Spring 2019

Enhancing Portability in High Performance Computing: Designing Fast Scientific Code with Longevity

Jason Orender
Old Dominion University, jason.orender@publicmail.email

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

Recommended Citation

Orender, Jason. "Enhancing Portability in High Performance Computing: Designing Fast Scientific Code with Longevity" (2019).
Master of Science (MS), thesis, Computer Science, Old Dominion University, DOI: 10.25777/wk8h-5b96
https://digitalcommons.odu.edu/computerscience_etds/91

ENHANCING PORTABILITY IN HIGH PERFORMANCE COMPUTING: DESIGNING FAST SCIENTIFIC CODE WITH LONGEVITY

by
Jason Orender
B.S. December 1993, University of Texas
MBA, December 2003, George Mason University

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of
 MASTER OF SCIENCE
 COMPUTER SCIENCE
 OLD DOMINION UNIVERSITY

May 2019

Approved by:

Mohommed Zubair (Director)
Yaohang Li (Member)

Ravi Mukkamala (Member)

ABSTRACT
 ENHANCING PORTABILITY IN HIGH PERFORMANCE COMPUTING: DESIGNING FAST SCIENTIFIC CODE WITH LONGEVITY

Jason Orender
Old Dominion University, 2019
Director: Dr. Mohommed Zubair

Portability, an oftentimes sought-after goal in scientific applications, confers a number of possible advantages onto computer code. Portable code will often have greater longevity, enjoy a broader ecosystem, appeal to a wider variety of application developers, and by definition will run on more systems than its pigeonholed counterpart. These advantages come at a cost, however, and a rational approach to balancing costs and benefits requires a systemic evaluation. While the benefits for each application are likely situation-dependent, the costs in terms of resources, including but not limited to time, money, computational power, and memory requirements, are quantifiable. This document will identify strategies for enhancing performance portability on a variety of platforms available to the scientific computing community which will have little or no adverse impact on alternate architectures; this is done by implementing an iterative point solver requiring a high degree of data transfer bandwidth of a type commonly used in high performance applications used for computing a solution to partial differential equations (PDEs). In this thesis, we were able to show significant speed enhancements for architectures as diverse as complex traditional Central Processing Units (CPUs), Graphical Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). Employing generalized optimizations on a variety of development frameworks we were able to show as much as a 92.5% reduction on a pipelined architecture (FPGA) while having a negligible impact on alternate architectures, and an 88.6% reduction in execution time on a Single Instruction Multiple Data (SIMD) architecture (GPU/CPU) while also having a negligible impact on alternate architectures. By enforcing these design rules in released versions of scientific code, the code has the potential to be optimally positioned for future advancements in computing architecture as well as being performance portable among existing architectures.

Copyright, 2019, by Jason Orender, All Rights Reserved.

Dedicated to my wife Dani, who tolerated my work schedule and inspired my scholarship.

ACKNOWLEDGEMENTS

- Dr. Mohammed Zubair (Old Dominion University)
- Dr. Eric Nielsen (NASA)
- Mike Cardoso (Intel)

TABLE OF CONTENTS

Page
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter

1. INTRODUCTION 1
2. BACKGROUND 3
2.1 PORTABLE STANDARDS 3
2.2 SELECTING A RESPRESENTATIVE PROBLEM 5
3. RELATED WORK 12
4. PROBLEM DEFINITION 14
5. TECHNICAL SOLUTION 16
5.1 CONSOLIDATION OF ARITHMETIC OPERATIONS 16
5.2 IDENTIFY COMMON MEMORY ACCESSES 19
5.3 ACCESS MEMORY IN LARGE CONTIGUOUS BLOCKS 21
5.4 IDENTIFY OPPORTUNITIES FOR VECTORIZING 22
5.5 CONSTRUCT INDEPENDENT LOOPS THAT HAVE A CONSTANT NUMBER OF ITERATIONS 22
5.6 CONSTRUCT INDEPENDENT LOOPS THAT ARE HAVE A CON- STANT NUMBER OF ITERATIONS FOR A SINGLE WORK ITEM 22
6. EVALUATION OF DEVELOPED SOLUTION 29
7. MAJOR CONTRIBUTIONS 32
8. CONCLUSIONS 34
REFERENCES 36
APPENDICES
A. BASIC SEQUENTIAL POINT SOLVER 37
B. FPGA WRAPPER CODE 42
C. FPGA BASIC CODE 45
D. FPGA PARTIALLY OPTIMIZED CODE 51
E. FPGA OPTIMIZED CODE 57
F. GPU BASIC CODE 65
G. GPU PARTIALLY OPTIMIZED CODE 72
H. GPU OPTIMIZED CODE 77
I. DATA TABLES 81
J. HARDWARE SPECIFICATIONS 84
VITA 87

LIST OF TABLES

Table Page

1. Source Portability Strategies 3
2. Time Comparison Summary table (times shown in ms) 30
3. Optimization Continuum Results 31
4. Clock Validation for Optimized Code (time in ms) 81
5. Clock times for Optimized Code without profiler (time in ms) 82
6. Clock Validation for Non-Optimized (Baseline) Code (time in ms) 82
7. Clock times for Non-Optimized code without profiler (time in ms) 83
8. OpenMP Trials for ARM CPU (times in ms) 83
9. OpenMP Trials for Intel x 86 CPU (times in ms) 83
10. GPU Hardware Data 84
11. FPGA Hardware Data 85
12. ARM CPU Hardware Data 85
13. x86 CPU Hardware Data 86

LIST OF FIGURES

Figure
Page

1. A sparse matrix and its BCSR representation with $n_{b}=2$. There are 22 non-zero elements in this sparse matrix that has nominally 64 elements. Assuming that the array elements are integers in this case, the storage space required for the uncompressed version is $64 \times 4=256$ bytes. The storage space required for the same array in BCSR format would require $(28 \times 4)+(5 \times 4)+(7 \times 4)=160$ bytes. Many scientific applications employ large matrices that contain mostly zeroes; in these cases the space and time savings gained by iterating over a matrix in BCSR format can be significant.
2. A simple example of a four-colored grid with adjacency implying computational dependence. A time step calculation on any single color element can be assumed to be computationally independent of the elements of the same color. A time step calculation on a red element, for example, will be independent any other red element, implying that a single time step could be calculated for each of the colors in parallel (e.g. 16 parallel threads to calculate the red elements, then update the matrix, and then use another 16 parallel threads to calculate the green elements, and so on).

CHAPTER 1

INTRODUCTION

Creating portable code for scientific applications faces some unique challenges. Since scientific applications will frequently rely on highly computationally intensive algorithms, the effort to parallelize aspects of the code will often achieve highly asymmetric gains in code functionality [1]. That is, for the amount of effort expended in optimizing the code, the greatest return for this investment is often parallelization. As a result, a tradeoff emerges: the researcher can spend effort to optimize code for a specific platform and get greater computational efficiency, or they can apply their efforts to ensure that their code adheres to a portable standard that that will have wide utility and extended lifetime but at a reduced efficiency. The benefits of the first strategy can be realized very quickly, while the benefits of the latter can take much longer to materialize. In fact, if the reduction in efficiency is too severe, the enhanced utility that is the nominal goal of the second approach might be obviated altogether. This brings into focus several reasons why portability might not be a good choice [2]:

- Extended development time vs. non-portable code
- Reduction in performance vs. non-portable code
- Inability of a specific model to run on alternate hardware
- Model was previously developed for specific hardware, and its function is not well enough understood to create a generalized portable version.

The last two items in this list, while valid considerations for specific code, are not applicable in this analysis. This document will examine the problem as if the code is created from a well understood generalizeable model that does not require specific hardware to achieve a valid result.

This document will introduce the particular PDE solver being studied and explain why it is representative of the type of problem that is commonly approached in
high performance computing, as well as explain the motivation to find more efficient computational frameworks.

Choosing a portability strategy to focus on will be the first step in the analytical process. All strategies are not equivalent with respect to high performance computing and certain frameworks offer distinct advantages to the researcher. After an open standard is chosen, the performance of several platforms, including single threaded CPU, typical multicore CPU, high performance multicore CPU, multicore ARM, FPGA, and GPU will be evaluated, including a baseline version of the code as well optimized versions. A discussion of tradeoffs, as well as advantages and disadvantages of each platform will occur in this portion. An explanation of why certain platforms fail or excel at certain tasks will also be included here. A comparison metric for costs is the final piece of the puzzle that will be discussed, to include a recommendation for the best framework and platform combination for the solution to this particular type of problem.

CHAPTER 2

BACKGROUND

2.1 PORTABLE STANDARDS

It is first necessary to take a step back and discuss what is meant by the term "portability". The most restrtictive form, binary portability, refers to the ability to run a binary executable on multiple platforms without having to change or recompile the binary in any way. This is very difficult to achieve on diverse architectures and is not generally what is meant by the word "portable" in modern discourse; because of this, binary portability will not be discussed in this document. The less restrictive and more common understanding of the term is source portability; that is, the ability to have a program that is adpated at the source level which can be compiled on multiple target environments with little to no modification. There are many ways to achieve this goal, and these generally conform to several well defined categories (see Table 1).

A subcategory of source portability, so-called "performance portability", could be described as code that has similar performance characteristics across multiple architectures. It could also be described as achieving the best realistically achievable performance across multiple architectures; this will be considered an implied paradigm, and while performance portability may not be explicitlty referenced it should be understood as the ultimate goal of well constructed portable code.

TABLE 1: Source Portability Strategies

Strategy	Example
Standardized Languages	C/C++, Fortran
Language extensions	CUDA, TBB (Intel)
Open Language Constructs	OpenMP, OpenCL
Virtual Machines	Java
Steering Languages	Python

Standardized languages offer a common strategy for portability. Via precompiler directives, the source can be compiled in myriad ways and invoke many differing types of dependencies. As an example, a C++ program can be written so that it can take advantage of posix threads on a Unix or Linux machine while reverting to a Windows API implementation when required. The negative aspect of this strategy is that much of the program must be re-written for each new platform and provided as an alternate compilation path, possibly by employing a series of precompiler directives to activate or deactivate large blocks of code, since the syntax and optimal arrangement of the code can differ markedly. While this method may work for simple programs that do not need to exploit parrallelism at scale, it may become untenable for code with a high degree of complexity or which requires a great deal of maintenance since every block of code with duplicate functionality will need to be updated seperately.

Language extensions can be thought of as an outgrowth of the standardized languages strategy. The specifics for exploiting specialized hardware are encapsulated in a library that is called when the code is compiled on a machine that can support it. This makes the resulting code simpler than lower level programming methods like individual thread manipulation via Posix threads or the Windows API; by using the Thread Building Blocks (TBB) Intel library, for instance, the code can be tremendously simplified but it will still suffer from the higher level complexity issues that make the standardized language strategy untenable. The changes required to use differing operating systems are resolved because versions of this library exist for all major operating systems that use chips by this particular manufacturer, but differences across hardware are still unresolved. A Graphics Processing Unit (GPU) will still require a version of the code that is syntactically distinct from the CPU code, and an ARM processor would require a still different version of the optimized code.

The next strategy is the utilization of open language constructs like OpenMP and OpenCL. These have the advantage of not only being supported by most major operating systems, but having gleaned support from hardware manufacturers as well. These are examples of consortium standards, and this strategy seemingly incorporates the best aspects of the previous two. There are several disadvantages to using this strategy, however, and these form the basis of defining the tradeoffs that are inherrent in reliable source portability. The first disadvantage is that hardware manufacturers will likely implement new innovations in their own language extensions first before they devote time and resources to updating an open source project;
ways to organize threads into cooperative groups that pass information back and forth on the fly, for example, offer great opportunities for optimization but are also highly hardware dependent at the time of this writing. Standard ways to accomplish optimization tasks are likely to require a consensus that can only be reached after a certain amount of trial and error has already occurred and a favorite method identified by researchers and developers is clear. As a result, there is a necessary time lag between the occurrence of a new innovation and its emergence as a widely supported portable standard. Second, the generalized (and portable) implementation of an optimizing construct will likely be less efficient than the hardware specific implementation; this is one of the metrics that I will examine to determine the price of the tradeoff.

Virtual Machines take the idea of portability to a level that is perhaps unattainable by any of the previous methods, but this comes at the high cost of abstracting the hardware away altogether and incurring significant overhead. There has been significant work as early as 2003 to create distributed virtual machines that can transparently manage multi-threaded applications over several nodes [3], but because of the added overhead required to manage these machines they will by definition never be able to achieve the level of performance available by running code directly on the hardware. For this reason, the Virtual Machine strategy will not be considered.

So called "steering languages", like Python can provide for a rapid development cycle by utilizing many highly optimized libraries [4]. Python, in particular, is highly extensible and boasts a development community that regularly provides updated libraries for general use. These languages can be considered an additional abstraction layer since many of the libraries created must be originally coded using one of the first three methods examined. Since the point of scientific computing is frequently to examine results from novel algorithms, it is this initial development that will be considered in the analysis presented by this document. The value of using preprogrammed libraries in a steering language such as Python cannot be understated in terms of development streamlining, but it is not the focus of this document.

2.2 SELECTING A RESPRESENTATIVE PROBLEM

The second task that needs to be accomplished prior to performing analysis is to pick a representative problem that encapsulates many of the issues that the scientific
community faces when attempting to code a solution. As a general rule, these problems might be divided into two broad categories: 1) computationally intensive and 2) data intensive. In a computationally intensive problem, the time spent converging to a solution and performing calculations will be the limiting factor, while a data intensive problem might rely on simple operations performed on a large amount of data. A third possibility is a problem that incorporates both of these elements and is therefore both computationally intensive and data intensive; a problem of this sort will likely be the most representative benchmark for anlysis. Any metric computed should also be able to differentiate the location of the bottleneck as either in the computational space or the data transfer space.

For this reason, the Partial Differential Equation (PDE) solver used in the Fully Unstructured 3D Grid (Fun3D) modeling software supported by the National Aeronautics and Space Administration (NASA) was selected. It is an iterative PDE solver that computes multiple sparse matrix-vector multiplications per iteration over a multi-dimensional grid. Importantly, it is a widely distributed and well understood piece of code for which large standard data sets are available and valid results are known.

2.2.1 DESCRIPTION OF THE PROBLEM BEING STUDIED

The result of the PDE solver's implicit solution approach is a set of linear equations of the form:

$$
A x=b
$$

This equation must be solved frequently during the simulation in which it is used, where:

- A is an $n \times n$ spatial mesh (a matrix).
- x is an input.
- b is the result.

The $n \times n$ matrix is further broken down into sub-matrices of size $n_{b} \times n_{b}$ which is the result of linearization of nonlinear equations at each grid point. The matrix A is divided into diagonal D and off-diagonal O matrices:

$$
\begin{equation*}
A=D+O \tag{1}
\end{equation*}
$$

The solver initializes the grid points by renumbering them with the reverse Cuthill-McKee algorithm (RCM) [5] to create a band matrix based on a permutation of the sparse matrix.

