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Merging Two Worlds: Agent-based 
Simulation Methods for Autonomous 

Systems
Andreas Tolk

Abstract
This chapter recommends the increased use of agent-based simulation 

methods to support the design, development, testing, and operational use 
of autonomous systems. This recommendation is motivated by deriving 
taxonomies for intelligent software agents and autonomous robotic systems 
from the public literature, which shows their similarity: intelligent software 
agents can be interpreted as the virtual counterparts of autonomous robotic 
systems. This leads to examples of how simulation can be used to significantly 
improve autonomous system research and development in selected use cases. 
The chapter closes with observations on the operational effects of possible 
emergent behaviour and the need to align the research agenda with other 
relevant organisations facing similar challenges.

Introduction
Modelling and simulation (M&S) is well known and often applied in NATO. 

Although mostly used in the training domain in the form of computer-as-
sisted exercises, the NATO M&S Master Plan identifies five application areas 
that can capitalise on M&S: support to operations, capability development, 
mission rehearsal, training and education, and procurement.(1) This chapter 
therefore explores how M&S can best be used to support the various capacities 
of autonomous systems. 

In their application-focused overview of M&S paradigms, Hester and Tolk 
describe the broad spectrum of M&S approaches:(2) 

1.  NATO 2012.
2.  Hester and Tolk 2010.

13
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 ͳ Monte Carlo simulation (the method of repetitive trials): This paradigm 
uses probabilistic models of usually static systems, and is used to evaluate 
systems that are analytically untraceable (such as those that cannot easily 
be described by mathematical functions).

 ͳ Systems dynamics: This paradigm is used to understand the behaviour 
of nonlinear, highly interconnected systems over time. It uses internal 
feedback loops, flows with time delays, and stocks and piles to model 
the system; systems are usually described using a top-down approach.

 ͳ Discrete event simulation: This paradigm is used for the dynamic simulation 
of systems in which the states are changing instantaneously when defined 
events occur. Event, time, and state change have to be defined precisely.

 ͳ Continuous simulation: This paradigm is used for the dynamic simula-
tion of systems in which the states are changing continuously over time. 
They are normally described by differential equations that have to be 
approximated numerically.

 ͳ Agent-based simulation: The ‘agent’ metaphor uses agents as ‘intelligent 
objects’ that build a system from the bottom up, using agents to define the 
components of the systems. Agents perceive and act within their situated 
environment to reach their goals. They communicate with other agents 
following a set of rules. By adapting their rules to new constraints in the 
virtual environment, software agents can ‘learn’.

It is worth mentioning that system dynamics implements a typical top-
down design approach, while agent-based models are more useful for building 
systems from the bottom up based on component descriptions. Discrete event 
simulation supports both approaches, but traditionally is used more often to 
implement top-down solutions.

While all M&S paradigms can provide some support to autonomous systems, 
the agent-based simulation paradigm is of particular interest, as autonomous 
systems reflect characteristics similar to those of software agents. Autonomous 
robotic systems(3) are defined by the ability (e.g., by using integrated sensing, 
perceiving, analysing, communicating, planning, decision making, and acting/

3.  The insights derived in this chapter are primarily based on the field of robotics, which is why the term 
‘autonomous robotic systems’ is used. It is reasonable to assume that the results are generalisable, but a 
formal evaluation has not yet been conducted.
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executing) to achieve assigned goals.(4) Intelligent software agents are defined 
by their ability to perceive their situated environment; socially interact with 
other agents for planning and executing; act in their environment based on 
their programmed beliefs, desires, and intentions; observe the results; and 
adjust their actions based on these results.(5) 

The research presented in this chapter not only shows that the character-
istics of autonomous robotic systems and intelligent agents are similar, but 
also that the taxonomies are alike as well. This is important because it means 
that agent-based simulation methods can be used to support autonomous 
robotic systems in various application domains. Furthermore, observations of 
emergent behaviour typical of agent-based systems are likely to be observed 
in autonomous system populations as well.

Characteristics and Taxonomy
This section describes the characteristics and taxonomy of intelligent soft-

ware agents, as they are used within agent-based modelling, and of autonomous 
robotic systems, as they are dealt with in this book. Its goal is to provide the 
researchers of both domains with a basic understanding of why it is pivotal 
for them to work together to maximise the benefit for NATO.

