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ABSTRACT 

MEASURING AND MODELING BARE DESERT WIND EROSION FROM STEPPE 

GRASSLAND OF CHINA AS AFFECTED BY SOIL MOISTURE AND CLIMATE 

 

Nicholas Morgan Potter 

Old Dominion University, 2019 

Director: Dr. Xixi Wang 

 

 

Soil erosion by wind has been found to be negatively related to soil water content, as 

evidenced by that for a given area, such a soil erosion can be much less in a wet than a dry year. 

However, few studies have examined the functional relationship between wind erosion and soil 

moisture, primarily due to lack of field measured data. The objectives of this study were to: 1) 

measure wind erosion in field using a portable wind tunnel devised and made by the author; 2) 

use the measured data to calibrate/validate a wind erosion model previously developed by the 

author; 3) model the potential effects of climate change via changes in moisture and wind speed. 

The study was conducted in the steppe grassland within the Balagaer river watershed located in 

north China. As part of a larger project funded by the National Science Foundation, this study 

focused on soil conditions with a minimal vegetation coverage to understand the functional 

relationship between wind erosion, soil moisture, and climate. These conditions are similar with 

those during winter and spring and/or when the grassland degrades and ultimately becomes a 

desert. Field samples were analyzed in a laboratory to determine the soil characteristics (e.g., 

moisture content, texture, hydraulic conductivity, and organic content).  
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NOMENCLATURE 

 

qa Wind erosion modulus, g m-2 s-1 

Ca Soil-specific coefficient of wind erosion when the surface soil is bare and dry, g m-5 s2 

* Effective wind shear stress, N m-2 

*c  Threshold wind shear stress, N m-2 

u Wind speed, m s-1 

u* Friction shear velocity at the ground surface, m s-1 

u*
′ Friction shear velocity at the zero-plane displacement height, m s-1 

u* Threshold friction shear velocity when the surface soil is bare and dry, m s-1 

u* Threshold friction shear velocity when the surface soil is bare but moist, m s-1 

u* Threshold friction shear velocity when the surface soil is vegetated and moist, m s-1 

g gravitational acceleration, m s-2 

w  Dimensionless coefficient that reflects effects of surface soil moisture 

clay  Clay content in the soil, % 

  Surface soil volumetric water content (i.e., moisture) 

 Surface soil mass water content 

’ Threshold water content 

s  Soil particle density, kg m-3 

air  Density of air, kg m-3 

w Density of water, kg m-3 

 von Karman constant (= 0.41) 

d  Zero-plane displacement height, m 

ds Diameter of surface soil particle, m 

a1 First coefficient related to threshold shear stress, dimensionless 

a2 Second coefficient related to threshold shear stress, dimensionless 

z0 Surface roughness length, m 

z Height of wind speed, m 



 v 

h Average vegetation height, m 

λ Vegetation roughness density 

e Soil void ratio 

ER Erosion rate (mm yr-1) 

A Area of interest (m2) 
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CHAPTER 1: 

INTRODUCTION 

 

1.1 Background 

Over the years, land degradation and climate change have been of most concern for 

future development and sustainability. In this regard, the target area of this study was in the 

Eurasian steppe grassland region where there is an enormous industry for livestock production. 

Thus, the impacts of transportation, overgrazing, cultivation, and climate change are vital modes 

that need to be managed to continue the high productivity of this grassland. Overgrazing occurs 

when livestock consumption is more than vegetation production and can consequently cause 

stunned vegetation growth and exposed soils. In the case of climate change, there is an increase 

in aridity and a decrease in soil moisture; this is especially true for the early spring conditions 

when there is hardly any vegetation growth.  

During spring, there are frequent dust storms that can be heightened from the excess of 

bare soil, causing not only a health problem for people but also fertility loss as the topsoil is 

detached. As a result, the vegetation coverage may be lost and fail to mitigate further erosion of 

topsoil. The above factors of soil erosion can be amplified by urbanization, land use change, and 

other human activities (e.g., tourism). However, there are few data and tests regarding how soil 

moisture and wind speed interactively affect topsoil erosion. This study intended to fill such an 

information gap and thus will advance our scientific understanding of the thresholds that may 

trigger irreversible land degradation, making it possible to develop practical measures to sustain 

the vulnerable steppe ecosystem. The test bed of this study was the 5350 km2 Balagaer River 

watershed, located in northeast Inner Mongolia Autonomous Region of China. 
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1.2 Literature Review 

Wind erosion is not a new process, as it is a naturally occurring phenomenon in which 

soil particles are displaced from one location to another. Normally the erosion impacts are low 

due to the time in which they occur however due to the anthropogenic disturbances the erosion 

has been accelerating in frequency (Meng et al., 2018). As an effect of human activities, in China 

90% of grasslands have been suffering from degradation (Yan et al., 2010). China is a vast 

country with 50% of its land coverage considered to be susceptible to wind erosion (Meng et al., 

2018). Land cover such as vegetation cover is crucial for mitigating the acceleration of erosion 

because the vegetation not only slows the wind speed down to zero-flux height but also traps the 

eroded particles (Nyamtseren et al., 2016; Wolfe and Nickling, 1993; and Musick and Gillette 

1990). Likewise, as there is more pressure to increase livestock there is a decrease in vegetation 

which lowers the zero-flux height (Li et al., 2005).  

Climate change has been facilitated by the extensive human activities, and the Inner 

Mongolian Steppe Grasslands are no exception as it is highly susceptible to climate change 

(Shao et al., 2017; Wang et al., 2014a; National Intelligence Council, 2009; Wu and Loucks, 

1992).  The air temperature had been predicted to increase at a rate of 0.35 C per ten years, 

increasing the potential for wind erosion due to soil moisture reduction (Shao et al., 2017). 

Previous studies (e.g., National Intelligence Council, 2009) revealed that the warming in winter 

and spring in northern China had induced 29% of the total dust emissions in Asia (National 

Intelligence Council, 2009). In the recent decades, the impacts of climate change on soil erosion 

are well known and have been studied extensively (Guo et al., 2017; Shao et al., 2017; Wang et 

al., 2014a; Chen et al., 1996).  

Meng et al., (2018) conducted wind speed erosion measurements using an in-situ wind 
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tunnel to find the threshold vegetation cover to prevent erosion at different wind speeds, as well 

as studying the relationship of wind erosion and soil. The study location was in the desert steppe 

of Inner Mongolia, China and this location is said to obtain the source of such eroded sand to 

produce a sandstorm in Beijing (Meng et al., 2018). Historical data shows the annual average 

wind speed at 10 m above the ground was 4.5 m s-1 and seasonal wind speeds in the spring being 

5 to 18 m s-1.  

The wind tunnel that was used was a mobile wind tunnel with dimensions of 1.0 m wide, 

7.2 m long, and 1.2 m height (Meng et al., 2018). Wind erosion tests were conducted with a 

varying wind speed between 2 to 20 m s-1, with incremental vegetation, at an average of ten-

minute intervals, and soil moisture varying from 3.5% to 9.5%. Wind speed was measured at 30 

cm from the ground using a pitot-tube device. Furthermore, the previous parameters were tested 

under specific experimental conditions to better understand the parameter individually related to 

erosion (i.e., varying one parameter per test sequence). Erosion samples were collected at 

different vertical heights from 2 to 70 cm with separator sand sampler from horizontal displaced 

sand mass (Meng et al., 2018).  