An array of size $\left[n n z \times n_{b} \times n_{b}\right]$ is used to store $n n z$ blocks of the diagonal matrix D. For each block D_{i}, two triangular sub-matrices, the lower L_{i} and the upper U_{i}, are generated in-place before running each linear solver for $1 \leq i \leq n$. The L_{i} and the U_{i} matrices are then computed using a forward and back substitution algorithm. This is another useful technique used to help improve cache locality.

The off-diagonal matrix O contains nnz non-zero blocks, where each block is stored using a modified block compressed sparse row (BCSR) [6] format. In the modified BCSR format, three arrays are used: $i a$ and $j a$, to efficiently capture the sparsity pattern of the matrix and a one-dimensional data array of size $\left[n n z \times n_{b} \times n_{b}\right]$, to store all of the non-zero elements. The integer array $i a$ of size $(n+1)$ is used to keep indexes of all leading non-zero blocks in each row of O (the final entry is for the hypothetical beginning index of the next row beyond the end of the matrix it is included so that the number of nonzero blocks in the last row of the matrix can be inferred). The $j a$ array of size $n n z$ stores the block-column indexes of all non-zero blocks. Figure 1 shows how a simple matrix can be represented with this block structure.

Studying the use of sparse matrices is significant with respect to scientific computing in that copying large blocks of contiguous memory is, as a general rule, much faster and more efficient than copying individual bytes or small groups of bytes. Every memory access has an overhead associated with it that is relatively independent of the size of the memory being accessed, and in this realization a tradeoff emerges. For the quickest memory access, the matrix cannot be compressed, but at a certain point the added time of accessing large numbers of zeroes outweighs the overhead required to access the non-zeroes independently. In many cases, the size of the matrices in memory is also a limiting factor. For these practical reasons, studying the effects of calculations performed on compressed matrices (for this document the BCSR format is used) will likely yield the most relevant general result.

A "multi-coloring" scheme is used in the point-implicit linear solver which exposes the parallelism in the solver computation. It groups colors and grid points such that no two neighbor points are colored the same. All unknowns associated with a grid point are assigned the color of that point.

Fig. 1: A sparse matrix and its BCSR representation with $n_{b}=2$. There are 22 non-zero elements in this sparse matrix that has nominally 64 elements. Assuming that the array elements are integers in this case, the storage space required for the uncompressed version is $64 \times 4=256$ bytes. The storage space required for the same array in BCSR format would require $(28 \times 4)+(5 \times 4)+(7 \times 4)=160$ bytes. Many scientific applications employ large matrices that contain mostly zeroes; in these cases the space and time savings gained by iterating over a matrix in BCSR format can be significant.

Fig. 2: A simple example of a four-colored grid with adjacency implying computational dependence. A time step calculation on any single color element can be assumed to be computationally independent of the elements of the same color. A time step calculation on a red element, for example, will be independent any other red element, implying that a single time step could be calculated for each of the colors in parallel (e.g. 16 parallel threads to calculate the red elements, then update the matrix, and then use another 16 parallel threads to calculate the green elements, and so on).

In this context a "color" is a grouping of grid points that are not expected to influence the calculations on any other grid points in a cohort if they are assigned identical colors; all grid points that are assigned "red", to extend the analogy, are expected to be computationally independent of each other, while the unknowns associated with "red" points might well have an impact on any given "green" or "black" points. An example is shown in Figure 2. This has been a common strategy to expose parallelism $[7,8]$ with respect to both scientific and graphics computation for some time.

In the particular case of the PDE solver for Fun3D, an approximate nearestneighbor flux Jacobian is used to generate A, which results in no data dependencies between the unknowns of the same color; this provides the possibility of updating them in parallel fashion. The process of generating this matrix based on the raw
input data is not part of the calculation studied and will not be described here, but is covered in detail in [9]. The linear solver computation is repeated several times over the entire system, and each time the unknowns are updated with the latest values of x from the other colors. To improve memory access and consequently cache performance, the system of algebraic equations is renumbered so that the unknowns of the same color are grouped together by organizing them consecutively in memory and the arrays of $i a$ and $j a$ are modified to adopt the new matrix structure; this allows for some of the advantages of reduced overhead by copying large blocks of memory to acceleration hardware like a GPU, for example, at once while preserving the practical necessity of employing the sparse matrix format for storage. Once the linear solver computation is done, an inverse map is then used to update the nonlinear solution of the partial differential equations (PDEs) at each grid point.

The full code for all versions of the algorithm are included in the appendices. In the interest of clarity and brevity, a generalized version in pseudocode is presented below in order to give a general idea of where calculations and data transfers are occurring. All versions of the code follow the general format presented below.

Psuedocode of the general algorithm used follows:

```
[transfer data to device from host if required]
for i = 1 to sweeps
    for j = 1 to num_colors
        solve_subroutine(data)
[transfer data from device to host if required]
```

Pseudocode for the solve subroutine follows:

```
def solve_subroutine(data):
    // transfer data from device memory to local memory
    set f1, f2, f3, f4, f5 to residual array elements for this node.
    start = ia[node]
    end = ia[node+1]-1
    // loop over the nonzero elements
    for i = start to end
        icol = ja[i]
        // set the new values equal to the old values multiplied by a
        // deterministic constant based on nearby nodes
        decrement f1..f5 by the product of the off-diagonal matrix
                values and the previous solution matrix values five times
                (over each column, if the f1..f5 variables are viewed as
```

```
    rows)
// solve forward
decrement f2..f5 by the product of the diagonal matrix values
    and f1
decrement f3..f5 by the product of the diagonal matrix values
    and f2
decrement f4..f5 by the product of the diagonal matrix values
    and f3
decrement f5 by the product of the diagonal matrix value
    and f4
// solve backward
decrement f1..f4 by the product of the diagonal matrix values
    and a factor of f5
decrement f1..f3 by the product of the diagonal matrix values
    and a factor of f4
decrement f1..f2 by the product of the diagonal matrix values
    and a factor of f3
decrement f1 by the product of the diagonal matrix value
    and a factor of f4
set the new solution values to f1..f5
```


CHAPTER 3

RELATED WORK

Much of the work in the area of portability has been with respect to the faithful reproduction of floating point results across various platforms as with [10], the particulars of using specific steering languages and libraries as with [4, 11], and the development of portable frameworks as with $[12,13]$ for use across multiple platforms.

The most directly comparable work was an investigation of the portability of applications written in OpenCL [14]. This paper studied software engineering techniques that guarantee the maximum level of so-called "performance" portability. That is to say, a program written for a GPU might utilize certain memory structures or code arrangement that would either have no bearing on the performance in multicore CPU hardware or might actually cause worse performance in that context. That paper investigated the application of standard benchmark code on GPUs and CPUs, though most of the comparison was between differing brands of CPUs.

One principal difference between that paper and this document is the expansion of the evaluation criteria to include the requirement for significant memory bandwidth and an exploration of how that affects portability. The paper also used NASA CFD code as a benchmark; the "LU" benchmark was used, which also employs large-scale Navier-Stokes computations on a three dimensional grid, but their implementation focused solely on compute performance by presuming that the memory accesses can be optimized in one of two ways. They allowed either an array-of-structs (AoS) or a struct-of-arrays (SoA) as the tested memory configuration. In the AoS configuration, the five values associated with each grid point would be adjacent in memory, which creates conditions optimal for the best compute performance in a scalar work item. In the SoA configuration, the values would be split into five separate units, which would allow the best compute performance in a Single Instruction Multiple Data (SIMD) parallel architecture. In a real CFD dataset, the data would generally not be able to be optimized completely for either of these architectures; optimizing some of the data would require random accesses for another portion of the data as a tradeoff because of the high degree of interdependence between grid points. For
this reason, the sparse data access architecture in the Fun3D code is likely a better representation of the memory performance for real scientific applications in general, rather than the simplified uncompressed data used with the LU benchmark in [14]. The analysis of the Fun3D code performance on multiple architectures will show that no matter what compute optimizations are made, memory bandwidth still has an material importance in the performance of the code as a whole.

CHAPTER 4

PROBLEM DEFINITION

The problem can be split into two elements: 1) how can the code be constructed to take advantage of specific hardware characteristics, and 2) the implementation cost differential when comparing a portable semi-optimized version to both the unoptimized version and the fully optimized version.

Defining the specific ways that the code must be altered to take advantage of hardware acceleration leads to three possible basic versions of code that nominally accomplish the same tasks. The first version of the code consists of a simplistic sequential implimentation that is created without regard to memory or loop structures that might be more efficient on alternate architectures; construction of this version of the code is usually the first step, and while it is likely to be portable across every other architecture, it will also probably have severely suboptimal characteristics.

From this first version, a second version of the code could be derived and optimized for a Single Instruction Multiple Data (SIMD) capable platform such as a GPU or multi-core GPU; this would be the portable semi-optimized version. Depending on the specific vendor, this code could be further branched to create specific optimizations that could be made to enhance efficiency at the expense of portability; this would be the fully optimized version.

Again branching from the first version, a third version of the code could be derived and optimized for a pipeline parallel platform like a Field Programmable Gate Array (FPGA); this would also be a portable semi-optimized version. Additional modifications that enhance exposure to pipeline parallelism but cause increased execution time on alternate platforms would constitute the fully optimized version for this case. While there are ways to more fully optimize FPGA platforms that go beyond using the OpenCL standard, for instance by using Register Transfer Language (RTL) or some specific Hardware Definition Language (HDL), they require a specialized level of knowledge that make them an atypical choice as an acceleration technology for use in general scientific computing.

Portability, in this context, could potentially be achieved by creating semi-optimized versions derived from the basic naive version that work equally, or nearly equally, well
on both an SIMD platform or a pipeline parallel platform. The cost of this portable version can then be described in terms of the performance differential in terms of execution time between this version and the fully un-optimized (naive) version as well as the fully optimized version. The performance gap between fully optimized and un-optimized versions is the maximum potential benefit, while the location of the portable semi-optimized version on this continuum can be described in terms of the fraction of maximum potential benefit either gained or lost.

CHAPTER 5

TECHNICAL SOLUTION

The design of code that is portable among several architectures that optimize differently can only be partially effective due to the competing goals of these architectures, but the gains achieved by making subtle changes to the code can be significant. There are several major categories of changes that make the biggest differences:

- Consolidate arithmetic operations that make use of intermediate variables or multiple steps.
- Identify common memory accesses that could be mapped to shared (local) memory when the opportunity presents itself.
- Access global memory in large contiguous blocks instead of randomly selecting smaller sections.
- Identify opportunities for vectorizing data/operations.
- Construct independent loops that have a constant number of iterations that are knowable at compile-time.
- Alternatively, construct independent loops that have a constant number of iterations for a single work item.

Abiding by these general limitations is relatively simple if it is done while while composing the code, but it becomes progressively harder when modifying code that has been previously composed without regard to these guidelines. The degree of difficulty added is highly dependent on the specifics of each individual case. In addition, these modifications can generally be applied to all architectures while accumulating very little additional overhead.

Each of the above listed optimizations can be identified in the partially optimized GPU code (see Appendix G) and FPGA code (see Appendix D). The following sections identify examples of these optimizations and explain why they are necessary.

5.1 CONSOLIDATION OF ARITHMETIC OPERATIONS

This is likely the simplest of the optimization steps but can make significant improvements in pipeline optimized code at no, or virtually no, cost to the run time measured in alternate architectures. In many cases arithmetic statements can be spread out over several operations as the unintended result of the evolution of the code or underlying algorithm over time or simply to make the code more readable. The following code excerpt (full code is located in Appendix C, lines 118-146) is an example of un-optimized arithmetic operations:

```
f1 -= a_off[0+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f2 -= a_off[1+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f3 -= a_off[2+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f4 -= a_off[3+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f5 -= a_off[4+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
// pipeline will stall here
f1 -= a_off[0+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f2 -= a_off[1+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f3 -= a_off[2+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f4 -= a_off[3+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f5 -= a_off[4+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
// pipeline will stall here
f1 -= a_off[0+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f2 -= a_off[1+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f3 -= a_off[2+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f4 -= a_off[3+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f5 -= a_off[4+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
// pipeline will stall here
f1 -= a_off[0+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f2 -= a_off[1+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f3 -= a_off[2+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f4 -= a_off[3+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f5 -= a_off[4+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
// pipeline will stall here
f1 -= a_off[0+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
```

```
f2 -= a_off[1+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f3 -= a_off[2+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f4 -= a_off[3+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f5 -= a_off[4+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
// pipeline will stall here
```

Each of the variables f 1 through f 5 in this case are decremented by an amount calculated from external data. The optimized version of this code excerpt is simply the consolidation of all of these operations into five single line-items (see Appendix D, lines 142-170).

```
f1a[j] = (a_off[0+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[0+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[0+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[0+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[0+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
f2a[j] = (a_off[1+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[1+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[1+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[1+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[1+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
f3a[j] = (a_off[2+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[2+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[2+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[2+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[2+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
f4a[j] = (a_off[3+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[3+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[3+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[3+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[3+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
f5a[j] = (a_off[4+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[4+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[4+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[4+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[4+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
```

```
// pipeline will stall here
```

This simple change resulted in a 33.5% reduction in run time when compiled for an FPGA due to removing the requirement that the intermediate numbers be stored in the destination memory. This minimizes conflicts when scheduling pipelined operations and removes the need to stall after every fifth of the computation. A stall will still occur at the end of the statements, but this consolidated stall will be shorter and in the case of an FPGA specifically, the number of clock-ticks required to sum five products is not simply five times the number required to simply calculate a single product and add it to a register; it is much less. This is because during FPGA code compilation a custom processing unit instruction will be created to accomplish this task by physically configuring the hardware. This custom instruction that is produced will, in effect, take 10 arguments and produce a sum of products in the minimum number of clock-ticks. This modification will have zero cost with respect to run time on alternate architectures.