Intelligent Software Agents
This section is mainly derived from the contribution of Tolk and Uhrmacher 

to the seminal work of Yilmaz and Ören.(6) The agent metaphor is a well-re-
searched topic, but the results are distributed among a huge variety of research 
domains. The metaphor is based in various computer science areas – such as 
distributed systems, software engineering, and artificial intelligence – and has 
been strongly influenced by research results from disciplines such as sociology, 
biology, cognitive sciences, systems sciences, and many others. Although there 
are many definitions of agents, the following working definition provided by 

4.  Huang, Messina, and Albus 2003.
5.  Yilmaz and Ören 2009.
6.  Tolk and Uhrmacher 2009; Yilmaz and Ören 2009.
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Tolk and Uhrmacher describes the main characteristics of intelligent software 
agents:(7)

 ͳ The agent is situated, it perceives its environment, and it acts in its envi-
ronment. The environment typically includes other agents, other partly 
dynamic objects, and passive ones, which are, for example, the subject of 
manipulation by the agent. The communication with other agents is of 
particular interest in systems comprising multiple agents, as agents can 
collaborate and compete for tasks. This latter characteristic has also been 
referred to as ‘social ability’.

 ͳ The agent is autonomous, in the sense that it can operate without the direct 
intervention of humans or others; autonomy requires control of its own 
state and behaviour. Agents must be guided by some kind of value system, 
which leads to the often-used statement: ‘objects do it for free, agents do 
it for money’.(8) In other words, an object always executes functions that 
are invoked, while agents can decide if (and how) they react to a request.

 ͳ The agent is flexible, which means it can mediate between reactive behav-
iour (being able to react to changes in its environment) and deliberativeness 
to pursue its goals. A suitable mediation is one of the critical aspects for 
an agent to achieve its tasks in a dynamic environment. An agent can 
act upon its knowledge, rules, beliefs, operators, goals, and experiences, 
etc. and to adapt to new constraints and requirements – or even new 
environments – as required. For example, new situations might require 
new goals, and new experiences might lead to new behaviour rules. In 
other words, an agent can learn. Furthermore, being mobile adds to its 
flexibility.

The following figure exemplifies these characteristics. It shows an intelligent 
agent in the centre of its environment. The agent perceives its environment, 
which includes other agents he can interact with and objects he can act on. He 
maps this perception to an internal representation, which may be incomplete, 

7.  Tolk and Uhrmacher (2009, 77). As a rule, intelligent software agents are virtual entities that exist 
in software programs. However, this technology is already applied commercially to support intelligent 
internet-based software agents that support the automatic updating of travel arrangements, recommend 
new products to customers, etc.
8.  Jennings, Sycara, and Wooldridge 1998.
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e.g., he only knows about one of the square posts and nothing about the trian-
gular-shaped object. Objects can be static or expose dynamic behaviour, like 
the ball that will roll once it is kicked. Advanced agents may use simulation to 
act on their perception to support their decision-making process; for example, 
they may simulate each alternative and apply measures of merit that reflect their 
goals, desires, and beliefs onto the projected result and select the alternative 
with the highest expected value. An agent communicates with other agents and 
acts on the objects, such as kicking the ball in the direction that the other agent 
is running. If the plan does not work as expected, the agent will learn from his 
observations that this action does not lead to the desired outcome, and he will 
choose other options in the future. If something works well, he will use this 
strategy more often. Holland describes several learning algorithms that can be 
applied, and many more have been developed and successfully applied since 
then.(9) Some agents use game theory approaches to select a mixed strategy 
based on the expected pay-offs of possible alternatives.(10)

9.  Holland 1986.
10.  Parsons and Wooldridge 2002.

Figure 13.1. Intelligent Software Agents in the Situated Environment
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In order to implement these characteristics, several architectural frameworks 
were recommended in the agent-based literature, many of which focus on the 
particular area of interest. Moya and Tolk 2007 composed the various ideas 
into a common architectural framework that captures the taxonomy of a single 
intelligent software agent.(11) This taxonomical structure was kept simple and 
adaptable in order to support as many viewpoints as possible. It identifies three 
external domains and four internal domains. 

