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RESEARCH 

Molecular Cloning and RARE Cleavage 
Mapping of Human 2p, 6q, 8q, 12q, and 

18q Telomeres 
Roberto A. Macina, Ken Morii, Xue-Lan Hu, Dimitri G. Negorev, 

Chrysanthe Spais, Lisa A. Ruthig, and Harold C. Riethman 2 
The Wistar Institute, Philadelphia, Pennsylvania 19104 

Large terminal fragments of human chromosomes 2p, 6q, 8q, 12q, and 18q were cloned using yeast artificial 
chromosomes (YACs). RecA-assisted restriction endonuclease {RARE] cleavage analysis of genomic DNA 
samples from II unrelated individuals using YAC-derived probes confirmed the telomeric localizations of the 
half-YACs studied. The cloned fragments provide telomeric closure of maps for the respective chromosome 
arms and will supply the reagents needed for analyzing and sequencing these distal subtelomeric regions. 

Telomeres are extraordinarily dynamic chromo- 
somal structures, both at their most distal molec- 
ular ends (Cooke and Smith 1986; Moyzis et al. 
1988; deLange et al. 1990; Blackburn 1992; 
Counter et al. 1992) and in their adjacent sub- 
telomeric sequences (Brown et al. 1990; Levis et 
al. 1993; Lundblad and Blackburn 1993; Black- 
burn 1994). In lower eukaryotes, alterations of 
terminal repeat tract length and composition 
through mutation of telomerase-associated activ- 
ities result in cellular senescencedike phenotypes 
(Lundblad and Szostak 1989; Yu et al. 1990). The 
loss of yeast terminal repeats in a strain deficient 
in the normal yeast telomere maintenance ma- 
chinery activates a survival pathway whereby 
subtelomeric repeat elements are amplified and 
redistributed among the chromosome ends, am- 
plifying and exposing otherwise buried copies of 
the terminal repeat motif (Lundblad and Black- 
burn 1993). This yeast subtelomeric recombina- 
tion pathway is apparently distinct from the pos- 
tulated mechanism of normal telomere mainte- 
nance in the Drosophila genome, which involves 
transposition of subtelomeric DNA elements 
(Beissmann et al. 1992a,b; Levis et al. 1993). 

There is an almost universal association of 
low-copy, subtelomere-specific repeat elements 
with molecular telomeres. Variable amounts of 
subtelomeric repeats are known to exist in some 
human subtelomere regions (Brown et al. 1990; 

1permanent address: Institute of Molecular Genetics, Russian 
Academy of Science, Kurchatov Square 46, 123182, Mos- 
cow, Russia. 
2Corresponding author. 
E-MAIL Riethman@wista.wistar.upenn.edu; FAX (215) 898- 
3868. 

Wilkie et al. 1991; Ijdo et al. 1992), and may ac- 
count, in part, for the remarkable chromosome 
length polymorphisms found at the human chro- 
mosome 16p telomere (Wilkie et al. 1991). Large 
chromosome length polymorphisms such as 
these would place subtelomeric genes at widely 
disparate allele-specific distances from the molec- 
ular telomere. Position effects of telomere prox- 
imity upon transcriptional activity have been 
demonstrated in yeast (Gottschling et al. 1990), 
and position effects have likewise been observed 
in Drosophila when euchromatic genes are juxta- 
posed to subtelomeric heterochromatin (Karpen 
and Spradling 1992). It is possible that the ex- 
pression of genes located within human subtelo- 
meric regions (Vyas et al. 1992; Saccone et al. 
1993; Cook et al. 1994; Reston et al. 1995) may 
also be affected by telomere proximity and the 
variable presence of heterochromatin-like struc- 
tures, although at present no direct experimental 
evidence exists to support this notion. 

