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ABSTRACT
A direct numerical simulation of single plume flow in thermal convection with polymers was carried out in a domain with 1:3
as the width to height ratio. The heat transport ability is weakened by adding polymers within the here-investigated governing
parameter range. However, it is promoted when the maximum polymer extension L is increased. The distribution of vertical
velocity and temperature indicates that the plume in the polymer solution case is speeded up and widens bigger as compared
to that in the Newtonian fluid case. Inside the plume, polymer chains tend to release energy at the position where the velocity
is decelerated. The ratio of Nusselt numbers (Nu/NuNew ) shows the power-law scaling relation with the governing parameter
L2/Wi in polymer solution cases, which is only applicable for moderate Wi and small L. The present study can give direct insight
into the observation about plumes in turbulent thermal convection experiments. It is therefore useful for the analysis of heat
transport in thermal convection with polymers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083195

I. INTRODUCTION

Heat is transported by convection in many natural sys-
tems, such as the atmosphere, the magmas, and the Earth’s
mantle. One of the classical systems to model various convec-
tion phenomena is Rayleigh-Bénard convection (RBC), which
describes a cell filled with fluid heated from the bottom and
cooled on the top.1,2 Thermal plumes, the most important
flow structures in this system, are emitted intermittently from
the boundary layer through buoyancy force due to density
difference. They cluster together continually, thereby lead-
ing to the formation of large-scale circulation and transfer-
ring heat across the convection cell.3,4 They are known to
be main heat carriers in turbulent RBC.5,6 In recent years,

thermal plumes with the presence of polymers have attracted
much attention due to the complex interaction between
the two.

In a direct numerical simulation (DNS) study, Dubief7
adopted a finitely extensible nonlinear elastic-Peterlin (FENE-
P) model8 to investigate how the maximum polymer extension
L affects plumes and heat transport in RBC with two infinite
horizontal and isothermal walls. The difference between heat
transport enhancement (HTE) flow and heat transfer reduc-
tion (HTR) flow was attributed to the role change of plume
elastic energy. The drastic drop of velocity gradient inside
the plume causes the relaxation of stretched polymers as they
travel in the plume. With the increasing L, plumes are not able
to sustain more energy contributions. In turbulent bulk flows
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of Rayleigh-Taylor convection,9 the interaction was investi-
gated by adopting the Oldroyd-B viscoelastic model (i.e., the
limit of the FENE-P model under the infinite polymer length).
However, it was observed that thermal plumes were speeded
up and widened, which in turn contributed to a significant
HTE. In sum, the polymer effect on energy transfer in thermal
plumes is not universal.

In addition to numerical results, a series of experimen-
tal studies were also carried out on RBC in the presence of
polymers, focusing on the effect of polymer concentration on
heat transport and plume coherence. HTR was observed in
an experimental investigation on RBC with polymers.10 Ahlers
and Nikolaenko10 inferred that polymers reduce the tempera-
ture perturbations acting upon the boundary layers (BLs) and
thereby reduce plume emission which is exceptionally sen-
sitive to polymer concentration. Wei et al.11 confirmed the
above idea based on the reduction of temperature fluctua-
tions in both BL-dominated and bulk-dominated flows, where
HTR and HTE effects were exhibited, respectively. Moreover,
Wei et al.12 observed that the generation of plumes is delayed
and inhibited and the size of plumes becomes larger in poly-
mer solution cases. It can be explained from the thickening of
thermal and viscous BLs based on particle image velocimetry
(PIV) results.13 Further research from Xie et al.14 concluded
that thermal plumes are emitted less and supply less energy
to turbulence, but they are more coherent and energetic, and
are able to transport heat more efficiently than those in the
Newtonian fluid case.

