibited overt signs of cachexia. 

 Changes in skeletal muscle structure have also been noted in cachectic models. As 

has been observed in several cachexia studies, mice in the present study underwent 

significant atrophy of the gastrocnemius muscle, as evidenced by decreases in overall 

myofiber CSA (-35%). The mouse gastrocnemius muscle has a mixed phenotype, with 

nearly 80% being classified as type IIb (MHCIIb), exhibiting overt glycolytic properties. 

Additionally, while shifts in MHC expression (increases in type IIb and decreases in type 

I) have been noted in muscles known to be rich in slow-twitch fibers, such as the soleus, 

no shifts in fiber type have been noted in muscles rich in fast-twitch fibers, such as the 

gastrocnemius, tibialis anterior, and plantaris. However, in another mouse model of 

cachexia, the Apcmin/+ C57BLJ6 mouse, Baltgalvis et al. (2010) observed that only mice 

who were classified as severely cachectic had reductions in both MHCIIa and MHCIIb 
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myofiber CSA, while those classified as moderately cachectic only had decreases in 

MHCIIb in the gastrocnemius. These data suggest that preferential fiber type wasting, or 

shifting, may be based on the severity of the disease. The current study demonstrated that 

no significant differences in MHCIIa and MHCIIb within each group existed, and the 

CSA of both fiber types were similar to total fiber CSA, suggesting that there was no 

preferential wasting of fiber type, as each atrophied similarly. These findings are in 

agreement with other studies (Diffee et al., 2002; Hardee et al., 2016). Mechanisms 

responsible for the muscle wasting associated with cancer cachexia are highly complex 

and multifactorial. Induction and severity of cachexia are also dependent on tumor 

phenotype and host genotype. In addition, apoptotic pathways are activated in cachectic 

conditions and proapoptotic B cell leukemia/lymphoma 2 (BCL2)-associated X protein 

(BAX) protein expression may be a key regulator in cachexia. Baltgalvis et al., (2010) 

examined BAX as a molecular marker of muscle wasting and demonstrated that gene and 

protein expression increased with increasing severity of cachexia. Additionally, it was 

demonstrated in the same study that BCL2, which inhibits BAX, was either weakly 

expressed, or not expressed at all, thus allowing the BAX pathway to induce apoptosis. It 

was concluded that apoptosis occurs regardless of the muscle’s oxidative phenotype, as 

BAX was increased in both type I and type II fibers of the gastrocnemius. In addition, it 

was demonstrated that, while mean MHCIIa fiber CSA did not change, there was a shift 

in MHCIIa distribution, with an increase in small type IIa fibers and a decrease in large 

type IIa fibers (Baltgalvis et al., 2010). These data suggest that cachexia may 

preferentially target highly glycolytic fibers for wasting, but cause fiber type shifting in 

fibers with greater oxidative properties. Myosin heavy chain IIx fibers were analyzed, but 
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not observed through immunofluorescence, thus, it is possible that, in the present study, 

fiber type shifting may have occurred (MHCIIx à MHCIIb). Additionally, though not 

analyzed in the present study, it is possible that MHCI, a highly oxidative fiber type, may 

have demonstrated shifting towards a MHCIIa fiber.  

 Cachexia also produces significant declines in muscle function, which can 

ultimately lead to a substantial reduction in overall quality of life. Handgrip strength has 

been shown to be reduced by up to 25% in cancer patients with cachexia (Guo, Zhang, 

Ma, Zhang, & Huang, 1996). Severe reductions in handgrip strength can significantly 

alter a patient’s ability to perform seemingly simple tasks. In the current study, forelimb 

grip strength was measured to assess muscle function. SED+Tumor demonstrated a -18% 

difference in strength, when compared to SED+Con. Other studies have reported similar 

declines in grip strength performance in cachectic mice (Khamoui, 2014; Murphy et al., 

2012; Ranjbar, et al., 2019). A number of different factors have been shown to contribute 

to this muscle dysfunction. Ubiquitin-proteasome pathway constituents, for example, 

have been implicated in both structural and functional declines, as this pathway plays a 

predominant role in protein degradation. Though not evaluated in the present study, 

previous works have shown significant declines in total protein concentration (Al-Majid 

& McCarthy, 2001) and significant increases in MuRF1 and atrogin-1 (Baltgalvis et al., 

2010; Khamoui, 2014; Mota et al., 2017; Tatebayashi et al., 2018). Additionally, Aulino 

et al., (2010) concluded that the observed up-regulation of atrogin-1 in tumor-bearing 

mice was accompanied by protein ubiquitination and ultimately resulted in muscle 

function impairments. Forkhead box proteins (FoxO) are additional ubiquitin-proteasome 

constituents that have been identified as key regulators of gene expression in cancer 
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cachexia, affecting both structural and functional integrity of the extracellular matrix and 

muscle sarcomere and regulating genes involved in atrophy-related transcriptional 

pathways, including the IL-6 pathway (Judge et al., 2014). FoxO-1 and -3 appear to have 

the most involvement of the FoxO family in cachexia, as they are activated in multiple 

types of skeletal muscle atrophy, including cancer cachexia (Bouchè, Lozanoska-Ochser, 

Proietti, & Madaro, 2018; Judge et al., 2014). To further demonstrate the involvement of 

the ubiquitin-proteasome pathway in muscle atrophy, researchers have used models 

which showed that blocking FoxO is able to prevent C26-induced muscle fiber atrophy 

(Judge et al., 2014; Milan et al., 2015).  

