
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2019

Enhancing Portability in High Performance
Computing: Designing Fast Scientific Code with
Longevity
Jason Orender
Old Dominion University, jason.orender@publicmail.email

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Orender, Jason. "Enhancing Portability in High Performance Computing: Designing Fast Scientific Code with Longevity" (2019).
Master of Science (MS), thesis, Computer Science, Old Dominion University, DOI: 10.25777/wk8h-5b96
https://digitalcommons.odu.edu/computerscience_etds/91

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/91?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


ENHANCING PORTABILITY IN HIGH PERFORMANCE

COMPUTING: DESIGNING FAST SCIENTIFIC CODE

WITH LONGEVITY

by

Jason Orender

MBA, December 2003, George Mason University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2019

Approved by:

Mohommed Zubair (Director)

Yaohang Li (Member)

Ravi Mukkamala (Member)



ABSTRACT

ENHANCING PORTABILITY IN HIGH PERFORMANCE
COMPUTING: DESIGNING FAST SCIENTIFIC CODE WITH

LONGEVITY

Jason Orender
Old Dominion University, 2019
Director: Dr. Mohommed Zubair

Portability, an oftentimes sought-after goal in scientific applications, confers a

number of possible advantages onto computer code. Portable code will often have

greater longevity, enjoy a broader ecosystem, appeal to a wider variety of applica-

tion developers, and by definition will run on more systems than its pigeonholed

counterpart. These advantages come at a cost, however, and a rational approach

to balancing costs and benefits requires a systemic evaluation. While the benefits

for each application are likely situation-dependent, the costs in terms of resources,

including but not limited to time, money, computational power, and memory re-

quirements, are quantifiable. This document will identify strategies for enhancing

performance portability on a variety of platforms available to the scientific comput-

ing community which will have little or no adverse impact on alternate architectures;

this is done by implementing an iterative point solver requiring a high degree of

data transfer bandwidth of a type commonly used in high performance applications

used for computing a solution to partial di↵erential equations (PDEs). In this thesis,

we were able to show significant speed enhancements for architectures as diverse as

complex traditional Central Processing Units (CPUs), Graphical Processing Units

(GPUs), and Field Programmable Gate Arrays (FPGAs). Employing generalized

optimizations on a variety of development frameworks we were able to show as much

as a 92.5% reduction on a pipelined architecture (FPGA) while having a negligible

impact on alternate architectures, and an 88.6% reduction in execution time on a

Single Instruction Multiple Data (SIMD) architecture (GPU/CPU) while also hav-

ing a negligible impact on alternate architectures. By enforcing these design rules

in released versions of scientific code, the code has the potential to be optimally

positioned for future advancements in computing architecture as well as being per-

formance portable among existing architectures.



iii

Copyright, 2019, by Jason Orender, All Rights Reserved.



iv

Dedicated to my wife Dani, who tolerated my work schedule and inspired my

scholarship.



v

ACKNOWLEDGEMENTS

• Dr. Mohammed Zubair (Old Dominion University)

• Dr. Eric Nielsen (NASA)

• Mike Cardoso (Intel)



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 PORTABLE STANDARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 SELECTING A RESPRESENTATIVE PROBLEM . . . . . . . . . . . . . . . . 5

3. RELATED WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. PROBLEM DEFINITION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5. TECHNICAL SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 CONSOLIDATION OF ARITHMETIC OPERATIONS . . . . . . . . . . . . . 16
5.2 IDENTIFY COMMON MEMORY ACCESSES . . . . . . . . . . . . . . . . . . . . 19
5.3 ACCESS MEMORY IN LARGE CONTIGUOUS BLOCKS . . . . . . . . . 21
5.4 IDENTIFY OPPORTUNITIES FOR VECTORIZING . . . . . . . . . . . . . . 22
5.5 CONSTRUCT INDEPENDENT LOOPS THAT HAVE A CONSTANT

NUMBER OF ITERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 CONSTRUCT INDEPENDENT LOOPS THAT ARE HAVE A CON-

STANT NUMBER OF ITERATIONS FOR A SINGLE WORK ITEM 22

6. EVALUATION OF DEVELOPED SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. MAJOR CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

APPENDICES
A. BASIC SEQUENTIAL POINT SOLVER . . . . . . . . . . . . . . . . . . . . . . . . . 37
B. FPGA WRAPPER CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C. FPGA BASIC CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
D. FPGA PARTIALLY OPTIMIZED CODE . . . . . . . . . . . . . . . . . . . . . . . . 51
E. FPGA OPTIMIZED CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F. GPU BASIC CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



vii

G. GPU PARTIALLY OPTIMIZED CODE . . . . . . . . . . . . . . . . . . . . . . . . . . 72
H. GPU OPTIMIZED CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
I. DATA TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
J. HARDWARE SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