Although the aforementioned studies have provided us
with some fundamental understanding about thermal plumes
in RBC with polymers, intuitive cognition on single plume
flow in the polymer solution case still needs to be directly
investigated to support these scenarios. The corresponding
results can also contribute to a fundamental understanding
for viscoelastic Marangoni-Bénard convection15 and vapor
plumes.16

For the Newtonian fluid case, the studies on single plume
flow are extensive and historical. During the last few decades,
numerical simulations17–21 and experimental studies22–25 have
investigated the single plume dynamics for a wide range of
Rayleigh number and Prandtl number. It has been proved that
steady laminar flow of a single plume can actually be well
described by the similarity solutions of pertinent boundary-
layer equations. Corresponding theories have also been well
established recently for the scaling of plume ascent veloc-
ity,26 plume stem structure,27 and plume growth by entrain-
ment of ambient fluid.28 However, the occurrence and char-
acteristics of single plume flow in polymer solution cases are
still poorly documented and understood. Vajipeyajula et al.29

numerically investigated the dynamics of single plume flow
in FENE-P fluid. However, the results only explained the HTR
phenomenon as induced by elasticity and the effect of L was
not investigated. Besides, there is still an open research field in
terms of what exactly happens inside the plume and the flow
at different developing stages in the presence of polymers.
The curiosity on the dynamics, morphology, and heat trans-
port of the plume motivates us to investigate single plume flow
in thermal convection with polymers.

The rest paper is organized as follows: Section II describes
numerical procedures including the mathematical descrip-
tion, boundary conditions, and numerical schemes. The kinetic
energy budget equation is also introduced for convenience
of mechanism explanation. Section III presents the results
about the effect of elasticity and maximum extension length
L on heat transport, flow dynamics, and morphology. Finally,
the mechanism of energy exchange when polymers travel
in the plume is summarized and the conclusions are drawn
in Sec. IV.

II. NUMERICAL PROCEDURE
A. Computational model and boundary conditions

When heat is released from a small area at the base of
a fluid layer, convection develops in an isolated rising ele-
ment. As long as supplying continuous heat and remaining
connected to the source at all time, the single plume can
be generated by instabilities in a container with a point heat
source. The schematic of setup for generating the single plume
is illustrated in Fig. 1, which can be analogous to a line plume
in three-dimensional thermal convection experiments.30 The
origin of the Cartesian coordinate system is allocated at the
center of the heat source. DNS is performed in the two-
dimensional domain with 1:3 as the width (W) to height (H)
ratio. The gravity g acts in parallel with the y direction, as
shown in Fig. 1. Adiabatic and non-slip boundary conditions
are imposed at the top and bottom plates, whereas the fixed-
temperature Th and non-slip boundary condition are used at
the heat source. The boundaries in horizontal directions are

FIG. 1. Schematic of the computational model. The dimensionless width of the
heat source is d = 0.01 ×W.
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periodic. The initial temperature and velocity in the internal
field are set as zero.

B. Governing equations
For the flow with polymers, an additional term of elastic

stress is added to the Navier-Stokes equations so as to rep-
resent the polymer effect. Several types of constitutive mod-
els have been developed to describe the polymer effect, such
as the Oldroyd-B, FENE-P, and Giesekus models, which have
been widely adopted in numerical simulations for turbulent
drag-reducing channel flows.31–33 The FENE-P model,8 which
is based on a dumbbell description of a polymer chain of two
equal masses connected by a finitely extensible and nonlinear
entropic spring, is utilized to study the nonlinear elastic effect
in the present study.