The three external domains comprise the functions needed within an agent 
to interact with the situated environment, which includes objects and other 
agents:

1. The perception domain observes the environment. Using its sensors, the 
agent receives signals from his environment and sends this information 
to the internal sense-making domain.

2. The action domain comprises the effectors. If the agent acts in his envi-
ronment, the necessary functions are placed here. It receives the task to 
perform tasks from the internal decision-making domain.

3. The communication domain exchanges information with other agents or 
humans. If it receives information, it is sent to the internal sense-making 
domain. It receives tasks to send information from the internal deci-
sion-making domain.

The four internal domains categorize the functions needed for the agent 
to decide how to act and adapt as an autonomous object (see Figure 13.2):

1. The sense-making domain receives input (via sensors and communication) 
and maps this information to the internal representation that is part of 
the memory domain. These domains comprise potential data correlation 
and data fusion methods; data mediation capabilities; methods to cope 
with uncertain, incomplete, and contradictive data, etc.

2. The decision-making domain supports reactive as well as deliberative meth-
ods, as they have been discussed in this chapter. It uses the information 
stored in the memory domain and triggers communications and actions.

3. The adaptation domain may be connected with perception and action 
as well, but that is not a necessary requirement. The comprised function 

11.  Moya and Tolk 2007.
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group updates the information in the memory domain to reflect current 
goals, tasks, and desires.

4. The memory domain stores all information needed for the agent to 
perform his tasks. It is possible to distinguish between long-term and 
short-term memory, and different methods to represent knowledge can 
be used alternatively or in hybrid modes.

A complete agent taxonomy for agent-based simulation needs to reflect not 
only on the individual agents, but also on the characteristics of the situated 
environment as well as of the agent society. Wooldridge identifies five categories 
to characterize the environment for an intelligent software agent:(12) 

1. Accessibility. The environment can be accessible or non-accessible. This 
category addresses how much of its attributes the environment exposes. 

12.  Wooldridge 2000.

Figure 13.2. General Taxonomy of an Intelligent Software Agent
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This is different from the question of how the agent perceives what is 
exposed, and whether he can make sense of what he perceives.

2. Determinacy. The environment can be deterministic or stochastic. In 
deterministic environments, an action always has the same deterministic 
effect. In stochastic environments, this is not the case. For all practical 
purposes, the ‘real world’ can be assumed to be stochastic in nature.

3. Reactivity. The environment can be episodic or sequential. In episodic 
environments, the action is only relevant for the current episode. In 
sequential environments, an action may have effects in future states as 
well. This includes the idea of ‘effects of effects’ that often take some time 
to be exposed. The ‘real world’ is sequential in nature.

4. Degree of change. The environment can be static or dynamic. A static 
environment does not change during the evaluation period; a dynamic 
environment does. The real world is dynamic in principle, but in many 
practical applications is static for this particular application.

5. Type of change. The environment can be discrete or continuous. Furthermore, 
discrete environments can differ in the level of resolution, accuracy, and 
granularity. This category directly connects back to the modelling para-
digm used to provide the environment for the software agents.

In their analysis of different collections of agents and how they act in 
society, Moya and Tolk identified the size (number of agents) and diversity 
(type of agents) as the driving categories in the literature dealing with agent 
societies.(13) To cope with all observations, two additional categories – social 
interactions and openness – were proposed to characterize the agent societies 
built by intelligent software agents more generally.

 ͳ Size. The number of agents within the population can vary between 
large-scale numbers of several thousand agents down to a few agents. 
In some cases, only a single agent is used, although this is the exception.

 ͳ Diversity. The society can comprise agents that are all of the same type, 
building a homogeneous society, or agents of different types, building 
a heterogeneous society. It is worth mentioning that even agents of the 

13.  Moya and Tolk 2007.
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same type can exhibit different behaviour depending on their state and 
initialization. 

 ͳ Social interactions. The agents can either cooperate with each other or 
be in competition. In addition, all mixed forms are possible, such as 
coalitions that cooperate with each other but compete with others. It is 
also possible that agents are agnostic and that every agent follows its own 
objectives without any interaction.

 ͳ Openness. The agent society can be open or closed. In open societies, 
anyone can contribute agents and add them to the society. In closed 
societies, the number of contributors is limited by constraints. The 
contributors can be human, other agents, or systems. As before, various 
mixed forms are possible.