Terminal repeat length reduction and an in- 
crease in dicentric ch romosome  fo rmat ion  
(Counter et al. 1992) have been correlated with 
cellular aging and immortalization in human  
cells. The fate of subtelomeric DNA during these 
processes has not been followed, primarily be- 
cause of a lack of well-mapped subtelomeric 
probes. For example, it is not known whether re- 
covery from human telomere reduction and loss 
during cellular immortalization mimics the yeast 
pathway characterized by subtelomeric DNA am- 
plifications and rearrangements. Finely mapped, 
discrete subtelomeric probes are required for 
these sorts of studies. 
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to several megabases (Ferrin and 
Camerini-Otero 1991, 1994), and 
have provided an efficient means of 
m a p p i n g  DNA from half-YACs 
(Macina et al. 1994; Negorev et al. 
1994; Reston et al. 1995). In this 
study telomeric fragments of hu- 
man chromosomes 2p, 6q, 8q, 12q, 
and 18q cloned using the half-YAC 
system were analyzed using RecA- 
assisted restriction endonuclease 
(RARE) cleavage mapping. 
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Figure 1 FISH localization of half-YAC DNA. G-banded metaphases 
from leukocytes of a normal human male were photographed, then 
Alu-PCR products from the indicated clones were biotinylated and hy- 
bridized with these metaphases. Hybridization sites were detected using 
FITC-avidin, and compared with the original G-banded karyotypes. 
Chromosomes were counterstained with DAPI and propidium iodide. 
The major hybridization sites are indicated by arrows; only the FITC 
Iocalizations on propidium iodide counterstained chromosomes are 
shown. For each probe, ~20 metaphases from three separate experi- 
ments were examined; in every metaphase, the site with the strongest, 
paired signals corresponded to the indicated telomere. (A) Clone 
yRM2158 (6q). Secondary hybridization sites for yRM2158 included 
8p23, 5q35, 11 pl 5, 1 p36, 1 q42, 1 q44, 16pl 3.3, 16q24, and Yql 2. (B) 
Clone yRM2052 (2p); (C) clone yRM2196 (12q); (D) clone yRM2053a 
(8q). 

Cloning, mapping, and sequencing of hu- 
man telomeres and the telomere- adjacent DNA 
are crucial for the complete understanding of this 
peculiar region of the human  genome. The mo- 
lecular cloning of DNA fragments in yeast artifi- 
cial chromosome (YAC) vectors modified to cap- 
ture telomere-terminal  genomic chromosome 
fragments (half-YACs) has provided one avenue 
toward the isolation of large segments of telom- 
ere-associated DNA (Riethman et al. 1989; Bates 
et al. 1990). Recently introduced site-specific ge- 
nomic cleavage techniques are an extraordinarily 
versatile and effective means for the direct anal- 
ysis of genomic DNA structure over size ranges up 

RESULTS 

FISH Localization of YAC DNA 

Ind iv idua l  c lones  from an ex- 
panded library of half-YACs (Rieth- 
man et al. 1989) were localized to 
normal  human  metaphase chro- 
mosomes using fluorescence in situ 
hybridization (FISH) of their Alu- 
PCR products (Negorev et al. 1994). 
Each clone is expected to contain a 
large segment of human subtelom- 
eric DNA flanked by functional hu- 
man telomere sequences (telomeric 
end) and vector sequences (centro- 
meric end) (Riethman et al. 1989). 
The AIu-PCR products from four 
clones containing inserts roughly 
in the 200- to 300-kb size range 
gave strong FISH signals at specific 
human  telomeres (Fig. 1). The 6q- 
ter signal was cons i s ten t ly  the  
strongest for the yRM2158 probe 
(>20 metaphases  analyzed),  al- 
though significant secondary hy- 
bridization signals were also ob- 

served consistently (see Fig. 1A). The Alu-PCR 
products from yRM2052 (Fig. 1B), yRM2196 (Fig. 
1C), and yRM2053a (Fig. 1D) each yielded clear, 
discrete signals at the telomeres of 2p, 12q, and 
8q, respectively. The FISH localization for the 
fifth half-YAC analyzed in this study (yRM2050a, 
18q) has been described previously (Strathdee et 
al. 1994). A minimum of 20 metaphases from 
three separate experiments were examined for 
each probe. These experiments suggested likely 
genomic origins for the insert DNA from the five 
half-YACs, but the low resolution of metaphase 
FISH (1-3 Mb), the presence of subtelomeric re- 
peats in many of the clones (Table 1), and arti- 
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8q, respectively. The FISH localization for the 
fifth half-YAC analyzed in this study (yRM2050a, 
18q) has been described previously (Strathdee et 
al. 1994). A min imum of 20 metaphases from 
three separate experiments were examined for 
each probe. These experiments suggested likely 
genomic origins for the insert DNA from the five 
half-YACs, but the low resolution of metaphase 
FISH (1-3 Mb), the presence of subtelomeric re- 
peats in many of the clones (Table 1), and arti- 
facts common in cloning subtelomeric regions of 
human  genomic DNA in YACs (Bates et al. 1992; 
Zuo et al. 1992; Negorev et al. 1994; R.A. Macina, 
K. Morii, D.G. Negorev, and H.C. Riethman, un- 
publ.) made it essential to obtain molecular evi- 
dence for the presumed telomere-terminal origin 
of the cloned half-YAC fragments. 