5.2 IDENTIFY COMMON MEMORY ACCESSES

Identifying common memory accesses can show improvements across a wide range of architectures since many language extensions, including OpenCL, OpenMP, and CUDA all provide infrastructure to take advantage of on-device memory (if it exists). If on-device memory does not exist for whatever reason, the code behaves as if it were written without taking advantage of the added infrastructure. This optimization category is somewhat harder to implement since it requires a degree of familiarity with the algorithm that is being implemented. The following code example from the optimized GPU code (Appendix H), and the extra time taken to read and store this data into shared memory should be regarded as overhead.

```
__shared__ real8_t
    a_diag_lu_shared[5][5][BLOCK_DIM_Y];
int const k = threadIdx.x % 5;
int const l = threadIdx.x / 5;
int n = start + blockIdx.x * blockDim.y + threadIdx.y - 1;
if (n >= end || l >= 5)
    return;
```

```
// additional unrelated code here
.
// end - unrelated code
// Collectively load a_diag_lu into shared memory
a_diag_lu_shared[k][l][threadIdx.y] = A_DIAG_LU(k, l, n);
__syncthreads();
```

This speed gain is realized is within the code that follows:

```
if (threadIdx.x < BLOCK_DIM_Y && threadIdx.y == 0 && n < end) {
    // additional unrelated code here
    // Forward...sequential access to a_diag_lu
    f2 = f2 - a_diag_lu_shared[1][0][threadIdx.x] * f1;
    f3 = f3 - a_diag_lu_shared[2][0][threadIdx.x] * f1;
    f4 = f4 - a_diag_lu_shared[3][0][threadIdx.x] * f1;
    f5 = f5 - a_diag_lu_shared[4][0][threadIdx.x] * f1;
    f3 = f3 - a_diag_lu_shared[2][1][threadIdx.x] * f2;
    f4 = f4 - a_diag_lu_shared[3][1][threadIdx.x] * f2;
    f5 = f5 - a_diag_lu_shared[4][1][threadIdx.x] * f2;
    f4 = f4 - a_diag_lu_shared[3][2][threadIdx.x] * f3;
    f5 = f5 - a_diag_lu_shared [4][2][threadIdx.x] * f3;
    f5 = ((f5 - a_diag_lu_shared[4][3][threadIdx.x] * f4)
            * a_diag_lu_shared[4][4][threadIdx.x]);
// Backward...sequential access to a_diag_lu.
f1 = f1 - a_diag_lu_shared[0][4][threadIdx.x] * f5;
f2 = f2 - a_diag_lu_shared[1][4][threadIdx.x] * f5;
f3 = f3 - a_diag_lu_shared[2][4][threadIdx.x] * f5;
f4 = ((f4 - a_diag_lu_shared[3][4][threadIdx.x] * f5)
```

```
    * a_diag_lu_shared[3][3][threadIdx.x]);
f1 = f1 - a_diag_lu_shared[0][3][threadIdx.x] * f4;
f2 = f2 - a_diag_lu_shared[1][3][threadIdx.x] * f4;
f3 = ((f3 - a_diag_lu_shared [2][3][threadIdx.x] * f4)
    * a_diag_lu_shared [2] [2] [threadIdx.x]);
f1 = f1 - a_diag_lu_shared[0][2][threadIdx.x] * f3;
f2 = ((f2 - a_diag_lu_shared[1][2][threadIdx.x] * f3)
    * a_diag_lu_shared [1][1][threadIdx.x]);
f1 = ((f1 - a_diag_lu_shared[0][1][threadIdx.x] * f2)
    * a_diag_lu_shared [0][0][threadIdx.x]);
// additional unrelated code here
```

\}

This additional code at the beginning will take a small amount of extra time, but the speed gains that are realized after repeated accesses to the same set of elements far exceed the little time spent at the beginning reading and storing the data. Elements can be retrieved from shared (on-chip) memory approximately one-hundred times faster than uncached global memory. There are several requirements that limit the gains that can be had using this optimization:

- The absolute size of the common elements must be small (16-64 kB - depending on the platform).
- There must be enough repeated accesses of these elements to make the additional overhead at the beginning of the code advantageous.
- The number of threads that can access common shared memory has a hard limit in the case of GPUs (32 for all major brands - termed a "warp"), and there is a somewhat more flexible limit in the case of FPGAs.

Almost all of the speed improvement from the non-optimized (basic) version of the GPU code (Appendix F) is due to this enhancement. This optimization resulted in an 85% reduction in run time versus the basic version of the GPU code.

5.3 ACCESS MEMORY IN LARGE CONTIGUOUS BLOCKS

This optimization is largely done by organizing the data prior to running the code. Knowing what order the code segments are likely to read the data will allow the data to be organized such that global memory calls start at low addresses and then sequentially progress in a predictable fashion; this may not be possible in every case. The differences in types of memory accesses in GPUs are covered extensively in ref [14]. Enhancing reading the data in this manner can likely be accomplished independent of code organization, so a quantitative treatment of the timing advantages will not be covered here.

5.4 IDENTIFY OPPORTUNITIES FOR VECTORIZING

Explicit vectorization can offer some advantages similar to accessing global memory in larger blocks, as in section 5.3. A vector of four integers that can be read at once, for instance, will take far less time to read than four independent reads of a single integer. In addition, if subsequent operations on each of the integers in that vector are identical, the operations can be conducted on the vector as a whole instead of the individual integer components. This will explicitly invoke SIMD compiler optimizations. While these data constructs offer some additional possibilities for speed-up, most modern compilers will be able to do these optimizations implicitly. For that reason, a quantitative treatment of vectorization will not be covered here.

5.5 CONSTRUCT INDEPENDENT LOOPS THAT HAVE A CONSTANT NUMBER OF ITERATIONS

Making the number of iterations predictable at compile time can have significant implications that can impact both SIMD and pipeline parallel structures. Included in this is the requirement that each loop iteration be independent of previous iterations. For GPU architectures, this allows the ability to independently schedule loop iterations to arbitrary threads and in some cases unroll loops. For pipelined code, this can potentially allow a new loop iteration to start at each new clock tick. These restrictions, however, are very difficult to meet and none of the outer loops in the evaluated code could meet this standard.

5.6 CONSTRUCT INDEPENDENT LOOPS THAT ARE HAVE A CONSTANT NUMBER OF ITERATIONS FOR A SINGLE WORK ITEM

If a constant number of iterations across all work items cannot be accomplished, it is still possible to achieve a significant level of speed-up by making the number of iterations constant across a single work item. As with section 5.5, the greatest speed-up will be observed in pipeline parallel architectures. In the FPGA tested code (Appendix E) this was done by iterating through the outer loops once in advance and noting the largest number of variable loops.

```
for (int sweep=0; sweep < n_sweeps; ++sweep) {
    int cmax=0;
    int nmax = 0;
    for (int i=sweep_start; i!=sweep_end; i+=sweep_stride) {
        if (((color_boundary_end[i]-1) - color_indices[2*i]) > cmax)
                cmax = ((color_boundary_end[i]-1) - color_indices[2*i]);
        if ((color_indices[2*i+1] - color_indices[2*i]) > cmax)
            cmax = (color_indices[2*i+1] - color_indices[2*i]);
        if ((color_indices[2*i+1] - (color_boundary_end[i]+1)) > cmax)
            cmax = (color_indices[2*i+1] - (color_boundary_end[i]+1));
    } //end for (i)
    for (int j=sweep_start; j!=sweep_end; j+=sweep_stride) {
        for (int ipass=1; ipass<=2; ++ipass) {
            int start, end;
            if (j > colored_sweeps) {
                start = 1;
                end = 0;
                } // end if
                else {
                    switch(ipass) {
                case 1:
                    if (color_boundary_end[j] == 0) {
                        start = 1;
                        end = 0;
                    } // end if
                    else {
                        start = color_indices[2*j];
                            end = color_boundary_end[j] - 1;
                    } // end if
                    break;
                case 2:
                    if (color_boundary_end[j] == 0) {
```

```
                                    start = color_indices [2*j];
                                    end = color_indices[2*j+1];
            } // end if
            else {
                    start = color_boundary_end [j] + 1;
                    end = color_indices[2*j+1];
            } // end if
            break;
            } // end switch
        } // end else
        for (int i=0; i<=cmax; i++) {
            if ((i+start) <= end) {
            if (((iam[i+start] - 1) - iam[i+start-1]) > nmax)
                nmax = (iam[i+start] - 1) - iam[i+start-1];
            } // end if (i+start)
        } // end for (i)
    } // end for (ipass)
} // end for (j)
```

Every subsequent loop was then iterated at these maximum values. For loops in which no calculation would have occurred, no operations are executed. This is accomplished by a simple if-statement that encapsulates the interior of the loop and acts as a gatekeeper to ensure that only loops that would result in a valid calculation are performed.

```
#pragma ivdep
for (int i=0; i <= cmax; i++) {
    int irow, icol; // declaring these up here outside of if
        -blocks
    float f1_temp, f2_temp, f3_temp, f4_temp, f5_temp;
    n = i + start;
    // this if-statement acts as the gatekeeper to ensure that
        no loops
    // are executed on nonsense values
    if (n <= end) {
```

```
if (solve_backwards > 0) {
    f1 = -res[0 + (n-1)*NB];
    f2 = -res[1 + (n-1)*NB];
    f3 = -res[2 + (n-1)*NB];
    f4 = -res[3 + (n-1)*NB];
    f5 = -res[4 + (n-1)*NB];
} // end if (sweep_stride);
else {
    f1 = res[0 + (n-1)*NB];
    f2 = res[1 + (n-1)*NB];
    f3 = res[2 + (n-1)*NB];
    f4 = res[3 + (n-1)*NB];
    f5 = res[4 + (n-1)*NB];
} // end else (sweep_stride)
istart = iam[n - 1];
iend = iam[n] - 1;
#pragma ivdep
for (int j = 0; j <= nmax; j++) {
    irow = j + istart;
    icol = jam[irow-1] - 1;
        f1_temp =(a_off[0+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
            a_off[0+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
                        a_off[0+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
                        a_off[0+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
                        a_off[0+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
        f2_temp = (a_off[1+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
                        a_off[1+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
                        a_off[1+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
                        a_off[1+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
                        a_off[1+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
        f3_temp = (a_off[2+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
            a_off[2+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
            a_off[2+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
            a_off[2+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
            a_off[2+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
```

```
    f4_temp = (a_off[3+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[3+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[3+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[3+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[3+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
    f5_temp = (a_off[4+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
    a_off[4+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
    a_off[4+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
    a_off[4+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
    a_off[4+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
    if ((j+istart) <= iend) {
        f1 -= f1_temp;
        f2 -= f2_temp;
        f3 -= f3_temp;
        f4 -= f4_temp;
        f5 -= f5_temp;
        } // end if (j+istart)
        else {
        f1 -= 0;
        f2 -= 0;
        f3 -= 0;
        f4 -= 0;
        f5 -= 0;
        } // end else (j+istart)
} // end for loop (j)
f2 -= a_diag_lu[1 + 0*NB + (n-1)*NB*NB] * f1;
f3 -= a_diag_lu[2 + 0*NB + (n-1)*NB*NB] * f1;
f4 -= a_diag_lu[3 + 0*NB + (n-1)*NB*NB] * f1;
f5 -= a_diag_lu[4 + 0*NB + (n-1)*NB*NB] * f1;
f3 -= a_diag_lu[2 + 1*NB + (n-1)*NB*NB] * f2;
f4 -= a_diag_lu[3 + 1*NB + (n-1)*NB*NB] * f2;
f5 -= a_diag_lu[4 + 1*NB + (n-1)*NB*NB] * f2;
f4 -= a_diag_lu[3 + 2*NB + (n-1)*NB*NB] * f3;
f5 -= (a_diag_lu[4 + 2*NB + (n-1)*NB*NB] * f3)
    + (a_diag_lu[4 + 3*NB + (n-1)*NB*NB] * f4);
```

```
    f5 *= a_diag_lu[4 + 4*NB + (n-1)*NB*NB];
    // Backward...sequential access to a_diag_lu.
    f1 -= a_diag_lu[0 + 4*NB + (n-1)*NB*NB] * f5;
    f2 -= a_diag_lu[1 + 4*NB + (n-1)*NB*NB] * f5;
    f3 -= a_diag_lu[2 + 4*NB + (n-1)*NB*NB] * f5;
    f4 -= a_diag_lu[3 + 4*NB + (n-1)*NB*NB] * f5;
    f4 *= a_diag_lu[3 + 3*NB + (n-1)*NB*NB];
    f1 -= a_diag_lu[0 + 3*NB + (n-1)*NB*NB] * f4;
    f2 -= a_diag_lu[1 + 3*NB + (n-1)*NB*NB] * f4;
    f3 -= a_diag_lu[2 + 3*NB + (n-1)*NB*NB] * f4;
    f3 *= a_diag_lu[2 + 2*NB + (n-1)*NB*NB];
    f1 -= a_diag_lu[0 + 2*NB + (n-1)*NB*NB] * f3;
f2 -= a_diag_lu[1 + 2*NB + (n-1)*NB*NB] * f3;
f2 *= a_diag_lu[1 + 1*NB + (n-1)*NB*NB];
f1 -= a_diag_lu[0 + 1*NB + (n-1)*NB*NB] * f2;
f1 *= a_diag_lu[0 + 0*NB + (n-1)*NB*NB];
dq[4 + (n-1)*NB] = f5;
dq[3 + (n-1)*NB] = f4;
dq[2 + (n-1)*NB] = f3;
dq[1 + (n-1)*NB] = f2;
dq}[0+(n-1)*NB]=f1
            } // end if (n) - the gatekeeper if-statement
        } // end for loop (i)
        } // end for loop (ipass)
    } // end for loop (color)
} // end for loop (sweep)
```

As a result of this code modification, some overhead calculation time is accumulated and more loop iterations occur, but each iteration can reliably start on a new clock-tick and proceed for a predictable number iterations. If this had not occurred, multiple interior loops of varying length would prevent pipelining the outer loops. This modification resulted in an 88.7% reduction in run time from the version with the simple statement consolidation optimization, and a 92.5% reduction in run time
from the un-optimized version.

CHAPTER 6

EVALUATION OF DEVELOPED SOLUTION

The same data set was used for all runs and consists of one million grid points in order to provide a challenging computation.

Optimizing with CUDA provided a unique way to validate the timing results obtained for the comparison to the OpenCL code executing on the same platform. Nvidia provides a profiling tool ("nvprof") that calculates the cumulative time spent executing each particular kernel, but requires software hooks inserted by the CUDA compilation tools in order to work. As a result, GPU code executed under an OpenCL framework could not be timed using this utility even when running on Nvidia hardware. To validate the times calculated using a monotonic clock executed from the CPU, the results from the Nvidia profiling utility were directly compared with monotonic clock times for the same runs. To summarize, the following general procedure was used:

1. Initiate code execution with the profiler.
2. Start time recorded in CPU code.
3. CUDA version of the code was executed on the GPU.
4. End time recorded in CPU code.
5. Start time recorded in CPU code.
6. OpenCL version of the code was executed on the GPU
(same physical hardware as \#3).
7. End time recorded in CPU code.
8. Profiling results were compared to monotonic clock differential for CUDA.

As would be expected on a shared resource (see data Table 4 in Appendix I), there was some variability in run times, but Nvidia profiler results compared favorably with the results gleaned from tabulating the run times using the CPU clock. The

TABLE 2: Time Comparison Summary table (times shown in ms)

Code Version	CUDA nvprof	CUDA mclock	diff	OpenCL mclock
Optimized	121.09	125.65	4.56	126.38
Opt/No Profiler	NA	124.67	NA	126.78
Non-Optimized	806.35	812.49	6.14	817.40
Non-Opt/No profiler	NA	812.41	NA	818.25

difference was constant to within a 0.33 ms maximum variability and represents the aggregate overhead required to actually invoke the kernel from the CPU.

Since there might also be some small amount of overhead involved in profiling, an additional set of runs was conducted in which the profiler was not used (shown as "No Profiler" runs in the summary Table 2). This data gathering procedure was the same with the exception of starting the profiler and reviewing its results:

1. Initiate code execution.
2. Start time recorded in CPU code.
3. CUDA version of the code was executed on the GPU.
4. End time recorded in CPU code.
5. Start time recorded in CPU code.
6. OpenCL version of the code was executed on the GPU.
7. End time recorded in CPU code.