The resulting agent taxonomy, which reflects all characteristics of agent-
hood regarding the agent, the situated environment, and the agent society, is 
exemplified using the top-level categories in Figure 13.3.

Figure 13.3. Taxonomical Components Describing Agenthood
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The viewpoint of this summary of characteristics and taxonomy of intelligent 
software agents is biased toward the applicability of agent-based modelling 
methods in support of autonomous robotic systems, in particular to show 
the similarities.(14)

Autonomous Robotic Systems
The characteristics and taxonomical structures presented in this section 

are simplified to improve easier understanding of the mapping potentials 
between components of the agent-based simulation domain and the domain 
of autonomous robotic systems.

As with intelligent agents, a multitude of heterogeneous application domains 
and supporting disciplines contributed to the definition of autonomous robotic 
systems. A common understanding of autonomy is that the system has the 
capability to make decisions about its actions without the involvement of an 
operator, which also entails entrusting the system to make these decisions. 
This is far more than automation, which involves using control systems and 
information technology to reduce the need for human intervention within 
well-defined constraints.

The Autonomy Level for Unmanned Systems project by the National Institute 
of Standards and Technology defines autonomy as: 

The condition or quality of being self-governing. When applied to 
unmanned autonomous systems (UAS), autonomy can be defined as 
UAS’s own ability of integrated sensing, perceiving, analysing, commu-
nicating, planning, decision-making, and acting/executing, to achieve its 
goals as assigned by its human operator(s) through designed human-ro-
bot interface (HRI) or by another system that the UAS communicate 
with.(15) 

Autonomous robotic systems are an example of UAS. Their characteristics 
are close to the working definition presented for intelligent software agents 
above. The main difference is that software agents are virtual actors in a virtual 

14.  For more detailed information, see Yilmaz and Ören 2009.
15.  Kendoul 2013.
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world, while robots are physical actors in the physical world. The following 
list has been compiled to clarify the similarities of intelligent software agents 
and autonomous robotic systems.

 ͳ The autonomous robotic system is situated, it perceives its environment, 
and it acts in its environment. The environment typically includes other 
autonomous robotic systems and objects that are subject to manipulation 
by the system. In scenarios with multiple robots, they can collaborate and 
compete for tasks. Therefore, autonomous robotic systems often have the 
ability to communicate with each other.

 ͳ The robotic system is autonomous in the sense that it can operate without 
the direct intervention of humans or others; autonomy requires control 
of its own state and behaviour. As a rule, it needs to have a plan that is 
often assigned by one or several human operators.

 ͳ The autonomous robotic system is flexible. If the observation shows that 
current actions do not lead to the desired effects, the autonomous robotic 
system can identify and execute alternatives. Advanced systems may even 
create a new plan together. Mixed strategies between immediate reactive 
behaviour and more time-consuming deliberate behaviour ensure that 
the system is safe in critical environments.

 ͳ The autonomous robotic system is mobile, in the sense that it can move in 
the environment within the physical constraints imposed on it. Eventually, 
additional rules of engagements may set more constraints than just the 
physical ones.

The resulting taxonomy presented here is a simplified aggregate of the 
ideas presented in Matarić’s and Siegwart, Nourbakhsh, and Scaramuzza’s 
seminal works on robotics and autonomous mobile robots.(16) The following 
components comprise the taxonomy of an autonomous mobile robotic system:

 ͳ The locomotion component moves the system in its environment, and is 
constrained by the different degrees of freedom. These can be tracks or 
wheels, but also the rotors of a helicopter or quadrocopter, etc.

16.  Matarić 2007; Siegwart, Nourbakhsh, and Scaramuzza 2011.
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 ͳ Actuator components are moving parts of the autonomous robotic system, 
such as robot arms, sensors, antennas, etc., which are used in order to act 
on things, perceive better, etc.

 ͳ Manipulation components interact with objects and the environment. They 
grab, push, turn, and do whatever is needed to act on the environment 
to conduct actions according to the plan.

 ͳ Sensor components observe the environment. They are the eyes and ears of 
the robot. They can be passive or active. They can be as easy as switches 
operated by bumpers, or they can be lasers and sonars or complex cameras.

