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ABSTRACT 

IMPACT OF NOISE AND WORKING MEMORY ON SPEECH PROCESSING IN ADULTS 
WITH AND WITHOUT ADHD 

Anne M. P. Michalek, MS, CCC-SLP 
Old Dominion University, 2012 
Chair: Dr. Anastasia M. Raymer 

Auditory processing of speech is influenced by internal (i.e., attention, working memory) 

and external factors (i.e., background noise, visual information). This study examined the 

interplay among these factors in individuals with and without ADHD. All participants completed 

a listening in noise task, two working memory capacity tasks, and two short-term memory tasks. 

The listening in noise task had both an auditory and an audiovisual condition. Participants 

included 38 young adults between the ages of 18-35 without ADHD and 25 young adults 

between the ages of 18-35 with ADHD. Results indicated that diagnosis, modality, and signal-to-

noise ratio all have a main effect on a person's ability to process speech in noise. In addition, the 

interaction between the diagnosis of ADHD, the presence of visual cues, and the level of noise 

had an effect on a person's ability to process speech in noise. In fact, young adults with ADHD 

benefit less from visual information during noise than young adults without ADHD, an effect 

influenced by working memory abilities. These speech processing results are discussed in 

relation to theoretical models of stochastic resonance and working memory capacity. 

Implications for speech-language pathologists and educators are also discussed. 



This dissertation is dedicated to my three wise, beautiful children Dionna Grace, Julia Marie, and 

Kayla Elizabeth whose inspiration provides me strength to persevere, whose laughter instills a 

peaceful joy, and whose tiny, unconditional hugs make life better. 

"What we desire our children to become, we must endeavor before them." 

Andrew Combe 

"Children are the bridge to heaven." 

Persian Proverb 

"While we try to teach our children all about life, our children teach us what life is all about." 

Anonymous 



V 

ACKNOWLEDGEMENTS 

There are many wonderful people who made the completion of this dissertation possible. 

Without the dedication, help, and support of my parents I would not have had the time or 

courage to undertake such a commitment. They are a true reflection of kindness, love, and 

understanding. I owe who I am and who I will become to their example, their unwavering faith, 

and their sacrifice. For them, I will always be appreciative. 

The dissertation process was made possible by an exemplary group of committee 

members. This completed project represents their combined wisdom and fortitude. Dr. Raymer is 

a model of professional excellence, success, and brilliance. Her qualities of intelligence, 

fortitude, commitment, and compassion exemplify what it means to be a successful and 

productive professor. I am not only honored but I am extremely grateful to have had the 

opportunity to share this research project with Dr. Raymer. To her, I owe my pursuit to attain a 

PhD, graduation, and any future triumphs. Dr. Ash's successful career as a quality cognitive 

psychologist and superior researcher instilled in me a strong passion to develop a foundation of 

knowledge which will hopefully support a career as impressive as his. My path as a professor 

will forever be guided by an attempt to reach his level of distinction and I will always be 

thankful for his patience and willingness to help me through the dissertation process. Dr. 

Watson's humble support and superior level of knowledge consistently maintained my level of 

motivation and belief in success. She always believed in my ability and was constantly willing to 

share her skills to make my academic experiences better. It was a pleasure and blessing to be 

surrounded by such an amazing group of people. Of course, this dissertation would also have not 

been possible without all of the terrific individuals who served as participants. I am grateful for 



vi 

your time and energy. Finally, I would like to especially recognize Dr. Stacie Ringleb who 

allowed us to use her computer equipment, computer program, and research lab. Her assistance 

throughout this process was essential and appreciated. 

Then, there are a number of awesome friends who sustained me through this entire 

process. To a remarkable group of co-doctoral students, both graduated and newly admitted, I am 

proud and honored to call you friends and future colleagues. Each of you demonstrates academic 

and personal qualities to be admired and appreciated and I will never forget your individual 

uniqueness. To Colleen, you shine as an example of excellence and competence. To Lauren, 

Elle, and Lisa, thank - you for instant, unconditional friendship and support. To Sabre, Ann, and 

Jonna, you will always be legendary. To the best group of friends a person could ask for, I am 

blessed and honored to be allowed to share your unique gifts of trust, courage, wisdom, kindness, 

and laughter. To Myra, Lisa, Ruth, Tina, Noelle, and Rowena - you are my family and I love all 

of you like sisters. To Jennifer - sometimes people are placed in our lives at just the right time 

for just the right reason. To John, Kristie, and Jimmy - thank-you for always believing I was 

good enough and for seeing my best when I was often at my worst. 



vii 

TABLE OF CONTENTS 

Page 

LIST OF TABLES viii 

LIST OF FIGURES ix 

Chapter 

I. INTRODUCTION 1 

II. LITERATURE REVIEW 4 
INTERNAL LISTENING CONDITIONS 4 
EXTERNAL LISTENING CONDITIONS 13 
ADULTS WITH ADHD 21 
PURPOSE 24 
RESEARCH QUESTIONS AND PREDICTIONS 25 
SIGNIFICANCE OF THE STUDY 27 

III. METHODS 29 
PARTICIPANTS 29 
MATERIALS 30 
PROCEDURE 33 

IV. RESULTS 35 
QUICKSIN RESULTS 36 
WORKING MEMORY RELATIONSHIPS 40 

V. DISCUSSION 45 
THE WORKING MEMORY MODEL FOR ELU 46 
THE MODERATE BRAIN AROUSAL MODEL OF ADHD 48 
AUDIOVISUAL CUES 49 
PRACTICAL IMPLICATIONS 52 
LIMITATIONS 53 
FUTURE RESEARCH 55 
CONCLUSION 56 

REFERENCES 57 

VITA 71 



viii 

LIST OF TABLES 

Table Page 

1. Accuracy of performance on QuickSIN across listening conditions for ADHD 
and control groups 36 

2. Results of MANOVA for main effects and interaction effects 37 

3. Univariate ANOVA results for group differences at specific signal-noise-ratio 
levels 40 

4. Means and standard deviations for each group across covariate tasks 41 

5. Correlation table for all measured variables 44 



ix 

LIST OF FIGURES 

Figure Page 

1. A model of bottom-up and top-down processing of an acoustic signal 15 

2. A working memory system for Ease of Language Understanding (ELU) 16 

3. Graph showing the MANOVA results for the interaction between signal-noise-
ratio and group in the auditory condition 39 

4. Graph showing the MANOVA results for the interaction between the signal-
noise-ratio and group in the audiovisual condition 39 



1 

CHAPTER 1 

Introduction 

Central to human interaction is effective and consistent communication made 

possible by a rule-governed language system. Regardless of geographical region or 

societal dialect, language has many specific features. The English language is multi­

modal and can be transmitted through auditory (i.e., speech), visual (i.e., written and 

sign), and tactile (i.e., braille) means. Although seemingly effortless and simple, the 

processing of spoken language is complex and influenced by specialized, hierarchical 

cognitive operations (i.e., internal listening conditions) (Larsby, Hullgren, Lyxell, & 

Arlinger, 2005; Wingfield & Tun, 2007) which are enhanced or degraded by external 

listening conditions. 

During conversation, connected speech sounds are the sensory data which must be 

perceptually processed and interpreted through complex neural networks (Wingfield & 

Tun, 2007). Speech processing begins with an auditory speech signal. Initially, spoken 

language arrives through the auditory system at a rate of approximately 140 to 180 words 

per minute. The listener rapidly perceives auditory information which is then neurally 

encoded and transmitted to cortical areas for further processing. Phonological analysis 

and lexical identification are two linguistic operations required for the exact 

interpretation and use of the acoustic speech signal, resulting in accurate receptive 

language skills. These operations are dependent upon intact hearing acuity, the 

appropriate allocation of attentional resources, and the simultaneous manipulation and 

maintenance of the auditory information through working memory (Akeroyd, 2008; 

Pichora-Fuller, Schneider, & Daneman, 1995). It is through this combination of bottom-
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up and top-down processing that an individual is able to understand spoken words, to 

comprehend syntactic markers, to recognize differences in sounds, and to converse orally 

with a communication partner. 

An individual's cognitive-linguistic operations (i.e., internal listening conditions) 

used for speech processing are impacted by external listening conditions. The load and 

effort placed on the cognitive system is dependent upon the integrity and quality of the 

auditory signal (Arlinger, Lunner, Lyxell, & Pichora-Fuller, 2008). A degraded auditory 

signal or competing auditory signals increase the required listening effort (i.e., the 

attention needed to understand speech) (Fraser, Gagne, Alepins, & Dubois, 2010; Hicks 

& Tharpe, 2002; Lunner, Rudner, & Rormberg, 2009; Stenfelt & Ronnberg, 2009; 

Wingfield & Tun, 2007). When listening in the presence of background noise, the 

allocation of attentionai and working memory resources becomes challenged (Baldwin & 

Ash, 2011). As a result, more resources are needed for listening, thereby reducing the 

amount of working memory available for cognitive and linguistic processing (Pichora-

Fuller et al., 1995). When an individual experiences difficulty interpreting the auditory 

signal through a single modality, he/she might seek out visual cues which will improve 

the recognition of speech in background noise (Schneider, Li, & Daneman, 2007). 

Although the models outlining the relationship between listening in noise and 

cognition are based on empirical studies with typical adults or adult hearing aid users, it 

is reasonable to generalize those concepts to other populations. Schneider et al. (2007) 

explained that when listeners are required to process speech in complex listening 

conditions (i.e., background noise, multiple speakers, etc.), one of two things must occur: 

the listener must divide their attention and simultaneously process multiple pieces of 
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auditory information, or the listener must inhibit the irrelevant auditory information to 

focus on the target acoustic signal. This description is extremely relevant for adults with 

attention deficit/hyperactivity Disorder (ADHD). Researchers in cognitive psychology 

assert that inhibiting irrelevant acoustic information is facilitated by working memory. In 

an ADHD population whose core deficit is impaired inhibition (Barkley, 1997), listening 

in noise would not only increase the demands placed on working memory, but would also 

potentially require a higher signal-to-noise ratio (SNR) for effective processing of the 

signal (Schneider et al., 2007). 