Half-YAC Probe Isolation and PCR 
Assay Development 

The region of cloned DNA farthest from the mo- 
lecular telomere is typically least likely to contain 
subtelomeric repeats and most likely to contain 
chromosome-specific sequences (Riethman et al. 
1989; Macina et al. 1994; Negorev et al. 1994; 
Reston et al. 1995). Therefore, DNA from the cen- 
tromeric end of each of the five half-YAC inserts 
was isolated and used to develop both a hybrid- 
ization probe and a PCR assay (see Methods; sum- 
marized in Table 1). Sequences amplified by the 
respective PCR assays were localized to individual 
h u m a n  chromosomes using a panel of rodent-  
h u m a n  hybrid cell lines (Table 1); when com- 
bined with the cytogenetic localization data (Fig. 

TELOMERE YACs 

1; Table 1), this information provided strong ev- 
idence that  the cloned fragments were not chi- 
meric. We then sought molecular evidence that 
the cloned DNA was physically linked to ge- 
nomic telomeres. 

RARE Mapping of Genomic Telomeres 

To test whether DNA from the centromeric re- 
gions of the respective YACs were closely linked 
with a genomic telomere, a series of RARE cleav- 
age mapping experiments were conducted (Ferrin 
and Camerini-Otero 1991, 1994; Macina et al. 
1994; Negorev et al. 1994). A single genomic 
cleavage event is predicted to result in a discrete 
fragment if the cleavage site is close to the ge- 
nomic telomere. Therefore, we targeted the EcoRI 
cloning sites derived from the respective YACs for 
cleavage in genomic DNA and tested whether a 
liberated restriction fragment in the broad size 
range of the respective YACs could be detected 
using the vector-adjacent insert DNA probes. 

Specific examples of RARE cleavage experi- 
ments  for the different genomic telomeres are 
shown in Figure 2, and the accumulated results 
are summarized in Table 2. For each telomere, 
one RARE cleavage fragment in the expected size 
range of the YACs was detected when genomic 
DNA samples from each of 11 unrelated individ- 
uals were analyzed, providing direct evidence 
that  the cloned fragments were in fact derived 
from telomere-terminal genomic DNA (Table 2). 

The complete RARE cleavage experiment is 
shown for the 6q telomere (Fig. 2A). RARE cleav- 
ages of DNA from h u m a n  peripheral blood cells 

Table 1. Cytogenetic and chromosomal localization of telomeric half-YACs 

Subtelomeric 
GDB YAC size Cytogenetic Chromosomal repeats 

Clone name designation (kb) Probes localization localization a content 

yRM2158 D6S1062 280 2158V-I b 6q27 (+) 6 TH14, c HC1103, d 
HC1208 e 

yRM2196 D12S399, D12Z5 190 2196V-I 12q24.3 12, 6 TH14, TelBam 3.4 f 
yRM2050a D18S553, D1874 290 2050V-I 18q23 18 
yRM2052 D252146 330 2052V-I 2p25 2 HC1403 e 
yRM2053a D8S595, D876 170 2053V-I 8q24.3 8, 20 