 ͳ Signal processing components are used to convert sensor signals into 
computable information. They are sometimes seen as components of 
the sensor, but Matarić points out that these components are also used 
to convert computed information into actuator signals. As such, they 
are sitting between the eyes, ears, and arms of the robot, and its brain.

 ͳ The control component is the ‘brain’ of the autonomous system. It makes 
the decisions based on the perception created from the input of the sensors 
and the plan the robot is following. As a rule, the control component is 
a computer.

 ͳ Communication components exchange information with other robots, as 
well as with humans, via HRI. The variety of communication components 
is as big as that of sensors, but they all serve the same purpose: allowing 
the control component of the robot to exchange information with other 
entities.

 ͳ Of critical importance are the power supply components, as they are the 
energy source for all actions. Usually, these are batteries or solar panels, 
but alternatives are possible as well, depending on the size and the tasks 
of the robot.

Figure 13.4 displays the components using the structure of the intelligent 
agent taxonomy as a guide.
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There are, without a doubt, many differences between agents and robots. 
Agents live in the virtual world, while robots live in the physical world. As such, 
robots have many tasks regarding locomotion, perception, localization, and 
navigation that the agents do not have to address in the virtual world. A lot of 
research has therefore been directed at better sensors, better locomotion and 
manipulator components, and other components that are necessary to make a 
robot work in the physical environment. As a result, the external domains are 
dealt with in greater detail in the robotics domain than in the agent domain. 
Many robotics practitioners even regard simulation as inferior, stressing that 
there is a huge reality gap between the needs of robotics and the contribution 
capability of simulation.

In contrast to such perceptions, the focus in this chapter shifts toward 
domains in which intelligent agent research already provides results that are 
directly applicable to improving autonomous robotic systems. The social ability 
of agents; the ability to learn; and the algorithms developed, implemented, and 
tested regarding sense making, decision making, and other components of the 

Figure 13.4. General Taxonomy of an Autonomous Robotic System
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interior domain can support more intelligent robotics behaviour. Furthermore, 
the simulated environment of agents is a safe and inexpensive test bed for the 
intelligent behaviour of autonomous robotic systems as well.

The taxonomical similarity between intelligent software agents and auton-
omous robotic systems allows the identification of these areas of mutual 
support. In the next section, several application domains are identified that 
can be immediately utilized to improve the behaviour of robots by applying 
methods from the agent paradigm.

Applying the Agent Paradigm in Support of Autonomous 
Robotic Systems

This section is neither complete nor exclusive. The objective is to give 
three examples of very different application domains showing the synergy of 
intelligent software agents, M&S, and autonomous robotic system research. 
The first example shows the synergy in the domain of test and evaluation, 
starting earlier in the procurement phase, where first testing is possible using 
only virtual prototypes of an envisioned autonomous robotic system. The 
second example shows how sense making and machine understanding, as 
used in intelligent software agents, can be used successfully to improve the 
sensing and perceiving activities needed in autonomous robotic systems as 
well. The third topic shows the relevance of research results in the domain of 
intelligent software agents for operational experts who are interested in using 
autonomous robotic systems.

Developing and Testing Autonomous Robotic Systems
Many simulation publications give examples of using simulation as a test 

bed to stimulate systems under test, some of them more than a decade ago, 
such as McKee.(17) The US Army launched the Simulation and Modelling for 
Acquisition, Requirements and Training initiative to support this domain,(18) 
which spawned several follow-on activities in the other services as well as in 

17.  McKee 1998.
18.  Page and Lunceford 2001.
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NATO. Neugebauer et al. present related work on a distributed test bed based 
on simulation services.(19)

Today, the idea of using simulation to provide stimulation for a system 
under test is well established and often applied. However, autonomous robotic 
systems are posing new challenges for the test-and-evaluation community. In 
addition to exposing a great variety of requirements from many stakeholders, 
the main challenge is that autonomous robotic systems operate in a dynamic 
and unpredictable environment, and onsite testing of the total feature set of a 
new system under realistic operational conditions is impractical.