The interaction between auditory factors and cognitive factors is the focus of this 

research project. This study examined the effect of background speech noise on explicit 

cognitive operations, that is, speech processing, in adults with and without ADHD 

(Arlinger et al., 2008; Ronnberg, Rudner, Lunner, & Zekveld, 2010; Stennfelt & 

Ronnberg, 2009). In order to develop an appropriate rationale and make reasonable and 

logical theoretical predictions, the literature review provides a succinct explanation of 

complex cognitive constructs and their relationship to speech processing in noise for the 

target populations. The review is divided into the following broad sections: 1) internal 

listening conditions which include models of working memory and their relationship to 

attention and speech processing; 2) external listening conditions which include listening 

in noise and audiovisual cues; and 3) listening in noise for adults with ADHD. 
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CHAPTER 2 

Literature Review 

The ability to process speech accurately and efficiently in daily communication 

activities depends on a healthy language system as well as the integrity of several internal 

cognitive systems and acceptable external listening conditions. This review will introduce 

these internal and external listening conditions and discuss how they interact in the 

processing of a speech signal. 

Internal Listening Conditions 

Language: Central to human interaction is effective and consistent 

communication made possible by a rule-governed language system. Regardless of 

geographical region or societal dialect, language has many specific features. These 

features include a lexicon, semantics, syntax, morphology, phonology, and pragmatics. 

The first feature of the English language is that it has a lexicon or extensive list of words 

which represent specific concepts (e.g., objects, actions, adjectives, adverbs) (Wingfield 

& Tun, 2007). The second feature of the English language is that it is governed by a 

system of syntactic rules for combining those lexical elements (i.e., words) into 

sentences. Morphology refers to the composition of words, including inflection and the 

inclusion of suffixes and prefixes in rule-governed ways. Phonology is the sound system 

which provides the rules for combining speech sounds into meaningful and consistent 

units (i.e., words). Finally, pragmatics refers to the situational context and social 

standards understood and used by mutual communication partners. This language system 

is used to interpret speech signals around us and then to formulate responses to those 
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signals. In addition, accurate speech processing is dependent on the integrity of other 

cognitive operations such as attention and working memory. 

Models of working memory. Working memory refers to a conceptual framework 

describing an individual's ability to store information temporarily for additional 

manipulation of that information; that is, a unique account of short-term memory 

(Baddeley, 2000; Gathercole, 1994). Originally, Baddeley and Hitch designed a three-

component model of working memory, including: the central executive, the phonological 

loop, and the visuospatial sketchpad (Baddeley, 2000). The phonological loop and 

visuospatial sketchpad were described as subsidiary systems responsible for temporarily 

holding verbal and visual information. These subsidiary systems are active short-term 

stores which are aided and coordinated by the central executive (Baddeley, 1996a; 

Baddeley, 2000). In 2000, Baddeley added a fourth component, the episodic buffer, to the 

working memory model. The episodic buffer is described as a "temporary interface" 

(Baddeley, 2000, p. 421) between the phonological loop and visuospatial sketchpad 

responsible for the transfer of information between the two subsidiary systems and long-

term memory. Like the phonological loop and the visuospatial sketchpad, the episodic 

buffer has limited-capacity and is controlled by the central executive (Baddeley, 2000). 

In general, Baddeley's working memory model represents the neurological system's 

ability to simultaneously store and manipulate information (Baddeley, 1992; Baddeley & 

Hitch, 1994; Baddeley, 1996b). 

In 1988, Cowan proposed a similar information-processing system. Cowan (1988) 

suggested that a human processes information as a result of a small repertoire of 

coordinated mechanisms. These mechanisms include a very, very brief sensory store, 
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long-term memory, a short-term store, and a central executive. Within this system, the 

short-term store consists of activated long-term memories. That is, the short-term store is 

a subset of long-term memory. Once an individual's long-term memory has been 

activated by incoming stimuli, a temporary file becomes the focus of attention in the 

short-term store and can then be manipulated and controlled by the central executive. 

Cowan (1988) described this system as encompassing a combination of active and 

passive processes which occur in a "parallel" or "cascade" manner (p. 180). 

Cowan (1988) argued that the Baddeley phonological loop and visuospatial 

sketchpad are simply unique instances of the short-term store. Essentially, Cowan (1988) 

proposed a more holistic and unified description of working memory. In this system, the 

distinction between processing and storage is made by separating the short-term store 

from the central executive; however, he made no further separations of specific processes 

or capabilities. Cowan's model appears to be more consistent with Oberauer, Heinz-

Martin, Wilhelm, and Wittman (2003) who suggested that working memory can be 

fractionated along the functional dimension, that is, that the storage of information 

happens within the context of processing that information. 

Like Baddeley (2000), and Cowan (1988), Engle, Tuholski, Laughlin, & Conway 

(1999) suggested that working memory results from a system of related processes which 

are dependent upon each other. Unlike Baddeley (1996b, 1998a), who suggested 

working memory is fractionated into distinct sub-processes, Engle et al. (1999) proposed 

that working memory is a global cognitive resource. Within this global cognitive resource 

are domain-specific storage and rehearsal processes (i.e., the short-term memory or store 

according to Cowan, 1998; the phonological loop and visuospatial sketchpad according to 
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Baddeley, 2000) and domain-general executive control processes (i.e., the central 

executive according to Cowan, 1988; the central executive according to Baddeley, 2000) 

(Kane, Hambrick, Tuholski, Wilhelm, Payne, & Engle, 2004). Together the domain-

specific and domain-general processes form the working memory system (Kane et al., 

2004). Separately, the domain-specific processes reflect short-term memory and the 

domain-general processes reflect working memory capacity (Kane et al., 2004). Engle et 

al. (1999) argued that it is the engagement of the central executive, responsible for the 

maintenance of, the activation of, and the attention to information, which makes short-

term memory and working memory different psychological constructs. 

Research using individual differences supports the separation between the 

supervisory or control processes of the working memory system and the storage 

processes (Baddeley, 1996b; Buehner, Krumm, & Pick, 2005a; Cowan, 1988; Engle et 

al., 1999; Kane et al., 2004; Oberauer et al., 2003). In 2004, Kane et al. recruited 236 

college students from several universities to complete a series of six short-term memory, 

six working memory, and thirteen reasoning tasks. Over the course of several weeks, 

participants were asked to recall verbal and visual information, to recall and process 

verbal and spatial information, and to complete standardized verbal-reasoning, spatial-

visual reasoning, and inductive-reasoning tasks. Once collected, individual scores were 

analyzed using confirmatory factor analysis and structural equation modeling. In addition 

to supporting the division of the working memory system into short-term memory and 

working memory capacity, researchers identified a relationship between working memory 

capacity and general cognitive ability measures. Specifically, the data indicated that a 

moderate correlation exists between an individual's general fluid intelligence 
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(represented by the reasoning tasks) and working memory capacity (represented by the 

working memory tasks). This relationship between working memory and general fluid 

intelligence has been confirmed by several other researchers through experimental studies 

(Buehner et al., 2005a; Colom et al., 2008; Engle 2002; Matzel & Kolata, 2010; Mogle, 

Lovett, Stawski, & Sliwinski, al., 2008). 

Kane et al. (2004) did not find a strong correlation between tasks representing 

short-term memory (i.e., recalling digits, letters, words) and reasoning tasks. 

Remembering that working memory capacity reflects central executive responsibilities, it 

appears that higher level cognition is a reflection of an individual's ability to select 

information and maintain that information actively while ignoring distracting stimuli. It is 

through recognizing the difference between short-term memory and working memory 

capacity that it becomes necessary to discuss working memory capacity and its 

relationship with other cognitive processes, such as attention. 

Working memory and attention. As stated previously, working memory capacity 

works in coordination with short-term memory as a component of the working memory 

system. In Cowan's (1988) model of information-processing, stimuli are activated from 

long-term memory and are attended to selectively. Selective attention is the cognitive 

process responsible for the allocation of attention to relevant and/or irrelevant stimuli 

(Baddeley, 1996a; Cowan, 1988; Lachter, Forster, & Ruthruff, 2004). Consistent with 

Broadbent's (1958) selective filter theory, a stimulus entering the nervous system is only 

identified and recognized when attention is directed to that stimulus. A slippage of 

attention from an important stimulus to an unimportant stimulus may occur intentionally 

or unintentionally (Lachter et al., 2004). This attentional control is a significant factor in 
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effective information-processing and is conceptualized differently per professional 

discipline. In the literature, neuropsychologists use the terms executive functioning while 

experimental psychologists use the terms working memory capacity synonymously with 

attentional control (McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010). 

Working memory capacity reflects the supervisory and control processes of the 

central executive. When explaining and specifying the central executive, Baddeley (1999) 

relied on the Supervisory Activating System (SAS) component of Norman and Shallice's 

model of attentional control (Baddeley, 1996a). As with his model of working memory, 

Baddeley (1996b, 1998b) described the central executive in terms of its fractionated 

functions. These functions included dual-task performance, random generation, selective 

attention, and activation of long-term memory. Through this account, the central 

executive may also be used interchangeably with attentional control, executive 

functioning, and working memory capacity. 

Miyake, Friedman, Emerson, Witzki, and Howerter (2000) studied the 

relationship of three proposed executive functions (i.e., shifting, updating, inhibiting). 

Miyake et al.'s (2000) results are pertinent to this discussion because, consistent with 

what was previously explained, their structural equation models supported both the unity 

and diversity of executive functions. That is, although distinct executive functions 

contribute differentially to performance on discrete tasks, there is commonality between 

shifting, updating, and inhibiting which could be explained by controlled attention. These 

findings are consistent with Engle et al.'s (1999) position that working memory capacity 

is directly about the "reliance on controlled attention" (p. 326) and only indirectly about 

the storage of information (i.e., memory) (Engle, 2002). 
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Remembering that working memory capacity has been correlated with general 

fluid intelligence and higher level cognitive abilities (e.g., reading) (Colom et al., 2008; 

Engle et al., 1999; Engle, 2002; Kane et al., 2004; Matzel & Kolata, 2010), the question 

becomes: does working memory capacity empirically equal attentional control (i.e., 

selective attention or the central executive or executive functions) through statistical 

evidence or are they simply semantically similar constructs? According to Engle (2002), 

it is not that an individual with high working memory capacity can remember more items, 

but that the individual is better able to control and maintain attention, especially in the 

presence of distracting and interfering stimuli. In this description, attentional control is a 

component of the working memory system working synergistically with the other 

components to facilitate an individual's ability to inhibit responses and to self-regulate. 

Several researchers provide empirical evidence supporting Engle's (2002) position 

(Kane, Bleckley, Conway, & Engle, 2001; Matzel & Kolata, 2010; McCabe et al., 2010; 

Redic & Engle, 2010). 