These results do indicate a slight advantage when running native CUDA code over OpenCL code on the same device, though the difference is a minimal 0.6% speedup. This speedup was constant between the optimized and non-optimized versions of the code.

Note that when the FPGA performance number is scaled by the memory bandwidth measured performance ($292 \mathrm{~GB} / \mathrm{s}$ vs. $3.69 \mathrm{~GB} / \mathrm{s}$) and the floating point performance (15.7 TFLOPS vs. 1.5 TFLOPS), the 11.83 second result is scaled to 143 ms , which compares favorably with the 125.65 ms number measured on the GPU; this implies that the greater proportion of the performance differential can be traced

TABLE 3: Optimization Continuum Results

Platform	Not Optimized	semi-Optimized	Optimized
CPU (x86) - 16 cores	3768.25 ms	1121.4 ms	986.19 ms
CPU (ARM) - 16 cores	9903.13 ms	1349.7 ms	1340.03 ms
GPU (Nvidia)	812.49 ms	126.38 ms	125.65 ms
FPGA (PAC-10)	2.63 min	1.75 min	11.83 sec

back to these two performance statistics. Sufficient improvements in these performance metrics with respect to FPGAs could give an indication of when might be a prudent time to investigate optimizing a specific piece of code for pipeline parallelism with the ultimate goal of FPGA deployment.

CHAPTER 7

MAJOR CONTRIBUTIONS

The major contributions of this document lie in two areas:

- Enumeration of specific code modifications to employ in scientific code that will allow the streamlined optimization on multiple platforms and architectures.
- Identification of the costs associated with those modifications so that their worth can be evaluated.

In Chapter 5, I introduced several methods that will likely result in code that executes faster on specific architectures:

- Consolidation of arithmetic operations that make use of intermediate variables or multiple steps.
- Makes code on pipelined architectures faster (33.5\% reduction in run-time in this case study).
- Has a negligible (but probably positive) effect on other architectures.
- Identification of common memory accesses that could be mapped to shared (local) memory when the opportunity presents itself
- Makes code that uses an acceleration platform faster, since these acceleration platforms typically have a small amount of low latency on-chip memory (85% reduction in run-time in this case study).
- Requires some code redesign that may not apply to all architectures, and frequently will require some trial and error as well a significant development time investment to implement.
- Has no effect on architectures that do not have this capability if a single framework (like OpenCL) is used across all architectures. If multiple frameworks are used to achieve this instead, additional complexity would be required in the form of multiple blocks of code that accomplish the same tasks for alternate frameworks activated and deactivated by pragma if/then/else blocks.
- Access global memory in large contiguous blocks instead of randomly selecting smaller sections.
- Mostly accomplished by preprocessing the input data with knowledge about the order in which the code will access the data.
- Can be done without affecting the code at all in many cases.
- Identify opportunities for vectorizing data/operations.
- Offers many of the same advantages discussed when with respect to access of global memory in large contiguous blocks.
- Can be accomplished by the compiler in large part without explicitly vectorizing the code.
- Explicit vectorization can provide a small speed-up effect, but is unlikely to make a large difference above the implicit vectorization provided by the compiler.
- Construct independent loops that have a constant number of iterations that are knowable at compile-time.
- Can make a big difference in pipeline parallel code, as well as a significant (but smaller) difference in SIMD parallel code.
- A difficult standard to meet in code that requires converging on an answer after a specific criteria is met or in cases where some parts of the calculation have more nonzero data input than other parts.
- Alternatively, construct independent loops that have a constant number of iterations for a single work item.
- Can make a big difference in pipeline parallel code (92.5% reduction in runtime in this case study), but due to the overhead required to determine the right number of iterations, the difference in SIMD parallel code is unpredictable.
- Doing this removes some of the advantage of using sparse data sets since this will require iterating over zeroes. These loops will essentially be nooperation (NOOP) iterations.

CHAPTER 8

CONCLUSIONS

In summary, there are three major areas that are worth optimizing and that will have beneficial effects across multiple architectures and increase the portability of scientific code:

- Consolidation of arithmetic operations (33.5% reduction in run-time in this case study).
- Identification of common memory accesses that could be mapped to shared (local) memory for optimizing over a single work item (85% reduction in runtime in this case study).
- Construction of independent loops that have a constant number of iterations over a single work item (92.5% reduction in run-time in this case study).

These code constructs, either used in the initial implementation of new code or introduced as a reworking of existing code can offer scaling and speed benefits over an extended period of time and likely will expose more parallelism across mutliple architectures as acceleration platforms mature and incorporate functional elements from competing architectures.

In the case of these modifications, implementation on architectures in which there is no immediate benefit will cause neglible or no detriment, and will position the code for re-use in differing architectures as opportunity allows.

REFERENCES

[1] "The exascale effect: Benefits of supercomputing investment for u.s. industry." Council on Competetiveness and Intersect360 Research, Sept 2014.
[2] J. D. Mooney, "Developing portable software." International Federation for Information Processing Digital Library; Information Technology, 2004.
[3] W. Zhu, C.-L. Wang, and F. C. M. Lau, "Jessica2: A distributed java virtual machine with transparent thread migration support." IEEE International Conference on Cluster Computing, 2002.
[4] T. E. Oliphant, "Python for scientific computing," Computing in Science and Engineering, vol. 9(3), 2007.
[5] E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," Proceedings of the 1969 24th National Conference, ACM '69, p. 157-172, 1969.
[6] Y. Saad, "Iterative methods for sparse linear systems," Society for Industrial and Applied Mathematics, 2003.
[7] L. Chen, I. Fujishiro, and K. Nakajima, "Parallel performance optimization of large scale unstructured data visualization for earth simulator," Proceedings of the Fourth Eurographics Workshop on Parallel Graphics and Visualization, pp. 133-140, 2002.
[8] C. Garcia, M. Prieto, J. Setoain, and F. Tirado, "Enhancing the performance of multigrid smoothers in simultaneous multithreading architectures," International Conference on High Performance Computing for Computational Science, pp. 439-451, June 2006.
[9] R. Biedron, J. Carlson, J. Derlaga, P. Gnoffo, D. Hammond, W. Jones, and B. Kleb, "Fun3d manual." NASA, 2018.
[10] Y. Gu, T. Wahl, M. Bayati, and M. Leeser, "Behavioral non-portability in scientific numeric computing," European conference on Parallel Processing, pp. 558569, August 2015.
[11] F. Perez, B. E. Granger, and J. D. Hunter, "Python: an ecosystem for scientific computing," Computing in Science and Engineering, vol. 13(2), pp. 13-21, 2011.
[12] S. Z. Guyer and C. Lin. Springer, Boston, MA, 2001.
[13] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas, "Towards efficiency and portability: Programming with the bsp model," Proceedings of the eighth annual ACM symposium on Parallel alogorithms and architectures, pp. 1-12, June 1996.
[14] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller, and S. A. Jarvis, "An investigation of the performance portability of opencl," Journal of Parallel and Distributed Computing, vol. 73(11), pp. 1439-1450, 2013.

APPENDIX A

BASIC SEQUENTIAL POINT SOLVER

The following is the basic sequential code written in C that was the basis for all of the other code adaptations. Note the structure of the loops; there is an outer iterative sweep, a color sweep (every "color" is verified to designate nodes that can be computed independently of any other node of the same "color", see the "Background" section for a more complete explanation), and then the inner loops that are suitable for fully parallel computation. Additional commenting within the code indicates which portion of the code was used in the GPU benchmarking process as the "NonOptimized" code.
\#include <stdlib.h>
\#define N_SWEEPS 1
\#define BLOCK_DIM_X BLOCK_DIM_X_PS5
\#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
extern "C" {
void point_solve_5_cl
(intptr_t *ocl_params, intptr_t *ocl_data, int colored_sweeps,
int *color_indices, int neq0, int nja, int *iam, int *jam,
int solve_backwards, int nb, int n_sweeps, double *res, float *dq
,
double *a_diag_lu, float *a_off, int *color_boundary_end) {
int j,n,sweep,icol,istart,iend,start,end,ipass, color,
sweep_start, sweep_end, sweep_stride;
float f1,f2,f3,f4,f5;
double f[5];
sweep_start = 1;
sweep_end = colored_sweeps;
sweep_stride = 1;

```
```

```
#include <stdio.h>
```

```
```

\#include <stdio.h>

```
```

if ((solve_backwards > 1) || (solve_backwards < -1)) {
sweep_start = colored_sweeps;
sweep_end = 1;
sweep_stride = -1;
} // end if (solve_backwards)
if (neq0 <= 0) {
sweep_start = 1;
sweep_end = 2;
sweep_stride = -1;
} // end if (neq0)
for (sweep = 1; sweep <= n_sweeps; sweep++) {
for (color = sweep_start; color <= sweep_end;
color += sweep_stride) {
for (ipass = 1; ipass <= 2; ipass++) {
if (color > colored_sweeps) {
start = 1;
end = 0;
} // end if (color)
else {
switch (ipass) {
case 1:
if (color_boundary_end[color-1] == 0) {
start = 1;
end = 0;
} // end if (color_boundary_end)
else {
start = color_indices[2*(color-1)];
end = color_boundary_end[color-1];
} // end else (color_boundary_end)
break;
case 2:
if (color_boundary_end[color-1] == 0) {
start = color_indices[2*(color-1)];
end = color_indices[2*(color-1)+1];
} // end if (color_boundary_end)
else {
start = color_boundary_end[color-1] + 1;
end = color_indices[2*(color-1)+1];

```

64
65
66 67 68
```

 } // end else (color_boundary_end)
 } // end switch (ipass)
 } // end else (color)
 for (n = start; n <= end; n++) {
 // ***
 // * CODE WITHIN THIS LOOP IS USED IN SIMD (GPU) KERNELS *
 // ***
 if (solve_backwards > 0) {
 f1 = -res[0 + (n-1)*nb];
 f2 = -res[1 + (n-1)*nb];
 f3 = -res[2 + (n-1)*nb];
 f4 = -res[3 + (n-1)*nb];
 f5 = -res[4 + (n-1)*nb];
 } // end if (solve_backwards);
 else {
 f1 = res[0 + (n-1)*nb];
 f2 = res[1 + (n-1)*nb];
 f3 = res[2 + (n-1)*nb];
 f4 = res[3 + (n-1)*nb];
 f5 = res[4 + (n-1)*nb];
 } // end else (solve_backwards)
 istart = iam[n-1];
 iend = iam[n] - 1;
 for (j = istart; j <= iend; j++) {
 icol = jam[j-1] - 1;
 f1 -= a_off[0 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f2 -= a_off[1 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f3 -= a_off[2 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f4 -= a_off[3 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f5 -= a_off[4 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f1 -= a_off[0 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f2 -= a_off[1 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f3 -= a_off[2 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f4 -= a_off[3 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f5 -= a_off[4 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
    ```

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
```

 f1 -= a_off[0 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f2 -= a_off[1 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f3 -= a_off[2 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f4 -= a_off[3 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f5 -= a_off[4 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f1 -= a_off[0 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f2 -= a_off[1 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f3 -= a_off[2 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f4 -= a_off[3 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f5 -= a_off[4 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f1 -= a_off[0 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f2 -= a_off[1 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f3 == a_off[2 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f4 -= a_off[3 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f5 -= a_off[4 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 } // end for (j)
f[0] = f1;
f[1] = f2;
f[2] = f3;
f[3] = f4;
f[4] = f5;
// Forward...sequential access to a_diag_lu.
f[1] -= a_diag_lu[1 + 0*nb + (n-1)*nb*nb] * f[0];
f[2] -= a_diag_lu[2 + 0*nb + (n-1)*nb*nb] * f[0];
f[3] -= a_diag_lu[3 + 0*nb + (n-1)*nb*nb] * f[0];
f[4] -= a_diag_lu[4 + 0*nb + (n-1)*nb*nb] * f[0];
f[2] -= a_diag_lu[2 + 1*nb + (n-1)*nb*nb] * f[1];
f[3] -= a_diag_lu[3 + 1*nb + (n-1)*nb*nb] * f[1];
f[4] -= a_diag_lu[4 + 1*nb + (n-1)*nb*nb] * f[1];
f[3] -= a_diag_lu[3 + 2*nb + (n-1)*nb*nb] * f[2];
f[4] -= a_diag_lu[4 + 2*nb + (n-1)*nb*nb] * f[2];
f[4] -= a_diag_lu[4 + 3*nb + (n-1)*nb*nb] * f[3];
f[4] *= a_diag_lu[4 + 4*nb + (n-1)*nb*nb];

```

181 \} // end for loop ( sweep)

183 \} // end point_solve_5()
184
185 \} // end extern "C"

\section*{APPENDIX B}

\section*{FPGA WRAPPER CODE}

The following is an excerpt from the main FORTAN code that invokes the OpenCL code:
```

write (*,*) '\sqcup\sqcupStarting\sqcupOpenCL\sqcuppoint_solve_5...'
! calling once just to ensure that it is loaded on the device
! before timing
call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), 1)
call fpga_setvar_f(c_loc(ocl_params), c_loc(ocl_data), D_DQ, \&
c_loc(dq_data01))
call fpga_setvar_d(c_loc(ocl_params), c_loc(ocl_data), D_RES, \&
c_loc(res))
call fpga_setvar_d(c_loc(ocl_params), c_loc(ocl_data), D_ADIAG, \&
c_loc(a_diag_lu))
write(*,*) ' ப\sqcup\sqcup\sqcupSetting\sqcupof \sqcupvariables\sqcupcomplete.'
call fpga_setvar_f(c_loc(ocl_params), c_loc(ocl_data), D_AOFF, \&
c_loc(a_off))
call fpga_init_events(c_loc(ocl_params))
call cpu_time(start_time)
call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), \&
n_meanflow_iters)
call fpga_wait_event(c_loc(ocl_params), PARAM_EVENT1)
call cpu_time(finish_time)
ps5_dt_ocl = (finish_time - start_time)*1E3 - to
write (*,*) '\sqcup\sqcup\sqcup\sqcupCopying\sqcupdata...'
call cpu_time(start_time)
call fpga_getvar_f(c_loc(ocl_params), c_loc(ocl_data), D_DQ, \&
c_loc(dq_ocl))
call cpu_time(finish_time)
write (*,'(A,F12.3,A)') ' பபபபப\sqcupTimeபto\sqcupretrieveபdq: '', \&
((finish_time-start_time)*1E3-to),'\sqcupms'
write (*,*) '\sqcupபப\sqcupDone.'