aSomatic hybrid panel localization of vector-adjacent insert sequences. 
bThe subterminal repeat HC1208 (Negorev et al. 1994) was also used as a probe. 
CdeLange et al. (1990). 
dMartin-Gallardo et al. (1995). 
eNegorev et al. (1994). 
fBrown et al. (1990). 
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F i g u r e  2 RARE cleavage mapping of 6q, 12q, 18q, 2p, and 8q telomeres. (A) Analysis of the 6q telomere. 
(Lanes 1-11) Agarose plugs containing total human genomic DNA prepared using circulating leukocytes isolated 
from peripheral blood of 11 different people were treated with RecA protein and 400 ng of oligonucleotide for 
the vector-adjacent sequence of yRM2158. The RARE cleavage products were separated on a CHEF gel, and 
Southern blot analysis was carried out using the vector-adjacent insert probe 2158V-I. (Lane C) Control human 
DNA taken through all of the buffers and manipulations of the experiment but not exposed to any of the 
enzymes. (Lane Bs) Control human DNA digested with BssHII; (lane Me) a methylase control (-RecA, -oligo, 
+methylase, +EcoRI digestion); (lane E) an EcoRI digestion control (-RecA, -oligo, -methylase, +EcoRI digestion). 
(Lane Y) Intact chromosomal DNA from yRM2158. (B-E) Human leukocyte DNA from three different individuals 
(lanes 1-3) was embedded in agarose and targeted for site-specific cleavage at the DNA sequences correspond- 
ing to the respective EcoRI cloning sites (using 400 ng of oligonucleotide per RARE cleavage reaction). The RARE 
cleavage products were analyzed by gel-transfer hybridization using vector-adjacent insert probes. Lanes Bs, Me, 
and E are as in A. Lane Y contains intact chromosomal DNA from the appropriate half-YAC clone. (B) (12q 
telomere ): RARE experiment using the oligonucleotide for yRM2196, hybridized with the probe 2196V-I. (C) 
(18q telomere): RARE experiment using the oligonucleotide for yRM2050a, hybridized with the probe 2050V-I. 
(D) (2p telomere): RARE experiment using the oligonucleotide for yRM2052, hybridized with the probe 2052V-I. 
(E) (8q telomere): RARE experiment using the oligonucleotide for yRM2053a, hybridized with the probe 2053V-I. 
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Table 2. RARE cleavage summary 

RARE oligo/ 
V-I probe 
(YAC size) 

Sample 

2-11 

y rM2158 (280) 450, 320 320 
yRM2196 (190) 200 200 
yRM2050a (290) a 300 300 
yRM2052 (330) 340 340 
yRM2053a (1 75) 190 190 
yRM 2000 (240) b 240 240 
yRM 2123 (270) c 290 290 

The sizes of the RARE fragments are shown in kb. 
aFrom Strathdee et al. (1994). 
bFrom Macina and Riethman (1994). 
CFrom Negorev et al. (1994). 

were carried out using a 60-mer oligonucleotide 
that  spans the junction of vector and insert DNA 
at the EcoRI cloning site in yRM2158. The oligo- 
nucleotide contained 50 bases of sequence ho- 
mologous to the insert adjacent to the cloning 
site and 10 bases corresponding to vector se- 
quence which, in genomic DNA samples, should 
serve as a RecA-binding "tail" to assist in the pro- 
tection of the EcoRI site from methylase activity. 
BssHII-digested samples from a similar genomic 
DNA preparation (Fig. 2A, lane Bs) served as a 
positive control for probe hybridization. A 320- 
kb fragment liberated by RARE cleavage of total 
g e n o m i c  h u m a n  DNA t a r g e t e d  w i t h  t h e  
yRM2158 oligonucleotide hybridized to the 2158 
V-I probe (Fig. 2A) in each of the 11 DNA samples 
(lanes 1-11). A second RARE cleavage fragment, 
130 kb larger than the first, could be detected in 
DNA from individual 1 (Fig. 2A, lane 1). Both 
fragments also hybridized with the subterminal 
repeat HC1208 probe (not shown). The sizes of 
the principal RARE fragments approximated that 
of the intact YAC (Fig. 2A, lane Y), indicating that 
the targeted EcoRI cloning site was the expected 
distance from the 6q terminus on all but one of 
the  22 ch romosomes  analyzed. The sl ightly 
slower migration of genomic fragments relative 
to YACs of the same size is typical of a DNA con- 
centration effect seen in pulsed-field gels and can 
be shown to be artifactual in many cases. For ex- 
ample, the sample in Figure 2A, lane 11, contains 
about one-half the concentration of DNA as the 
other samples, and the migration of the RARE 
cleavage fragment is nearly identical to that of 
the YAC (Fig. 2A, lane Y, for a discussion of this 

TELOMERE YACs 

artifact, see also mixing experiments of Riethman 
et al. 1993). We conclude from this experiment 
that yRM2158 contains a telomere-terminal frag- 
ment  of one allele of 6q DNA. The simplest ex- 
planation for the 450-kb band in sample 1 is that  
an addi t ional  allele, 130 kb larger than  the  
cloned one, exists in the population sampled. 