VITA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



viii

LIST OF TABLES

Table Page

1 Source Portability Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Time Comparison Summary table (times shown in ms) . . . . . . . . . . . . . . . . 30

3 Optimization Continuum Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Clock Validation for Optimized Code (time in ms) . . . . . . . . . . . . . . . . . . . . 81

5 Clock times for Optimized Code without profiler (time in ms) . . . . . . . . . . 82

6 Clock Validation for Non-Optimized (Baseline) Code (time in ms) . . . . . . . 82

7 Clock times for Non-Optimized code without profiler (time in ms) . . . . . . . 83

8 OpenMP Trials for ARM CPU (times in ms) . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 OpenMP Trials for Intel x86 CPU (times in ms) . . . . . . . . . . . . . . . . . . . . . . 83

10 GPU Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

11 FPGA Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

12 ARM CPU Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13 x86 CPU Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

.

.

.

.

.

.

.

.

.

.

.

.

.



ix

LIST OF FIGURES

Figure Page

1 A sparse matrix and its BCSR representation with nb = 2. There are 22
non-zero elements in this sparse matrix that has nominally 64 elements.
Assuming that the array elements are integers in this case, the storage
space required for the uncompressed version is 64 ⇥ 4 = 256 bytes. The
storage space required for the same array in BCSR format would require
(28 ⇥ 4) + (5 ⇥ 4) + (7 ⇥ 4) = 160 bytes. Many scientific applications
employ large matrices that contain mostly zeroes; in these cases the space
and time savings gained by iterating over a matrix in BCSR format can
be significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 A simple example of a four-colored grid with adjacency implying compu-
tational dependence. A time step calculation on any single color element
can be assumed to be computationally independent of the elements of the
same color. A time step calculation on a red element, for example, will be
independent any other red element, implying that a single time step could
be calculated for each of the colors in parallel (e.g. 16 parallel threads to
calculate the red elements, then update the matrix, and then use another
16 parallel threads to calculate the green elements, and so on). . . . . . . . . . 9

.

.



1

CHAPTER 1

INTRODUCTION

Creating portable code for scientific applications faces some unique challenges. Since

scientific applications will frequently rely on highly computationally intensive algo-

rithms, the e↵ort to parallelize aspects of the code will often achieve highly asym-

metric gains in code functionality [1]. That is, for the amount of e↵ort expended in

optimizing the code, the greatest return for this investment is often parallelization.

As a result, a tradeo↵ emerges: the researcher can spend e↵ort to optimize code for

a specific platform and get greater computational e�ciency, or they can apply their

e↵orts to ensure that their code adheres to a portable standard that that will have

wide utility and extended lifetime but at a reduced e�ciency. The benefits of the

first strategy can be realized very quickly, while the benefits of the latter can take

much longer to materialize. In fact, if the reduction in e�ciency is too severe, the

enhanced utility that is the nominal goal of the second approach might be obviated

altogether. This brings into focus several reasons why portability might not be a

good choice [2]:

• Extended development time vs. non-portable code

• Reduction in performance vs. non-portable code

• Inability of a specific model to run on alternate hardware

• Model was previously developed for specific hardware, and its function is not

well enough understood to create a generalized portable version.

The last two items in this list, while valid considerations for specific code, are not

applicable in this analysis. This document will examine the problem as if the code

is created from a well understood generalizeable model that does not require specific

hardware to achieve a valid result.

This document will introduce the particular PDE solver being studied and explain

why it is representative of the type of problem that is commonly approached in



2

high performance computing, as well as explain the motivation to find more e�cient

computational frameworks.

Choosing a portability strategy to focus on will be the first step in the analytical

process. All strategies are not equivalent with respect to high performance computing

and certain frameworks o↵er distinct advantages to the researcher. After an open

standard is chosen, the performance of several platforms, including single threaded

CPU, typical multicore CPU, high performance multicore CPU, multicore ARM,

FPGA, and GPU will be evaluated, including a baseline version of the code as well

optimized versions. A discussion of tradeo↵s, as well as advantages and disadvantages

of each platform will occur in this portion. An explanation of why certain platforms

fail or excel at certain tasks will also be included here. A comparison metric for costs

is the final piece of the puzzle that will be discussed, to include a recommendation

for the best framework and platform combination for the solution to this particular

type of problem.