Note that the experimental test was conducted during March to July as after July the 

windy season stops, and the rainy season starts. Moreover, the concentration of wind erosion in 

terms of mass flux was concentrated closer to the ground from 0 to 30 cm with vegetation cover 

at 15%. Regression analysis was performed to model wind erosion trends of vegetation cover, 

moisture, and wind speed with changes in height, correspondingly the regression equations were 

power series. All of the distribution decreased in sand mass flux as height increased. The mobile 

wind tunnel test concluded that the significant factors from are the following in “…descending 

order: wind speed, vegetation coverage, and soil moisture” (Meng et al., 2018). 
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A study, conducted by Chen et al. (1996) to measure and predict soil erosion from the 

Loess Plateau in north China, showed how soil moisture and wind speed could interactively 

affect erosion. The study was performed using a laboratory wind tunnel with undisturbed surface 

soil sample blocks (100 cm long, 30 cm wide, and 25 cm high) taken from the field. The erosion 

tests were conducted using three soil samples, which are classified as loessal loam sandy, loamy 

sand, and sandy loam, respectively. For each of the samples, the tests were conducted at various 

soil moisture levels and wind speeds. As expected, the study indicated that the loessal sandy 

loam sample is much more erodible than the other two samples because of its loose structure.  

The wind tunnel used by Chen et al. (1996) has a working section of 16 m long, 1 m 

wide, and 0.6 m high. The soil water contents were measured using the overdried method with 

sampling before and after testing. The duration for each test varied from 2 to 15 minutes; wind 

speeds were measured using a pitot tube at a constant height of 30 cm from the soil surface. For a 

given test, the number of eroded soils was measured as the weight loss of the sample block via 

an electric balance and verified by the number of soils collected at the end of the working 

section. The tests indicated a threshold water content of 4 to 6 % irrespective of the soil 

classifications, below which the detachment and movement of soil particles incepted.  

Strong et al. (2016) devised a micro wind tunnel (MWT) for on-site erosion 

measurement. The wind tunnel was made small enough to be portable to accomplish in-situ 

testing and functionally simulate historical wind speeds. A field testing of the MWT was 

performed in the semiarid landscape of Longreach, Queensland, Australia, with the purpose of 

studying livestock pressure on erodible soils. The MWT was deployed in various locations with 

high to low livestock pressures and clay and sandy loam soils.  

The MWT by Strong et al. (2016) consists of a contraction section, a transition section, a 
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working section, a sediment trap, an exhaust section, a wind velocity regulator, a 280-mm-

diameter axial fan, and several wind speed sensors. Three keyholes were drilled in respective 

distance from the front of the working section at 100, 450, and 900 mm, respectively. These 

holes were used to measure wind speeds using a static-pitot tube at three different heights. 

Because of the small height of the MWT, the pressure ports were used to measure the pressure 

gradients, which in turn were used to calculate the wind speed and shear stress at the soil surface 

instead of using a velocity profile. The winds speeds ranged from 5 to 18 m s-1 with high 

reproducibility.  The MWT proved to be applicable for wind erosion simulations in fields with a 

bare open space constrained by grass clumps.

Over the years, wind and water erosion has been evaluated as separate entities due the 

nature of occurrence as wind erosion occurs during typically dry conditions were as water 

erosion occur during higher soil water contents. However, due to fluctuations in water content 

both erosion processes can occur in a relatively temporal frequency. So, the theory that both 

wind and water erosion have a significant trigger factor to produce the maximum erosion was 

proposed by Ravi et al., 2010. The idea states that when the soil moisture increases from zero 

wind is the controlling erosion process, then there is a zone where the wind and water share 

contribution to total erosion, and finally the moisture content increase the threshold where no 

wind erosion contributes and is totally water erosion controlled (Ravi et al., 2010). In the study 

of the “interactions among hydrologic–aeolian erosion” there were no quantitative results that 

describe the threshold of factor that control erosion (Ravi et al., 2010).  

Wang et al. (2014b) developed an integrated aeolian and fluvial prediction (IAFP) model 

in terms of the physical mechanisms of these two types of erosion processes. The IAFP model 

was tested in the Balagaer River watershed. The model’s unique feature was to predict wind and 
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water erosions as a whole rather than separately. In the convention, these two types of erosions 

have been treated separately although they are physically connected. The fundamental dynamics 

of soil erosion is that the shear stress induced by wind detaches some soil particles from their 

adherent particles. The minimum shear stress required to detach the soil particles, which is 

defined as the threshold wind shear stress, depends on soil type, texture, structure, and moisture 

as well as physiological characteristics of the covering vegetation species (e.g., leaf area and 

height). When the wind speed reaches a magnitude to induce effective shear stress above the 

threshold, the difference between the shear stress and the threshold is positively related to soil 

erosion. The wind speed corresponding to the threshold shear stress is called the threshold wind 

speed. When the actual wind speed is smaller than the threshold wind speed, no erosion will 

occur. From now on, unless specified otherwise, erosion is defined as the movement of soil 

particles in suspension, saltation, or creep. The IAFP calculates wind soil erosion as: 

𝑞𝑎 = 𝐶𝑎 (
τ∗−𝜏∗𝑐

𝜌𝑎𝑖𝑟
)

3

2
                                                       (1) 

where qa is the wind erosion modulus (kg m-2 s-1); Ca is a soil-specific coefficient when the 

surface soil is bare and dry; * is the effective wind shear stress (N m-2); *c is the threshold wind 

shear stress (N m-2); air is the density of air (kg m-3).  

Wang et al. (2014b) estimated Ca by two steps. Firstly, the slope by linearly regressing 

the literature values of qa over those of (
τ∗−𝜏∗𝑐

𝜌𝑎𝑖𝑟
)

3

2
 was determined. Secondly, the determined slope 

was divided by an area-influence factor to derive the Ca value for the watershed of interest. The 

area-influence factor, calculated as the square root of the ratio of the watershed area to the soil 

sample erosive surface area, was used to account for the soil particle suspension and deposition 

processes within the watershed. In our subject knowledge, for a given wind tunnel test, the area-
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influence factor should be larger for a larger than a smaller watershed. Because site-specific test 

data were unavailable and not used, the Ca value reported by Wang et al. (2014b) was revisited 

in terms of the data collected in this study.  

1.3 Objectives and Goals

The overarching goal of this study was to advance our understanding of wind erosion as 

affected by human activity and climate change. The specific objectives were to: 1) devise and 

use a portable wind tunnel to measure in situ soil erosion; 2) use the measured data to calibrate 

and validate the wind erosion component of the IAFP model; and 3) use the calibrated model to 

predict the potential effects of soil moisture and wind speed changes on soil erosion.  
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CHAPTER 2  

CLIMATE AND PHYSIOGRAPHY  

 
2.1 Balagaer River Watershed 

The location of interest for the study was Balagaer River Watershed, which is positioned 

in the Inner Mongolian Autonomous Region of China shown in (Figure 2.1). Furthermore, the 

watershed is comprised of 5350 km2 with elevations varying from 870 m to 1055 m above sea 

level (Wang et al. 2014b).  The soil profile consists of mainly two sections from the ground 

surface down to 30 cm of loamy sand and 30 to 100 cm of predominantly sandy soil. The soil 

surface consisted of sand particle size of 0.05 to 2 mm in diameter and silt particle size that of 

0.002 to 0.05 mm in diameter with a primary soil particle diameter of 0.125 to 0.25 mm, with a 

mean of 0.15 mm (Wang et al. 2014b). Furthermore, soil clay percent is less than 30%. 