```

The following is the wrapper for the OpenCL code that is invoked in the main FORTRAN code:
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <CL/cl.h>
\#include "ocl_defs.h"
\#include "ocl_helpers.h"
\#define N_SWEEPS 1
\#define BLOCK_DIM_X BLOCK_DIM_X_PS5
\#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
\#define DIV ((int)10)
extern "C" {
void point_solve_5_cl(intptr_t *ocl_params, intptr_t *ocl_data,
int nsweeps) {
cl_int ret;
cl_command_queue *command_queue;
cl_kernel *kernel;
cl_event *event1, local_events [5];
cl_mem *dq_obj, *njac_obj, *nnodes01_obj;
float* dq;
int njac, nnodes01;
unsigned long int npass1;
command_queue=(cl_command_queue *) ocl_params[PARAM_COMQUE];
kernel = (cl_kernel *)ocl_params[PARAM_PS5_KNL1];
event1 = (cl_event *)ocl_params[PARAM_EVENT1];
local_events[0] = *event1;
npass1 = (unsigned long int)nsweeps;
ret = clSetKernelArg(*kernel, 0, sizeof(unsigned long int),
\&npass1);

```
37
```

38 if ((local_events[0] == NULL))
48 local_events[0] = local_events[1];
4 9
50 *event1 = local_events [0];
51
52 } // end point_solve_5_cl()
53
54 } // end extern "C"

```

\section*{APPENDIX C}

\section*{FPGA BASIC CODE}

The following is the basic code that was adapted to run on the FPGA prior to any optimization, it is little more than the basic sequential C code.
```

\#include "../include/ocl_defs.h"
\#define NB 5
\#define N_SWEEPS 1
\#define DIV ((int)10)
__ attribute__((reqd_work_group_size(1, 1, 1)))
__kernel void point_solve_5_knl
(unsigned long int npass1, unsigned long int npass2,
__global int* restrict colored_sweeps_in,
__global int* restrict color_indices, __global int* restrict
neq0_in,
_-global int* restrict neq_in, _-global int* restrict
solve_backwards_in,
__global int* restrict color_boundary_end, __global int* restrict
iam,
__global int* restrict jam, __global double* restrict res,
__global float* volatile dq, __global float* restrict a_off,
__global double* restrict a_diag_lu) {
int colored_sweeps = *colored_sweeps_in;
int neq0 = *neq0_in;
int neq = *neq_in;
int solve_backwards = *solve_backwards_in;
int n, i, j, k, istart, iend, icol, jam0, jam1, gid;
int start, end, solve_sign, n_sweeps;
int bk;
double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;
double a_diag_lu_local [5] [5];

```
```

// initial color index
int sweep_start = 0;
// final color idx +/- sweep_stride
int sweep_end = colored_sweeps;
// +/- 1
int sweep_stride = 1;
// parse dynamic arguments
n_sweeps = npass1;
if (solve_backwards > 1 || solve_backwards < -1) {
sweep_start = colored_sweeps - 1;
sweep_end = -1;
sweep_stride = -1;
} // end if
if (neq0 <= 0) {
sweep_start = 0;
sweep_end = 1;
sweep_stride = -1;
} // end if
for (int sweep=0; sweep < n_sweeps; ++sweep) {
for (int color=sweep_start; color!=sweep_end;
color+=sweep_stride) {
for (int ipass=1; ipass<=2; ++ipass) {
int start, end;
if (color > colored_sweeps) {
start = 1;
end = 0;
} // end if
else {
switch(ipass) {
case 1:
if (color_boundary_end[color] == 0) {
start = 1;
end = 0;
} // end if
else {
start = color_indices[2*color];
end = color_boundary_end[color] - 1;

```

73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
```

 } // end if
 break;
 case 2:
 if (color_boundary_end[color] == 0) {
 start = color_indices[2*color];
 end = color_indices[2*color+1];
 } // end if
 else {
 start = color_boundary_end[color] + 1;
 end = color_indices[2*color +1];
 } // end if
 break;
 } // end switch
 } // end else
for (n = start; n <= end; n++) {
// read in a_diag_lu
for (i=0; i<5; i++) {
for (j=0; j<5; j++) {
a_diag_lu_local[i][j] =
a_diag_lu[i + j*NB + (n-1)*NB*NB];
} // end for (j)
} // end for (i)
if (solve_backwards > 0) {
f1 = -res[0 + (n-1)*NB];
f2 = -res[1 + (n-1)*NB];
f3 = -res[2 + (n-1)*NB];
f4 = -res[3 + (n-1)*NB];
f5 = -res[4 + (n-1)*NB];
} // end if (solve_backwards);
else {
f1 = res[0 + (n-1)*NB];
f2 = res[1 + (n-1)*NB];
f3 = res[2 + (n-1)*NB];
f4 = res[3 + (n-1)*NB];
f5 = res[4 + (n-1)*NB];
} // end else (sweep_stride)
istart = iam[n - 1];
iend = iam[n] - 1;

```
```

for (j = istart; j <= iend; j++) {
icol = jam[j-1] - 1;
f1 -= a_off[0+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f2 -= a_off[1+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f3 -= a_off[2+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f4 -= a_off[3+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f5 -= a_off[4+0*NB+(j-1)*NB*NB]*dq[0+icol*NB];
f1 -= a_off[0+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f2 -= a_off[1+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f3 -= a_off[2+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f4 -= a_off[3+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f5 -= a_off[4+1*NB+(j-1)*NB*NB]*dq[1+icol*NB];
f1 -= a_off[0+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f2 -= a_off[1+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f3 -= a_off[2+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f4 -= a_off[3+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f5 -= a_off[4+2*NB+(j-1)*NB*NB]*dq[2+icol*NB];
f1 -= a_off[0+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f2 -= a_off[1+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f3 -= a_off[2+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f4 -= a_off[3+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f5 -= a_off[4+3*NB+(j-1)*NB*NB]*dq[3+icol*NB];
f1 -= a_off[0+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f2 -= a_off[1+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f3 -= a_off[2+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f4 -= a_off[3+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
f5 -= a_off[4+4*NB+(j-1)*NB*NB]*dq[4+icol*NB];
} // end for (j)
f2 -= a_diag_lu_local[1][0] * f1;
f3 -= a_diag_lu_local[2][0] * f1;
f4 -= a_diag_lu_local[3][0] * f1;
f5 -= a_diag_lu_local[4][0] * f1;

```
141
142
143
147
148
149
150
151
152
153

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194 \} // end for loop (color)
            f5 *= a_diag_lu_local[4][4];
            \(\mathrm{dq}[4+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 5\);
            \(\mathrm{dq}[3+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 4 ;\)
            \(\mathrm{dq}[2+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 3\);
            \(\mathrm{dq}[1+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 2 ;\)
            \(\mathrm{dq}[0+(\mathrm{n}-1) * N B]=\mathrm{f} 1\);
            \} // end for loop (n)
            \} // end for loop (ipass)
                    \} // end for loop (color)
            f3 -= a_diag_lu_local[2][1] * f2;
            f4 -= a_diag_lu_local[3][1] * f2;
            f5 -= a_diag_lu_local[4][1] * f2;
            f4 -= a_diag_lu_local[3][2] * f3;
            f5 -= (a_diag_lu_local[4][2] * f3)
            \(+\left(a \_d i a g \_l u \_l o c a l[4][3] * f 4\right)\);
            Hackward...sequential access to a_diag_lu.
            f1 -= a_diag_lu[0 + \(4 * N B+(n-1) * N B * N B] * f 5 ;\)
            f 2 -= a_diag_lu[1 + 4*NB + (n-1)*NB*NB] * f5;
            f3 -= a_diag_lu[2 + 4*NB + (n-1)*NB*NB] * f5;
            \(\mathrm{f} 4-=a_{-} d i g_{-} l u[3+4 * N B+(n-1) * N B * N B] * f 5 ;\)
            f 4 *= a_diag_lu[3 + \(3 * N B+(\mathrm{n}-1) * N B * N B] ;\)
            f 1 -= a_diag_lu[0 + \(3 * N B+(\mathrm{n}-1) * N B * N B] * f 4 ;\)
            f 2 -= a_diag_lu[1 + \(3 * N B+(\mathrm{n}-1) * N B * N B] * f 4 ;\)
            \(\mathrm{f} 3-=a_{-} \mathrm{diag}_{-} \mathrm{lu}[2+3 * N B+(\mathrm{n}-1) * N B * N B] * f 4 ;\)
            \(f 3\) *= a_diag_lu[2 + \(2 * N B+(n-1) * N B * N B] ;\)
            f 1 -= a_diag_lu[0 + \(2 * N B+(\mathrm{n}-1) * N B * N B] * f 3 ;\)
            f2 -= a_diag_lu[1 + \(2 * N B+(n-1) * N B * N B] * f 3 ;\)
            f2 *= a_diag_lu[1 + 1*NB + ( \(\mathrm{n}-1) * N B * N B]\);
            f1 -= a_diag_lu[0 + 1*NB + (n-1)*NB*NB] * f2;
            f1 *= a_diag_lu[0 + 0*NB + ( \(\mathrm{n}-1) * N B * N B]\);
                    195

196 \} // end for loop (sweep)
197
198 \} // end point_solve_5_knl()

\section*{APPENDIX D}

\section*{FPGA PARTIALLY OPTIMIZED CODE}

The following is a partially optimized version of the code that was adapted to run on the FPGA. The principal difference between this code and the basic code is the consolidation of several arithmetic operations to make the execution more amenable to pipelining. This simple change resulted in a \(33.5 \%\) reduction in runtime on the FPGA and is completely transparent to all other code execution architectures.
```

\#include "../include/ocl_defs.h"
\#define NB 5
\#define N_SWEEPS 1
// must be a power of 2, upper limit of lmax variable
\#define LMAX 32
\#define DIV ((int)10)
\#define IDX1(A,B,R) A+B*NB+((R+istart)-1)*NB*NB
\#define IDX2(A,R) A+(jam[(R+istart)-1]-1)*NB
typedef union varr {
double a[16];
double16 v;
} varr;
__constant int POW2[] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192 };
__attribute__((reqd_work_group_size(1,1,1)))
__kernel void point_solve_5_knl
(unsigned long int npass1, unsigned long int npass2,
__global int* restrict colored_sweeps_in,
__global int* restrict color_indices, __global int* restrict
neq0_in,
__global int* restrict neq_in, __global int* restrict
solve_backwards_in,

```
```

__global int* restrict color_boundary_end, __global int* restrict
iam,
__global int* restrict jam, __global double* restrict res,
__global float* restrict dq, __global float* restrict a_off,
__global double* restrict a_diag_lu) {
int colored_sweeps = *colored_sweeps_in;
int neq0 = *neq0_in;
int neq = *neq_in;
int solve_backwards = *solve_backwards_in;
int n, i, j, k, l, istart, iend, jam0, jam1, gid;
int start, end, solve_sign, n_sweeps;
int lmax, lmax_input, lmax_log2, i1, i2, i3;
double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;
local double a_diag_lu_local[5] [5] [4];
int sweep_start = 0; // initial color index
int sweep_end = colored_sweeps; // final color idx +/-
sweep_stride
int sweep_stride = 1; // +/- 1
// parse dynamic arguments
n_sweeps = (int)npass1;
lmax_input = (int)npass2;
// find the smallest power of 2 that contains lmax_input (min 16)
lmax_log2 = 4;
for (lmax = 16; lmax < lmax_input; lmax *=2) { lmax_log2++; }
if (solve_backwards > 1 || solve_backwards < -1) {
sweep_start = colored_sweeps - 1;
sweep_end = - 1;
sweep_stride = -1;
} // end if
if (neq0 <= 0) {
sweep_start = 0;
sweep_end = 1;
sweep_stride = - 1;

```
```

} // end if
for (int sweep=0; sweep < n_sweeps; ++sweep) {
for (int color=sweep_start; color!=sweep_end; color+=
sweep_stride) {
for (int ipass=1; ipass<=2; ++ipass) {
int start, end;
if (color > colored_sweeps) {
start = 1;
end = 0;
} // end if
else {
switch(ipass) {
case 1:
if (color_boundary_end[color] == 0) {
start = 1;
end = 0;
} // end if
else {
start = color_indices[2*color];
end = color_boundary_end[color] - 1;
} // end if
break;
case 2:
if (color_boundary_end[color] == 0) {
start = color_indices[2*color];
end = color_indices[2*color +1];
} // end if
else {
start = color_boundary_end[color] + 1;
end = color_indices[2*color +1];
} // end if
break;
} // end switch
} // end else
for (n = start; n <= end; n++) {
// read in a_diag_lu
int m = n % 4;
for (i=0; i<25; i++) {
i1 = i / 5;

```

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
```

 i2 = i % 5;
 i3 = i1 + i2*NB + (n-1)*NB*NB;
 a_diag_lu_local[i1][i2][m] = a_diag_lu[i3];
 } // end for (i)
    ```
    if (solve_backwards > 0) \{
        \(\mathrm{f} 1=-\mathrm{res}[0+(\mathrm{n}-1) * N B] ;\)
        \(\mathrm{f} 2=-\mathrm{res}[1+(\mathrm{n}-1) * \mathrm{NB}]\);
        \(\mathrm{f} 3=-\mathrm{res}[2+(\mathrm{n}-1) * N B] ;\)
        \(\mathrm{f} 4=-\mathrm{res}[3+(\mathrm{n}-1) * \mathrm{NB}]\);
        \(\mathrm{f} 5=-\mathrm{res}[4+(\mathrm{n}-1) * N B] ;\)
    \} // end if (sweep_stride);
    else \{
        \(\mathrm{f} 1=\mathrm{res}[0+(\mathrm{n}-1) * \mathrm{NB}]\);
        \(\mathrm{f} 2=\mathrm{res}[1+(\mathrm{n}-1) * \mathrm{NB}] ;\)
        \(\mathrm{f} 3=\mathrm{res}[2+(\mathrm{n}-1) * N B] ;\)
        \(\mathrm{f} 4=\mathrm{res}[3+(\mathrm{n}-1) * N B] ;\)
        \(\mathrm{f} 5=\mathrm{res}[4+(\mathrm{n}-1) * N B] ;\)
    \} // end else (sweep_stride)
istart = iam[n - 1];
iend \(=\) iam[n] - 1 ;
double fia[LMAX] = \{ 0 \};
double f2a[LMAX] = \{ 0 \};
double f3a[LMAX] = \{ 0 \};
double f4a[LMAX] = \{ 0 \};
double f5a[LMAX] = \{ 0 \};
for ( \(\mathrm{j}=0\); \(\mathrm{j}<\mathrm{lmax} ; \mathrm{j}++\) ) \{
    int irow = j+istart;
    if (irow <= iend) \{
        int icol = jam[irow-1] - 1;
            \(f 1 a[j]=\left(a_{-} \circ f f[0+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\right.\)
                    a_off \([0+1 * N B+(i r o w-1) * N B * N B] * d q[1+i c o l * N B]+\)
                        a_off \([0+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
                        a_off \([0+3 * N B+(i r o w-1) * N B * N B] * d q[3+i c o l * N B]+\)
                        a_off \([0+4 * N B+(i r o w-1) * N B * N B] * d q[4+i c o l * N B]) ;\)
            \(f 2 a[j]=\left(a_{-} \circ f f[1+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\right.\)