In addition to supporting Engle's (2002) position, two of these studies support 

Miyake et al.'s (2000) conjecture that controlled attention or attentional control may be 

the underlying resource for executive functions. Matzel and Kolata (2010) provided a 

review of the data from animal studies supporting the idea that selective attention or 

attentional control is the primary component of working memory capacity. Furthermore, 

Matzel and Kolata contended that the prefrontal cortex is the neurological region 

activated during attentional control tasks. The prefrontal cortex has also been identified 

through imaging studies as the neurological structure activated during executive function 

tasks (Aron, 2008; Collette & Van der Linden, 2002). 
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Similarly, McCabe et al. (2010) administered a variety of working memory 

capacity tasks and executive functioning tasks to 260 adults between the ages of 18 and 

90. The authors identified a very strong correlation (r = .97) between tasks measuring 

working memory capacity and tasks measuring executive functioning, indicating that 

these two constructs are functionally very similar, and proposed that the nature of this 

similarity is attentional control. These studies support the notion that attentional control 

represents the same concept as working memory capacity used among experimental 

psychologists and executive functions used by neuropsychologists (McCabe et al., 2010). 

Kane et al. (2001) provide compelling evidence regarding the "controlled-

attention view of working memory capacity" (p. 169 abstract). During prosaccade and 

antisaccade tasks in two experiments, participants with either high or low working 

memory span capacity had to actively maintain attention and goal information while 

being distracted by irrelevant external stimuli. That is, participants either had to identify 

targets found in the same location as the visual cue or in the opposite location. 

Individuals with high working memory spans significantly outperformed individuals with 

low working memory spans in the saccade tasks which require significant attentional 

control. These results support the idea that working memory capacity reflects an ability to 

control attention. 

If controlled attention, working memory capacity, the central executive, and 

selective attention are terms for equivalent processes, then attention is a process which is 

facilitated by the working memory system. Consistent with this idea, working memory 

capacity becomes a valid predictor of attentional control (Kane et al., 2001) and 

performance on higher-level cognitive tasks, including reading and language (Engle, 



2002). Subsequently, the relationship between the working memory system and language 

comprehension, specifically speech processing, is discussed. 

Working memory and speech processing. Both experimental and imaging studies 

indicate that there is a relationship between language comprehension and working 

memory (Baddeley, 2003; Baddeley, Lewis, &Vallar, 1984; Gathercole, 1994; Jacquemot 

& Scott, 2006; Muller & Knight, 2006; Radanovic, Azambuja, Mansur, Porto, & Scatt, 

2003; Rudner & Ronnberg, 2008; Shah & Miyake, 1996; Was & Woltz, 2007). In order 

to process speech, the acoustic signal must be transmitted, encoded, and bound with 

phonological representations and lexical units. The conversion of sensory input received 

by the auditory system into meaningful sound segments and words is facilitated by 

components of the working memory system. The phonological loop and the episodic 

buffer work together to maintain, rehearse, and bind speech sounds so that spoken 

language can be processed and understood (Baddeley, et al., 1984; Baddeley, 2000; 

Gathercole, 1994; Muller & Knight, 2006; Rudner & Ronnberg, 2008; Was &Woltz, 

2007). 

Within the working memory system is a subsystem called the phonological loop 

(Baddeley et al., 1984) which codes verbal information. Studies later support the 

subdivision of the phonological loop into the phonological short-term store and the 

articulatory subvocal rehearsal process (Gathercole, 1994; Muller & Knight, 2006). As a 

unit, the phonological loop is able to hold verbal material between 1.5 and 2 seconds 

(Baddeley 2003; Gathercole, 1994). Essentially, the subvocal articulatory rehearsal 

process is the silent repetition of recently received verbal information (i.e., speech 

sounds) so that those speech sounds do not decay but are maintained in the phonological 
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short-term store for effective and appropriate use (Baddeley 2003; Gathercole, 1994). 

Wilding and Mohindra (1980) demonstrated the importance of the phonological loop, 

specifically subvocal rehearsal, for the retention of sound sequences. When these 

researchers made subvocal rehearsal impossible, the participants had an increased 

number of recall errors for strings of letters. In addition to preserving information, the 

phonological loop engages in buffering processes with the episodic buffer (Rudner & 

Ronnberg, 2008). 

The episodic buffer serves as an interface between the components of working 

memory and long-term memory (Rudner & Ronnberg, 2008). Although the phonological 

loop may underpin phonological processing, Was and Woltz (2007) argued that it is 

actually available long-term memory that mediates the relationship between working 

memory and speech processing. If Cowan's (1988) model of information-processing is 

accepted, then both Rudner and Ronnberg (2008) and Was and Woltz (2007) are 

describing theoretically similar processes using different terminology. Speech processing 

is comprised of the accurate rehearsal and maintenance of phonological information, 

effective mapping of that information to representations in long-term memory, and then 

relating that information to prior knowledge for effective use (Baddeley, 2003; Cowan, 

1988; Pichora-Fuller, 2008; Ronnberg, Rudner, Foo, & Lunner, 2008; Ronnberg et al., 

2010; Rudner & Ronnberg, 2008; Stenfelt & Ronnberg, 2009). That is, speech processing 

engages language and working memory systems. 

External Listening Conditions 

Listening in the Presence of Background Noise. Speech processing requires both 

the detection of the acoustic signal and the integration of that signal with stored 
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information so that meaningful sounds, words, and sentences can be interpreted during 

discourse (Larsby, Hallgren, &Lyxell, 2008; Pichora-Fuller et al., 1995). Speech 

processing, however, often takes place in the context of competing acoustic signals. 

Background noises may interfere with this process by either masking the physical 

properties of the auditory signal or distracting the listener (Larsby et al., 2008). When an 

individual is not able to integrate the current acoustic signal with stored linguistic 

representations during discourse, he/she cannot make a coherent interpretation (Pichora-

Fuller et al., 1995). 

In studying the relationship between an acoustic speech signal and cognition, 

Stenfelt and Ronnberg (2009) (see Figure 1, adapted from Anderson, 2007 as cited in 

Stenfelt &Ronnberg, 2009) developed a visual diagram outlining the continuous 

interaction between bottom-up (i.e., implicit or automatic) and top-down (i.e., explicit or 

deliberate) processing of auditory input. When the speech signal is undistorted, the 

process of decoding phonetic input and accessing lexical information from long-term 

memory is smooth, fast, and mostly implicit. When the speech signal is distorted, the 

process of decoding phonetic input and accessing information from long-term memory is 

strained, effortful, and mostly explicit. Therefore, it is the quality of the acoustic signal 

which determines how implicit or automatic speech processing is (Ronnberg, 2003; 

Rudner & Ronnberg, 2008). 
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Figure 1. A model of bottom-up and top-down processing of an acoustic signal (adapted 
from Ewards, 2007, as cited in Stenfelt & Ronnberg, 2009) 

The Ease of Language Understanding (ELU) model (see Figure 2) proposed by 

Ronnberg (2003, 2008) outlines a working memory system which considers both internal 

and external listening conditions. It outlines a model of working memory in which there 

is an interaction between the implicit capacity to recognize speech elements under 

adverse listening conditions and the explicit capacity to make sense of those elements for 

functional use (Ronnberg et al., 2010). In 2003, Ronnberg suggested a specific 

component of the ELU framework for the Rapid, Automatic, Multi-modality Binding of 

PHOnology (RAMBPHO) (Rudner &Ronnberg, 2008).The RAMBPHO is responsible 

for the rapid and automatic binding of the linguistic signal (i.e., multi-modal language) to 

the phonological and lexical information represented in long-term memory (Ronnberg et 

al., 2008). The function of the RAMBPHO is similar to that of the episodic buffer in that 
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it "mediates the rapid and implicit unlocking of the lexicon" (p. 100). Essentially, the 

RAMBPHO matches the auditory input to appropriate linguistic representations in long-

term memory. 

Figure 2. A working memory system for Ease of Language Understanding (ELU) 
(Ronnberg, 2003, 2010) 

There are specific conditions which will determine if a match is made between the 

phonological representations of the RAMBPHO and the lexical representations held in 

long-term memory. For a match to occur, the acoustic signal must be clear and/or the 

individual must have adequate processing speed for lexical access and/or have precise 

phonological representations stored in long-term memory (Ronnberg, 2003; Ronnberg et 

al., 2008, Ronnberg et al., 2010; Rudner & Ronnberg, 2008). A mismatch occurs when 

the acoustic signal is degraded or distorted and/or when the individual has reduced 

processing speed and/or imprecise phonological representations stored in long-term 

memory. When a phonological mismatch occurs, explicit or deliberate processing and 
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storage is required to generate meaning based on previous knowledge (Ronnberg, et al., 

2010; Rudner & Ronnberg, 2008). It is the deliberate component of the ELU model 

which seems similar to the notion of the supervisory attention system outlined by 

Norman and Shallice (as cited in Baddeiey, 1996a) or the central executive outlined by 

Baddeiey (2000) or working memory capacity/attentional control described by Engle 

(2002). That is, the harder it is to hear the acoustic signal the more working memory 

capacity is required to accurately extract meaning. 

Researchers attempt to empirically demonstrate that ELU reflects the degree to 

which explicit, top-down processing functions are relied upon (Stenfelt & Ronnberg, 

2009). When mismatch conditions exist, explicit, top-down processing functions will be 

repeatedly invoked to decode, interpret, and infer the contents of connected speech 

(Ronnberg et al., 2010). Therefore, individuals with a high working memory capacity will 

experience a more reduced cognitive load when listening in the presence of background 

noise than individuals with a low working memory capacity. This is empirically 

demonstrated through research designs which measure individual working memory 

capacity and speech processing under mismatch conditions (e.g., background noise), and 

that determine what kind of statistical relationship exists between these variables. Using 

this outline, several studies have demonstrated a strong correlation between measures of 

working memory capacity (e.g., reading span tasks, Visual Letter Monitoring Test) and 

speech recognition in noise (e.g., Hagerman sentences) (Foo, Rudner, Ronnberg, & 

Lunner, 2007; Lunner & Sundewall-Thoren, 2007; Runder, Foo, Sundewall-Thoren, 

Lunner, & Ronnberg, 2008; Rudner, Foo, Ronnberg, & Lunner, 2009). A high 

correlation between working memory capacity and the processing of speech in the 
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presence of background noise confirms the mismatch effect described by the ELU model. 

Therefore, robust internal listening conditions (e.g., working memory capacity) can 

mitigate the negative effects of poor external listening conditions (e.g. background noise). 