 

Figure 2.1. Location and boundary of the Balagaer River watershed, superposed by the World 

Food and Agriculture Organization (FAO, 2008) soil associations. 
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Weather data has been collected from 1955 to 2010 from the West Ujimqin Climate 

station 54012 (11736E, 4435N, (Figure 2.1)) on the specific site which includes, but limited 

to, wind speed, moisture content, and air temperature Wang et al. (2014). Soil moisture ranged 

from a wilting point (θ) of 0.012, a field capacity of (θfc) 0.09 for optimum plant growth and a 

saturation point (θsat) of 0.26. The region is classified as semiarid with average precipitation of 

312 mm per year (Wang et al. (2014b).  

Statistical box and whisker plots were generated from yearly frequency wind speeds from 

1955 to 2010 to get trends in wind speed; thus, there was a slight decrease in wind speed, with 

the last five years having increased wind speeds (Figure 2.2). So, no significant trend up or down 

can be determined, as shown in Appendix A. The annual daily mean wind speed for the last five 

years of wind record from 2006 to 2010 was 4.2 m s-1. Further, seasonal plots show that there 

was a biannual fluctuation in wind speeds exhibiting relatively elevated wind speeds in winter 

and spring compared to summer and fall (Figure 2.3). The histogram of daily wind speeds from 

1955 to 2010 (Figure 2.2) showed that there was a central tendency of wind speeds to be 

observed and arithmetically calculated to be 3.78 m s-1. Moreover, the land use is predominantly 

husbandry livestock with others being agriculture and developing industry.  
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Figure 2.2. Whisker plots showing variations in monthly wind speeds from 2006 to 2010. 

 

 

Figure 2.3. Histogram of the historical wind speeds. 
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2.2 The Specific Sites  

Site selections were captured within the boundary of the land owner’s property. The 

decisions on where to perform wind simulations are characterized by needs of the wind erosion 

modeling parameters. Thus, the sites were chosen that exemplified one with loose in natural but 

were not excessively disturbed (i.e., rain or animal packed). Each site was selected based on the 

following characteristics: bare, dry, and with insignificant debris. Typically, observed site 

conditions can be seen in Figure 2.4. Sites were found with the best uniformity of soil surface in 

between large clumps of grass; in these locations, there were minimal disturbances. Away from 

the grass clumps there was more uniform low-lying grasses but had a relatively large density of 

plants (e.g., not bare). The soil conditions were observed to be visually equivalent in texture, soil 

particle size (not excessive sand from previous erosion of smaller particles), and dry in moisture. 

The sites chosen had little to no slope with an average of 1.2 percent slope. The locations of the 

31 sites are shown in Table 2.1. 

          
  

Figure 2.4. Typical site conditions. 
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Table 2.1. Locations and initial conditions of the specific sites. 

TEST 

NUMBE

R 

DATE 

LONGITUD

E 

(DEGREE) 

LATITUD

E 

(DEGREE

) 

SLOP

E (%) 

DIRECTION 

(DEGREE) 

SOIL 

MOISTUR

E (𝛉) 

SOIL 

CONDITIONS 

1.1 
6/25/1

8 
44.3319331 117.866602 1  0.071 

Bare/Dry sandy 

soil 

1.2 
6/25/1

8 
44.3319331 117.866602 1  0.071 

Bare/Dry sandy 

soil 

2.1 
6/25/1

8 
44.331953 117.866883 1.9 245 E TO W 0.046 

Bare/Dry sandy 

soil 

3.1 
6/25/1

8 
44.331933 117.866847  162 N TO S 0.031 

Bare/Dry sandy 

soil 

4.1 
6/29/1

8 
44.331977 117.865008 0 2.1 S TO N 0.036 

Bare/Dry sandy 

soil 

5.1 
6/29/1

8 
44.332063 117.86504 0.7 289 E TO W 0.033 

Bare/Dry sandy 

soil 

6.1 
6/29/1

8 
44.332059 117.865066 0.5 258 E TO W 0.033 

Bare/Dry sandy 

soil 

7.1 
6/29/1

8 
44.332059 117.865066 0.4 

119 NW TO 

SE 
0.036 

Bare/Dry sandy 

soil 

8.1 7/2/18 44.331908 117.865528 0.3 
209 NE TO 

SW 
0.02 

Bare/Dry sandy 

soil 

9.1 7/2/18 44.331908 117.865528 0.6 
193 NE TO 

SW 
0.027 

Bare/Dry sandy 

soil 

10.1 7/2/18 44.331953 117.866883 1.3 
335 SE TO 

NW 
0.03 

Bare/Dry sandy 

soil 

11.1 
7/10/1

8 
44.332223 117.866401 0 

56 SW TO 

NE 
0.035 

Bare/Dry sandy 

soil 

12.1 
7/10/1

8 
44.332175 117.866667 0 359 S TO N 0.04 

Bare/Dry sandy 

soil 

13.1 
7/10/1

8 
44.332163 117.866407 1 

332 SE TO 

NW 
0.035 

Bare/Dry sandy 

soil 

14.1 
7/10/1

8 
44.332148 117.866353 1.9 277 E TO W 0.036 

Bare/Dry sandy 

soil 

15.1 
7/14/1

8 
44.331136 117.867902 1.6 

20 SW TO 

NE 
0.04 

Bare/Dry sandy 

soil 

16.1 
7/14/1

8 
44.331331 117.867867 0.5 84 W TO E 0.035 

Bare/Dry sandy 

soil 

17.1 
7/14/1

8 
44.331332 117.867874 0.6 75 W TO E 0.035 

Bare/Dry sandy 

soil 

18.1 
7/14/1

8 
44.331333 117.86788 0.9 82 W TO E 0.042 

Bare/Dry sandy 

soil 

19.1 
7/15/1

8 
44.331343 117.867852 3.4 340 S TO N 0.06 

Bare/Dry sandy 

soil 

20.1 
7/15/1

8 
44.331323 117.867883 3.5 342 S TO N 0.06 

Bare/Dry sandy 

soil 

21.1 
7/15/1

8 
44.331321 117.867827 2.9 342 S TO N 0.06 

Bare/Dry sandy 

soil 

22.1 
7/15/1

8 
44.331319 117.86783 4 337 S TO N 0.05 

Bare/Dry sandy 

soil 

23.1 
7/19/1

8 
44.331335 117.867869 0 

54 SW TO 

WE 
0.052 

Bare/Dry sandy 

soil 
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24.1 
7/19/1

8 
44.331342 117.867874 1 69 W TO E 0.042 

Bare/Dry sandy 

soil 

25.1 
7/19/1

8 
44.331326 117.867852 1.1 81 W TO E 0.071 

Bare/Dry sandy 

soil 

26.1 
7/19/1

8 
44.331345 117.867871 1.5 72 W TO E 0.083 

Bare/Dry sandy 

soil 

27.1 
7/28/1

8 
44.331323 117.867887 1.2 

31 SW TO 

NE 
0.094 

Bare/Dry sandy 

soil 

28.1 
7/28/1

8 
44.331331 117.867893 0.8 

22 SW TO 

NE 
0.068 

Bare/Dry sandy 

soil 

29.1 
7/28/1

8 
44.331333 117.867895 0.9 

37 SW TO 

NE 
0.066 

Bare/Dry sandy 

soil 

30.1 
7/28/1

8 
44.331352 117.867856 1.7 

57 SW TO 

NE 
0.052 

Bare/Dry sandy 

soil 
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CHAPTER 3: 