Agent-based test environments can help address these challenges in two 
ways. First, they allow the behaviour of an autonomous robotic system to 
be tested using its virtual counterparts before it is implemented within the 
physical robot. An intelligent software agent can follow the same rule sets in 
the virtual environment that the autonomous robotic system would follow 
in the real environment. Its sensors can be simulated, as can its interactions 
with objects. This idea is not new, as documented by Akin et al. using the 
example of the RoboCup Rescue Robot and Simulation Leagues.(20) Many of 
these simulated rescue robots can be programmed in the same programming 
language and with the same tools that the real robots will be using later on. 
The Defense Advanced Research Project Agency Robotic Challenge uses the 
same approach. Aleotti et al. envisioned such an approach early on.(21)

The author supported the US Navy with research on the ‘Riverscout’, an 
unmanned surface water vehicle that demonstrates some autonomous behaviour 
as well. Figure 13.5 shows various simulation screen shots as well as the real 
system in a test. Some additional information has been published by Barboza.(22) 

The second way in which agent-based models support the testing is by 
providing a smart and adaptive test environment. The test environment is not 
just a script-driven stimulation provider that allows the researcher to system-
ically provide all sorts of inputs; it actually reacts meaningfully to the actions 
of the system. In other words, agent-based models realistically replicate the 
dynamic and unpredictable operational environment for the test. Furthermore, 

19.  Neugebauer, Nitsch, and Henne 2009.
20.  Akin et al. 2013.
21.  Aleotti, Caselli, and Reggiani 2004.
22.  Barboza 2014.
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they offer the other autonomous robotic systems that are needed to provide 
the full operational functionality within a scenario realistically. Every system 
is represented by intelligent software agents. If the ideas of executable archi-
tectures based on operational specifications (as provided by common system 
architectures) are applied, as described in more detail by Garcia and Tolk, each 
intelligent software agent can take over the role of a system with the envisioned 
portfolio to provide the most realistic operational conditions for testing, even 
if not all systems of the portfolio are physically available.(23)

A major challenge for agents representing human actors has been to elicit 
expert knowledge in a form that agents can use. Hoffman et al. showed that 
Applied Cognitive Task Analysis and critical decision methods allow for the 
creation of a cognitive representation for agents within the virtual environ-
ment.(24) Garrett conducted a series of experiments to show their applicability for 

23.  Garcia and Tolk 2013.
24.  Hoffman, Crandall, and Shadbolt 1998.

Figure 13.5. Simulation Support for the Unmanned Surface Vehicle ‘Riverscout’
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intelligent software agents.(25) This research is highly relevant when autonomous 
robotic systems are supposed to be surrogates for human experts.

These last two paragraphs also emphasize that the behaviour of an intel-
ligent software agent shall never be rooted in interpretations of a software 
developer, but driven by experts’ insights and operationally validated artefacts. 
This insight becomes even more important when the methods are applied to 
implement intelligent behaviour for robots, as they act (and interact) in the 
physical world, and failures and wrong decisions may have dangerous – and 
even deadly – consequences. The autonomous robot system community should 
therefore carefully analyse the lessons learned from the intelligent software 
agent community.

The first systems using related technologies are already in operational-like 
use. The Control Architecture for Robotic Agent Command and Sensing project 
conducted by the Office of Naval Research evaluates swarm technology, which 
is a sub-set of agent-based technology, to control a set of autonomous surface 
vessels to protect selected ships. The sensor and software kit can be transferred 
between small vessels that are under human control, but follow simple rules 
that all contribute to a new capability to better protect ships. Similar approaches 
have been successfully tested for search and rescue operations.

Using Agent Methods to Implement Intelligent Behaviour
Even in their seminal book on autonomous mobile robots, Siegwart et al. 

explicitly state that the focus lies on mobility.(26) Comparing the two taxonom-
ical structures presented in Figures 13.2 and 13.4 also shows that the focus of 
agents is the sense making and decision making to act meaningfully in the 
virtual world, while the focus of robots is more geared toward interacting with 
the physical world. Again, this represents a possibility to create synergy by 
bringing both worlds together and using intelligent software agent methods 
to enable autonomous robotic systems to expose the same degree of sense 
making, decision making, memory, and adaptation as agents do.