The results of RARE cleavage experiments are 
also shown for 3 of the 11 DNA samples for the 
12q telomere (yRM2196, Fig. 2B), the 18q telom- 
ere (yRM2050a,  Fig. 2C), the  2p t e lomere  
(yRM2052, Fig. 2D), and  the  8q t e l o m e r e  
(yRM2053, Fig. 2E). The complete RARE cleavage 
analysis for the 11 DNA samples is summarized in 
Table 2, which also includes results from the 7q 
and l q  telomeres (analyzed previously using 
RARE cleavage analysis of a single genomic DNA 
sample; Macina and Riethman 1994; Negorev et 
al. 1994). No evidence for large-scale subtelom- 
eric polymorphism was detected at the lq, 2p, 
7q, 8q, 12q, or 18q telomeres (Table 2). 

DISCusSION 

Analysis of the RARE mapping results for the telo- 
meres studied are straightforward; in each case, 
both the hybridization probe and the sequences 
amplified by the PCR assay were single copy (see 
Methods; data not  shown). Therefore, the RARE 
experiments described in this paper prove at the 
molecular level that  these half-YACs are derived 
from the expected genomic telomere-terminal  
fragments and, thus, represent telomeric closure 
for overlapping clone maps of these chromosome 
arms. 

Several possible explanations exist for the 
presence of the additional RARE fragment in the 
6q-ter experiment. Partial digestion of a dupli- 
cated 6q-ter subtelomeric fragment containing 
the EcoRI site cannot  be ruled out entirely but is 
unlikely given the stoichiometry of the two dis- 
crete bands in the sample and the absence of sim- 
ilar bands in all of the other samples. A simple 
mutat ion in the genomic EcoRI site of one allele 
of the sample has been ruled out by conventional 
Southern blot analysis; a single EcoRI fragment 
was hybridized with this probe (not shown). On 
the basis of the precedent of subtelomeric DNA 
polymorphisms detected at several other h u m a n  
telomeres (Wilkie et al. 1991; Ijdo et al. 1992; 
Martin-Gallardo et al. 1995; R.A. Macina, K. 
Morii, D.G. Negorev, and H.C. Riethman, un- 
publ.), the simplest explanation may be a chro- 
mosome length polymorphism on a relatively 
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rare  6q- ter  allele. However ,  a d d i t i o n a l  exper i -  
m e n t s  are requi red  to prove  this. 

In t eg ra t ion  of  c loned  DNA m a p s  w i th  un-  
c l o n e d  g e n o m i c  DNA s t ruc tures  over  the  size 
ranges  descr ibed in this  pape r  are essential  for 
reliable phys ica l  maps .  There  is a fair ly h igh  frac- 
t ion  of  ar t i factual  c lones in m o s t  YAC libraries, 
i nc lud ing  this  one  (>50% of the  clones are e i ther  
ch imer ic  or n o n t e l o m e r e  derived;  R.A. Macina ,  K. 
Morii ,  D.G. Negorev,  a n d  H.C. R i e thman ,  un-  
publ.) .  G e n o m i c  DNA regions  r ich in low-copy  
repeats  are especial ly  p r o b l e m a t i c  for  conven -  
t ional  phys ica l  m a p p i n g  strategies a n d  are also 
o f ten  difficult  to clone.  RARE cleavage m a p p i n g  
can  relate c loned  DNA f r agmen t s  eff icient ly to 
na t ive  g e n o m i c  s t ructures  in this  size range,  a 
step t ha t  is essential  in u n d e r s t a n d i n g  the  dy- 
namics  of large DNA s e g m e n t  var ia t ions  in pop-  
u la t ions  (Wilkie et al. 1991) a n d  large-scale so- 
m a t i c  r e a r r a n g e m e n t s  i n v o l v i n g  s u b t e l o m e r i c  
DNA (Cook et al. 1994). 