Visual Speech Cues (Audiovisual speech perception). In addition to background 

noise, there are other external listening conditions which affect speech processing in 

adults. Accurate, functional, and timely comprehension of a spoken message is 

influenced by the location of the listener to the speaker (e.g., over the phone, face-to-face, 

from another room), by the background noise present, and by the presence of visual 

speech cues. These listening conditions can be isolated or can occur in combination, 

making the processing of speech for an adult either easy and accurate or difficult and 

inaccurate. In general, background noise weakens the auditory message while visual cues 

strengthen the auditory message. 

The influence visual cues have on speech perception is evidenced in a variety of 

listening situations. Visual cues can be presented congruently with auditory speech cues, 

incongruently, and in combination with background noise. McGurk and MacDonald 

(1976) were the first to recognize and empirically demonstrate the influence visual input 

has on the perception of speech. In their classic study, participants watched a dubbed 

film in which a human face was seen to produce the syllable Igal while the voice said the 

syllable fbal, leading participants to claim that the syllable heard was /da/. When 

participants watched the face say thai but heard /ga/, they reported hearing /bagba/. In the 

trials in which the participants only listened to the human face without being given a 

visual cue or listened to the untreated film, they reported hearing the syllables accurately. 

The McGurk and MacDonald effect is a phenomenon which suggests that visual speech 
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cues can modulate the processing of auditory speech. When visual speech cues are 

presented incongruently with the auditory message, a distorted or inaccurate phoneme is 

perceived (Jasskelainen, 2010; McGurk and MacDonald, 1976). 

During typical face-to-face conversation, individuals are congruently provided 

both auditory and visual input. In this way, human communication is basically 

audiovisual (Buchan, Pare, & Munhall, 2008; von Kriegstein, Dogan, Gruter, Giraud, 

Kell, Gruter, Keinschmidt, & Kiebel, 2008). Individuals are given an auditory stimulus 

consisting of specific phonemes and a visual stimulus consisting of dynamic facial 

movements. The facial movements have articulatory information which improves the 

individual's ability to detect (Grant & Seitz, 2000), interpret, and identify auditory input 

(Davis & Kim, 2004). The perception of the auditory stimulus is improved when 

simultaneously viewing the speaker because an appropriate phonetic representation 

(Bristow, Dehaene-Lambertz, Mattout, Soares, Gliga, Baillet, & Mangin, 2008) or speech 

motor schema is activated (Davis & Kim, 2004). The position of the lips, jaw, and 

tongue yield highly accurate visual speech cues creating visemes or basic visible speech 

units (Jaaskelainen, 2010). For example, when watching someone say /bed/, a listener not 

only identifies the initial phoneme, Pol, by its acoustic properties, but by seeing the 

speaker's lips compress and release to form the labial sound. Because visual speech cues 

provide constraints on the auditory stimulus the brain expects to receive, they have 

predictive power during the modulation of speech processing (Jasskelainen, 2010; van 

Wassenhove, Grant, & Poeppel, 2005; von Kriegstein et al., 2008) when combined with a 

congruent auditory message. Therefore, visual speech cues improve the rate of speech 

recognition (von Kreigstein et al., 2008; van Wassenhove et al., 2005), improve speech 
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perception (Jasskelainen, 2010), and improve performance on speech recognition tasks 

(Binnie, Montgomery, & Jackson, 1974; Erber, 1969, 1972; Grant, Walden, & Seitz, 

1998; MacCleod & Summerfield, 1987, 1990; Sumby & Pollack, 1954; Walden, Prosek, 

& Worthington, 1975) when simultaneously combined with auditory information. 

It is the combination of visual and auditory speech cues which makes possible the 

perception and comprehension of spoken language (Szycik, Tausche, & Munte, 2008). 

The adult's listening situation determines the extent to which this joint processing is 

required (Szycik, et al., 2008). Because the brain has an "audiovisual integration 

mechanism" (Szycik et al., 2008, abstract), adults might rely more heavily on visual 

speech cues when the auditory message is spoken in the presence of background noise. 

Buchan et al. (2008) demonstrated that when noise was present during face-to-face 

listening tasks, adults modified their fixation and location of eye gaze. Under noisy 

conditions, adults attended more frequently and longer to the nose and mouth of the 

speaker. These results suggest in part that when the intelligibility of the spoken message 

is reduced by background noise, adults seek and rely on the visual information provided 

by oral - motor movements. 

Confirming this suggestion, adults with hearing loss who participate in lip reading 

courses report that it is easier to process and understand audiovisual speech than auditory 

speech alone in noisy situations (Fraser et al., 2010). In a noisy environment, listeners 

experience a reduction in listening effort and an increase in speech understanding when 

visual speech cues are provided (Bristow et al., 2008; Fraser et al., 2010; Larsby et al., 

2005). In fact, speech recognition in the presence of background noise may be enhanced 

by more than 40% with the provision of visual speech cues (Fraser et al., 2010; Grant & 
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Braida, 1991; MacLeod & Summerfield, 1987,1990; Sumby & Pollack, 1954; Walden et 

al., 1975). According to MacLeod and Summerfield (1987, 1990), adding visual speech 

cues in the presence of background noise is like reducing that noise level by 

approximately 7-1 OdB. 

Adults with ADHD 

Attention deficit/hyperactivity disorder (ADHD) is a childhood psychiatric 

diagnosis which persists into adulthood. Like children, adults with ADHD may have 

difficulty concentrating, may be unorganized, may procrastinate, may be forgetful, and 

are impulsive (Adler, Spencer, Levine, Ramsey, Tamura, Kelsey, & Biederman, 2008; 

Searight, Burke, & Rottneck, 2000). Approximately 30% - 50% of children diagnosed 

with ADHD will grow into adults who continue to experience the unmitigated effects of 

the disorder (Barkley, 1997). The negative effects of ADHD span a lifetime and impact 

the individual's quality of life in that adults often experience lower academic 

achievement, difficulty with employment, poor driving behaviors, and difficulty with 

interpersonal relationships (Barkley, 2002). Because research has primarily focused on 

children with ADHD, there is limited empirical evidence for adults with ADHD 

regarding the cognitive processes which underlie this diagnosis and functional outcomes 

(Barkley, 2002; Miller, 2010). 

Listening in Noise. The relationship between attention and audition has been 

acknowledged since early theories of cognitive processing (e.g., Broadbent, 1958). More 

recent studies have also supported the claim that an auditory distractor makes it difficult 

to focus sustained attention on the current task (Soderlund, Sikstrom, & Smart, 2007). 

From these results, it is logical to assume that adults with ADHD would be more 
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susceptible to auditory distracters than adults who do not have a diagnosis of ADHD. 

However, recent research investigating the phenomenon of stochastic resonance indicates 

that, in fact, noise may improve cognitive performance in some adults with ADHD 

(MacDonald, Li, & Backman, 2009; Sikstrom & Soderlund, 2007; Soderlund et al., 

2007). 

Stochastic resonance is described as a phenomenon that is essential to the 

performance of a variety of neurobiological systems (Li, Oertzen, & Lindenberger, 

2006). Specifically, stochastic resonance refers to the positive response a nonlinear 

system has to an optimal level of external noise (Moss, Ward, & Sannita, 2004; Li et al., 

2006; Soderlund et al., 2007; Usher & Feingold, 2000). That is, for the cognitive system, 

external noise enhances the system's ability to identify and respond to weak stimuli 

(Moss et al., 2004; Li et al., 2006; Usher & Feingold, 2000; Ward, Doesburg, Kitajo, 

MacLean, & Roggeven, 2006). From this phenomenon, the Moderate Brain Arousal 

Model of ADHD was developed (Soderlund et al., 2007). The Moderate Brain Arousal 

Model suggests that more noise is required by the neurological system of an adult with 

ADHD because of low levels of dopamine, the neurotransmitter responsible for 

regulating the signal-to-noise ratio (Li et al., 2006; Soderlund et al., 2007). Because 

individuals with ADHD have low levels of dopamine, they require more external noise to 

activate stochastic resonance thereby increasing the saliency of the signal perceived as 

weak by the neurological system (Soderland et al., 2007; Ward et al., 2006). Ward et al. 

(2006) suggested that adding noise to the neural system actually allows that system to 

modulate neuronal activity more synchronously. When neurons fire simultaneously and 
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in order, then the processing of information for the decoding and encoding of information 

is successful, complete, and efficient (Ward et al., 2006). 

Several studies have suggested that a positive relationship exists between noise 

and cognitive performance on a variety of tasks (Abikoff, Courtney, Szeibel, & 

Koplewicz, 1996; Aihara, Kitajo, Nozaki, & Yamamoto, 2008; Mayor & Gestner, 2005; 

Soderlund et al., 2007; Zeng, Fu, & Morse, 2000). Mayor and Gestner (2005) developed 

a computer generated neural network model which represented the same complex 

nonlinear functions of the human brain. During a variety of simulations, noise was 

introduced into this model and mathematical calculations of processing and 

communication between components were measured. Results indicated that the white 

noise introduced improved the speed of the signal, the amplitude of the signal, and the 

connectivity of the model, thereby confirming the theory of stochastic resonance. 

Furthermore, Mayor and Gestner (2005) suggested that these results would be 

comparable to the improvements experienced by the sensory and cognitive systems of 

humans. Consistent with Mayor and Gestner's assertions, Aihara et al. (2008) 

demonstrated that the addition of a visual distractor, described as visual noise, improves 

visual perception during a variety of visual detection tasks in adults. Although visual 

distractors do not equate with the white noise experienced by the auditory system, the 

influence of stochastic resonance is supported across a variety of tasks and sensory 

systems. 

Zeng et al. (2000) reported that hearing thresholds were significantly improved 

with the introduction of white noise. A 2-6 decibel enhancement was observed across 

participants with cochlear implants and brainstem-implants. In this study, participants 



24 

were asked to push a button when they heard the acoustic signal presented electronically 

in a sound proof booth. All participants demonstrated a positive threshold shift when 

white noise was presented in conjunction with the acoustic signal. 

Like adults with cochlear implants, children with ADHD can demonstrate 

improved cognitive performance when external noise is provided (Abikoff et al., 1996; 

Soderlund et al., 2007). Abikoff et al. (1996) facilitated improved mathematic 

performance by 33% for boys between the ages of seven and thirteen who had a 

diagnosis of ADHD when completing the tasks in noise compared to completing the 

same arithmetic tasks in silence. Consistent with these results, Soderlund et al. (2007) 

presented a variety of simple commands and recall tasks in the presence of white noise. 

All of the children diagnosed with ADHD demonstrated improved performance across 

tasks. There is a paucity of data on this topic in the extant literature. Both Abikoff et al. 