 METHODS AND MATERIALS 

 

3.1. Rationale of Wind Tunnel Development 

A portable wind tunnel (PWT) is the best suitable device to simulate wind in the field due 

to the condition of the study Steppe Grassland because of the following factors: transportation, 

footprint, deployment, and assembling. In the development of the PWT, the objective was to 

simulate wind speeds that were historically equivalent, thus creating the similar conditions at 

which erosion could be measured. Since the grassland has many different types of terrain, slopes 

and ground cover, it is not viable to block sample or recreate the field conditions in the 

laboratory. With the PWT, the consecutive tests could be simulated with little spatial 

repositioning, i.e., after one test was concluded, then the PWT was moved to a new location to 

minimize the effects of limiting erosion. Special considerations were made so that the instrument 

could be easily transported by a typical vehicle and conversely be carried by person power; 

firstly, to be small enough to fit into a vehicle, and secondly, to minimize the impacts on the 

grassland. Logistics of the transportation of the wind tunnel had to be kept in mind as the 

available vehicle space was limited, especially regarding the generator and length of tunnel 

sections. The size if the PWT needed to be where the working section of the wind tunnel could 

be generalized as homogenous and be able to fit in between grass clumps or obstructions. 

Furthermore, the assembly of the PWT needs to be that it could be constructed by the author 

without extraordinary skills while with the materials that could be found in the developing area. 

There have been previous uses of a portable field wind tunnel such as the micro wind 

tunnel previously mentioned by Strong et al., (2016) with similar aspects in the development 

relative conditions of the testing. Their micro wind tunnel was designed for a semiarid climate 
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which is like the condition of this study (Strong et al., 2016). To accomplish usable wind data, 

the PWT needed to produce laminar flow or smooth wind patterns, variable wind speeds, 

sediment collection without wind restriction, and access to reading different heights of the wind 

velocity profile.  

3.2 The Portable Wind Tunnel System  

With in-situ field testing in mind, the PWT system (Figure 3.1) consists of a contraction 

section, a transition section, working section, primary suction fan, slot sampler, collection 

container, collection suction fan, and power source. Additional items were the digital wire 

anemometer, moisture meter, steel plates, duct tape, and sample containers. The contraction 

section enabled smooth wind flow (Figure 3.2) and was used to control the entrance conditions 

(e.g., minimize cross directional wind intrusion and wind surface separation). The contraction 

zone was instrumented to accelerate and stabilize air flow with dimensions of 0.3 m wide and 

0.08 m high contracting to 0.1 m wide and 0.08 m in height. After the contraction zone, a 

stabilizing transition section was placed to further focus the wind paths with dimensions of 1.0 m 

long, 0.1 m wide, and 0.08 m high with all sides enclosed.  

Continuing along the flow direction, the working section was the target area where the 

soil surface is exposed to the wind with dimensions of 0.935 m long, 0.1 m wide, and 0.09 m 

high (e.g., working section area is 0.0935 m2). Measuring ports were placed 0.1, 0.5, and 0.9 m 

away from the transition section, with the purpose to measure the wind velocity at three locations 

and three heights at each location, as discussed section 3.3. Likewise, the ports were centered in 

the middle width of the tunnel, for instance in Figure 3.2 above the slot sampler a port can be 

seen. Regarding the materials used in the wind tunnel frame, rigid PCV foam sheets were chosen 

because they could be cut and manipulated with a standard utility knife and were relatively 
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lightweight. 

.   

(a)                                             (b) 

Figure 3.1. Pictures of the: (a) downwind view of the Portable Wind Tunnel (PWT) 

system; and (b) top view of its contraction section. 

 

 

Figure 3.2. Frontal view of the slot sampler. 

Originally, a gate valve was constructed to transition the working section of rectangular 

shape to circular shape to connect to the primary suction fan; however, it also provided the 

regulation of wind speeds with the use of a vertical sliding plastic plate that made the gate valve. 
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The control valve or gate valve was connected to the primary suction fan with ventilation 

ducting; also, the primary fan had to be custom fabricated with sheet steel to adapt to the 

diameters from the ducting to the fan. The primary suction fan was a 370-W 220-V motor and 

had a diameter of approximately 0.3 m and an air flow capacity of 2300 m3 hr-1.  

Samples of erosion were collected by the slot sampler (Figure 3.2) that was oriented 

vertically as a slot to collect a portion of the erosion; moreover, the slot sampler was used to 

ensure that the primary suction fan was not restricted. From the beginning to the end of a test, the 

slot sampler collects samples into a container to then be weighed to determine the amount of 

erosion. The slot sampler was positioned at the end of the working section stretching from the 

ground to the top of the tunnel and occupies 0.065-m-long ground cover (e.g., the total length of 

the slot sampler and working section equals to 1.0 m). The slot sampler was 0.01 m wide and 

0.08 cm high, resulting in a frontal area of 8.86% of to the total cross-sectional flow area (0.1 m 

by 0.09 m) with the bottom enclosed with a PVC foam sheet. Assuming the working section as 

uniform erosion and only sampling erosion the equivalent amount of total erosion is 11.25 times 

the erosion amount collected. The top of the slot sampler is open and connected via schedule 40 

PVC tube to the collection container; here particles are filtered by the collection container shown 

on the right-hand side of Figure 3.3. Connections of PVC tube were connected with couplings 

and 45 elbows to minimize restrictions. 

Within the collection container, a filter arrangement was as follows in the flow direction: 

chamber for settling, metal divider, filter paper, metal screen, and PVC foam sheet spacer. The 

main body of the collection container was a stainless-steel closable container measuring 

approximately 0.1 m in diameter (Figure 3.3a). This figure also shows the chamber for settling 

that is the bottom larger portion of the collection container, which provides a space for lower 
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velocity encouraging settling. The use of the metal screen is to support the filter paper from 

ripping as shown in Figure 3.3b. To keep the filter paper in position, a PCV foam spacer was 

added to the top side of the metal screen to give a tight fit and help seal the filter paper to the 

metal divider. On either side of the collection container, a union connection is installed to enable 

quick and effective removal of the container and the erosion sample. Then, exiting the collection 

container is the collection suction fan, which has a capacity of 168 m3 hr-1 air flow. The air flow 

of collection fan is controlled by a ball valve between the slot sampler and the collection 

container. The PWT is powered by a seven-horsepower single-phase gasoline generator with 

outputs of 4000 watts and 220 volts.  

 

(a)                                                            (b) 

Figure 3.3. Pictures of the: (a) collection container; (b) filter scheme. 

Additional items used during tests were a digital hot-wire anemometer, moisture meter, 

duct tape, and sample containers. The wire anemometer was used to measure the wind velocity at 

three given heights within the working section. Likewise, the hot-wire anemometer displayed 

real-time velocity in meters per second and was observed and recorded accordingly. Before 
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testing and for refence, the soil was probed to get relative moisture for comparison only as the 

instrument was not calibrated to be accurate (Table 3.1). To simplify transport and create seals 

between connection points on the PWT, duct tape was used for a quick and practical application. 

Table 3.1. The field test data. 