Our  results va l ida te  the  half-YAC c lon ing  sys- 
t e m  as an  effective m e t h o d  for i so la t ing  large 
s t re tches of  t e l o m e r e - t e r m i n a l  DNA in an  in tac t  
fo rm a n d  provide  te lomer ic  closure for sequence-  
tagged site (STS) c o n t e n t  m a p s  (Olson et al. 1989) 
of h u m a n  c h r o m o s o m e s  2p, 6q, 8q, 12q, a n d  
18q. Modi f i ca t ion  of  yeast  hos t  geno types  to in- 
crease c lone stabi l i ty (Koupr ina  et al. 1994) a n d  
c o n t i n u i n g  r e f i n e m e n t  of RARE cleavage pro to-  
cols (Gnirke et al. 1993; Ferrin et al. 1994; Mac ina  
et al. 1994; Negorev  et al. 1994) m i g h t  p e r m i t  
ve ry  eff ic ient  c l on ing  strategies,  b o t h  r a n d o m  
a n d  directed,  for the  molecu la r  dissect ion of  w h a t  
are l ikely to be a m o n g  the  m o s t  rapid ly  evolv ing  
a n d  var iable  regions  of  eukaryo t ic  g e n o m e s  (Mar- 
t in -Gal la rdo  et al. 1995). 

METHODS 

YAC Characterization 

Methods for the molecular analysis of YAC clones and the 
cytogenetic localization of YAC DNA were as described 
previously (Negorev et al. 1994), except that photographic 
slides of FISH metaphases were scanned into a computer 
using a Sprint-scan (Polaroid), labeled using Adobe Photo- 
shop software, and printed using a Color-Ease printer 
(Kodak). The Genome Data Base (GDB) designations for 
the YACs are given in Table 1. The host strain for yRM2196 
is CGY2516 (Smith et al. 1990). The host strain for 
yRM2158, yRM205Oa, yRM2052, and yRM2053a is 
AB1380 (Burke et al. 1987). yRM205Oa, yRM2052, and 
yRM2053a were constructed using DNA from circulating 
leukocytes (Riethman et al. 1989), whereas yRM2158 and 
yRM2196 were prepared with DNA from CGM-1, a Iym- 
phoblastoid cell line derived from leukocytes of the same 
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individual who donated the DNA for the first group of 
clones. 

DNA Probes 

Vectorette PCR methods (Riley et al. 1990) were used to 
recover 2053V-I (663 bp) from the vector-insert junction 
of yRM2053a. 2158V-I (1300 bp), 2196V-I (600 bp), 
2050V-I (2200 bp), and 2052V-I (1400 bp) were isolated by 
plasmid-rescue methods from the vector-insert junctions 
of yRM2158, yRM2196, yRM205Oa, and yRM2152, respec- 
tively. Each of the aforementioned hybridization probes 
were characterized using Southern blot analysis of human 
genomic DNA digested with either EcoRI or BamHI (5 ~tg of 
human DNA per lane). Hybridization of these blots with 
each probe yielded a single band, easily detectable after a 
2- to 3-day autoradiographic exposure with a conventional 
enhancer screen. 

DNA Sequencing and PCR Assay Development 

Double-stranded DNA templates for sequencing were ob- 
tained directly from the rescued plasmids or from vector- 
ette-rescued junction DNA subcloned into pBluescript 
IIKS. Sequence analysis was performed using the GCG se- 
quence analysis package (Devereux et al. 1984) version 7.0 
and MacVector (IBI) 4. 