(1996) and Soderlund et al. (2007) were the only two studies found that examined the 

effect of noise in children with ADHD and no studies were found in the literature 

exploring the effects of noise on adults diagnosed with ADHD. Further, studies that 

examined the influence of background noise used white noise, not speech noise, which 

parallels typical listening conditions. 

Purpose 

The purpose of this study is to examine the impact of background speech noise on 

speech processing in young adults with ADHD as compared to healthy adults. 

Performance was compared in an auditory only versus auditory + visual processing 

condition. Through completion of this study, we aimed to: 
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1. Provide additional empirical evidence regarding the validity and reliability of the 

ELU model of working memory for young adults with and without ADHD. 

2. Provide additional empirical evidence regarding the relationship between explicit 

cognitive processes and working memory capacity in adverse listening conditions 

for young adults with and without ADHD. 

3. Provide additional empirical evidence regarding the relationship between working 

memory capacity and speech processing in noise for young adults with and 

without ADHD. 

4. Provide additional empirical evidence regarding the relationship between speech 

processing in noise and audiovisual cues for young adults with and without 

ADHD. 

5. Develop practical implications from theoretical constructs which are rooted in 

empirical evidence for clinicians and educators. 

Research Questions and Predictions 

In order to investigate how the working memory system (i.e., short-term recall and 

working memory capacity) contributes to the ability to process speech in noise for adults 

with and without ADHD, we measured each participant's working memory capacity 

through the reading span and operation span tasks, short-term recall through two digit 

recall tasks, and signal-to-noise ratio (SNR) through the QuickSIN (Killion et al., 2004). 

The following research question is asked: 

Based on the Moderate Brain Arousal Model of ADHD, 



1. Will increased speech noise facilitate stochastic resonance thereby improving 

the ability of young adults with ADHD to process speech in the auditory 

condition as compared to healthy controls? 

The following is predicted: 

a) Decreasing SNRs will negatively impact speech processing in both young 

adults with and without ADHD in the auditory condition. 

b) Decreasing SNRs will have a greater impact on performance in young adults 

without ADHD in the auditory condition. 

Based on the theory that visual cues support speech processing in the presence of 

background noise the, following research question is asked: 

2. Will audiovisual cues significantly improve speech processing in young adults 

with and without ADHD when listening in noise? 

The following is predicted: 

a) Providing audiovisual cues will improve performance at all SNRs for both 

young adults with and without ADHD in the auditory+visual condition. 

b) Providing audiovisual cues will have an equal impact on performance for both 

young adults with and without ADHD in the auditory+visual condition. 

Based on the ELU model of working memory, the following research question is asked: 

3. Will top-down processing (i.e., explicit cognitive processes such as working 

memory) primarily contribute to an individual's ability to process speech in 

noise? 

The following is predicted: 
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a) For young adults with and without ADHD, working memory capacity will be 

the best predictor of QuickSIN performance at all SNR levels for both 

conditions (i.e. auditory and auditory+visual). 

b) For young adults with and without ADHD, digit recall will not predict 

QuickSIN performance at all SNR levels for both conditions (i.e. auditory and 

auditory + visual). 

c) For young adults with and without ADHD, there will not be a statistically 

significant relationship between performance on working memory tasks and 

short-term recall tasks. 

Significance of the Study 

Studying the relationship between listening in noise and cognition in young adults 

with and without ADHD is significant to the field of communication disorders, special 

education, and psychology for the following reasons: 

a) Studies related to the field of cognitive hearing science are relatively 

new suggesting that there is much that can still be learned regarding 

the relationship between listening in noise and working memory 

(Arlinger et al., 2009; Foo et al., 2007; Stenfelt & Ronnberg, 2009). 

b) Studies related to the field of cognitive hearing science support a 

multidisciplinary approach to investigating cognition which can 

facilitate functional treatment strategies for a variety of target 

populations. 

c) Studies which evaluate the reliability and validity of the ELU model 

contribute important information regarding the relationship between 
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theoretical cognitive constructs which underlie academic and clinical 

skills of target treatment populations. 

d) Studies which explain, describe, and empirically support working 

memory and speech processing facilitate a bridge from theory to 

practice. 

e) Research which explains the relationship between working memory 

and speech processing has practical implications for the design and 

delivery of treatment and educational models in schools and 

universities. 



CHAPTER 3 

Methods 

Participants 

Sixty-three young adults divided into two groups participated in this study. The 

experimental group consisted of 25 young adults between the ages of 18-35 (9 male; 16 

female) who had received a diagnosis of ADHD at some point between the ages of 2 and 

25 years. The control group consisted of 38 young adults between the ages of 18-35 (15 

male; 23 female) with no diagnosis of ADHD. The experimental and control groups were 

matched on age (ADHD M = 23.7 years, SD =4.0; non-ADHD M= 23.5 years, SD = 4.0) 

and educational level (ADHD M= 14.6 years, SD = 1.32; non-ADHD M= 15.0 years, SD 

= 2.62). Statistical analysis showed no significant difference between groups on age and 

education level (age: /(61) = .151, p = .88; education: /(61) = -.798, p = .37). The 

participants were recruited from a university and surrounding communities located in a 

southeastern state. In addition to posted fliers, participants were recruited through an 

approved email sent from the Office of Student Accessibility to enrolled students who 

met eligibility criteria, through speech-language pathology classes, and through the 

researchers' communication with co-workers and peers. To be included in this 

experiment, all participants were free from cognitive impairment (i.e., mental 

retardation), spoke English as their first language, and had a high school diploma with 

varying levels of college experience. To be included in the experimental group, the 

participants had a diagnosis of ADHD consistent with the criteria outlined in the 

Diagnostic and Statistical Manual of Mental Disorders - IV - TR (DSM-IV-TR) 

according University's Office of Student Accessibility. If not a registered student, 
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documentation outlining the disorder was provided and certified by an appropriate and 

qualified professional (e.g., physician or psychiatrist) or through documentation of 

current treatment for ADHD. Any participants on ADHD medication were asked to 

refrain from taking that medication for 12 hours prior to the study. Participants in the 

control group verbally completed a questionnaire to assure no history of ADHD or other 

learning disabilities. Participants in both experimental and control groups took and passed 

a hearing screening demonstrating normal hearing at 20 decibels HL at 500, 1000, 2000, 

and 4000 kHz bilaterally. Finally, participants signed a consent form approved by the 

University's Institutional Review Board. Participants were given either a $10 gift card to 

reimburse them for their participation in the study, or class credit. 

Materials 

Quick Speech-in-Noise (QuickSIN). During experimental trials, each participant's 

listening in noise abilities were measured using Quick Speech-in-Noise (QuickSIN) 

software (Killion et al., 2004), run on a standard Dell computer, during a designated 

testing session in the research lab (i.e., a quiet testing room). QuickSIN is a computer 

program which simultaneously presents a speech sentence repetition task in the presence 

of background noise. There were two presentation conditions generated by QuickSIN: 

(1) auditory and (2) auditory + visual. For each condition, the participant was asked to 

wear headphones and to verbally repeat 8 sentences with five key words at each of six 

signal-to-noise ratios: 25, 20, 15, 10, 5, 0. That is, while participants were repeating 

sentences, the background noise (i.e., speech babble) presented across sentences was 

gradually increased by increments of five decibels. In the auditory only condition, 

participants listened to a sentence through the headphones and repeated the sentence. In 



31 

the auditory + visual condition, the listener heard the sentences in the headphones and 

saw the speaker produce the sentence on a video monitor. Blocks of sentences were 

presented in counterbalanced order across participants across the two listening 

conditions. The examiner transcribed and scored repetition responses for QuickSIN 

online. The dependent measure in the task was the percent correct repetition of five key 

words per sentence (n-8 sentences). The number of words correct (max 40 words) were 

calculated for five SNRs: 0, 5, 10, 15, 20, and 25. Throughout all subtests, sentences were 

presented at a standard, comfortable hearing level, at approximately 60 dB HL. While the 

participants were completing the sentence repetition task, competing background noise 

was presented in gradually and systematically increasing increments of 5 decibels, from 

40-60dB HL. Once the first presentation condition was completed (auditory or auditory + 

visual), then the participant completed the sentence repetition task in the presence of 

background noise in the second listening condition (auditory + visual or auditory only). 

Reading Span (R-span) task. Originally developed by Daneman and Carpenter (1983), 

the R-span is a working memory span task that is widely used as a valid measure of 

working memory capacity because it reflects a participant's ability to both store and 

manipulate information (Conway, Kane, Bunting, Hambrick, Wilhelm, & Engle, 2005). 

In 1999, Engle, Kane, and colleagues modified the design, administration, and scoring of 

the R-span. That updated version was used in this research project as a measure of 

individual differences in working memory capacity. During the R-span task, participants 

read aloud sentences viewed on a computer screen, determined the meaningfiilness of 

each sentence, and verbally recalled capital letters from the end of each sentence in the 

sentence set. Sentence sets varied from 2-5 sentences in length and there were a total of 
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42 sentences. Each participant was scored on his/her accurate interpretation of the 

sentence and accurate recall of all capital letters in the designated number of sentences. 

Participant's total score was reported using partial-credit load scoring, which is calculated 

as the number of words correctly recalled averaged across each set of sentences (Conway 

et al., 2005). 

Operation Span (O-span) task. Like the R-span task, the O-span task is a valid and 

reliable measure of individual differences in working memory capacity (Conway, et al., 

2005). Engle et al.'s (1999) version of the O-span task was used in this research project. 

During the O-span task, participants read aloud mathematical equations viewed on a 

computer screen, determined the accuracy of the answer provided, and verbally recalled 

words from the end of each equation in the mathematical equation set. Equation sets 

varied from 2-5 equations in length and there were a total of 42 equations. Each 

participant was scored on his/her accurate solution to the equation and accurate recall of 

all words. Participant's total score was reported using partial-credit load scoring, which is 

calculated as the number of words correctly recalled averaged across each set of 

equations (Conway et al., 2005). For purposes of analyses, raw scores from both the R-

span and O-span task were converted to z-scores and averaged in order to calculate a 

working memory capacity composite score. 

Digit Span. A digit span task reflects short-term memory or storage because the 

participant is asked simply to recall numbers either forward or backward without a 

processing component (Conway et al., 2005). During experimental tasks, participants 

were asked to verbally recall digit lists presented orally by a female, English speaking 

experimenter. The Digits Forward and Digits Backward subtest of the Clinical Evaluation 
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of Language Fundamentals (CELF-3) was used to calculate a digit span score for each 

participant. 