Test # 
Wind Speed 

u (m/s) 

Collected 

Erosion (g) 

Water Content 

ω (%) 

Soil Moisture 

 𝛉 (%) 

Silt and Clay 

Content  

(%) 

1.1 4.80 0.02 1.2 7.1 9.709 

1.2 4.80 0.02 1.2 7.1 9.709 

2.1 3.77 0.15 0.7 4.6 12.456 

3.1 3.70 0.32 0.2 3.1 7.602 

4.1 5.63 1.58 0.4 3.6 14.286 

5.1 5.17 0.67 0.3 3.3 8.357 

6.1 5.10 1.53 0.3 3.3 9.708 

7.1 4.47 0.65 0.4 3.6 12.680 

8.1 3.43 6.34 0.5 2.0 21.753 

9.1 4.47 3.53 0.4 2.7 17.500 

10.1 3.87 2.83 0.4 3.0 14.696 

11.1 3.83 0.23 0.8 2.6 18.893 

12.1 4.63 1.17 0.6 3.5 16.038 

13.1 4.13 0.54 0.4 4.0 14.760 

14.1 4.03 0.61 0.5 3.5 16.149 

15.1 4.73 0.49 0.7 3.6 10.462 

16.1 4.77 1.68 1.0 4.0 20.930 

17.1 4.80 1.29 0.9 3.5 27.243 

18.1 6.63 1.8 0.7 3.5 22.006 

19.1 3.97 1.9 0.6 4.2 15.244 

20.1 5.17 4.02 0.5 6.0 13.354 

21.1 5.00 1.31 0.5 6.0 13.514 

22.1 4.33 4.08 0.6 6.0 12.424 

23.1 5.30 0.35 2.0 5.0 16.077 

24.1 5.93 0.23 3.1 5.2 18.794 

25.1 5.53 0.46 1.1 4.2 11.437 

26.1 4.93 0.63 1.2 7.1 8.480 

27.1 5.30 0.26 1.4 8.3 8.500 

28.1 5.23 0.91 1.2 9.4 8.500 

29.1 5.60 1.2 0.9 6.8 8.500 

30.1 5.13 0.94 0.8 6.6 8.500 
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3.3 Data Collection  

For each of the 31 respective test locations presented in Table 2.1, the PWT was tested 

for a varying duration, while observing the wind velocity, then collecting eroded particles and 

ground surface samples. Tests were found to generally be consistent and relative with both the 

ball valve and gate valve fully open. The test durations for the first 3 tests (labeled 1.2, 1.2, and 

2.1 in Table 3.1) were 6.33, 10, and 15 minutes, respectively, with the remaining tests having a 

duration of 20 minutes. At the three measuring ports over the working section, the wind velocity 

was recorded at 0.006 m from the soil surface (bottom), at the middle height of 0.045 m 

(effective), and close to the ceiling of the tunnel at 0.084 m (top). The naming of the three ports 

is successive in the flow direction as the front, middle, and back ports. Furthermore, the other 

two ports were covered with duct tape when not in use. The wind speeds at the bottom and 

middle heights were averaged for all three ports and the average wind speed was considered to 

be the erosive force causing the collected erosion (Table 3.1) 

To minimize the disturbance to the soil surface before testing, soil samples were taken 

after each test. Soil samples were used to determine the soil water content by the oven dried 

method (ODM) (ASTM D2216-19) and the soil texture by estimating soil texture (e.g., jar 

settling method) (Whiting et al., 2015). The method of collecting soil samples was by extracting 

soil from the front, middle, and back port at a depth of 0.5 cm from the entire width of the 

working section to represent the entire erosion surface. These three-soil samples were then added 

together as one sample and such soil sample had average initial mass of 130 grams. The ODM 

was conducted by weighting the soil sample before and after being placed into an oven for 24 

hours at 110 C (Table 3.1) using an electric scale with accuracy to the hundredth, thus the soil 

mass before and after can be subtracted to get water mass. Note the containers were pre-weighed 
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and subtracted before calculating water content. The water content was determined by comparing 

the mass of the water to the mass of the dry soil. The estimate soil texture was performed in a 

graduated glass cylinder where the same soil sample was used in the water content determination 

were added with distilled water and shaken until complete mixture, then left to settle for 24 hours 

(Whiting et al., 2015). The soil was placed into the graduated cylinder and height was recorded. 

Then, distilled water was added with the soil sample to full and capped. The water and soil were 

shaken to separate the particles, next after 24 hours of settling markings of soil size heights were 

recorded. The target soil particle size was that of fines (e.g., silt and clay) and with the height of 

the fines compared to the total height of soil give the relative percent of eroded materials. As 

different soil size particles settle at different rates the particles disassociate by size, and form 

singular heights of soil size. In particular, the relative clay and silt percentage (i.e., target particle 

size or erodible material) was of interest for the subsequent analysis and modeling (Table 3.1).  

3.4 Data from Previous Study 

The Chinese collaborators (Luo et al., 2014) did extensive field samplings and 

subsequent laboratory analyses for soil textures, organic contents, and soil-water parameters. 

They “…took undisturbed soil columns using stainless-steel cylinder augers (ϕ50.46 mm × 50 

mm) from 69 sites randomly positioned across the watershed from 0 to 30 cm and 30 to 60 cm 

horizons and analyzed the soil samples in the hydrology laboratory of Inner Mongolia 

Agricultural University (IMAU). For each soil sample, its texture (i.e., percent of sand, silt, and 

clay) (Bowles, 1992) was determined using standard mechanical sieves (NHRI, 1999) and a 

Rise-2008 Laser Granulometry (Storti and Balsamo, 2010). The saturated hydraulic conductivity 

was determined using the method described in Carter and Gregorich (2007), while contents of 

organic matter and saline ions (e.g., Na+, Ca2+, and Mg2+) were measured by following the 
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standard Walkley-Black dichromate titration procedures (Schumacher, 2002).”  

This study used these data as the references to estimate the actual particle sizes and 

densities.  

3.5 Results and Discussion 

The overview of results from the tests were positive where quality wind speeds, soil 

samples, and records of the data were sufficient. Collected erosion amount ranged from the 

lowest amount at 2 g and the highest amount at 6.35 g. The average wind speed was 4.78 m s-1, 

with a range of wind speeds from 3.4 to 6.6 m s-1. Moreover, as expected, the soil water content 

was relativly dry, with an average of 0.81 % and a range of 0.18 to 3.14 %. 

Upon comparison of the wind speed and erosion amount, it was evident that there were 

two test simulations excluded from the further analyses because of the poor measurement quality 

and missing values. As shown by the box and whisker plot (Figure 3.4a), for one of these two 

abandoned tests, there was an extreme outlier in the upper range of more than 18,000 mm year-1, 

which corresponds to being outside the range of 3 times the inner quartile range. Furthermore, 

the box and whisker plot were plotted from the measured data of total grams converged to 

erosion rate using bulk density, PWT area, and duration. The locations and means of items in the 

box and whisker plot are the following: the x is the mean, the bar in the middle of the dark box is 

the median, the outer bars of the dark box are the inner quartile rages (25 and 75%), the next two 

bars are corresponding to 9 and 91% ranges, and the filled circles are outlying value. The second 

of these two abandoned tests did not measure water content (not shown). In the Figure 3.4b, the 

histogram of simulated wind erosion can be compared to that of the historical histogram (Figure 

2.3) concluding that the simulated value is within the range of historical.  
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Figure 3.4. a) Box and Whisker plot of the measured erosion rates, and b) histogram of 

the simulated wind speeds. 