 Aerobic and resistance training have been demonstrated to be effective in 

combatting the muscle wasting and declines in muscle function observed in cachectic 

mice. In the present study, exercise training was able to improve detriments in skeletal 

muscle mass, muscle function, and gastrocnemius CSA. Specifically, resistance training 

provided the most benefit to the improvement of forelimb handgrip strength, and, though 

not significant, improved relative gastrocnemius mass by greater than 15% when 

compared to SED+Tumor. Additionally, gastrocnemius CSA was significantly greater in 

all exercised tumor-bearing groups (TM+Tumor, RT+Tumor, TM+RT+Tumor) when 

compared to SED+Tumor, suggesting that both aerobic and resistance exercise were able 

to significantly attenuate declines in myofiber size. Interestingly, the significant 

improvements in gastrocnemius CSA were not accompanied by significant increases in 

strength (+2%) or relative gastrocnemius mass (+5%) in TM+Tumor or RT+TM+Tumor. 

These findings are not in agreement with other literature, in which aerobic exercise was 

able to attenuate these symptoms of cachexia (Hardee et al., 2016; Khamoui, 2014). 
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While other researchers have used HFES or fatigue protocols, the current study used 

treadmill running as the modality for aerobic exercise. Though HFES and treadmill 

running both likely target hindlimb muscles, muscle function was assessed via forelimb 

grip strength. Furthermore, the current study used a novel, and modified, version of 

resistance training for rodents as described by Yao et al., (2001) where food and water 

were progressively raised and mice were required to raise up onto hind limbs to access 

food. In this model, functional improvement in hind limb muscular strength may be 

expected. However, it was observed that mice in the RT groups (RT+Tumor and 

TM+RT+Tumor) also spent much time hanging onto the wire cage tops with forelimbs, 

thus potentially producing strength improvements. This observation suggests that, while 

all EX groups had greater hind limb CSA, the RT protocol alone was better able to 

specifically improve forelimb strength when compared to the TM groups. It could be 

concluded that the novel RT protocol used for the present study was able to produce 

positive adaptation through specificity of exercise training. 

 Though not examined in the current study, the mechanisms responsible for the 

improvements in strength and CSA are likely those responsible for stimulating exercise-

induced hypertrophy in skeletal muscle. For example, increases in IGF-1 and the 

downstream target, mechanistic target of rapamycin (mTOR), have been observed in 

exercising mice (Costelli et al., 2006). Mechanistic target of rapamycin functions as a 

serine/threonine protein kinase that regulates multiple cellular processes including cell 

growth and protein synthesis. Resistance training is known to maximize the hypertrophic 

response since heavy loading preferentially recruits fast-twitch fibers, such as MHCIIa 

and MHCIIb. Tatebayashi et al., (2018) demonstrated that, in CD2F1 mice inoculated 
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with the C26 tumor cells, HFES was able to elicit mTOR activation and significantly 

decrease E3 ubiquitin ligase mRNA of MuRF-1, atrogin-1, and FoxO. In addition, 

although chronically elevated IL-6 has been shown to exacerbate cachexia, exercise 

triggers a local, transient, increase in circulating IL-6 via the JAK/STAT signaling 

cascade that may play a key role in muscle regeneration through the stimulation of 

satellite cell proliferation (Baltgalvis et al., 2007; Puppa et al., 2012). 

 A secondary purpose of this study was to examine the effects of systemic 

inflammation, specifically IL-6, on cachexia. Systemic inflammation was marked by 

significant increases in both spleen mass (splenomegaly) and plasma IL-6 concentration 

in SED+Tumor mice, when compared to SED+Con. Chronic inflammation is associated 

with increased risk of both CRC and cachexia. Splenomegaly is also seen in cachectic 

mouse models and is noted as a marker of increased systemic inflammation and tumor 

progression (Aulino et al., 2010). It has been speculated that splenomegaly may indirectly 

enhance muscle wasting by competing for amino acids and other substrates, in essence 

starving the muscle or building blocks necessary to maintain or increase mass (Zimmers, 

Fishel, & Bonetto, 2016). Exercise training, regardless of mode, was able to attenuate the 

significant increases in both inflammatory markers (IL-6 and splenomegaly). The skeletal 

muscle inflammatory response, energy status, and protein homeostasis are known to be 

disrupted in cachexia and are implicated in the regulation of muscle atrophy (Hardee et 

al., 2018). Interestingly, many of the pathways involved in muscle wasting during 

cachexia, such as IL-6 and STAT3 signaling, are also upregulated by exercise (Hardee et 

al., 2018). In the tumor microenvironment, NFκB stimulates activation of STAT3 

through IL-6, leading to increased systemic inflammation. Hardee et al. (2018) 
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demonstrated that short-term treatment with pyrrolidine dithiocarbamate (an NFκB 

inhibitor) was able to attenuate the suppression of mTORC1 signaling while concurrently 

reducing STAT3 activation in cachectic mice. Together, these data further support the 

involvement of inflammation and suppression of protein synthesis pathways in cachexia.  