The dimensionless equations are solved in order to make
simulation results more universal. The specific dimensionless
formulas are defined as follows (here the characteristic scale
H

/
3 is used in this paper):

x∗ = 3x
/
H, t∗ = 3tuc/H,u∗i = ui/uc,p∗ = p/ρu2

c , θ∗ = T/Th,

where (· · · )∗ represents the dimensionless parameter; the
components of velocity vector ui are normalized by the char-
acteristic convection velocity uc =

√
αgHTh/3; α is the vol-

ume expansion coefficient. Th is the temperature of the heat
source; p is the pressure; ρ is the density; C∗ij =

〈
RiRj

〉
is

the conformation tensor associated with the deformation of
polymer microstructures; and Ri is the dimensionless end-
to-end vector describing a polymer chain, 〈· · · 〉 represents
the ensemble average. In the FENE-P model, the Peterlin
function f(R) = (L2 − 2)/(L2 − R2) ensures the finite exten-
sibility, where R =

√
trace(C∗ij) and L are the extension

length and the maximum possible extension length of poly-
mer microstructures, respectively. A large L means that the
fluid may exhibit more apparent elastic features of polymer
solution.

In this paper, the non-Boussinesq effect in thermal
convection is not considered.34 Based on the Boussinesq
approximation and FENE-P model for polymer solution, the
dimensionless governing equations for single plume flow are
expressed as follows:

conservation of mass
∂u∗i
∂x∗i
= 0, (1)

conservation of momentum

∂u∗i
∂t∗

+u∗j
∂u∗i
∂x∗j
= −

∂p∗

∂x∗i
+

β
√
Ra/Pr

∂

∂x∗j
*
,

∂u∗i
∂x∗j

+
-
+

1 − β
Wi
√
Ra/Pr

∂C∗ij
∂x∗j

+θ∗δi2,

(2)
conformation transport equation (FENE-P model)

∂C∗ij
∂t∗

+ u∗j
∂C∗ij
∂x∗j

= C∗ij
∂u∗j
∂x∗j

+ C∗ij
∂u∗i
∂x∗i

−
f(R)C∗ij − δij

Wi
, (3)

and conservation of energy

∂θ∗

∂t∗
+ u∗j

∂θ∗

∂x∗j
=

1
√
RaPr

∂

∂x∗j
*
,

∂θ∗

∂x∗j
+
-
, (4)

where β = ηs/(ηs + ηp) is the ratio of the solvent viscosity to
the total viscosity, measuring the polymer concentration by
assuming that it only affects the polymer concentration; ηs
represents the solvent viscosity; and ηp represents the vis-
cosity contribution due to polymers. The dimensionless gov-
erning parameters: Rayleigh number (Ra) and Prandtl num-
ber (Pr) are defined as Ra = αgTh(H/3)3

/
νκ and Pr = ν/κ,

respectively, where ν and κ represent the kinematic viscos-
ity and thermal diffusivity of the working fluid, respectively.
The other parameter Weissenberg number [Wi = λuc/(H/3)]
describes the strength of elasticity in polymer solution, where
λ is the relaxation time of polymer solution. A high Wi
means a high history dependence of conformation tensor or
strong elastic stress. The elastic stress τ∗ij is expressed as
τ∗ij = (1 − β)( f(R)C∗ij − δij)/Wi with δij being the Kronecker
symbol.

C. Kinetic energy budget
For convenience of analyzing energy transfer and contri-

bution, the kinetic energy budget equation in thermal convec-
tion with viscoelastic fluid is introduced. According to Eqs. (2)
and (3), the balance for the instantaneous kinetic energy can
be derived as

dE
dt
= D + F + V + G, (5)

where E = 1
2u
∗
iu
∗
i is the global kinetic energy; D = ∂

∂x∗j

(
pu∗i

−
β

√
Ra/Pr

∂Eij
∂x∗j
− u∗iτ

∗
ij

)
is the kinetic diffusion; F = θ∗δi2u∗i is the

thermal energy input; V = −
β

√
Ra/Pr

(
∂u∗i
∂x*

j

∂u∗i
∂x∗j

)
is the viscous

dissipation of kinetic energy; and G = − 1−β
Wi
√
Ra/Pr

(
C∗ij

∂u∗i
∂x*

j

)
rep-

resents the energy exchange between flow structures and
polymer microstructures due to the stretching and relaxation
of polymer chains. The energy exchange term G is assumed
as a kind of energy dissipation so that ηeff can be obtained
by