 

The relationship between wind speed and erosion was not strong (Figure 3.5). However, 

when the water content was compared to the erosion it tended to decrease with increase of soil 

moisture (Figure 3.6). 

  

Figure 3.5. Erosion vs wind speed. 
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Figure 3.6. Erosion vs water content. 

From the wind speeds at the ground, middle, and ceiling heights and in the front, middle, 

and back port positions, velocity profiles can be made (Figures 3.7, 3.8, and 3.9). The wind 

speeds at all three ports varied vertically in height and in general the wind speeds were greater at 

the middle or effective height.  
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Figure 3.7. Velocity profile at the front port. 

 

 

 

Figure 3.8. Velocity profile at the middle port. 
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Figure 3.9. Velocity profile at the back port. 

Variations in the roughness and or height from the soil surface could have affected the 

wind speed and wind profile. For the measurement of the wind speed, a more accurate pitot tube 

is recommended as the hot-wire anemometer relies on the cooling effect to measure the wind 

speed, thus a significant error could have been problematic. The hot-wire anemometer was a 

sensitive instrument that had to be operated at an exact height, orientation, and plume to have 

accurate measurements. Therefore, the hot-wire anemometer had many drawbacks to produce 

consistency and could have given uncertain wind speeds. Along with the pitot tube, using a data 

logger would eliminate possible reading errors.  

During different stages of construction of the PWT, testing was conducted to ensure 

quality control over the functionality of the PWT. Initial trial testing of the PWT was held 

indoors on the carpet to think through the procedure of how to run the testing. Once out in the 

field, more trials (not shown) were conducted to eliminate problems of further error. Issues that 

arose were that the circuits of the generator and the axial fan were not compatible due to the 

wiring of 220-volt. Thus, a new van had to be purchased at a local store and used. Also, the 
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connection of the working section to the ground was not seamless, so a sheet metal had to be 

inserted on the outsides of the working section to prevent lateral air inflow and efflux. During 

testing, since the soil was bare and loose, this enabled the soil to erode out from under the 

working section walls; the interface at the soil surface between the inside and outside wall of the 

working section could have been broken by improper sealing of the interface with a metal steel. 

Thus, the actual wind tunnel needs to be sheet metal and obtain the connection directly as any 

space dramatically reduces the wind speed. Additionally, the ducting connecting the control 

valve and the primary fan was not operated in its fully extended position because the ribs created 

large drag consequently, reducing the wind speed. No trial test data was used for analytical 

modeling. 

Collection of soil samples before testing should have been conducted as there could have 

been drying effect to the soil from the wind tunnel. The insufficient quanitification of the varying 

disturbances to the soil structure could have more or less influences on the amount of erosion 

that was sampled. The disturbances include, but are not limited to, rain wetting-drying cycles and 

livestock tramplings. In addition, the slot sampler was devised for suspended, but not-saltation, 

particles. Because of the nature of saltation particles close to the ground surface, however, 

saltation particles could not be captured by the slot sampler. 

Throughout the design, construction, and testing of the PWT system, there were 

numerous challenges that either influenced or dictated the project. For instance, in starting the 

construction, it was found that the local readily available selection of building materials was not 

accessible, which led to the use of the PVC foam sheets rather than sheet metals. The PVC foam 

sheets were shaped easily, but excessive maintenance was a drawback. With frequent 

maintenance, the PWT was referred to the term “duct tape wind tunnel” to continue operation. 
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Conclusively, the PWT system stood the tests of time because of its easiness of assembly, 

transportation, and many deployments in to the field with repeatability. The small size of the 

PWT system made it feasible to test both large-size bare soils and patches between large grass 

clumps.  
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CHAPTER 4:  

MODELING 

 

4.1. Description of IAFP 

 Combining the resultant field test data with the integrated aeolian and fluvial prediction 

(IAFP) model was the pinnacle of the research at hand. The IAFP model, developed by Wang et 

al., (2014a), was to provide a framework of modeling wind and water erosion simultaneously. In 

a given year, these two types of erosions occur simultaneously though one type may be dominant 

over another at a specific time, so both need to be evaluated in a single modeling domain to 

mimic actual situations. However, as part of a three-year research project funded by the National 

Science Foundation (NSF) International Research Experience for Students (IRES), this study 

focused on wind erosion from bare soils only. 

 The IAFP considers many parameters that describe the environment in which the erosion 

takes place. Such parameters characterize land cover, topology, and soil-water properties (e.g., 

soil moisture) that are all evaluated in the IAFP governing equation. The erosion modulus (qa) is 

the acting governing equation that compares the shear stress of the effective wind speed and the 

threshold dynamic of soils and land cover, which are independent of land cover for bare soils. qa 

is computed as: 

qa = Ca (
τ∗−τ∗c

ρair
)

3

2
    (1) 

where qa is the wind erosion modulus (g m-2 s-1); Ca is the soil-specific coefficient of wind 

erosion when the surface soil is bare and dry (g m-5 s2); τ* is the effective wind shear stress (N m-

2); τ*c is the threshold wind shear stress (N m-2); and ρair is the density of air (kg m-3)(Chepil 

1956, and Marshall 1971).  

To apply Eq. (1) to a site of interest, Ca and τ*c need to be determined using measured 



 30 

data. For bare soil surfaces, τ*c depends on soil properties (namely texture, structure, and particle 

size) and soil water content, while for vegetated surfaces, τ*c also depends on physiological 

characteristics of the vegetation (e.g., population density and stem height). τ*c is computed as: 

τ∗c = ρair ∙ (u∗θλ)2 (2) 

where u*θλ is the threshold surface friction shear velocity (Bagnold, 1914). 

For bare soil surfaces, u*θλ is same as u*θ, which is computed as: 

𝑢∗𝜃= 𝑓𝑤∙𝑢∗𝜓𝑢∗𝜃 =  𝑓𝑤 ∙ 𝑢∗𝜓 (3) 

where fw is the dimensionless coefficient reflecting the surface soil moisture; and u*𝜓 is the 

threshold friction shear velocity when the soil surface is bare and dry (Fécan et al., 1999).  

fw is computed as: 

𝑓𝑤 = {
1                                                𝑖𝑓 𝜔 ≤ 𝜔′

√1 + 1.21 ∙ (𝜔 − 𝜔′)0.68    𝑖𝑓 𝜔 > 𝜔′
 (4) 

where  is the mass water content of the surface soils; and ′ is the threshold water content that 

depends on the clay content of the surface soils (Fécan et al., 1999).  

′ is computed as:  

𝜔′ = 0.0014 ∙ (𝑃𝑐𝑙𝑎𝑦)
2

+ 0.17 ∙ 𝑃𝑐𝑙𝑎𝑦 (5) 

where Pclay is the clay content, in percent, of the surface soils ((Fécan et al., 1999). 