3

CHAPTER 2

BACKGROUND

2.1 PORTABLE STANDARDS

It is first necessary to take a step back and discuss what is meant by the term

”portability”. The most restrtictive form, binary portability, refers to the ability to

run a binary executable on multiple platforms without having to change or recompile

the binary in any way. This is very di�cult to achieve on diverse architectures and

is not generally what is meant by the word ”portable” in modern discourse; because

of this, binary portability will not be discussed in this document. The less restrictive

and more common understanding of the term is source portability; that is, the ability

to have a program that is adpated at the source level which can be compiled on

multiple target environments with little to no modification. There are many ways to

achieve this goal, and these generally conform to several well defined categories (see

Table 1).

A subcategory of source portability, so-called ”performance portability”, could

be described as code that has similar performance characteristics across multiple

architectures. It could also be described as achieving the best realistically achiev-

able performance across multiple architectures; this will be considered an implied

paradigm, and while performance portability may not be explicitlty referenced it

should be understood as the ultimate goal of well constructed portable code.

TABLE 1: Source Portability Strategies

Strategy Example

Standardized Languages C/C++, Fortran

Language extensions CUDA, TBB (Intel)

Open Language Constructs OpenMP, OpenCL

Virtual Machines Java

Steering Languages Python



4

Standardized languages o↵er a common strategy for portability. Via precompiler

directives, the source can be compiled in myriad ways and invoke many di↵ering types

of dependencies. As an example, a C++ program can be written so that it can take

advantage of posix threads on a Unix or Linux machine while reverting to a Windows

API implementation when required. The negative aspect of this strategy is that much

of the program must be re-written for each new platform and provided as an alternate

compilation path, possibly by employing a series of precompiler directives to activate

or deactivate large blocks of code, since the syntax and optimal arrangement of the

code can di↵er markedly. While this method may work for simple programs that do

not need to exploit parrallelism at scale, it may become untenable for code with a

high degree of complexity or which requires a great deal of maintenance since every

block of code with duplicate functionality will need to be updated seperately.

Language extensions can be thought of as an outgrowth of the standardized lan-

guages strategy. The specifics for exploiting specialized hardware are encapsulated

in a library that is called when the code is compiled on a machine that can support

it. This makes the resulting code simpler than lower level programming methods like

individual thread manipulation via Posix threads or the Windows API; by using the

Thread Building Blocks (TBB) Intel library, for instance, the code can be tremen-

dously simplified but it will still su↵er from the higher level complexity issues that

make the standardized language strategy untenable. The changes required to use

di↵ering operating systems are resolved because versions of this library exist for all

major operating systems that use chips by this particular manufacturer, but di↵er-

ences across hardware are still unresolved. A Graphics Processing Unit (GPU) will

still require a version of the code that is syntactically distinct from the CPU code,

and an ARM processor would require a still di↵erent version of the optimized code.

The next strategy is the utilization of open language constructs like OpenMP

and OpenCL. These have the advantage of not only being supported by most ma-

jor operating systems, but having gleaned support from hardware manufacturers as

well. These are examples of consortium standards, and this strategy seemingly in-

corporates the best aspects of the previous two. There are several disadvantages to

using this strategy, however, and these form the basis of defining the tradeo↵s that

are inherrent in reliable source portability. The first disadvantage is that hardware

manufacturers will likely implement new innovations in their own language exten-

sions first before they devote time and resources to updating an open source project;



5

ways to organize threads into cooperative groups that pass information back and

forth on the fly, for example, o↵er great opportunities for optimization but are also

highly hardware dependent at the time of this writing. Standard ways to accom-

plish optimization tasks are likely to require a consensus that can only be reached

after a certain amount of trial and error has already occurred and a favorite method

identified by researchers and developers is clear. As a result, there is a necessary

time lag between the occurrence of a new innovation and its emergence as a widely

supported portable standard. Second, the generalized (and portable) implementa-

tion of an optimizing construct will likely be less e�cient than the hardware specific

implementation; this is one of the metrics that I will examine to determine the price

of the tradeo↵.

Virtual Machines take the idea of portability to a level that is perhaps unattain-

able by any of the previous methods, but this comes at the high cost of abstracting

the hardware away altogether and incurring significant overhead. There has been sig-

nificant work as early as 2003 to create distributed virtual machines that can trans-

parently manage multi-threaded applications over several nodes [3], but because of

the added overhead required to manage these machines they will by definition never

be able to achieve the level of performance available by running code directly on the

hardware. For this reason, the Virtual Machine strategy will not be considered.