−
1 − β

Wi
√
Ra/Pr

*.
,
C∗ij

∂u∗i
∂x*

j

+/
-
= −

ηeff

ηs + ηp
1

√
Ra/Pr

*.
,

∂u∗i
∂x*

j

∂u∗i
∂x∗j

+/
-
, (6)

and then the ratio of the effective viscosity to the total viscos-
ity can be written as

ηeff

ηs + ηp
= β

G
V

. (7)

Furthermore, the ratio of the effective total viscosity to the
original total viscosity is

r =
ηeff

ηs + ηp
+ β = β

(
1 +

G
V

)
, (8)
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where V is always negative due to energy dissipation. G < 0
indicates that energy is absorbed from flow structures into
polymer microstructures, vice versa. As long as r < 1, it indi-
cates that heat transport is enhanced due to the addition of
polymers.

D. Numerical schemes and grid independence
In our previous study,35 a procedure embedded with a

log-conformation reformulation (LCR) module was established
for studying turbulent RBC with polymers. It is noted that
the polymer solution in the present study is still considered
as conventional continuous medium in macroscopic scale.36

Here, a similar one is adopted and the detailed parameters
are set according to the present research topic. The time-
marching uses a mixed Crank-Nicholson with the Pressure-
Implicit with Splitting of Operators (PISO) algorithm to solve
the coupling of velocity and pressure field. For the convective
term, the MINMOD scheme37 is adopted for the conformation
transport equation in order to avoid the deviation caused by
large gradient; and the QUICK scheme38 is selected for the
momentum equation and energy equation.

Grid dependence tests are carried out by varying a grid
number in vertical and horizontal directions. It shows that
the horizontal one has more apparent effect on flow and heat
transport due to the large gradient of the conformation tensor.
Test results of grid independence in the horizontal direction
are shown in Fig. 2. Here, n represents the grid number in
the heat source so the grid number in the horizontal direction
is 100n and the grid resolution is 0.01/n. As n increases, the
Nusselt number (Nu) increases and saturates finally. Wherein,
Nu is defined as the dimensionless mean temperature gra-
dient averaged over the heat source boundary at steady
state

Nu = −

0.005∫
−0.005

∂θ∗

∂y

�����y=0
dx. (9)

The difference of Nu is smaller than 0.25% when n
reaches 11. Accordingly, a uniform finer 1100 × 750 mesh
coupled with time step 5 × 10−3 is used for all runs.

According to the experience in experiments, Pr and β for
polymer solution are in the range 7–100 and 0.4–1, respec-
tively. In order to generate the steady single plume, the simu-
lations are performed using the FENE-P model to represent

FIG. 2. Nu as a function of the grid number in the heat source.

polymers and some parameters are set as Pr = 50 and β

= 0.6. To evaluate the elastic effect on the plume dynamic,
Wi and L ranges from 1 to 10 and from 10 to 40, respec-
tively. Additionally, the Newtonian fluid case is simulated by
setting β = 1.

III. RESULTS AND DISCUSSION
A. Effect of Wi on flow and heat transport

Since a single plume has been extensively investigated,
the conclusion already known will not be repeated but the
development of the plume is described in this section. As an
example, Fig. 3 plots the time evolution of Nu at different Wi
cases with the same L = 10, where Wi = 0 represents the New-
tonian fluid case. The dynamic process of single plume flow
can be classified into three stages according to the physical
phenomena: start-up stage, break-through stage, and stable-
ascend stage. In the start-up stage, heat is mainly transported
by conduction into fluid and the temperature gradient at the
boundary of the heat source drops sharply. The fluid starts
to rise due to buoyance force, but the plume is still semi-
circle cell as shown in Fig. 4(a). In the break-through stage,
the amount of heat transported by convection increases a lot
and the heat transport rapidly reaches the peak and returns
to a steady state, which is so-called overshoot (see Ref. 39).
During this stage, hot fluid breaks through from the semicir-
cle cell and the cap of the plume is taking shape, as shown
in Fig. 4(b). After the overshoot passes, the heat transport
reduces gradually to a constant value. As shown in Fig. 4(c),
a standard single plume forms in the stable-ascend stage
and it is characterized by a large “cap” at the top of a thin-
ner “stem” with two “ears.” In fact, the plume still grows
wider continually due to the diffusion effect from Eq. (4) as
it rises. In this study, the plume can ascend stably in the
third stage mainly due to high Pr, otherwise the stem flaps
periodically.40