Given  and bulk density, the soil moisture (i.e., volumetric water content) can be 

calculated as:  

      θ =
𝑏∙𝜔

𝑤(1+𝜔)
  (6) 

   
b

=
𝑠

1+𝑒
+ 

𝑤
∙  (7) 

     
b

 =  
𝜌𝑠(1+)

1+e
 (8) 
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where θ is the moisture of the surface soils; ρw is the density of water (kg m-3); ρs is the soil 

particle density (kg m-3); ρb is the bulk density (kg m-3); and e is the void ratio of the surface soils 

((Todd and Mays, 2005 and Charbeneau, 2006)). For sandy soils like those in the Balagaer River 

watershed, the typical value of e = 0.71 was used in this study (Wang et al., 2014b).  

u*𝜓 is computed as:  

𝑢∗𝜓 = √
𝑎1

𝜌𝑎𝑖𝑟
∙ (𝜌𝑠 ∙ 𝑔 ∙ 𝑑𝑠 +

𝑎2

𝑑𝑠
) (9) 

where a1 = 0.0123 (dimensionless) and a2 = 0.0003 kg s-2 are constant coefficients; ds is the mean 

diameter of surface soil particles (m); and g = 9.81 m s-2 is the gravitational acceleration (Shao 

and Lu, 2000).  

On the other hand, τ* depends on wind speed and soil surface roughness for bare soil 

surfaces while also on the physiological characteristics of the vegetation for vegetated surfaces. 

τ* is computed as:  

 𝜏∗ = 𝜌𝑎𝑖𝑟 ∙ (𝑢∗)2 (10) 

where u* is the surface friction shear velocity (m s-1) (Marshall, 1971).  

For bare soil surfaces, u* is estimated as: 

𝑢∗ =
𝜅∙𝑢

ln(
𝑧

𝑧0
)
 (11) 

where κ = 0.41 is the von Karman constant; u is the effective wind speed at z distance above the 

soil surface; and z0 is the surface roughness height Lyles and Allison, 1975 and Wolfe and 

Nickling, 1993). 

z0 can be estimated as (Chen et al., 1996 and Dong et al., 2002): 

𝑧0 = {
0.5 ∙ 𝑑𝑠                         𝑖𝑓 𝜔 ≤ 4.5%

6144.1 ∙ 𝜔−6.1 ∙ 𝑑𝑠     𝑖𝑓 𝜔 > 4.5%
 (12) 
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4.2. Parameterization of the IAFP Model 

This study assumed that ρs = 2650 kg m-3, ρw = 1000 kg m-3, ρair = 1.21 kg m-3, e = 

0.7153, and ds = 0.00015 m.  

Ca was estimated using the in-situ measurements and then scaled up to the watershed. 

Firstly, by specifying an arbitrary value of Ca, for each of the field tests, Equation (1) was used to 

estimate qa. The squared error (SE) was computed as the difference between the estimated and 

measured values. Also, for all field tests, the sum squared error (SSE) was computed as the 

summation of the squared errors. Further, the SSE was minimized by adjusting Ca. The 

calculations were implemented in an Excel® spreadsheet with the adjustment done using Solver®. 

This resulted in Ca = 5.51 g m5 s-1. Secondly, the in-situ Ca value was scaled up to the Balagaer 

River watershed as (5.51 g m5 s−1)  ∙ √ 
 0.0935 𝑚2

 5350 𝑘𝑚2∙106 
𝑚2

𝑘𝑚2

 = 0.23 × 10-4 g m5 s-1, where 0.0935 m2 

is the open bottom area of the PWT working section (section 3.1), and 5350 km2 is the drainage 

area of the Balagaer River watershed.   

For an area of interest, the estimated qa can be converted into the corresponding erosion 

rate using the formula expressed as: 

𝐸𝑅 = 3.1536 × 1013 𝑞𝑎∙𝐴

𝜌𝑏
 (13) 

where ER is the soil erosion rate (mm yr-1); A is the area (km2); and ρb is the bulk density of the 

surface soils (kg m-3).  

  In terms of Ca = 5.51 g m5 s-1, the in-situ measured soil erosion rates were reproduced 

using Equation (1). The plot showing the estimated versus measured soil erosion rates (Figure 

4.1) indicates a close one to one performance of the model, which can be further verified by a 

unit linear regression slope and a large coefficient of determination R2 = 0.74.  
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4.3. Hypothetical Scenarios and Predicted Erosion Rates 

 Upon parameterized, the IAFP model was used to predict potential erosions of various 

hypothetical scenarios for the Balagaer River watershed. In winter and spring (December to 

March), the watershed has almost zero vegetation coverage, while the soil water content is very 

low, but the wind speed is relatively high. Herein, the scenarios and predicted erosion rates can 

reflect the situations in these two seasons. Four scenarios, designated Scenario I through IV for 

description purposes, were analyzed in this study. Scenario I assumed a constant wind speed of 

4.8 m s-1 while water contents varying from 0 to 6% and a constant ρs = 2650 kg m-3; Scenario II 

assumed wind speeds varying from 0 to 15 m s-1 while a constant water content of 0.2, 2, 3, 4, or 

5% and a constant soil particle density ρs = 2650 kg m-3; Scenario III assumed a constant wind 

speed of 4.8 m s-1 and a constant water content of  4%, while soil particle densities varying from 

2600 to 2750 kg m-3; and Scenario IV assumed historical wind speeds and soil moistures at a 10-

cm depth while a constant ρs = 2650 kg m-3. 

 

Figure 4.1. The modeled versus measured soil erosion rates by the portable wind tunnel (PWT). 
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impacts on the environment such as meteorological factors, and subsequent effects on soil water 

content, wind speed, vegetation cover, and land use. The evaluation of scenario analysis of 

critical parameters can provide a clear insight into the limits and trends of how erosion occurs 

under different constraints. Unlike the case of calibrating the model, as modeled in section 4.2, 

the scenario analysis was conducted by assuming a constant wind speed of 4.8 m s-1, percent clay 

of 8%, a water content of 4%, and wind speed height of 0.045 m. However, the water content 

was arbitrarily varied from 0 to 6%.  

As expected, the predicted soil erosion rate tended to decrease with an increase in water 

content (Figure 4.2). The erosion rate was predicted not to be very sensitive to the variation of 

water content if it is less than 1.5%. This can be because the potential erosion rate, which is 

controlled by wind speed and independent of the soil conditions, has been reached for such a low 

water content. If the water content ranges from 1.5 to 4.5%, the predicted erosion rate tended to 

decrease at 0.00028 mm yr-1 per unit percent increase of water content, whereas if the water 

content is higher than 4.5%, the predicted erosion rate would be exponentially decreasing with an 

increase of water content and become zero at a water content of 5.6%.  

The surface soils of the field tests had water contents of 0.2 to 3.1%, with a mean of 0.8% 

and a standard deviation of 0.73%. This might be the reason for the measured erosion rates had a 

small to mediate variation (Figure 4.1 and Table 3.1).  
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Figure 4.2. The predicted erosion rate versus hypothetical soil water content (u = 4.8 m s-1). 

 For Scenario II: To assess the influences of wind speed on predicted erosion rate, for 

each of the selected five soil water contents of 0.2, 2, 4, 5, and 6%, the wind speed was 

arbitrarily varied from 0 to 15 m s-1. As shown in Figure 4.3, for wind speeds of less than 4.8 m 

s-1, the erosion rates were predicted to be similar regardless of soil water contents, whereas for 

wind speed of larger than 4.8 m s-1, the erosion rate was predicted to have a steeper increase for a 

lower than a higher soil water content (Figure 4.3). For a given water content, the erosion rate 

was predicted to increase exponentially with an increase in wind speed. If the water content is 

less than 4%, the predicted erosion rate would increase by 0.065 mm yr-1 per 1 m s-1 increase of 

wind speed, while if the water content is higher than 5%, the predicted erosion rate would 

increase by 0.03 mm yr-1 per 1 m s-1 increase of wind speed.  