So called ”steering languages”, like Python can provide for a rapid development

cycle by utilizing many highly optimized libraries [4]. Python, in particular, is highly

extensible and boasts a development community that regularly provides updated

libraries for general use. These languages can be considered an additional abstraction

layer since many of the libraries created must be originally coded using one of the

first three methods examined. Since the point of scientific computing is frequently

to examine results from novel algorithms, it is this initial development that will

be considered in the analysis presented by this document. The value of using pre-

programmed libraries in a steering language such as Python cannot be understated

in terms of development streamlining, but it is not the focus of this document.

2.2 SELECTING A RESPRESENTATIVE PROBLEM

The second task that needs to be accomplished prior to performing analysis is to

pick a representative problem that encapsulates many of the issues that the scientific



6

community faces when attempting to code a solution. As a general rule, these prob-

lems might be divided into two broad categories: 1) computationally intensive and

2) data intensive. In a computationally intensive problem, the time spent converging

to a solution and performing calculations will be the limiting factor, while a data

intensive problem might rely on simple operations performed on a large amount of

data. A third possibility is a problem that incorporates both of these elements and

is therefore both computationally intensive and data intensive; a problem of this sort

will likely be the most representative benchmark for anlysis. Any metric computed

should also be able to di↵erentiate the location of the bottleneck as either in the

computational space or the data transfer space.

For this reason, the Partial Di↵erential Equation (PDE) solver used in the Fully

Unstructured 3D Grid (Fun3D) modeling software supported by the National Aero-

nautics and Space Administration (NASA) was selected. It is an iterative PDE

solver that computes multiple sparse matrix-vector multiplications per iteration over

a multi-dimensional grid. Importantly, it is a widely distributed and well understood

piece of code for which large standard data sets are available and valid results are

known.

2.2.1 DESCRIPTION OF THE PROBLEM BEING STUDIED

The result of the PDE solver’s implicit solution approach is a set of linear equa-

tions of the form:

Ax = b

This equation must be solved frequently during the simulation in which it is used,

where:

• A is an n⇥ n spatial mesh (a matrix).

• x is an input.

• b is the result.

The n⇥ n matrix is further broken down into sub-matrices of size nb ⇥ nb which

is the result of linearization of nonlinear equations at each grid point. The matrix A

is divided into diagonal D and o↵-diagonal O matrices:

A = D +O (1)



7

The solver initializes the grid points by renumbering them with the reverse

Cuthill–McKee algorithm (RCM) [5] to create a band matrix based on a permu-

tation of the sparse matrix.

An array of size [nnz⇥nb⇥nb] is used to store nnz blocks of the diagonal matrix

D. For each block Di, two triangular sub-matrices, the lower Li and the upper Ui,

are generated in-place before running each linear solver for 1  i  n. The Li and

the Ui matrices are then computed using a forward and back substitution algorithm.

This is another useful technique used to help improve cache locality.

The o↵-diagonal matrix O contains nnz non-zero blocks, where each block is

stored using a modified block compressed sparse row (BCSR) [6] format. In the

modified BCSR format, three arrays are used: ia and ja, to e�ciently capture the

sparsity pattern of the matrix and a one-dimensional data array of size [nnz⇥nb⇥nb],

to store all of the non-zero elements. The integer array ia of size (n + 1) is used to

keep indexes of all leading non-zero blocks in each row of O (the final entry is for

the hypothetical beginning index of the next row beyond the end of the matrix -

it is included so that the number of nonzero blocks in the last row of the matrix

can be inferred). The ja array of size nnz stores the block-column indexes of all

non-zero blocks. Figure 1 shows how a simple matrix can be represented with this

block structure.

Studying the use of sparse matrices is significant with respect to scientific com-

puting in that copying large blocks of contiguous memory is, as a general rule, much

faster and more e�cient than copying individual bytes or small groups of bytes. Ev-

ery memory access has an overhead associated with it that is relatively independent of

the size of the memory being accessed, and in this realization a tradeo↵ emerges. For

the quickest memory access, the matrix cannot be compressed, but at a certain point

the added time of accessing large numbers of zeroes outweighs the overhead required

to access the non-zeroes independently. In many cases, the size of the matrices in

memory is also a limiting factor. For these practical reasons, studying the e↵ects of

calculations performed on compressed matrices (for this document the BCSR format

is used) will likely yield the most relevant general result.

A ”multi-coloring” scheme is used in the point-implicit linear solver which exposes

the parallelism in the solver computation. It groups colors and grid points such that

no two neighbor points are colored the same. All unknowns associated with a grid

point are assigned the color of that point.