As shown in Fig. 3, the heat transport in the stable-ascend
stage decreases with the increasing Wi, and the durations for
such three stages become longer due to the increase of Wi. It

FIG. 3. Time evolution of Nu at different Wi with L = 10. Wi = 0 represents the
Newtonian fluid case. Three stages are marked by vertical dashed lines.
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FIG. 4. The evolution of the plume in the
Newtonian fluid case at three stages (a)
start-up stage t

∗

= 8; (b) break-through
stage t

∗

= 20; and (c) stable-ascend
stage t

∗

= 100.

costs time to release the energy absorbed from flow structures
due to the extension and relaxation of polymers. Therefore,
the developing time for three stages is longer as Wi increases.
In the break-through stage, the variation magnitude of Nu also
decreases with Wi and the overshoot phenomenon is sup-
pressed slightly. In sum, the elasticity inhibits single plume
flow in polymer solution cases from either the duration or the
amplitude of oscillation.

Figure 5 plots the time series of vertical velocities for dif-
ferent Wi cases in a monitor point close to the heat source, P
(0, 0.1). It can be seen that the vertical velocity u∗y becomes
constant at last which is consistent with the scaling argu-
ment in Ref. 17. It is worth mentioning that u∗y in the start-
up stage is larger with the increasing Wi and there exists an
intersection after which the variation turns and heat transport
in cases with higher Wi is smaller. In fact, polymers cannot
response rapidly to the flow variation due to the stretching
and relaxation of polymers when heat is suddenly transported
into the domain. It results in that the viscous dissipation term
V dominates in Eq. (5), which is smaller than that in the New-
tonian fluid case. Therefore, the plume in polymer solution
cases ascends quickly in a short time due to lower energy
dissipation at the start-up stage. Similar results in the start-
up stage of Poiseuille flow indicate that the maximum velocity
developed in the first stage is larger as elasticity increases.41

Therefore, the starting of single plume flow can be understood
as suddenly imposing a pressure gradient at the inlet in pipe
flows, although the buoyancy force is not uniform as the body
force.

FIG. 5. Time series of vertical velocities at monitor P (0, 0.1) for different Wi cases.

In single plume flow, the stem is the most important
structure due to its role of the heat carrier. In the interior
of the stem, the horizontal velocity is so small that it can be
neglected as being compared to the vertical one. Figure 6 plots
the temperature and vertical velocity u∗y distribution over the
y axis at the final stage for various Wi cases with L = 10. As
shown in Fig. 6(b), the vertical velocities exist a peak value(
u∗y

)
max

along the stem. In the lower stem (y ≤ y
[(
u∗y

)
max

]
),

vertical velocities and temperatures are close along the stem.
When the fluid arrives at the upper stem (y ≥ y

[(
u∗y

)
max

]
), it is

interesting that u∗y in all polymer solution cases are larger than
that in the Newtonian fluid case, whereas u∗y decreases with
the increasing of Wi. Meanwhile, the temperature decreases
slowly along the stem and then reaches a small peak followed
by a sharp drop to zero when the fluid arrives at the plume
boundary. The plume height is defined as the farthest posi-
tion away from the heat source at which temperature reduces
to zero. It is observed that the plume height in the Newto-
nian fluid case is the lowest due to small ascend velocity, as
shown in Fig. 6(a). In sum, polymers promote the ascend of
the plume, but the promotion gets weaker with the increasing
of Wi.