 Interleukin-6, in addition to acting as a pro-inflammatory cytokine, also exerts 

endocrine and metabolic functions on various organs, including skeletal muscle. As a 

myokine, IL-6 acts to promote the proliferation of satellite cells to stimulate skeletal 

muscle repair and renewal (Belizário, Fontes-Oliveira, Borges, Kashiabara, & Vannier, 

2016; Pedersen et al., 2004). During exercise, cytokines and myokines are produced to 

help maintain the metabolic homeostasis of proteins (Febbraio & Pedersen, 2002). It has 

also been demonstrated that IL-6 can induce muscle hypertrophy via the STAT3 

signaling pathway (Serrano, Baeza-Raja, Perdiguero, Jardí, & Muñoz-Cánoves, 2008) 

and downstream targets such as the myogenic regulatory factor, MyoD1, which mediates 

the transcription of genes involved in myogenesis (Tierney et al., 2014). With physical 

activity, IL-6 is typically elevated during, and immediately following the exercise bout. 

In the present study, it was demonstrated that IL-6 remained elevated even 24-hours 

following the cessation of physical activity, suggesting that chronically elevated levels of 

circulating plasma IL-6 existed. To further address the role of IL-6 in tumor-bearing, 

cachectic, mice, Baltgalvis et al., (2010) have shown that electroporation with IL-6 

directly into the muscle does not affect the size or function of skeletal muscle in non-

tumor bearing mice, even with a 4-fold increase in circulating IL-6. So, although exercise 

does increase circulating IL-6, that alone may not be sufficient to induce skeletal muscle 

wasting or muscle dysfunction. Additionally, IL-6-/- mice display no wasting in MHCIIa 
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or IIb fibers (Baltgalvis et al., 2010). Together, these data suggest that, while IL-6 is not 

the sole cause of skeletal muscle wasting, its presence is likely involved. It is concluded 

that IL-6 is a complicated, multifunctional, cytokine that can play a role in increased 

systemic inflammation, cachexia-associated atrophy, as well as hypertrophy in response 

to muscle damage, as with exercise. 

Conclusions and Clinical Implications 

 Cachexia affects nearly 80% of all cancer patients by impairing immune function, 

increasing fatigue and overall weakness, and decreasing overall quality of life. 

Chemotherapy effectiveness is also decreased by the presence of cachexia (Manole, 

Ceafalan, Popescu, Dumitru, & Bastian, 2018). Thus, there is a need for research 

elucidating mechanisms that can decrease the incidence and severity of cachexia. 

Furthermore, research done in cell culture and rodent models should be translatable to the 

clinical population. In humans, cachexia is more difficult to detect, and significant loss in 

overall body mass is likely the only indication of the disease, without performing 

invasive procedures. Additionally, cachexia is not typically detected until late-stage or 

terminal cancer is evident. Results from this investigation indicate that C26 cells were 

able to produce tumors and thus, induce cachexia. Cachexia symptoms were marked by 

significant declines in body mass, muscle function, muscle mass, and increased systemic 

inflammation. Exercise, regardless of mode was able to attenuate the reduced muscle 

CSA and associated loss in strength and improve systemic inflammation. Together, these 

data give further insight into the benefits of both endurance and resistance training. It is 

also imperative to highlight the usage of moderate-intensity activity in the current 

protocol. Cachexia is characterized, in part, by chronic fatigue, thus making it difficult 
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for cancer survivors to exercise at high intensities. Additionally, the RT protocol adapted 

for the current study utilized body weight activity, in which mice essentially climb on the 

wire cage tops. Thus, it is possible that moderate-intensity exercises or body weight 

exercises, are sufficient to induce positive adaptation by reducing the severity of muscle 

wasting, improving muscular strength, and thereby improving overall quality of life. 

Additionally, because high-intensity activity may further compromise immune function, 

these data suggest that moderate-intensity activity is appropriate for cancer survivors and 

may confer significant benefits. Because the present study began with a period of pre-

C26 inoculation exercise, it could be concluded that prior chronic physical activity may 

provide additional benefit in counteracting the severity of the cachexia and its symptoms. 

Moreover, obesity appears to be a key factor involved with increased incidence and 

severity of cachexia, cancer recurrence, and poor prognosis (Martin et al., 2013; Schwartz 

& Winters-Stone, 2009). It is possible that, because cancer survivors tend to become 

more sedentary during, and after treatment, a positive energy balance is created, thus 

worsening body composition, consequently providing further evidence that physical 

activity could be of great benefit to cancer survivors (Schwartz & Winters-Stone, 2009). 

Data from the current study supports the implementation of both aerobic and resistance 

exercise in rehabilitation programs for cancer survivors. 
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