The field tests used wind speeds between 3.4 to 6.6 m s -1, with a mean of 4.78 m s-1 and 

a standard deviation of 0.73 m s-1. This might be the reason for the measured erosion rates had a 

mediate variation with wind speed regardless of the soil water contents (Table 3.1).  
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Figure 4.3. The predicted erosion rate versus hypothetical wind speed for various water contents. 

For Scenario III: To assess the possible effects of soil parent materials on soil erosion, 

the soil particle density was arbitrarily varied from 2600 to 2750 kg m-3. As expected, the erosion 

rate was predicted to decrease with an increase in soil particle density (Figure 4.4). The erosion 

rate would increase by 3 × 10-6 mm yr-1 per 1 kg m-3 decrease of soil particle density. At the 

average density of 2650 kg m-3, the erosion rate was predicted to be 0.003 mm yr-1.  

 

Figure 4.4. The predicted erosion rate versus hypothetical particle density (u = 4.8 m s-1).  
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For Scenario IV: The long-term data on wind speed and soil moisture at a sensor-based 

station in the study watershed indicate that high wind speed and a low soil water content 

moisture tended to co-occur in March and April (Julian days from 90 to 150) (Figure 4.5). The 

soil moistures (Figure 4.5a) were converted into the responding water contents (Figure 4.5b) 

using Equation (6) by assuming a soil bulk density of ρb = 2650 kg m-3 and a water density of ρw 

= 1000 kg m-3. Because the moisture sensor was positioned at a depth of 10 cm below the ground 

surface, the soil moistures and water contents of the surface soils were much smaller than the 

values shown in Figures 4.5a and 4.5b, respectively.  

As mentioned in Chapter 2 and shown in Figure 4.5, the higher wind speed and lower soil 

moisture in the early months of a year (winter and spring) were favorable to inducing topsoil 

erosion. By assuming that soil moistures of the surface soils were the same as those at the 10-cm 

depth, the erosion rates were predicted using the model. The results are shown in Figure 4.6.  
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(b) 

Figure 4.5. Plot showing the: (a) annual average daily soil moisture and wind speed; and (b) 

annual average daily water content and wind speed. The record period is from 1 January 2006 

to 31 December 2010. The wind speed (u2) was measured at 2 m above the ground surface. 

 

 

 

Figure 4.6. The predicted historical daily erosion rates for the Balagaer River watershed.  
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watershed. The measured wind speed ranged from 3.4 to 6.6 m s-1. The watershed model 

calibration resulted in Ca = 0.23 × 10-4 g m5 s-1, which is about 20 times smaller than the value 

(4.6 × 10-4 g m5 s-1) presented by Wang et al. (2014b). Because this study used the site-specific 

data, it was logically considered that 0.23 × 10-4 g m5 s-1 is more applicable for the Balagaer 

River watershed.     

For the study watershed, the threshold water content was determined to be 6%, which is 

equivalent to the soil moisture of about 15%. If the soil moisture is lower than this threshold, the 

erosion rate would exponentially increase (Figure 4.2). Wang et al. (2014b) reported a threshold 

soil moisture of 25% if the watershed has the “existing” vegetation coverage. The main reason 

for such a difference can be attributed to the difference Ca values. In addition, at the threshold 

soil moisture, the threshold wind speed was determined to be 4.0 m s-1 (Figure 4.3). Such a soil-

water and weather condition are very common in March and April (Figure 4.5) for the study 

water, implying that wind erosion in spring can be a serious concern. On average, under the 

historical conditions, the wind erosion rate was predicted to vary from 0.001 to 0.015 mm yr-1, 

with a mean of 0.003 mm yr-1. This means that the watershed could lose 16,050 m3 topsoil per 

year, which is equivalent to about 16,100 tonnes per year. The topsoil is vital for efforts to 

sustain grasslands because it is loose and has a plentiful supply (Wang et al., 2014c). Losing the 

topsoil will likely trigger irreversible degradation of the grasslands of the Balagaer River 

watershed.  

As a result of climate change, the precipitation to be received by the Balagaer River 

watershed will be significantly decreasing (Wang et al., 2014c), implying that the study 

watershed would incur more frequent and larger magnitude topsoil loss from wind erosion in the 

future. This is also likely true for the Eurasian Steppe (or Great Steppe), which shares a similar 
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climate with the study watershed with climate change obviously happening. The Great Steppe is 

the vast steppe ecoregion of Eurasia in the temperate grasslands, savannas, and shrublands 

biome. It stretches from Bulgaria, Romania, and Moldova through Ukraine, Russia, Kazakhstan, 

Xinjiang, and Mongolia to Manchuria, with one major exclave, the Pannonian steppe or Puszta, 

located mostly in Hungary and partially in Serbia and Croatia. Thus, the results of this study can 

serve as the key scientific information for developing practical measures to better protecting and 

utilizing the fragile steppe resources.  
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CHAPTER 5:  

CONCLUSIONS 

 
A Portable Wind Tunnel System (PWT) was devised in accordance with the needs and 

focus of the project. Because of the large drainage area of the Balagaer River watershed, it is 

costly prohibitive, technically impractical, and logistically infeasible to use a laboratory wind 

tunnel to conduct a number of tests on in-situ soil samples in a manageable time period. In this 

regard, the PWT proved to be superior to the laboratory wind tunnel.  

The PWT was effectively deployed at typical sites across the watershed to conduct quick 

tests with a minimal disturbance because of its small footprint which facilitated the use both in 

open areas and restricted spaces between large grass clumps. The sites had bare surface soils 

with varying topographic gradients and water contents. The data from the tests were used to 

parametrize and calibrate an IAFP model, leading to Ca = 0.23 × 10-4 g m5 s-1 at the watershed 

scale. The calibrated model predicted that the study watershed might have an annual loss of 

16,050 m3 topsoil, which is equivalent to about 16,100 tonnes, under the historical climate 

conditions. In the future, as a result of climate change, the watershed would have a larger erosion 

rate. As a reasonable generalization, the results of this study can serve as the key scientific 

information for developing practical measures to better protecting and utilizing the fragile steppe 

resources. 
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CHAPTER 6:  

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 The next two phases of the project should use the portable wind tunnel (PWT) system to 

collect data at more sites with bare surfaces to verify the findings of this study. In addition, PWT 

tests should be conducted to collect data at sites with varying vegetation coverage conditions. 

Such data will be used to parameterize the IFAP model to examine effects of vegetation on 

topsoil erosion. These additional tests should have water contents, wind speeds, and soil densities 

that are equal to and/or larger than their upper limits of 6% (Figure 4.2), 15 m s-1 (Figure 4.3), 

and 2750 kg m-3 (Figure 4.4) used in the modeled scenarios of this study. This will make it 

possible to minimize the prediction uncertainties resulting from extrapolation of the test data. 

Further, the calibrated IFAP model should be used to simulate various scenarios to determine the 

threshold of vegetation coverage under which wind erosion will likely trigger an irreversible 

degradation of the steppe grasslands. Moreover, the PWT system needs to be improved to 

generate more uniformly-distributed laminar air flows. The additional improvements to the PWT 

system may include building the actual frame out of entirely metal and increasing the open area 

of the slot sampler to capture more percent of eroded soils.   
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APPENDIX 

STATISTICS OF THE AVERAGE DAILY WIND SPEEDS FROM 1955 TO 2010 
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