25.  Garrett 2009.
26.  Siegwart, Nourbakhsh, and Scaramuzza 2011.
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An applicable lesson learned goes back to Zeigler’s work on how machines 
gain understanding.(27) This model will be explained here in a slightly modified 
form. Nearly 60 more types of machine understanding, many of them also 
applicable to this chapter, have been evaluated by Ören et al., and many have 
been successfully applied within intelligent software agents.(28) They provide 
a rich body of knowledge that the autonomous robotic system community 
can draw from. In order for a machine to understand, four premises have to 
be fulfilled, as they are visualized in Figure 13.6:

1. The machine must have sensors to observe its environment. The type of 
sensor defines which attributes can be observed and which properties and 
processes can be recognized if the target-noise ratio between the observed 
system and the situated environment is high enough.(29) 

27.  Zeigler 1986.
28.  Ören et al. 2007.
29.  Some general sensor modelling constraints have been documented in Tolk (2012).

Figure 13.6. Using Meta-Models and Mappings in Support of Machine-based Sense-making
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2. The machine has a perception of the system to be understood. The prop-
erties used for the perception should not significantly differ in scope and 
resolution from those exposed by the system under observation. They 
are often closely coupled with the sensor’s abilities as well as with the 
machine’s computational abilities.

3. The machine has meta-models of observable systems, which are descrip-
tions of properties, processes, and constraints of the expected behaviour 
of observed systems. Understanding is not possible without such models. 
They can be understood as types of systems that may be observed in the 
situated environment.

4. The machine can map the observations, resulting in the perception of a 
suitable meta-model explaining the observed properties, processes, and 
constraints.

Understanding involves pairing the perception with the correct meta-model. 
If such a model does not exist, a sufficiently similar model can be used that 
explains at least part of the behaviour. The learning algorithms mentioned 
above can then be applied to adapt existing models or to create new models 
that can be applied to future observations.

This principle is not too far from how humans gain knowledge. When 
primitive peoples first make contact with higher civilizations, they often use 
familiar terms to address new concepts that are ‘close enough’. Examples may 
be ‘giant metal birds’ when addressing airplanes, or ‘giant locusts with human 
faces prepared for battle’ when describing attack helicopters with pilots in 
their cockpits. The concept of a bird addresses the ability to fly, but one of the 
properties is very different from birds, as they normally are not made out of 
metal. Once enough information is collected, new concepts can be created to 
deal with the observed system, so that it can be recognized.

Another aspect of interest is the possibility of capturing desires and beliefs in 
machine-understandable form. Harmon et al. documented canonical structure 
to allow mimicking the behaviour of both single human beings and collec-
tives.(30) Again, this knowledge can be applied to make autonomous robotic 
systems act ‘more human’ if this is in the objectives of the development.

30.  Harmon et al. 2001.
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Emergence and Operational Implications
Intelligent software agents are often connected with emergence. Maier 

distinguishes in the context of system-of-systems engineering between weak, 
strong, and ‘spooky’ emergence.(31) Looking at this mainly from the systems 
perspective (not as an artificiality of the representing model or software), he 
defines the terms as follows:

Weak Emergence: An emergent property that is readily and consistently 
reproduced in simulations of the system, but not in reduced complexity 
non-simulation models. It can be understood through reduced com-
plexity models of the system after observation, but not consistently 
predicted in advance.

Strong Emergence: An emergent property that is consistent with 
the known properties of the system’s components but which is not 
reproduced in any simplified model of the system. Direct simulations 
of the system may reproduce the emergent property but do so only 
inconsistently and with little pattern to where they do so and where they 
fail. Reduced complexity models or even simulations do nor reliably 
predict where the property will occur.

Spooky Emergence: An emergent property that is inconsistent with 
the known properties of the system’s components. The property is 
not reproduced in any model of the system, even one with complexity 
equal to that of the system itself, even one that appears to be precisely 
simulating the system itself in all details.(32) 

A well-known example of the general emergence of system behaviour that 
results from simple rules between the implementing components is Schelling’s 
segregation model.(33) It has been implemented multiple times to show how 
people use very simple rules to select their neighbourhood. This decision is 
based on a preferred mix between two population groups. On the system level, 
segregation patterns emerge without any implicit or explicit formulation of 
such a property on the component level.

31.  Maier 2014.
32.  Ibid., 22
33.  Schelling 1969.
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Bonabeau’s seminal paper on using agent-based modelling to represent 
self-deciding entities made a strong connection between emergent behaviour 
in the system and such entities.(34) While accepted in social systems, such 
emergent behaviour is often not wanted in technical systems, such as societies 
of autonomous robotic systems. Nonetheless, as the system composition is 
analogous to that of an agent-based population, emergent properties are more 
likely to be observed.