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                a_off \([1+1 * N B+(\) irow -1\() * N B * N B] * d q[1+i c o l * N B]+\)
                        a_off \([1+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
                        \(a_{-}\)off \([1+3 * N B+(\) irow -1\() * N B * N B] * d q[3+i \operatorname{col} * N B]+\)
                        \(a_{\_}\)off \([1+4 * N B+(\) irow -1\(\left.) * N B * N B] * d q[4+i \operatorname{col} * N B]\right)\);
            \(f 3 a[j]=\left(a_{-} \circ f f[2+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\right.\)
                        a_off \([2+1 * N B+(i r o w-1) * N B * N B] * d q[1+i c o l * N B]+\)
                        \(a_{\_}\)off \([2+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
                        \(a_{\_}\)off \([2+3 * N B+(\) irow -1\() * N B * N B] * d q[3+i \operatorname{col} * N B]+\)
                        a_off \([2+4 * N B+(i r o w-1) * N B * N B] * d q[4+i \operatorname{col} * N B])\);
                \(f 4 a[j]=(\operatorname{a} \quad \circ f f[3+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\)
                    \(a_{\_}\)off \([3+1 * N B+(\) irow -1\() * N B * N B] * d q[1+i c o l * N B]+\)
                        \(a_{\_}\)off \([3+2 * N B+(\) irow -1\() * N B * N B] * d q[2+i c o l * N B]+\)
                        a_off \([3+3 * N B+(i r o w-1) * N B * N B] * d q[3+i \operatorname{col} * N B]+\)
                        \(a_{\_}\)off \([3+4 * N B+(\) irow -1\(\left.) * N B * N B] * d q[4+i c o l * N B]\right)\);
            \(f 5 a[j]=\left(a_{-} \circ f f[4+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\right.\)
            \(a_{-}\)off \([4+1 * N B+(\) irow -1\() * N B * N B] * d q[1+i c o l * N B]+\)
                        \(a_{-}\)off \([4+2 * N B+(\) irow -1\() * N B * N B] * d q[2+i c o l * N B]+\)
                        \(a_{\_}\)off \([4+3 * N B+(\) irow -1\() * N B * N B] * d q[3+i c o l * N B]+\)
                        \(a_{\_}\)off \([4+4 * N B+(\) irow -1\(\left.) * N B * N B] * d q[4+i c o l * N B]\right)\);
        \} // end if (irow)
    \} // end for (j)
    for ( \(j=0 ; j<L M A X ; j++\) ) \{
        f1 -= f1a[j];
        f2 -= \(\mathrm{f} 2 \mathrm{a}[\mathrm{j}]\);
        f3 -= f3a[j];
        f4 -= \(44 a[j] ;\)
        \(f 5-=f 5 a[j] ;\)
\} // end for (j)
f2 -= a_diag_lu_local[1][0][m] * f1;
f3 -= a_diag_lu_local[2][0][m] * f1;
f4 -= a_diag_lu_local[3][0][m] * f1;
f5 -= a_diag_lu_local[4][0][m] * f1;
f3 -= a_diag_lu_local[2][1][m] * f2;

190
191
192
193
194
195
196
197
198
            f4 -= a_diag_lu_local[3][1][m] * f2;
            f5 -= a_diag_lu_local[4][1][m] * f2;
            f4 -= a_diag_lu_local[3][2][m] * f3;
            f5 -= (a_diag_lu_local[4][2][m] * f3)
            + (a_diag_lu_local[4][3][m] * f4);
            f5 *= a_diag_lu_local[4][4][m];
            // Backward...sequential access to a_diag_lu.
            f1 -= a_diag_lu_local[0][4][m] * f5;
            f2 -= a_diag_lu_local[1][4][m] * f5;
            f3 -= a_diag_lu_local[2][4][m] * f5;
            f4 -= a_diag_lu_local[3][4][m] * f5;
            f4 *= a_diag_lu_local[3][3][m];
                f1 -= a_diag_lu_local[0][3][m] * f4;
            f2 -= a_diag_lu_local[1][3][m] * f4;
            f3 -= a_diag_lu_local[2][3][m] * f4;
            f3 *= a_diag_lu_local[2][2][m];
            f1 -= a_diag_lu_local[0][2][m] * f3;
            f2 -= a_diag_lu_local[1][2][m] * f3;
            f2 *= a_diag_lu_local[1][1][m];
            f1 -= a_diag_lu_local[0][1][m] * f2;
            f1 *= a_diag_lu_local[0][0][m];
            \(\mathrm{dq}[4+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 5\);
            \(\mathrm{dq}[3+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 4\);
            \(\mathrm{dq}[2+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 3\);
            \(\mathrm{dq}[1+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 2 ;\)
            \(\mathrm{dq}[0+(\mathrm{n}-1) * \mathrm{NB}]=\mathrm{f} 1\);
                \} // end for loop (n)
            \} // end for loop (ipass)
        \} // end for loop (color)
    \} // end for loop (sweep)
\} // end point_solve_5_knl()

\section*{APPENDIX E}

\section*{FPGA OPTIMIZED CODE}

The following is a fully optimized version of the code that was adapted to run on the FPGA. The difference between this code and the partially optimized code is is that the loop structure was altered to ensure that the number of iterations was predictable prior to loop execution. While the number of loops is still unknown at compile time, there is a pre-calculation done before main loop execution which ensures that the number of iterations is exactly the same for every kernel execution. This is a more complex change, but resulted in an \(88.7 \%\) reduction in runtime over the partially optimized code and a \(92.5 \%\) reduction in runtime when compared to the original unoptimized (basic) code. The extra iterations consume very little in the way of compute resources, and so add a very small amount to the runtime when compared to other architectures, but provide a level of predictability that is necessary in order to more efficiently pipeline the code execution. The loops in which no calculations are actually done could be considered manually inserted "stalls" in the pipeline.

Note the use of the "ivdep" \#pragma statements. These statements inform the compiler to ignore variable dependencies. This pre-compiler directive must be used very carefully since the onus of preventing race conditions and out of order calculations is now placed upon the programmer. In this particular case, the structure of the data array was generated to preclude these complications, but this may not be the case with every application.
```

\#include "../include/ocl_defs.h"
\#define NB 5
\#define N_SWEEPS 1
// equivalent to cycle lag for fp operations
\#define LMAX 12
\#define DIV ((int)10)
\#define NMAX 32

```
```

\#define IDX1(A,B,R) A+B*NB+((R+istart) -1)*NB*NB
\#define IDX2(A,R) A+(jam[(R+istart) - 1]-1)*NB
typedef union varr {
double a[16];
double16 v;
} varr;
__constant int POW2[] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192 };
__attribute__((reqd_work_group_size(1,1,1)))
__kernel void point_solve_5_knl
(unsigned long int npass1, unsigned long int npass2,
__global int* restrict colored_sweeps_in,
__global int* restrict color_indices, __global int* restrict
neq0_in,
__global int* restrict neq_in, __global int* restrict
solve_backwards_in,
__global int* restrict color_boundary_end, __global int* restrict
iam,
__global int* restrict jam, __global double* restrict res,
__global float* restrict dq, __global float* restrict a_off,
__global double* restrict a_diag_lu) {
int colored_sweeps = *colored_sweeps_in;
int neq0 = *neq0_in;
int neq = *neq_in;
int solve_backwards = *solve_backwards_in;
int n, i, j, k, l, istart, iend, jam0, jam1, nmax;
int start, end, solve_sign, n_sweeps;
int lmax, lmax_input, lmax_log2, i1, i2, i3;
double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;
local double a_diag_lu_local[5][5][4];
int sweep_start = 0; // initial color index
int sweep_end = colored_sweeps; // final color idx +/-
sweep_stride
int sweep_stride = 1; // +/- 1

```
```

// parse dynamic arguments
n_sweeps = (int)npass1;
lmax_input = (int)npass2;
// find the smallest power of 2 that contains lmax_input (min 16)
lmax_log2 = 4;
for (lmax = 16; lmax < lmax_input; lmax *=2) { lmax_log2++; }
if (solve_backwards > 1 || solve_backwards < -1) {
sweep_start = colored_sweeps - 1;
sweep_end = -1;
sweep_stride = -1;
} // end if
if (neq0 <= 0) {
sweep_start = 0;
sweep_end = 1;
sweep_stride = -1;
} // end if
for (int sweep=0; sweep < n_sweeps; ++sweep) {
int cmax=0;
int nmax = 0;
for (int i=sweep_start; i!=sweep_end; i+=sweep_stride) {
if (((color_boundary_end[i]-1) - color_indices[2*i]) > cmax)
cmax = ((color_boundary_end[i]-1) - color_indices[2*i]);
if ((color_indices[2*i+1] - color_indices[2*i]) > cmax)
cmax = (color_indices[2*i+1] - color_indices[2*i]);
if ((color_indices[2*i+1] - (color_boundary_end[i]+1)) > cmax)
cmax = (color_indices[2*i+1] - (color_boundary_end[i]+1));
} //end for (i)
for (int j=sweep_start; j!=sweep_end; j+=sweep_stride) {
for (int ipass=1; ipass<=2; ++ipass) {
int start, end;
if (j > colored_sweeps) {
start = 1;
end = 0;
} // end if
else {
switch(ipass) {

```
```

 case 1:
 if (color_boundary_end[j] == 0) {
 start = 1;
 end = 0;
 } // end if
 else {
 start = color_indices[2*j];
 end = color_boundary_end[j] - 1;
 } // end if
 break;
 case 2:
 if (color_boundary_end[j] == 0) {
 start = color_indices[2*j];
 end = color_indices[2*j+1];
 } // end if
 else {
 start = color_boundary_end[j] + 1;
 end = color_indices[2*j+1];
 } // end if
 break;
 } // end switch
 } // end else
 for (int i=0; i<=cmax; i++) {
 if ((i+start) <= end) {
 if (((iam[i+start] - 1) - iam[i+start-1]) > nmax)
 nmax = (iam[i+start] - 1) - iam[i+start-1];
 } // end if (i+start)
 } // end for (i)
 } // end for (ipass)
 } // end for (j)
\#pragma ivdep
for (int color=sweep_start; color!=sweep_end; color+=
sweep_stride) {
pragma ivdep
for (int ipass=1; ipass<=2; ++ipass) {
int start, end;
if (color > colored_sweeps) {
start = 1;

```

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
```

 end = 0;
 } // end if (color)
 else {
 switch(ipass) {
 case 1:
 if (color_boundary_end[color] == 0) {
 start = 1;
 end = 0;
 } // end if
 else {
 start = color_indices[2*color];
 end = color_boundary_end[color] - 1;
 } // end if
 break;
 case 2:
 if (color_boundary_end[color] == 0) {
 start = color_indices[2*color];
 end = color_indices[2*color +1];
 } // end if
 else {
 start = color_boundary_end[color] + 1;
 end = color_indices[2*color+1];
 } // end if
 break;
 } // end switch
 } // end else (color)
 #pragma ivdep
 for (int i=0; i <= cmax; i++) {
 int irow, icol; // declaring these up here outside of if
 -blocks
 float f1_temp, f2_temp, f3_temp, f4_temp, f5_temp;
 n = i + start;
 if (n <= end) {
 if (solve_backwards > 0) {
 f1 = -res[0 + (n-1)*NB];
 f2 = -res[1 + (n-1)*NB];
 f3 = -res[2 + (n-1)*NB];
 f4 = -res[3 + (n-1)*NB];
    ```

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
\[
\begin{aligned}
f 5 & =-r e s[4+(n-1) * N B] ; \\
\} & / / \\
\text { else } & \text { end }(\text { sweep_stride }) ; \\
f 1 & =\text { res }[0+(n-1) * N B] ; \\
f 2 & =\text { res }[1+(n-1) * N B] ; \\
f 3 & =\text { res }[2+(n-1) * N B] ; \\
f 4 & =\text { res }[3+(n-1) * N B] ; \\
f 5 & =\text { res }[4+(n-1) * N B] ; \\
\} & / /
\end{aligned}
\]
```

istart = iam[n - 1];

```
iend \(=\) iam \([n]-1\);
\#pragma ivdep
for (int \(j=0 ; j<=n m a x ; j++\) ) \{
    irow = j + istart;
    icol = jam[irow-1] - 1;
    f1_temp \(=\left(a_{\text {_ }}\right.\) off \([0+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\)
                        a_off \([0+1 * N B+(i r o w-1) * N B * N B] * d q[1+i \operatorname{col} * N B]+\)
                        \(a_{\text {_ off }}[0+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
                        \(a_{\text {_ off }}[0+3 * N B+(i r o w-1) * N B * N B] * d q[3+i c o l * N B]+\)
                        \(a_{\_}\)off \(\left.[0+4 * N B+(i r o w-1) * N B * N B] * d q[4+i c o l * N B]\right)\);
    f2_temp \(=\left(a_{\text {_ off }}[1+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\right.\)
            \(a_{-}\)off \([1+1 * N B+(i r o w-1) * N B * N B] * d q[1+i c o l * N B]+\)
            a_off \([1+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
            \(a_{-}\)off \([1+3 * N B+(i r o w-1) * N B * N B] * d q[3+i c o l * N B]+\)
            \(a_{\_}\)off \(\left.[1+4 * N B+(i r o w-1) * N B * N B] * d q[4+i c o l * N B]\right)\);
    f3_temp \(=\left(a_{\text {_ }}\right.\) off \([2+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\)
            \(a_{\text {_ off }}[2+1 * N B+(i r o w-1) * N B * N B] * d q[1+i \operatorname{col} * N B]+\)
            a_off \([2+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
            a_off \([2+3 * N B+(i r o w-1) * N B * N B] * d q[3+i c o l * N B]+\)
            \(a_{\_}\)off \(\left.[2+4 * N B+(i r o w-1) * N B * N B] * d q[4+i c o l * N B]\right)\);
    f4_temp \(=\left(a_{\text {_ }}\right.\) off \([3+0 * N B+(i r o w-1) * N B * N B] * d q[0+i c o l * N B]+\)
            a_off \([3+1 * N B+(i r o w-1) * N B * N B] * d q[1+i c o l * N B]+\)
            a_off \([3+2 * N B+(i r o w-1) * N B * N B] * d q[2+i c o l * N B]+\)
            a_off \([3+3 * N B+(i r o w-1) * N B * N B] * d q[3+i c o l * N B]+\)
            \(a_{\_} \circ f f[3+4 * N B+(\) irow -1\(\left.) * N B * N B] * d q[4+i c o l * N B]\right)\);
            234
            235
            236
            237
            238
            239
            240
            241
            242
            243
            244
            245
            246
            247
            248
            249
            250
            251
                252
            253
```

 if ((j+istart) <= iend) {
    ```
        if ((j+istart) <= iend) {
            f1 -= f1_temp;
            f2 -= f2_temp;
            f3 -= f3_temp;
            f4 -= f4_temp;
            f5 -= f5_temp;
        } // end if (j+istart)
        else {
            f1 -= 0;
            f2 -= 0;
            f3 -= 0;
            f4 -= 0;
            f5 -= 0;
        } // end else (j+istart)
            f5 *= a_diag_lu[4 + 4*NB + (n-1)*NB*NB];
        f5_temp =(a_off[4+0*NB+(irow-1)*NB*NB]*dq[0+icol*NB] +
            a_off[4+1*NB+(irow-1)*NB*NB]*dq[1+icol*NB] +
            a_off[4+2*NB+(irow-1)*NB*NB]*dq[2+icol*NB] +
            a_off[4+3*NB+(irow-1)*NB*NB]*dq[3+icol*NB] +
                        a_off[4+4*NB+(irow-1)*NB*NB]*dq[4+icol*NB]);
} // end for loop (j)
f2 -= a_diag_lu[1 + 0*NB + (n-1)*NB*NB] * f1;
f3 -= a_diag_lu[2 + 0*NB + (n-1)*NB*NB] * f1;
f4 -= a_diag_lu[3 + 0*NB + (n-1)*NB*NB] * f1;
f5 -= a_diag_lu[4 + 0*NB + (n-1)*NB*NB] * f1;
f3 -= a_diag_lu[2 + 1*NB + (n-1)*NB*NB] * f2;
f4 -= a_diag_lu[3 + 1*NB + (n-1)*NB*NB] * f2;
f5 -= a_diag_lu[4 + 1*NB + (n-1)*NB*NB] * f2;
f4 -= a_diag_lu[3 + 2*NB + (n-1)*NB*NB] * f3;
f5 -= (a_diag_lu[4 + 2*NB + (n-1)*NB*NB] * f3)
            + (a_diag_lu[4 + 3*NB + (n-1)*NB*NB] * f4);
// Backward...sequential access to a_diag_lu.
f1 -= a_diag_lu[0 + 4*NB + (n-1)*NB*NB] * f5;
```

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
\} /h end for loop (color)
281 \} // end for loop (sweep)
282 \} // end point_solve_5_knl()

APPENDIX F

GPU BASIC CODE

The following is non-optimized code that has been altered to run in a naive fashion on a Graphics Processing Unit (GPU). Although it was written specifically to run on a GPU, a similar version should run on any Single Instruction Multiple Data (SIMD) archiecture. The outer loops are executed on the CPU, while the inner loops are distributed over numerous GPU processors; everything inside the color sweeps (see the basic code in Appendix A for an implementation of all of the loops in the same code segment) is included here. The outer loops in this case are implemented in FORTRAN. An excerpt of the FORTRAN used to implement these outer loops is shown at the end of this appendix.