To further investigate the elastic effect on the plume flow,
it is necessary to plot the contours of the whole field apart
from the distribution along one line. Figure 7 shows the con-
tours of vertical velocity u∗y and temperature at t

∗

= 20 for
the Newtonian fluid case and Wi = 10 and L = 10 case. When
the break-through stage starts, in the lower stem, the ver-
tical velocity in downstream is larger than that in upstream
so that polymers are stretched due to velocity difference.
Part of energy input from the heat source is stored as elas-
tic energy, which in turn suppresses the acceleration of the
vertical velocity. Therefore, in comparison with the almond-
like pattern in the Newtonian fluid case, the center of pattern
in the polymer solution case has a sunken region which forms
a tooth-like pattern, as shown in Fig. 7(b). This pattern also
keeps well at the stable ascend stage.

For the contour of the temperature field in Figs. 7(c) and
7(d), a new high-temperature region appears at the core of
the plume head comparing with Fig. 4(a). It departs from the
heat source and transports heat to the surrounding fluids by
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FIG. 6. Profiles of variables along axis y at t∗ = 100 for vari-
ous Wi cases with L = 10 (a) temperature θ∗ and (b) vertical
velocity u∗y.

convection. A lower-temperature plume head indicates that
polymer solution cases have a quicker heat losing rate, imply-
ing a stronger local thermal convection.

A more direct understanding of the elastic effect on flow
dynamics can be obtained by calculating the energy exchange
term G. Figure 8 plots the contour of G and velocity vector

field at the final stage for Wi = 10 and L = 10 case. To make it
more clear, the regimes of G > 0 and smaller negative G are
marked with red and white, respectively. The plume boundary
is also marked with θ∗ = 10−5 by the blue line.

With the rising of the plume, hot fluid driven by tem-
perature difference separates into two directions at the top

FIG. 7. The contours of vertical velocity
u∗y [(a) and (b)] and temperature [(c) and

(d)] at t
∗

= 20 for the Newtonian fluid
case [(a) and (c)] and Wi = 10 and L
= 10 case [(b) and (d)]. The lowest level
is overrode by white color.
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FIG. 8. Contour of G and vector field of velocity at t
∗

= 100 with Wi = 10 and L
= 10 case. The plume boundary is marked with θ∗ = 10−5 by the blue line. G > 0
indicates that energy is released from polymer microstructures into flow structures,
vice versa.

FIG. 9. Time evolution of Nu at different L cases with Wi = 10.

region of the plume cap. Meanwhile, cold fluid is entrained
by the plume and then mixed with hot one, which thereby
form large vortexes at the plume ears, as shown in Fig. 8. It is

observed that the positive G mainly occurs in the upper stem
and the inner side of ears, whereas the negative one occu-
pies most of the flow field. In fact, positive G also occurs at the
outer region, but its value is small due to low velocity gradient,
namely, that the relaxation is insufficient. It can be understood
that positive G tends to occur at the position where the veloc-
ity is decelerated. As mentioned above, the acceleration in the
lower stem is suppressed by elastic stress. It is verified from
the white region in the lower stem where polymer microstruc-
tures absorb much energy from flow structures due to the
stretching of polymers. Then, attention is paid to the cap
region, and white contour indicates that polymers here can
also be stretched greatly. It can be explained that the buoy-
ancy force is not enough to overcome the resistance when
the fluid ascends to the top of the plume. Therefore, the fluid
flow has to be separated into two directions which of course
results in the stretching of polymers. In addition, the white
region near the heat source also provides a direct explana-
tion about the HTR induced by polymers within the boundary
layer.42

B. Effect of L on flow and heat transport
To solely evaluate the effect of L on flow and heat trans-

port, Wi is fixed in this section. As an example, the time
evolution of Nu at different L cases with Wi = 10 is shown
in Fig. 9. It is observed that the evolution process can still
be classified into three stages, and the durations for each
stage become longer. In addition, the overshoot phenomenon
becomes not obvious and the peak value in the break-through
stage decreases as L increases. Particularly, the flow in the
case with L = 40 starts to oscillate in the stable-ascend
stage. The main effect of L is HTR, whereas the amount
reduces with the increasing L within the range studied in this
paper.