PCR conditions were as described previously (Negorev 
et al. 1994). The PCR primers for sV-I 2158 were 5'- 
TITTGCACCAACATTATCAAGG-3' and 5'-GCTGTGCAG- 
GTCCTTGTFG-3'; the assay generated a 95-bp product (2.5 
mM MgC12 at 65°C annealing temperature). The primers 
for sV-I 2196 were 5'-GATGAGGGAGTITGGGGG-3' and 
5'-AAGCCATTTCCACTCCTCCT-3'; the assay generated a 
116-bp product (1.5 mM MgC12 at 65°C annealing temper- 
ature). The primers for sV-I 2050 were 5'-GTGCCAC- 
GAGAACGTGAAC-3" and 5'-ATTCCATCACCTAAAA- 
CATGGC-3'; the assay generated a 151-bp product (1.5 mM 
MgC1 z at 65°C annealing temperature). The primers for 
sV-I 2052 were 5'-GATCTCACTGCAATTTCTACA-3' and 
5'-TCCATTITCTCCAAGTTATCA-3'; the assay generated a 
96-bp product (2.5 mM MgClz at 60°C annealing temper- 
ature). The primers for sV-I 2053a were 5"-ATTCTCCTAT- 
GTI'TCCTGGTGC-3' and 5'-GTTCACCACTTCCCACTCT 
TG-3'; the assay generated a 75-bp product (1.5 mM MgC12 
at 65°C annealing temperature). 

DNA samples comprising the National Institute of 
General Medical Sciences (NIGMS) Human/Rodent So- 
matic Hybrid Mapping Panel 2 were purchased from the 
Coriell Cell Repositories. Recent publications (Drwinga et 
al. 1993; Dubois et al. 1993) describe the known inconsis- 
tencies present in this panel of mainly monochromosomal 
human-rodent hybrid cell lines. 

RARE Cleavage 

RARE cleavage and detection of RARE cleavage fragments 
on blots of pulsed-field gels were as described previously 
(Ferrin and Camerini-Otero 1994; Macina et al. 1994; Ne- 
gorev et al. 1994). Oligonucleotides with perfect homol- 
ogy to EcoRI half-sites are sufficient to direct RARE cleav- 
ages of DNA (Ferrin and Camerini-Otero 1991). The effi- 
ciency of these cleavages can be increased by including a 
short region of random sequence at the end of the oligo- 
nucleotide, adjacent to the perfect match at the EcoRI site 
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(Ferrin and Camerini-Otero 1991). We have shown that 
oligonucleotides containing 50 nucleotides of homology 
to genomic DNA adjacent to an EcoRI site and 10 bases of 
"random" sequence beyond the targeted EcoRI site can be 
used to produce very efficient single cleavages of mamma- 
lian complexity genomic DNA (Macina et al. 1994; Ne- 
gorev et al. 1994). When significant purine versus pyrimi- 
dine DNA strand biases were present on the two potential 
candidate RARE oligonucleotides for a given EcoRI site, the 
purine-rich strand was selected to direct RARE cleavage. 
The oligonucleotides used for the RARE experiments were 
R-2158 (60-mer), 5'-CGTCTTCAAGAATTCTACACTG- 
TAAATGTGCTGAGTGCGGCCGAATTCTACACTGTAAAT- 
3'; R-2196 (60-met) ,  5 '-TGGAGGTTAGGCAATGT- 
GTCTAAGTAGTAACAGTGAGAGTTTTCAGAATTCT- 
TGAAGACG-3'; R-2050a (60-mer), 5'-CGTCTTCAA- 
GAATTCTAACAGAGGCAAACTACCACATAAAGCTCAC- 
GTGCCACGAGAACG-3'; R-2052 (60-mer), 5'-CGTCTT- 
CAAGAATTCTTAACAAGATTGAATGTCTAAATTAAT- 
GAAAATAGTTATATCTCC-3"; and R-2053a (60-mer), 
5"-TCCTTGCTGTATACATATGCAAGAGTGGGAAGTGGT- 
GAACATAGGAAT TCATGTTTTCGA-3'. The EcoRI sites are 
underlined. The 10 bases beyond the EcoRI sites corre- 
spond to the vector sequence in the YAC adjacent to the 
EcoRI cloning site, except for the yRM2053a RARE oligo- 
nucleotide, which spans an internal EcoRI site located 128 
bp from the EcoRI cloning site. 
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NOTE 

G e n B a n k  acces s ion  n u m b e r s  for t h e  s e q u e n c e d  

f r a g m e n t s  are U l 1 8 3 5  a n d  U l 1 8 3 4  (2158V-I) ,  

U l 1 8 3 8  (2196  V-I), U l 1 8 2 8  (2050V-I) ,  U 3 2 3 8 9  

(2052V-I) ,  a n d  U l 1 8 2 9  (2053V-I) .  
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