```
#include "../include/ocl_defs.h"
#define nb 5
#define n_sweeps 1
#define DIV ((int)10)
#define BLOCK_DIM_X BLOCK_DIM_X_PS5
#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
__kernel void point_solve_5_knl
(unsigned long int npass1, unsigned long int npass2,
    __global int* restrict iam, __global int* restrict jam,
    __global double* restrict res, __global float* restrict dq,
__global float* restrict a_off,
    __global double* restrict a_diag_lu) {
    int n, j, k, l, istart, iend, icol, jam0, jam1, gid, lid,
            tx, ty;
    int start, end, solve_sign;
    int bk;
    double f1=0, f2=0, f3=0, f4=0, f5=0;
```

```
// parse dynamic arguments
start = npass1;
end = npass2/DIV;
solve_sign = npass2 - DIV*end - 2;
// calculate the index variables
gid = get_global_id(0);
lid = get_local_id(0);
bk = gid/(BLOCK_DIM_X*BLOCK_DIM_Y);
ty = lid/BLOCK_DIM_X;
tx = lid - BLOCK_DIM_X*ty;
l = tx / 5;
k = tx - 5*l;
n = start + gid/BLOCK_DIM_X; // constant over a warp
if (n > end || tx > 0) return;
if (solve_sign > 0) {
    f1 = - (res [0 + (n-1)*nb]);
    f2 = - (res [1 + (n-1)*nb]);
    f3 = - (res [2 + (n-1)*nb]);
    f4 = - (res [3 + (n-1)*nb]);
    f5 = - (res [4 + (n-1)*nb]);
} // end if (solve_backwards);
else {
        f1 = (res [0 + (n-1)*nb]);
        f2 = (res [1 + (n-1)*nb]);
        f3 = (res [2 + (n-1)*nb]);
        f4 = (res [3 + (n-1)*nb]);
        f5 = (res[4 + (n-1)*nb]);
} // end else (solve_backwards)
istart = iam[n - 1];
iend = iam[n] - 1;
for (j = istart; j <= iend; j++) {
    icol = jam[j-1] - 1;
        f1 -= a_off[0 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
        f2 -= a_off[1 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
        f3 -= a_off[2 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
```

```
    f4 -= a_off[3 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
```

 f4 -= a_off[3 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f5 -= a_off[4 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];
 f1 -= a_off[0 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f2 -= a_off[1 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f3 -= a_off[2 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f4 -= a_off[3 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f5 -= a_off[4 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];
 f1 -= a_off[0 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f2 -= a_off[1 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f3 == a_off[2 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f4 -= a_off[3 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f5 -= a_off[4 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];
 f1 -= a_off[0 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f2 -= a_off[1 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f3 -= a_off[2 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f4 -= a_off[3 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f5 -= a_off[4 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];
 f1 -= a_off[0 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f2 -= a_off[1 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f3 -= a_off[2 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f4 -= a_off[3 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 f5 -= a_off[4 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];
 } // end for (j)
dq[4 + (n-1)*nb] = f5;
dq[3 + (n-1)*nb] = f4;
dq[2 + (n-1)*nb] = f3;
dq[1 + (n-1)*nb] = f2;
dq[0 + (n-1)*nb] = f1;
} // end point_solve_5_knl()

```

The following is an excerpt of the FORTRAN code used to implement the outer loops of the computation. This code segment calls the wrapper that was written in C and is linked with the compiled FORTRAN code to handle the invokation of the OpenCL code.
```

write (*,*) 'ь\sqcupStartingьOpenCLьpoint_solve_5...'
call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_RES, \&
c_loc(res_seq))
call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_ADIAG, \&
c_loc(a_diag_seq_temp))
call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_A0FF, \&
c_loc(a_off_seq))
call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_DQ, \&
c_loc(dq_seq))
call cpu_time(start_time)
do i = 1, (n_meanflow_iters+0) ! outer sweeps
call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), \&
colored_sweeps, c_loc(color_indices), \&
nnodes0, nnz0, \&
relaxation_schedule_direction_1, \&
c_loc(color_boundary_end))
end do
call cpu_time(finish_time)
ps5_dt_ocl = (finish_time - start_time)*1E3 - to

```

The following is a listing of the C wrapper that is called by the FORTRAN code and is used to invoke the OpenCL code.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <CL/cl.h>
\#include "ocl_defs.h"
\#include "ocl_helpers.h"
\#define N_SWEEPS 1
\#define BLOCK_DIM_X BLOCK_DIM_X_PS5
\#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
\#define DIV ((int)10)
extern "C" {
void point_solve_5_cl
(intptr_t *ocl_params, intptr_t *ocl_data, int colored_sweeps,
int *color_indices, int neq0, int neq, int solve_backwards,
int *color_boundary_end) {
cl_int ret;
cl_command_queue * command_queue;
cl_kernel *kernel;
size_t local_item_size,global_item_size;
// initial color index
int sweep_start = 0;
// final color index +/- sweep_stride
int sweep_end = colored_sweeps;
// +/- 1
int sweep_stride = 1;
unsigned long int npass1,npass2;
command_queue = (cl_command_queue *)ocl_params[PARAM_COMQUE];
kernel = (cl_kernel *)ocl_params[PARAM_PS5_KNL];
local_item_size = BLOCK_DIM_X*BLOCK_DIM_Y;
if (solve_backwards > 1 || solve_backwards < -1) {
sweep_start = colored_sweeps - 1;

```
```

 sweep_end = -1;
 sweep_stride = -1;
 } // end if (solve_backwards)
if (neq0 <= 0) {
sweep_start = 0;
sweep_end = 1;
sweep_stride = -1;
} // end if (neq0)
for (int sweep=0; sweep < N_SWEEPS; ++sweep) {
for (int color=sweep_start; color!=sweep_end;
color+=sweep_stride) {
for (int ipass=1; ipass<=2; ++ipass) {
int start, end;
if (color > colored_sweeps) {
start = 1;
end = 0;
} // end if (color)
else {
switch(ipass) {
case 1:
if (color_boundary_end[color] == 0) {
start = 1;
end = 0;
} // end if (color_boundary_end)
else {
start = color_indices[2*color];
end = color_boundary_end[color] - 1;
} // end else (color_boundary_end)
break;
case 2:
if (color_boundary_end[color] == 0) {
start = color_indices[2*color];
end = color_indices[2*color +1];
} // end if (color_boundary_end)
else {
start = color_boundary_end[color] + 1;
end = color_indices[2*color+1];
} // end else (color_boundary_end)
break;

```
    \} // end switch (ipass)
            \} // end else (color)
            if (start < (end + 1)) \{
                npass1 = start;
                npass2 = DIV*end + (sweep_stride +2) ;
                ret \(=\) clSetKernelArg (*kernel, 0 ,
                    sizeof(unsigned long int),
                    \&npass1);
                ret \(=\) clSetKernelArg(*kernel, 1 ,
                    sizeof(unsigned long int),
                    \&npass2);
                        // Execute the OpenCL kernel
                global_item_size = EVENSIZE((end - start + 1)*
                BLOCK_DIM_X,
                                    local_item_size);
        ret \(=\) clEnqueueNDRangeKernel (*command_queue, *kernel, 1,
                                    NULL, \&global_item_size,
                                    \&local_item_size, 0, NULL,
                                    NULL) ;
                            if (ret ! = CL_SUCCESS)

            \} // end if (start)
                    \} // end for loop (ipass)
                \} // end for loop (color)
                \} // end forloop (sweep)
    \} // end point_solve_5_kernel()
\} // end extern "C"

\section*{APPENDIX G}

\section*{GPU PARTIALLY OPTIMIZED CODE}

The following is code that has been optimized for the GPU in OpenCL; it is considered partially optimized in this context because it is not the native CUDA code that shows a marginal, but quantifiable, \(0.6 \%\) edge over its OpenCL counterpart. This version makes use of shared memory (this is the same between the CUDA and OpenCL versions) as well as a reduction vector that executes a 5 -thread summation consolidated to every 5th thread in the warp using three steps. This is less efficient than the CUDA "_shfl" native command (which takes but a single step), but is more efficient than adding them up sequentially every 5th thread (which would take 5 steps). This is emblematic of the types of tradeoffs that must occur to create portability. As with the non-optimized GPU version, this code only represents the code inside the color sweep loop. The FORTRAN code and the C wrapper code are exactly the same as with the non-optimized version. See Appendix H for the optimized CUDA code that accomplishes the same task.
```

\#include "../../include/ocl_defs.h"
\#define nb 5
\#define n_sweeps 1
\#define DIV ((int)10)
\#define BLOCK_DIM_X BLOCK_DIM_X_PS5
\#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
\#define A_OFF(i,j,k) a_off[(i)+((j)*nb)+\
((unsigned long long)(k)*nb*nb)]
\#define A_DIAG_LU(i,j,k) a_diag_lu[(i) +((j)*nb)+((k)*nb*nb)]
\#define DQ_IN(i,j) dq[(i)+((j)*nb)]
\#define DQ_OUT(i,j) dq[(i)+((j)*nb)]
\#define RES(i, j) res[(i)+((j)*nb)]
// Parallel reduction vector

```
```

typedef struct prvec {
union {
double a[8];
double8 v;
} data;
} prvec;
__kernel void point_solve_5_kernel
(unsigned long int npass1, unsigned long int npass2,
__global int* restrict iam, __global int* restrict jam,
__global double* restrict res, __global float* restrict dq,
__global double* restrict a_diag_lu,
__global float* restrict a_off) {
int n, j, k, l, istart, iend, jam0, jam1, gid, lid, tx, ty;
int start, end, solve_sign;
int bk;
double fk;
double f1=0, f2=0, f3=0, f4=0, f5=0;
__local prvec fc[5][BLOCK_DIM_Y];
__local double fs[5][BLOCK_DIM_Y];
__local double a_diag_lu_shared [5][5][BLOCK_DIM_Y];
// parse dynamic arguments
start = npass1;
end = npass2/DIV;
solve_sign = npass2 - DIV*end - 2;
// initialize parallel reduction vectors
\#pragma unroll
for (int i=0; i < BLOCK_DIM_Y; i++)
fc[0][i].data.v = fc[1][i].data.v = fc[2][i].data.v = \
fc[3][i].data.v = fc[4][i].data.v = 0.0;
// calculate the index variables
gid = get_global_id(0);
lid = get_local_id(0);
bk = gid/(BLOCK_DIM_X*BLOCK_DIM_Y);
ty = lid/BLOCK_DIM_X;
tx = lid - BLOCK_DIM_X*ty;
l = tx / 5;

```
```

k = tx - 5*l;
n = start + gid/BLOCK_DIM_X - 1;
// the last 7 threads in the warp are unused
if (n >= end || l >= 5) return;
istart = iam[n];
iend = iam[n + 1] - 1;
// Loop over Non Zeros
fk = 0;
for(j = istart-1; j < iend; j++) {
jam0 = jam[j];
f1 = A_OFF(k,l,j);
f2 = DQ_IN(l,jam0-1);
fk += f1 * f2;
} // end for (j)
// Reduction along the subcolumns, threads with v.s0 holding
// the complete sum
fc[k][ty].data.a[l] = fk;
// Collectively load a_diag_lu into shared memory
a_diag_lu_shared[k][l][ty] = A_DIAG_LU(k, l, n);
// Save results of off-diagonal multiplication in shared memory
if (l != 0) return;
fc[k][ty].data.v.s0123 += fc[k][ty].data.v.s4567;
fc[k][ty].data.v.s01 += fc[k][ty].data.v.s23;
fc[k][ty].data.v.s0 += fc[k][ty].data.v.s1;
fs[k][ty] = -solve_sign*RES(k, n) - fc[k][ty].data.v.s0;
// this must be a barrier and not a simple fence
barrier(CLK_LOCAL_MEM_FENCE);
// Redistribute work from all warps to first four threads
// in the first warp
n += tx;
if ((tx >= BLOCK_DIM_Y) || (ty != 0) || (n >= end)) return;

```
```