The profiles of temperature and velocity along x
= 0 at t∗ = 100 are plotted for various L cases in Fig. 10. The
characteristics of these two profiles and the comparison with
the Newtonian fluid case are described in Fig. 6. Considering
polymer solution cases, the vertical velocity decreases and the
temperature increases with the increasing L. A higher vertical
velocity results in lower temperature in the stem and higher
plume height, which gets mutual verification.

FIG. 10. Profiles of variables along axis y at t∗ = 100 for
various L cases with Wi = 10 (a) temperature θ

∗

and (b)
vertical velocity u∗y.
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FIG. 11. Profiles of G over the vertical line x = 0 at t
∗

= 100 for various L
cases with Wi = 10. The inset is the enlarged plot for the transition of sign of
G and schematically shows the mechanism of energy exchange. G < 0 indicates
that energy is absorbed from flow structures into polymer microstructures, vice
versa.

The contour of energy exchange term G for polymer solu-
tion cases is discussed in Fig. 8. To explain the effect of L on
flow and heat transport, Fig. 11 plots the profiles of G over x
= 0 at t

∗

= 100 for various L cases with Wi = 10. It can be seen
that G decreases rapidly followed by a gradual increase along
the lower stem and it becomes positive in the upper stem
although the value is relatively small. The increase of G with
the increasing L in the upper stem results in stronger ther-
mal convection in the cap region, which in turn enhances heat
transport. It is noted that the valley position of G goes up along
the y direction due to the increase of extension length L.

As shown in Figs. 10 and 11, the transition position of
absorbing and releasing energy locates at the half length of
the stem. The horizontal line y = 0.8 crosses the upper stem,
over which the profiles of G for various L cases are shown in
Fig. 12(a). It is observed that only small regions near the stem
has positive G and the remaining regions absorb energy from

flow structures. It is worth mentioning that the position with
the highest energy absorption occurs at the plume boundary.
The boundary moves towards the stem with the increasing L,
which indicates the plume with small L is wider. Figure 12(b)
plots the profile of the ratio between effective total viscos-
ity and original total viscosity. It shows that the ratios in the
region x ≤ 6d are smaller than 1, implying that heat transport
is enhanced and HTE increases with the increasing L in this
region.

C. Discussion
The dynamic process of single plume flow in the polymer

solution case has been investigated by varying the govern-
ing parameters Wi and L, respectively. To make it clear, we
would like to explain the process simply from the view of poly-
mer chains travelling in the plume. As schematically shown
in Fig. 13, polymer chains are represented by two dumbbells
connected by a finitely extensible spring. According to the dis-
tribution of the vertical velocity, the stem is divided into two
parts. As polymer chains travel in the lower stem, as shown
in Fig. 13(a), the slower dumbbell cannot follow up the quicker
one in time so that the spring will be stretched. Therefore, the
energy is absorbed from flow structures and stored in polymer
chains in the lower stem. Afterwards, polymer chains con-
tinue to ascend with fluid. When they arrive at the upper stem,
the velocity of the lower dumbbell exceeds that of the upper
one, as shown in Fig. 13(b). The spring relaxes and releases
energy into flow structures. Figure 13(c) illustrates that poly-
mer chains are stretched due to the flow separation at the top
region of the cap.