Procedure 

The entire testing session took approximately one hour to complete for 

participants without a diagnosis of ADHD and an hour and fifteen minutes for those 

participants with a diagnosis of ADHD. Initially, the consent form was reviewed and 

signed. Participants were then asked to verbally complete demographic information 

providing their age, perceived visual acuity, medication use, and perceived level of 

academic achievement/performance. Next, participants completed the hearing screening. 

Participants then completed the reading span, operation span, digit recall, and QuickSIN 

tasks in the department's research lab. The order of those tasks was counterbalanced 

across participants and depended upon the group into which the participant was randomly 

placed. For all experimental tasks, participants were given practice trials. As data were 

collected, they were stored in a secure, electronic database and locked in a file cabinet by 

the primary investigator of this research project. The database was created using SPSS. 

Once all of the data were collected, the researcher used SPSS to calculate 

descriptive statistics for the participants and to examine within-subject and between-

subject differences on each variable (i.e., performance with a visual cue or without a 

visual cue, working memory capacity, short-term memory) using a multivariate analysis 

of variance (MANOVA). MANOVA was chosen because there were more than one 

dependent variables and because a MANOVA does not require an assumption of 

sphericity of group variances. A MANOVA compares the between-group variances and 

the within-group variances to determine if the difference is statistically significant 



(Maxwell & Delaney, 2004). In addition, follow up analyses were completed using 

independent t-tests and correlational analysis between the covariates and percent correct 

performance at each SNR level on the experimental QuickSin tasks. 
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CHAPTER 4 

Results 

A 2 x 2 x 6 mixed design was used in which the modality of presentation 

(auditory only vs. auditory + visual), and SNR level (25, 20, 15, 10, 5, 0) were the within 

subject manipulations and the between grouping variable was ADHD vs. NON-ADHD. 

In addition, data were collected on two covariates (working memory capacity, short-term 

memory) which measured individual differences that were expected to relate to 

performance on the QuickSIN or relate according to the grouping variable (Maxwell & 

Delaney, 2004). Results (means and standard deviations) for each condition are shown 

for each group in Table 1. In order to determine the distinct effects of modality, level of 

background noise (signal-to-noise ratio; SNR), and the diagnosis of ADHD on speech 

processing, we analyzed the mean QuickSIN scores using a multivariate analysis of 

variance (MANOVA). 
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Table 1 

Accuracy of performance (means and standard deviations) on QuickSin across listening 
conditions for ADHD and control groups 

Group 
Non-ADHD ADHD 

Mean SD Mean SD 
Auditory 

SNR 25 99.01 1.70 98.02 3.50 
SNR 20 97.96 2.52 95.92 5.67 
SNR 15 96.58 3.77 95.30 5.12 
SNR 10 94.67 4.16 91.24 6.22 
SNR 5 81.18 12.12 80.94 12.82 
SNR 0 15.20 4.41 12.40 7.92 
Total 80.56 4.85 78.42 4.56 

Audiovisual 
SNR 25 98.62 1.81 99.10 2.15 
SNR 20 98.75 2.08 96.02 6.62 
SNR 15 99.08 2.36 98.60 2.18 
SNR 10 96.51 3.80 94.50 6.17 
SNR 5 94.34 6.54 91.92 10.02 
SNR 0 51.45 23.64 38.02 15.48 
Total 87.45 13.17 85.82 6.37 

Overall 84.87 4.60 85.71 19.12 

QuickSin Results 

Results of the MANOVA are reported as significant at the p < .05 level and are 

prov i d e d  i n  T a b l e  2 .  T h e r e  w a s  a  s i g n i f i c a n t  m a i n  e f f e c t  o f  g r o u p ,  F ( \ ,  6 1 )  =  5 . 4 1  , P <  

.05, partial eta squared = .081, indicating that individuals with ADHD performed 

significantly lower than normal controls on speech processing scores. There was a 

significant main effect of modality, F(l, 61) = 347.14,/? < .001, partial eta squared = .85, 

indicating that the inclusion of an audiovisual cue made a significant difference on 

listening in noise performance as compared to the auditory only condition for both 

individuals with and without ADHD. There was also a significant main effect of SNR , 
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F(5, 57) = 306.46,/? < .001, partial eta squared = .96, indicating that the level of 

background speech noise had a significant impact on speech processing scores as SNR 

approached 0 for both individuals with and without ADHD. 

Table 2. 

Results of MANOVA for Main Effects and Interaction Effects 

Effect F - value p-value partial n 

Main Effects 
Group: ADHD or non-ADHD 5.41 .023 .081 
Modality: audio or audiovisual 347.14 .000 .851 
SNR: 25,20, 15, 10,5, 0 306.46 .000 .964 

Interaction Effects 
SNR and Group 4.80 .001 .296 
Modality and SNR 63.77 .000 .848 
Modality and Group 3.40 .070 .053 
Modality and Group and SNR 2.38 .050 .173 

*p - value - results are significant at the p < .05 level 

A number of significant interactions were also observed. There was an interaction 

effect of SNR and group, F{5, 57) = 4.80,p < .001, partial eta squared = .296, indicating 

that effect of the signal-to-noise ratio on the performance of speech processing differed 

according to the group variable (i.e., the diagnosis of ADHD). There was an interaction 

effect of modality and SNR, F(5, 57) = 63.77, p< .001, partial eta squared = .848, 

indicating that regardless of the group, speech processing in noise was influenced by the 

combination of the SNR and whether or not audiovisual cues were included. There was 

no interaction effect of group and modality, F(l, 61) = 3.40, p > .05, partial eta squared 

= .053, indicating that although performance was influenced by the presence of 
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audiovisual cues, this performance was not different between individuals with a diagnosis 

of ADHD and without a diagnosis of ADHD. All of these significant interaction effects 

were subsumed under a significant three-way interaction effect of modality, SNR, and 

group, F{5, 57) = 2.38,/? < .05, partial eta squared = .173, indicating that although the 

interaction of modality and diagnosis did not statistically impact speech processing in 

noise, the inclusion of various SNRs did make a difference on speech processing scores 

between young adults with and without a diagnosis of ADHD. 

The nature of this three-way interaction effect was further investigated using a 

series of follow-up statistical analyses. A 2 X 6 MANOVA was conducted for each of the 

modality conditions. For the auditory condition alone, there was no interaction effect 

between SNR and the grouping variable, F(5, 57) = 1.19,/? > .05, partial eta squared = 

.094, suggesting that for young adults with and without ADHD there is not a significant 

difference in their ability to process speech in noise (Figure 3). However, for the 

audiovisual condition, there was an interaction effect between the SNR and the grouping 

variable, F(5, 57) = 4.38,/? < .05, partial eta squared = .28 (Figure 4). These results 

suggest that it is the addition of the audiovisual cue which creates the statistically 

significant difference between adults with and without ADHD to process speech in noise. 

To identify the effect of different SNR levels for this group difference, a series of 

univariate ANOVAs for both the auditory and the audiovisual condition were performed 

(Table 3). For the auditory condition, the only SNR level which resulted in a statistically 

significant group difference was SNR10, F(l, 62) = 6.97,/? < .05, partial eta squared = 

.102. In the audiovisual condition, the only SNR levels which resulted in statistically 

significant group differences were SNR20, F(l, 62) = 5.75,/? < .05, partial eta squared = 
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.66, and SNRO, F( 1, 62) = 6.29, p < .05, partial eta squared = .69. Specifically, 

individuals with ADHD performed worse than control participants at these SNR levels 

when an audiovisual cue was provided. 

o U 
I N - A U D  

A - A U D  

SNR 25 SNR 20 SNR 15 SNR 10 SNR 5 SNRO 

Figure 3. Graph showing the MANOVA results for the interaction between SNR and 
group in the auditory condition. The error bars indicate the standard error of the mean. 

t 
o U 

SNR 25 SNR 20 SNR 15 SNR 10 SNR 5 S N R O  

• N - AUDVIS 

S A - AUDVIS 

Figure 4. Graph showing the MANOVA results for the interaction between SNR and 
group in the audiovisual condition. The error bars indicate the standard error of the mean. 
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Table 3. 

Univariate ANOVA Results for Group Differences at Specific SNR Levels 

Condition F-value p-value partial n2 

AUDITORY 
SNR_25 2.32 .133 .037 
SNR 20 3.87 .054 .060 
SNR 15 1.30 .259 .021 
SNR 10 6.97 .01T .102 
SNR 5 .008 .929 .000 
SNR_0 .784 .380 .013 

AUDIOVISUAL 
SNR 25 .919 .342 .015 
SNR 20 5.75 .020* .086 
SNR 15 .662 .419 .011 
SNR 10 2.58 .113 .041 
SNR 5 1.37 .247 .022 
SNR 0 6,29 .015* .093 

p - value - results are significant at the p < .05 level 

Working Memory Relationships 

In order to investigate how working memory capacity and short-term recall 

impacted performance for both groups of young adults on speech processing in noise, we 

first compared the ADHD and non-ADHD groups performance on the reading span task, 

operation span task, digit recall forward, digit recall backward, and the working memory 

capacity composite score through a series of independent t tests. Means and standard 

deviations for each group across tasks are reported in Table 4. Results revealed 

significant group differences only for the operation span task, r(61) - -2.24, p < .05, 

Cohen's d = .58, and working memory capacity composite scores, /(61) = -2.13,/? < .05, 

Cohen's d = .55. Young adults without ADHD performed better on each of these 
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measures than individuals with ADHD. However, although young adults without ADHD 

also performed better on the reading span task, /(61) = -1.61 ,p> .05, Cohen's d = .38 

recalling digits forward, /(61) = -1.061 ,P> .05, Cohen's d = .28, and recalling digits 

backward, /(61) = -1.70,/? > .05, Cohen's d - .43, their scores were not significantly 

different from participants with ADHD. 