// Retrieve data from shared memory
f1 = fs[0][tx];
f2 = fs[1][tx];
f3 = fs[2][tx];
f4 = fs[3][tx];
f5 = fs[4][tx];
// Forward...sequential access to a_diag_lu
f2 = f2 - a_diag_lu_shared[1][0][tx] * f1;
f3 = f3 - a_diag_lu_shared[2][0][tx] * f1;
f4 = f4 - a_diag_lu_shared[3][0][tx] * f1;
f5 = f5 - a_diag_lu_shared[4][0][tx] * f1;
f3 = f3 - a_diag_lu_shared[2][1][tx] * f2;
f4 = f4 - a_diag_lu_shared[3][1][tx] * f2;
f5 = f5 - a_diag_lu_shared[4][1][tx] * f2;
f4 = f4 - a_diag_lu_shared[3][2][tx] * f3;
f5 = f5 - a_diag_lu_shared[4][2][tx] * f3;
f5 = ((f5 - a_diag_lu_shared[4][3][tx] * f4)
* a_diag_lu_shared[4][4][tx]);
// Backward...sequential access to a_diag_lu.
f1 = f1 - a_diag_lu_shared[0][4][tx] * f5;
f2 = f2 - a_diag_lu_shared[1][4][tx] * f5;
f3 = f3 - a_diag_lu_shared[2][4][tx] * f5;
f4 = ((f4 - a_diag_lu_shared[3][4][tx] * f5)
* a_diag_lu_shared[3][3][tx]);
f1 = f1 - a_diag_lu_shared[0][3][tx] * f4;
f2 = f2 - a_diag_lu_shared[1][3][tx] * f4;
f3 = ((f3 - a_diag_lu_shared[2][3][tx] * f4)
* a_diag_lu_shared[2][2][tx]);
f1 = f1 - a_diag_lu_shared[0][2][tx] * f3;
f2 = ((f2 - a_diag_lu_shared[1][2][tx] * f3)
* a_diag_lu_shared[1][1][tx]);

```
\(142 \mathrm{f} 1=\left(\left(f 1-a_{-}\right.\right.\)diag_lu_shared[0][1][tx] * f2)
143
144
145 DQ_OUT \((0, n)=f 1\);
146 DQ_OUT \((1, n)=f 2\);
147 DQ_OUT \((2, n)=f 3\);
148 DQ_OUT \((3, n)=f 4\);
149 DQ_OUT \((4, n)=f 5\);
150
151 \} // end point_solve_5_kernel()

\section*{APPENDIX H}

\section*{GPU OPTIMIZED CODE}

The following is code that has been fully optimized for the GPU in CUDA. It makes use of shared memory and intra-thread communication using the "_shf" native CUDA command (which takes a single step to consolidate a sum using information from 5 separate threads), and is more efficient than either adding them up sequentially every 5th thread (which would take 5 steps) or the vector reduction strategy used in the OpenCL version (which takes 3 steps). As stated in the OpenCL code lead-in (see Appendix G), this is an example of the type of tradeoff that must occur to create portability, but results in increased performance when using language extensions optimized for specific hardware. As with the non-optimized GPU version, this code only represents the code inside the color sweep loop. The FORTRAN code and the C wrapper code are exactly the same as with the non-optimized version.
```

\#include <cstddef>
\#include <cuda.h>
\#include "gpu_util.h"
\#include <assert.h>
\#include "block_dim.h"
\#define nb 5
\#define n_sweeps 1
\#define BLOCK_DIM_X BLOCK_DIM_X_PS5
\#define BLOCK_DIM_Y BLOCK_DIM_Y_PS5
\#define A_OFF(i,j,k) a_off[(i) +((j)*nb)+ \
((unsigned long long)(k)*nb*nb)]
\#define A_DIAG_LU(i,j,k) a_diag_lu[(i) +((j)*nb)+((k)*nb*nb)]
\#define DQ_IN(i,j) dq_in[(i) +((j)*nb)]
\#define DQ_OUT(i,j) dq[(i)+((j)*nb)]
\#define RES(i, j) res[(i)+((j)*nb)]
__global__ void cuda_point5_kernel

```
```

(int solve_sign,idx_t start, idx_t end,
int_const_ptr_t const iam, int_const_ptr_t const jam,
real_const_ptr_t const a_off, real8_const_ptr_t const
a_diag_lu,
real_ptr_t dq, real8_const_ptr_t const res)
{
real_const_ptr_t const dq_in = dq;
__shared__ real_t
fs[5][BLOCK_DIM_Y];
__shared__ real8_t
a_diag_lu_shared[5][5][BLOCK_DIM_Y];
int const k = threadIdx.x % 5;
int const l = threadIdx.x / 5;
int n = start + blockIdx.x * blockDim.y + threadIdx.y - 1;
if (n >= end || l >= 5)
return;
idx_t istart = iam[n];
idx_t iend = iam[n + 1] - 1;
real_t fk;
real8_t f1, f2, f3, f4, f5;
// Loop over Non Zeros, 2x unrolled
fk = 0;
int jam0, jam1;
//double dq0, dq1;
int j = istart-1;
jam1 = jam[j];
for(; j<iend; j++) {
jam0 = jam1;
jam1 = jam[j+1];
fk += A_OFF(k,l,j)* DQ_IN(l,jam0-1);
}

```

61
62
```

// Reduction along the subcolumns,
// threads with l=0 hold the complete sum
f1 = fk;
f1 = f1 + __shfl(fk, k + 1 * 5);
f1 = f1 + __shfl(fk, k + 2 * 5);
f1 = f1 + __shfl(fk, k + 3 * 5);
f1 = f1 + __shfl(fk, k + 4 * 5);
f1 = -solve_sign*RES(k, n) - f1;
// Save results of off-diagonal multiplication in shared memory
if (l == 0) {
fs[k][threadIdx.y] = f1;
}
// Collectively load a_diag_lu into shared memory
a_diag_lu_shared[k][l][threadIdx.y] = A_DIAG_LU(k, l, n);
__syncthreads();
// Redistribute work from all warps to first four threads
// in the first warp
n += threadIdx.x;
if (threadIdx.x < BLOCK_DIM_Y \&\& threadIdx.y == 0 \&\& n < end) {
// Retrieve data from shared memory
f1 = fs[0][threadIdx.x];
f2 = fs[1][threadIdx.x];
f3 = fs[2][threadIdx.x];
f4 = fs[3][threadIdx.x];
f5 = fs[4][threadIdx.x];
// Forward...sequential access to a_diag_lu
f2 = f2 - a_diag_lu_shared[1][0][threadIdx.x] * f1;
f3 = f3 - a_diag_lu_shared[2][0][threadIdx.x] * f1;
f4 = f4 - a_diag_lu_shared[3][0][threadIdx.x] * f1;
f5 = f5 - a_diag_lu_shared[4][0][threadIdx.x] * f1;

```
```

102
103
104
105

```

```

107
108

```

```

110
111
112
1 1 3
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138 }

```

\section*{APPENDIX I}

\section*{DATA TABLES}

Tables of data from trial runs using optimized and non-optimized code.

TABLE 4: Clock Validation for Optimized Code (time in ms)
\begin{tabular}{|l||c|c|c|c|}
\hline Run \# & CUDA nvprof & CUDA mclock & diff & OpenCL mclock \\
\hline 1 & 120.60 & 124.91 & 4.31 & 126.15 \\
2 & 120.40 & 125.29 & 4.89 & 126.13 \\
3 & 120.55 & 125.37 & 4.82 & 126.24 \\
4 & 120.50 & 125.09 & 4.59 & 127.43 \\
5 & 123.11 & 127.44 & 4.33 & 127.03 \\
6 & 123.51 & 128.05 & 4.54 & 126.42 \\
7 & 120.61 & 125.22 & 4.61 & 125.87 \\
8 & 120.66 & 125.22 & 4.56 & 126.15 \\
9 & 120.59 & 125.22 & 4.63 & 126.11 \\
10 & 120.38 & 124.65 & 4.27 & 126.29 \\
AVG & 121.09 & 125.65 & 4.56 & 126.38 \\
\hline
\end{tabular}

Note: Ten runs were performed and their results averaged to produce the numbers displayed in Tables 8 and 9.

TABLE 5: Clock times for Optimized Code without profiler (time in ms)
\begin{tabular}{|l||c|c|}
\hline Run \# & CUDA mclock & OpenCL mclock \\
\hline 1 & 126.22 & 126.52 \\
2 & 126.29 & 126.60 \\
3 & 123.06 & 126.38 \\
4 & 123.38 & 127.78 \\
5 & 123.40 & 126.53 \\
6 & 123.31 & 126.28 \\
7 & 123.61 & 126.51 \\
8 & 126.35 & 126.68 \\
9 & 127.68 & 126.73 \\
10 & 123.38 & 127.76 \\
AVG & 124.67 & 126.78 \\
\hline
\end{tabular}

TABLE 6: Clock Validation for Non-Optimized (Baseline) Code (time in ms)
\begin{tabular}{|l||c|c|c|c|}
\hline Run \# & CUDA nvprof & CUDA mclock & diff & OpenCL mclock \\
\hline 1 & 805.67 & 811.74 & 6.07 & 821.92 \\
2 & 805.15 & 811.43 & 6.28 & 817.08 \\
3 & 805.12 & 811.43 & 6.31 & 816.68 \\
4 & 805.19 & 811.69 & 6.50 & 817.05 \\
5 & 805.18 & 811.05 & 5.87 & 816.92 \\
6 & 809.78 & 815.87 & 6.09 & 816.63 \\
7 & 811.25 & 817.31 & 6.06 & 816.78 \\
8 & 805.51 & 811.72 & 6.21 & 816.83 \\
9 & 805.25 & 811.11 & 5.86 & 817.31 \\
10 & 805.39 & 811.51 & 6.12 & 816.73 \\
AVG & 806.35 & 812.49 & 6.14 & 817.40 \\
\hline
\end{tabular}

TABLE 7: Clock times for Non-Optimized code without profiler (time in ms)
\begin{tabular}{|l||c|c|}
\hline Run \# & CUDA mclock & OpenCL mclock \\
\hline 1 & 816.12 & 818.22 \\
2 & 812.95 & 818.22 \\
3 & 810.67 & 817.99 \\
4 & 814.10 & 818.06 \\
5 & 811.61 & 818.48 \\
6 & 810.67 & 818.11 \\
7 & 815.19 & 818.81 \\
8 & 811.02 & 818.36 \\
9 & 810.98 & 818.24 \\
10 & 810.78 & 818.04 \\
AVG & 812.41 & 818.25 \\
\hline
\end{tabular}

TABLE 8: OpenMP Trials for ARM CPU (times in ms)
\begin{tabular}{|l||c|c|c|c|}
\hline Run Type & 2-Cores & 4-Cores & 8-Cores & 16-Cores \\
\hline Generic OpenMP & 73948.36 & 38184.80 & 19856.00 & 9903.13 \\
Native Compiler & 7778.57 & 4245.74 & 2507.89 & 1349.70 \\
Optimized & 7173.11 & 4073.80 & 2448.82 & 1340.03 \\
\hline
\end{tabular}

TABLE 9: OpenMP Trials for Intel x86 CPU (times in ms)
\begin{tabular}{|l||c|c|c|c|}
\hline Run Type & 2-Cores & 4-Cores & 8-Cores & 16-Cores \\
\hline Generic OpenMP & 23189.99 & 12067.51 & 7222.09 & 3768.25 \\
Native Compiler & 7725.20 & 3731.14 & 2024.83 & 1121.40 \\
Optimized & 6235.33 & 3028.18 & 1725.86 & 986.19 \\
\hline
\end{tabular}

\section*{APPENDIX J}

\section*{HARDWARE SPECIFICATIONS}

The following data describe the hardware on which the code was ultimately executed. This data is meant to provide context for the statistical timing data used to compare algorithm implimentations. While the platforms themselves are not being compared as such, the data is still useful as a touchstone to provide an indication of how well the code could be expected to run additional hardware platforms.

TABLE 10: GPU Hardware Data
\begin{tabular}{|l||c|}
\hline Description & Value \\
\hline Vendor & Nvidia \\
Identity String & Pascal P100 \\
Nominal Bandwidth & \(732 \mathrm{~GB} / \mathrm{s}\) max \\
Measured Bandwidth & \(292 \mathrm{~GB} / \mathrm{s}\) \\
\# Cores (FP32) & 3584 \\
FP32 TFLOPS & 9.3 \\
Memory & 16 GB \\
L2 Cache & 4096 KB \\
Shared (local) Memory & up to 96 KB \\
\hline
\end{tabular}

Since the Nvidia profiling utility does not explicitly calculate real memory bandwidth used, a special kernel was prepared that performed all of the same floating point reads that are actually performed within the point solver kernel, but none of the floating point operations. The time difference between the fully functional kernel and this specially prepared kernel (with the overhead subtracted out) is indicative of the amount of time actually spent reading the data from the on-device memory.

Cost data for AWS Graviton indicates that identical instances run at about \(40 \%\) less per core than an equivalent Intel x86 instance (Skylake architecture optimized for computational efficiency) as of November 2018. Whether this is more efficient clearly depends on the specific characteristics of the computational load being studied. In this case, noting that the point solver problem runs in 1340 ms (see Table 8) using

TABLE 11: FPGA Hardware Data
\begin{tabular}{|l||c|}
\hline Description & Value \\
\hline Vendor & Intel \\
Identity String & PAC10 (Aria) \\
Nominal Bandwidth & \(36 \mathrm{~GB} / \mathrm{s}\) max \\
Measured Bandwidth & \(3.69 \mathrm{~GB} / \mathrm{s}\) \\
\# Cores (FP32) & NA \\
FP32 TFLOPS & 1.5 \\
Memory & 8 GB \\
L2 Cache & 512 KB \\
Shared (local) Memory & 256 KB \\
\hline
\end{tabular}

TABLE 12: ARM CPU Hardware Data
\begin{tabular}{|l||c|}
\hline Description & Value \\
\hline Vendor & Arm \\
Identity String & AWS Graviton (Cortex-A72) \\
Nominal Bandwidth & \(51.2 \mathrm{~GB} / \mathrm{s}\) max \\
Estimated Bandwidth & \(25.6 \mathrm{~GB} / \mathrm{s}\) max \\
Clock Speed & 1.3 GHz \\
\# Cores & 16 \\
FP32 TFLOPS & 0.166 (8 FLOPS/core/cycle) \\
Memory & 32 GB \\
L2 Cache & 2048 KB \\
Shared (local) Memory & NA \\
\hline
\end{tabular}
optimized command line options on the ARM (Graviton) processor and at 986 ms (see Table 9) on the x86 Skylake architecture, the cost to run on ARM is (1340*(10.4)) \(/ 986=81.5 \%\) of the x 86 .

TABLE 13: x86 CPU Hardware Data
\begin{tabular}{|l|c|}
\hline Description & Value \\
\hline Vendor & Intel \\
Identity String & Haswell (Family: 6 , Model: 63 ) \\
Nominal Bandwidth & \(128 \mathrm{~GB} / \mathrm{s}\) \\
Estimated Bandwidth & \(61.5 \mathrm{~GB} / \mathrm{s}\) max \\
Clock Speed & 2.9 GHz \\
\# Cores & 16 \\
FP32 TFLOPS & 1.484 (32 FLOPS/core/cycle) \\
Memory & 32 GB \\
L2 Cache & 1024 KB \\
Shared (local) Memory & NA \\
\hline
\end{tabular}

\section*{VITA}

Jason Orender
Department of Computer Science
Old Dominion University
Norfolk, VA 23529
Jason Orender spent a 20 year career as an officer in the US Navy and retired in the Summer of 2015, whereupon he promptly initiated a degree plan in Computer Science at Old Dominion University. He has participated in multiple NASA hack-athons with the intent to contribute to the Fun3D fully unstructured 3D computational fluid dynamics code base and has been cited as a contributor in several of NASA's more recent papers and presentations on the subject. He developed an interest in high performance computation, and this work is one result of that effort. He is also currently enrolled in the PhD program at the time of submission of this thesis and intends to continue his scholarship in this area.

Typeset using \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\).```