For the effect on heat transport, a dependence relation
with the governing parameters is expected. Figure 14 plots Nu
as a function of Wi in the stable-ascend stage for different L
cases. It is seen that the parameter L has no effect on heat
transport for Wi = 1, whereas Nu increases with the increase of
L for Wi = 5 and 10. Specifically, the HTE phenomenon occurs
in Wi = 5 and L = 40 case. To make it more universal, the two
effects induced by Wi and L are coupled. Figure 15 shows the
dependence of the ratio of Nu on the governing parameter
L2/Wi in polymer solution cases. By applying a power-law fit-
ting, the formula of the ratio Nu/NuNew can be written as (see

FIG. 12. Profiles of (a) G and (b) the ratio r between total
effective viscosity and original total viscosity over the hori-
zontal line y = 0.8 at t

∗

= 100 for various L cases with Wi
= 10. G < 0 indicates that energy is absorbed from flow
structures into polymer microstructures, vice versa. The
solid black line r = 1 represents the Newtonian fluid case.
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FIG. 13. Schematic of the dynamic process of polymer
microstructures as they travel in the plume. (a) Stretching
in the lower stem; (b) relaxation in the upper stem; and (c)
stretching in the boundary of the cap.

FIG. 14. Nu as a function of Wi in the stable-stage for
different L cases.

FIG. 15. Dependence of Nu/NuNew on the governing param-
eters L2/Wi in polymer solution cases. The axes are in
logarithmic scale.

also Fig. 15)

Nu/NuNew = 0.86(L2/Wi)0.026, (10)

wherein Nu for Wi = 1 is not adopted due to the ignorable
effect of L. It is obvious that this formula is unreasonable when
L approaches infinite or Wi reduces to be infinitely small. In
fact, the Peterlin function f(R) should be considered instead
of L as deducing a formula about the ratio Nu/NuNew . How-
ever, f(R) is related to not only L but also the real exten-
sion length R which is not a constant in flow. Therefore, it
remains for more studies to give new insight into single plume
flow at some extreme parameters. The formula deduced in
the present study is only applicable for moderate Wi and
small L.

IV. CONCLUSIONS
In order to obtain more intuitive cognition on thermal

plumes in polymer solution, we simulated the single plume
flow generated from a point heat source and adopted an

FENE-P model to represent polymers. We investigated the
effects of elasticity and maximum extensional length L on flow
and heat transport ability, respectively. We also figured out
the dynamic process of energy exchange between polymer
microstructures and flow structures in the plume.

Based on the profile of vertical velocity and temperature
along the y axis, it is seen that the plume in polymer solu-
tion is speeded up and widens in comparison with that in the
Newtonian fluid case. The start-up plume flow can be approx-
imately interpreted as suddenly imposing a constant pressure
gradient at the inlet in pipe flows. In this stage, the ascend
velocity increases with the increasing Wi and L. In the stable-
ascend stage, the stem is divided into two parts. The vertical
velocity decreases with the increasing Wi and L in the upper
stem. It can be understood that the energy absorbed from flow
structures takes more time and distances to be released due
to larger Wi or L.

The inhibition effect of Wi and promotion effect of L on
heat transport in a single plume can give direct insight into
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the observation about plumes in turbulent thermal convec-
tion experiments.9,11–14 For the maximum extension length
L, the HTE effect appears for lower values of L ≤ 50, and
Nu increases when L is smaller than 20 in turbulent thermal
convection.13 The difference may result from the choice of
higher Ra and Pr so that the range of L investigated here is
still smaller than the turning point. As for the dynamic pro-
cess of energy exchange, it is determined by the flow field. As
polymer chains travel in the plume, they absorb energy in the
lower stem and release energy in the upper stem. Continually,
they absorb energy in the cap region and release energy in the
inner boundary of plume ears. It remains for future studies to
explore the relation between single plume and fully turbulent
thermal convection.

Although the former feature is specific for the present
configuration, we think that our findings can be more gen-
eral than the specific setup studied. Moreover, the single
plume can also be realized in laboratory experiments and
therefore our results based on numerical simulations of prim-
itive equations are the good starting point for experimen-
tal investigation on the effect of polymers on the turbulent
buoyancy-driven system.
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