Table 4 

Means and Standard Deviations for each group across covariate tasks 

Group 
Non-ADHD ADHD 
Mean SD Mean SD 

Digits Forward 11.18 1.71 10.60 2.40 
Digits 7.13 2.42 6.12 2.24 
Backward 
O-Span .66 .11 .59 .130 
R-Span .72 .14 .67 .123 
WM Composite .21 .86 

00 <N r .909 

Knowing that young adults with ADHD had a significant difference in scores on 

two measures of working memory capacity, a series of correlational analyses were 

completed to understand the relationship between working memory capacity and 

performance on speech processing in noise at each SNR level for both the auditory and 

audiovisual conditions. In addition, in order to understand the relationship between 

related cognitive constructs we ran correlational analyses were run between measures of 

working memory capacity and short-term recall. Table 5 provides a correlation table 

outlining the results of this analysis. 
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There was a significant relationship between the working memory composite 

scores and recalling digits backward, r = .273, p (two-tailed) < .05. Specifically, there 

was a significant relationship between the OPSPAN task and recalling digits backward, r 

- .197,/? (two-tailed) < .001 for all participants. Although there was also a significant 

relationship between the OPSPAN and the RSPAN tasks, r = .641,/? (two-tailed), < .001, 

there was not a significant relationship between the RSPAN and recalling digits 

backward, r = .098, p (two-tailed) > .05. These results suggest that the same underlying 

cognitive processes are responsible for the ability to repeat numerical digits in reverse 

order and solve mathematical equations while retaining information, but that the 

cognitive process responsible for determining meaningfulness of sentences while 

retaining information, although related, may be different. Finally, there was not a 

statistically significant relationship between recalling digits forward and working 

memory capacity, r = .145,/? (two-tailed) > .05, confirming that auditory recall reflects 

simple storage which is different than the ability to hold and manipulate information 

simultaneously. 

In order to discuss the relationship between working memory capacity and 

listening in noise, the correlational analyses were run using the total working memory 

composite scores. There was a significant relationship between working memory 

capacity and three signal-to-noise ratios in the auditory condition. Working memory 

capacity was related to listening in noise in the auditory condition at SNR20, r = .330,/? 

< .01; SNR15, r = .216, p < .05; SNR0, r = .251, p < .05. Working memory capacity was 

significantly related to listening in noise in the audiovisual condition at SNR10, r = .322, 

p < .01; SNR0, r - .381,/? < .01. These relationships indicate that for all young adults, 



with and without ADHD, working memory capacity related more to the ability to process 

speech in noise during the auditory condition. Young adults' ability to store and 

manipulate information was significantly related to their ability to discern speech sounds 

at three signal-to-noise ratios, including the hardest SNR ratio. For all participants, their 

ability to store and manipulate information was significantly related to their ability to 

discern speech sounds at two signal-to-noise ratios when visual cues were also provided, 

including the hardest SNR ratio. It is important to note that it was at SNRO in the 

audiovisual condition which created significant between group differences in processing 

speech in noise, suggesting that it could be the relationship of working memory capacity 

under these conditions which influences performance. 
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Table 5 

Correlation Table for All Measured Variables 

Item Item 

1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 
I )  DF 1.00 
2) DB .59*" 1.00 
3) OS .20 .39" 1.00 
4) RS .06 .10 .64*" 1.00 
5) WMC .15 .27* .91*" .90*" 1.00 
6) A25 .30' .12 .12 .14 .14 1.00 
7) A20 .27' .13 .29* .31* .33" .60*** 1.00 
8) A15 .26* .27* .23 .27* .28* .35" .32* 1.00 
9) A10 .17 .12 .02 .05 .04 .33" .18 .15 1.00 
10) A5 .09 .12 .22 .15 .20 .15 .22 .05 .21 1.00 
11) AO -.06 .11 .23 .24 .26* .09 .17 .20 .18 .45*" 1.00 
12) AV25 .36" .16 .22 .19 .22 .60*" .51"* .47*" .22 .09 .02 1.00 
13) AV20 .38" .14 .18 .23 .23 .66'" .66*" .36" .20 .08 .05 .57"* 1.00 
14) AVI5 .15 -.06 .06 -.10 -.02 .19 .04 -.20 .07 .02 .04 -.01 .04 1.00 
15) AV10 .20 .12 .38" .21 .32* .16 .27* .03 .06 .38" .25* .09 .13 -.54 1.00 
16) AV5 -.01 .02 .13 .20 .18 .32* .35" .09 .41" .55"* .25* .24 .33" .08 .28' 1.00 
17) AVO .17 .23 .36*' .33" .38" .14 .30' .13 .38" .59"* .59*" .12 .28' .06 .33" .62'" 1.00 

Note: Pearson's Product Moment Coefficients for all variables. Highlighted SNRs represent those levels of significant between group differences. DF = digits 
forward; DB = digits backward; OS = Operation Span Task; RS = Reading Span Task; WMC = working memory capacity composite; A25 - AO = auditory 
s u b t e s t  o n l y  S N R  2 5  -  0 ;  A V 2 5  -  A V O  =  a u d i o v i s u a l  s u b t e s t  o n l y  S N R  2 5 - 0  
* p- value - results are significant at the p < .05 level 
** p - value - results are significant at the p < .01 level 
*** p- value - results are significant at the p < .001 level 



CHAPTER 5 

Discussion 

Auditory processing of speech is influenced by internal (i.e., attention, working 

memory capacity, short-term recall, long-term memory) and external factors (i.e., 

background noise, visual information). In this experiment, we investigated how working 

memory capacity, short-term recall, and visual cues influence speech processing in the 

presence of background noise for individuals with and without a diagnosis of ADHD. 

Based on two theoretical models, the working memory model for ELU and the Moderate 

Brain Arousal Model of ADHD, and empirical evidence suggesting visual cues support 

speech processing, the following research questions were asked: 

1) Will increased speech noise facilitate stochastic resonance thereby 

improving the ability of young adults with ADHD to process speech in 

the auditory condition as compared to healthy controls? 

2) Do audiovisual cues improve speech processing in young adults with 

and without ADHD when listening in noise? 

3) Will top-down processing (i.e., explicit cognitive processes) primarily 

contribute to an individual's ability to process speech in noise? 

Young adults with ADHD did worse than controls in the presence of background 

noise in several conditions. For example, when the background noise was loudest 

(SNRO), and when a visual cue was provided, the ADHD group did poorer than healthy 

controls. This was a counterintuitive finding, as visual information typically assists 

processing of auditory signals. Rather, individuals with ADHD did not benefit from 

visual cues when they should have needed them the most as SNR became more difficult. 



Analysis also indicated that there was a significant relationship between working 

memory capacity and listening in noise at the most difficult noise level for both 

modalities and that the relationship between recalling digits backward and working 

memory capacity was significant. There was not a significant relationship between 

recalling digits forward and working memory capacity. This discussion includes how 

these results relate to specific theoretical models, what these results mean to practitioners, 

the limitations related to these results, and potential future research projects. 

The Working Memory Model for Ease of Language Understanding (ELU) 

Results from this research project are consistent with findings of previous 

empirical studies (Foo et al., 2007; Lunner & Sundewall-Thoren, 2007; Rudner & 

Ronnberg, 2008; Rudner et al., 2009) supporting the relationship between working 

memory capacity and the ability to recognize speech in noise. The presence of 

background noise in the listening environment facilitates a cognitive mismatch between 

the phonological representations developed in the RAMBPHO and the lexical 

representations stored in long-term memory (Ronnberg, 2003; Ronnberg et al., 2008, 

Ronnberg et al., 2010; Rudner & Ronnberg, 2008). According to the working memory 

model for ELU, once a mismatch occurs, then speech processing becomes more 

deliberate or explicit, requiring higher levels of attentional control (i.e., working memory 

capacity) in order to maintain the incoming signal, while simultaneously activating 

representations in long-term memory, and ignoring irrelevant acoustic and visual 

information (Ronnberg et al., 2010; Rudner & Ronnberg, 2008). Correlations between 

working memory composite scores and speech processing at three noise levels in the 

auditory condition (i.e., SNR 20, 15, 0), including the most difficult noise level, and two 
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of the highest noise levels in the audiovisual condition (i.e., SNR 10, 0) empirically 

confirm a relationship between the presence of background noise and a young adult's 

cognitive load, making the processing of the acoustic signal more reliant upon higher 

level control processes (i.e., working memory capacity). It should be noted that these 

noise levels also correspond to a drop in speech processing scores across all participants. 

With regard to the auditory condition, the processing of speech becomes less 

automatic and more deliberate or dependent on working memory capacity when the 

increase in the signal-to-noise ratio exceeds the neurological system's innate threshold 

and ability to automatically compensate. Working memory capacity highly correlated 

with speech processing when the signal-to-noise ratio increased from 25 to 20 decibels 

and again from 20 to 15 decibels and again from 5 to 0 decibels. This pattern suggests 

that a person's neurological system adapts to a noise level and processes the acoustic 

signal more automatically, but once that noise level increases, then the neurological 

system must compensate again, making the processing of the acoustic signal deliberate 

and reliant upon working memory capacity. Essentially, it may not be that a young adult 

relies on working memory capacity or deliberate processing consistently under all noisy 

conditions, but that young adults go back and forth between implicit and explicit 

processing depending on the noise level. 

Additionally, there was no correlation between young adults' short-term recall 

and working memory capacity, confirming several empirical studies (Baddeley, 1996b; 

Buehner et al., 2005a; Cowan, 1988; Engle et al., 1999; Kane et al., 2004; Oberauer et al., 

2003) which identify a separation between the storage and control processes of the 

working memory system. Simple short-term recall correlated with SNRA25, SNRAV25, 
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SNRAV20, SNR levels which did not correlate with working memory capacity. These 

results suggest that the neurological system can compensate for low levels of background 

noise, maintaining bottom-up or implicit or automatic information processing. Because of 

the relationship between basic short-term recall and speech processing in low noise 

levels, it could be inferred that implicit decoding of the acoustic signal, under low noise 

conditions, is facilitated by the temporary storage of phonological information. 

The Moderate Brain Arousal Model of ADHD 

Results from this research project are not consistent with the empirically 

supported theory that there is a positive relationship between noise and cognitive 

performance (Abikoff et al., 1996; Aihara et al., 2008; Mayor & Gestner, 2005; 

Schneider, et al., 2007; Soderlund et al., 2007; Zeng et al., 2000). For both individuals 

with and without ADHD, the inclusion of background noise reduced speech processing at 

all noise levels. Based on the phenomenon of stochastic resonance, the Moderate Brain 

Arousal Model of ADHD explains that the provision of background noise activates a 

positive neurological response, thereby making a weak auditory signal more salient 

(Soderlund et al., 2007; Ward et al., 2006). This suggests that a person with ADHD 

would perform better on speech processing tasks in noise. Empirical results of this study 

indicated that mean speech processing scores were reduced for young adults with a 

diagnosis of ADHD when compared to young adults without a diagnosis of ADHD. 

Regardless of condition, the gradual increase of background noise was more detrimental 

to speech processing for young adults with a diagnosis of ADHD. 