The following figure shows an example implemented in Netlogo, which is an 
open system developed by the Center for Connected Learning at Northwestern 
University.(35) The left figure shows six zones in which agents can move. The 
rule for the agents is to move around the zone using an equal distribution to 
cover all ground, but to avoid colliding with other agents in the same zone and 
to keep a safe distance from agents in a neighbouring zone. An operational 
interpretation could be drones in the air zones of coalition partners that want 
to observe their areas of responsibility. When counting the number of times 
an agent visits another agent, the right picture emerges: there are some islands 
close to the border between the areas of responsibility that are rarely visited, 
although no rule excluded these areas from observation.

In an operational context, such areas can easily become safe havens for 
activities that were supposed to be observed in the first place. While this example 
is trivial and easy to fix, it demonstrates the underlying challenge: how can a 

34.  Bonabeau 2002.
35.  Tisue and Wilenski 2004.

Figure 13.7. Emergent Observation Patterns and Gaps
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commander support positive emergence that helps reach his objective while 
avoiding negative emergence that is counterproductive?

A first step is to raise awareness that emergence in systems comprising 
interacting autonomous robotic systems will occur. It is not an artificiality. 
It will happen, and it needs to be controlled in the context of the operational 
objectives. A second step is to conduct more research on whether – and to what 
degree – it is possible to engineer positive emergence into such systems and 
avoid negative emergence. Although initial results have been published, and 
some answer may even be found in the fundamentals of cybernetics as described 
by Ashby, the topic itself is still in its infancy.(36) Tolk and Rainey are making 
it a priority in their recommended research agenda.(37) The engagement of the 
autonomous robotic system community is highly encouraged, as the results of 
this research are directly applicable to societies of autonomous systems as well.

Summary
In the only recently released report on this topic,(38) internationally recog-

nized experts recognised the perpetually increasing importance of modelling 
and simulation for the design, development, testing, and operation of increas-
ingly autonomous systems and vehicles for a wide variety of applications on 
the ground, in space, at sea, and in the air. Section 4 of the report identifies 
the four most urgent and most difficult research projects:

1. behaviour of adaptive/non-deterministic systems;
2. operation without continuous human oversight;
3. modelling and simulation; and
4. verification, validation, and certification.

All four research domains are at least touched on this chapter: (1) agents are 
virtual prototypes that can be used to evaluate the behaviour, (2) establishing 
robust rules and procedures allows the operation to be conducted without 
human oversight, (3) the use of modelling and simulation is an important 
area of research, and (4) verification, validation, and certification are an 

36.  Ashby 1963.
37.  Tolk and Rainey 2014.
38.  NRC 2014.
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important aspect that justifies the use of agent-based test beds. This shows not 
only the necessity of related research, as recommended in this chapter, but it 
also demonstrates the potential of fruitful collaboration in this domain with 
other research agencies. Many civil agencies and government organisations are 
interested in these questions. The results of their efforts should be observed, 
as it is likely that many of their key findings can help answer the urgent NATO 
research questions.

The domain of intelligent software agents has an enormous potential to 
enrich the research on autonomous robotic systems. It can (and should) be 
applied in the domain of procurement: 

1. test and evaluation – testing robotic behaviour in a virtual environment 
before the robot is built;

2. providing a flexible and intelligent test bed for autonomous systems, as 
traditional test and evaluation methods are insufficient to test systems’ 
autonomous characteristics;

3. using established methods and algorithms to enable the learning and 
adaptability of robots, as intelligent software agents are well known for 
their ability to learn and adapt to new situations (and the topological 
similarity shown in this chapter implies that many ideas can be mapped 
and reused); and

4. operational support – from building awareness of new challenges and 
demonstrating new capabilities to evaluating emergent behaviour in the 
operational context.

Both communities should actively engage to develop synergisms and poten-
tially multi-disciplinary collaboration with NATO, which has the necessary 
structures for common research and presentation in place. Hopefully, this 
chapter will help establish a common research agenda and encourage mutual 
benefit from results that are already available.
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