There are a few potential reasons why present results do not support the Moderate 

Brain Arousal Model of ADHD. Studies which demonstrated improved cognitive 



performance with the inclusion of background noise used white noise as the type of 

background noise (Abikoff et al., 1996; Aihara et al., 2008; Mayor & Gestner, 2005; 

Soderlund et al., 2007; Zeng et al., 2000). The current project used increasing levels of 

speech babble as the type of background noise. The acoustic properties of babble and 

white noise are extremely disparate and therefore their impact on the sensory and 

neurological systems is different. Heinrich, Schneider, and Craik (2008) found that the 

presentation of continuous babble impeded a young adult's ability to recall word pairs. 

Secondly, stochastic resonance is made possible by an "optimal noise level" (Ward et al., 

2006, p. 320) and the background noise in this study was not held constant, but increased 

throughout the task. The background noise accompanying the speech processing tasks 

was not provided in an effort to improve performance, but in an effort to determine how 

well an individual can accurately detect the acoustic signal in the presence of competing 

auditory information. Finally, there were only two studies identified (Abikoff et al., 1996; 

Soderlund et al., 2007) which examined the effect of noise on an ADHD population and 

those populations were comprised of children who have immature and underdeveloped 

neurological systems. The present study used young adults whose neurological systems 

are mature and almost folly developed. Thus, the stochastic model may need to address 

the type of background noise in its effect for auditory processing in individuals with 

ADHD. 

Audiovisual Cues 

Results from this research project are consistent with the empirically supported 

theory that visual cues strengthen the auditory message by reducing listening effort and 

improving speech recognition (Binnie et al., 1974; Erber, 1969; Grant et al., 1998; 



MacCleod & Summerfield, 1987, 1990; Sumby & Pollack, 1954; von Kreigstein et al., 

2008; van Wassenhove et al., 2005; Walden et al., 1975), including speech recognition, in 

noise (Bristow et al., 2008; Fraser et al., 2010; Larsby et al., 2005). Mean speech 

processing scores for all young adults were significantly increased in the audiovisual 

condition. The provision of congruent visual cues allowed participants to effectively and 

accurately interpret the auditory stimulus as background noise systematically increased. 

Since the young adults were able to hear the acoustic signal while simultaneously 

viewing the speaker's facial movements, an appropriate phonetic representation was 

triggered allowing for improved speech processing (Bristow et al., 2008). 

Although there was one significant group difference in the auditory condition, the 

overall pattern of performance for young adults with and without ADHD essentially 

demonstrates a commensurate ability to process speech in the presence of fluctuating 

levels of background noise without the presence of visual cues. This result aligns with a 

study finding that children with ADHD were able to control auditory interference as well 

as children without ADHD (van Mourik, Sergeant, Heslenfeld, Konig, & Oosterlaan, 

2011). A young adult's ability to accurately process speech when fluctuating levels of 

noise are present improves with the inclusion of audiovisual cues. However, audiovisual 

cues had a more positive impact on speech processing for young adults without a 

diagnosis of ADHD, especially when background noise was at the highest level 

(SNRAVO). Unlike in the auditory condition alone, the inclusion of visual cues facilitated 

a significant, negative difference in speech processing skills for young adults with ADHD 

at SNRAV20 and SNRAVO. When it would seem a young adult with ADHD would need 

an audiovisual cue the most, they benefited less from its presence. 



There are a few potential reasons why the presence of audiovisual cues does not 

improve speech processing performance for young adults with ADHD as much as 

normal, especially at the most difficult SNR level. Working memory capacity scores were 

significantly lower for young adults with ADHD when compared to young adults without 

ADHD in this study. As discussed earlier, one possibility is that a young adult's cognitive 

load increases as the SNR level increases, necessitating the young adult's neurological 

system to initiate the transfer from automatic speech processing, facilitated by short-term 

recall, to deliberate speech processing, facilitated by working memory capacity. It 

appears that, although numerically reduced when compared to their matched peers, a 

young adult with ADHD's working memory capacity or attentional control is sufficient 

enough to process speech as efficiently and accurately as their matched peers without 

ADHD. It is when another piece of information enters the stream of neurological data in 

the form of visual information, as in the auditory+visual condition, that the cognitive load 

is stretched. In that case, the reduction in working memory capacity for young adults with 

ADHD becomes detrimental. This theory is supported by the strong relationship between 

working memory capacity and speech processing at SNR AVO. Young adults with 

ADHD do not have sufficient executive control processes necessary to simultaneously 

maintain phonological input, ignore irrelevant acoustic information, AND integrate visual 

speech cues in order to retrieve accurate linguistic representations from long term 

memory. A reduction in working memory capacity limits the ability to effectively handle 

multiple streams of neuronal information in young adults with ADHD. 

Another potential reason for the negative impact of audiovisual cues on speech 

processing in noise for young adults with ADHD is visual attention. It is not known 



52 

whether or not young adults with ADHD were able to sustain visual focus on the visual 

cue. If the young adult with ADHD shifted eye gaze frequently during the task, then the 

provided visual information was not salient enough to positively influence speech 

processing. In order for visual speech cues to be effective, they must be held in sight 

long enough to generate accurate sensory traces which can then be mapped onto stored 

phonetic representations. This possibility needs to be explored in other studies, possibly 

with the use of eye-tracking. 

Practical Implications 

Although this research project is rooted in conceptual theory, our theoretical 

results can be translated into practical and functional treatment strategies for practitioners 

(psychologists, special educators, speech pathologists, audiologists) who work with 

adults with ADHD. First, these results support the importance of selecting reliable and 

valid evaluation tools so that measured behaviors accurately reflect underlying cognitive 

constructs and linguistic skills. These results remind clinicians to be diligent in analyzing 

subtests to ensure individual tasks actually examine working memory capacity versus 

short-term recall. Language skills are facilitated by the interaction of cognitive processes 

and strong linguistic representations in long-term memory. A good assessment will 

include a variety of empirically based standardized and nonstandardized tests, the results 

of which can generate a unified and comprehensive representation of the client's 

language skills in relation to cognitive processes. 

Second, results of this study indicate that background noise can be detrimental to 

auditory processing, particularly for individuals with ADHD. This suggests the need for 

practitioners to carefully monitor the educational and therapeutic environments for 
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students with ADHD, and provide quiet working conditions for these individuals as 

needed, particularly avoiding background speech noise. 

In addition, these results support the importance of working memory capacity or 

attentional control during the completion of language based tasks. This confirms the use 

of self-talk, cognitive rehabilitation techniques, and empirically supported self-regulation 

strategies as educational and therapeutic interventions (Baddeley, 2003; Baddeley, 

Gathercole, & Papagno, 1998; Barkley, 2000; Gathercole, 1994; Graham, Harris, & 

Mason, 2005; Watson & Westby, 2003; Ylvisaker & DeBonis, 2000). Clinicians and 

teachers are encouraged to facilitate the use of self-talk in all of their clients in an effort 

to improve task performance. Speech-language pathologists like Lyn Turkstra, Mark 

Ylvisaker, Sarah Ward, and Jill Fahy in their published articles and continuing education 

courses promote and describe the use of specific therapeutic methods developed from 

cognitive rehabilitation techniques (Feeney & Ylvisaker, 2008; Richard & Fahy, 2005; 

Turkstra & Flora, 2002; Ward, 2012). 

Finally, these results support the importance of facilitating an appropriate balance 

between verbal input and visual cues which is relative to the activity. It is clear that for 

individuals with reduced working memory capacity, a point of saturation may be reached 

whereby visual cues increase cognitive load and reduce performance. Practitioners should 

complete observations of clients with ADHD in order to determine how best to use visual 

cues as environmental supports. It will be important to monitor the balance between the 

provided visual cues and associated verbal instructions, explanations, and/or background 

noise. 

Limitations 
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There are limitations which could have influenced the results of this study. The 

small sample size influences the power of generated statistical results. More participants 

could yield larger between group and within group differences. By having a larger 

representation of young adults with ADHD, an interaction effect between modality and 

group may have been generated. In addition, there may have been more conclusive 

results regarding the relationship between working memory capacity and speech 

processing at all noise levels for both groups of young adults. 

Another issue is related to recruiting participants with a true and pure 

ADD/ADHD diagnosis. Although efforts were made to ensure young adults in the 

ADHD group had an accurate diagnosis, there was no way to ensure that the nature and 

severity of that diagnosis was identical or consistent across group members. Many of the 

ADHD participants had co-morbid diagnoses (i.e., anxiety disorder, executive function 

disorder, or a learning disability) making the connection between reported results and the 

diagnosis of ADHD more difficult. Furthermore, this study was limited to young adults 

and generalization of results to other age ranges is limited. 

A final limitation is highlighted by Freyaldenhoven, Thelin, Plyler, Nabelek, and 

Burchfield's (2005) study regarding the link between stimulant medication and accepting 

background noise in adult females with ADHD. The authors reported that stimulant 

medication increased the level of background noise young adult women with ADHD 

were able to accept. The young adults in this research project were asked to be 

medication free for 12 hours prior to completing evaluation tasks. Results of this project 

may have been completely different if the young adults with ADHD were tested while 

medicated. Despite this limitation, the reported results are viewed to be representative 
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and valid reflections of cognitive performance absent of any pharmaceutical assistance 

and therefore valuable. 

Future Research 

Additional research is essential with regard to the interaction between audition 

and cognition in young adults with ADHD. A replication study is necessary which 

increases the sample size and includes the electronic monitoring of eye movements 

during the audiovisual condition of the listening in noise task. This would provide 

supplemental information regarding how young adults with ADHD process visual cues to 

improve speech performance compared to same age peers. The influence of ADHD 

medications on listening in noise also should be explored. It would also be valuable and 

interesting to determine how background noise impacts speech processing in young 

adults with related diagnoses that impact on learning (e.g., dyslexia and auditory 

processing disorders). 

Future research is also needed with regard to the relationship between the working 

memory system and language skills in a variety of populations. This study only compared 

short-term recall and working memory capacity to speech processing in noise. Research 

is needed to determine how working memory capacity and short-term recall relate to 

phonological awareness, fluency, and discourse in adolescents and young adults with 

speech-language impairments. In addition, research is needed to determine if any 

combinations of interventions indirectly improves working memory capacity in those 

populations. 
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Conclusion 

Background speech noise negatively impacts speech processing for young adults 

with and without ADHD. Although the inclusion of audiovisual cues improves 

performance for all young adults, young adults with ADHD do not benefit as much from 

the presence of visual cues as normal. As the level of background noise increases, so does 

the young adult's reliance on working memory capacity to accurately decode the auditory 

signal. Because the provision of visual cues increases the cognitive load and because 

young adults with ADHD have a reduced working memory capacity, visual cues actually 

may reduce speech processing performance at the highest noise levels. 
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