8

Fig. 1: A sparse matrix and its BCSR representation with nb = 2. There are 22

non-zero elements in this sparse matrix that has nominally 64 elements. Assuming

that the array elements are integers in this case, the storage space required for the

uncompressed version is 64 ⇥ 4 = 256 bytes. The storage space required for the

same array in BCSR format would require (28⇥ 4) + (5⇥ 4) + (7⇥ 4) = 160 bytes.

Many scientific applications employ large matrices that contain mostly zeroes; in

these cases the space and time savings gained by iterating over a matrix in BCSR

format can be significant.



9

Fig. 2: A simple example of a four-colored grid with adjacency implying compu-

tational dependence. A time step calculation on any single color element can be

assumed to be computationally independent of the elements of the same color. A

time step calculation on a red element, for example, will be independent any other

red element, implying that a single time step could be calculated for each of the

colors in parallel (e.g. 16 parallel threads to calculate the red elements, then update

the matrix, and then use another 16 parallel threads to calculate the green elements,

and so on).

In this context a “color” is a grouping of grid points that are not expected to

influence the calculations on any other grid points in a cohort if they are assigned

identical colors; all grid points that are assigned “red”, to extend the analogy, are

expected to be computationally independent of each other, while the unknowns asso-

ciated with “red” points might well have an impact on any given “green” or “black”

points. An example is shown in Figure 2. This has been a common strategy to

expose parallelism [7, 8] with respect to both scientific and graphics computation

for some time.

In the particular case of the PDE solver for Fun3D, an approximate nearest-

neighbor flux Jacobian is used to generate A, which results in no data dependencies

between the unknowns of the same color; this provides the possibility of updating

them in parallel fashion. The process of generating this matrix based on the raw



10

input data is not part of the calculation studied and will not be described here, but

is covered in detail in [9]. The linear solver computation is repeated several times

over the entire system, and each time the unknowns are updated with the latest

values of x from the other colors. To improve memory access and consequently cache

performance, the system of algebraic equations is renumbered so that the unknowns

of the same color are grouped together by organizing them consecutively in memory

and the arrays of ia and ja are modified to adopt the new matrix structure; this

allows for some of the advantages of reduced overhead by copying large blocks of

memory to acceleration hardware like a GPU, for example, at once while preserving

the practical necessity of employing the sparse matrix format for storage. Once the

linear solver computation is done, an inverse map is then used to update the nonlinear

solution of the partial di↵erential equations (PDEs) at each grid point.

The full code for all versions of the algorithm are included in the appendices. In

the interest of clarity and brevity, a generalized version in pseudocode is presented

below in order to give a general idea of where calculations and data transfers are

occurring. All versions of the code follow the general format presented below.

Psuedocode of the general algorithm used follows:

[transfer data to device from host if required]

for i = 1 to sweeps

for j = 1 to num_colors

solve_subroutine(data)

[transfer data from device to host if required]

Pseudocode for the solve subroutine follows:

def solve_subroutine(data):

// transfer data from device memory to local memory

set f1 , f2 , f3 , f4 , f5 to residual array elements for this node.

start = ia[node]

end = ia[node +1]-1

// loop over the nonzero elements

for i = start to end

icol = ja[i]

// set the new values equal to the old values multiplied by a

// deterministic constant based on nearby nodes

decrement f1..f5 by the product of the off -diagonal matrix

values and the previous solution matrix values five times

(over each column , if the f1..f5 variables are viewed as



11

rows)

// solve forward

decrement f2..f5 by the product of the diagonal matrix values

and f1

decrement f3..f5 by the product of the diagonal matrix values

and f2

decrement f4..f5 by the product of the diagonal matrix values

and f3

decrement f5 by the product of the diagonal matrix value

and f4

// solve backward

decrement f1..f4 by the product of the diagonal matrix values

and a factor of f5

decrement f1..f3 by the product of the diagonal matrix values

and a factor of f4

decrement f1..f2 by the product of the diagonal matrix values

and a factor of f3

decrement f1 by the product of the diagonal matrix value

and a factor of f4

set the new solution values to f1..f5



12

CHAPTER 3

RELATED WORK

Much of the work in the area of portability has been with respect to the faithful

reproduction of floating point results across various platforms as with [10], the

particulars of using specific steering languages and libraries as with [4, 11], and

the development of portable frameworks as with [12, 13] for use across multiple

platforms.

The most directly comparable work was an investigation of the portability of

applications written in OpenCL [14]. This paper studied software engineering tech-

niques that guarantee the maximum level of so-called ”performance” portability.

That is to say, a program written for a GPU might utilize certain memory structures

or code arrangement that would either have no bearing on the performance in multi-

core CPU hardware or might actually cause worse performance in that context. That

paper investigated the application of standard benchmark code on GPUs and CPUs,

though most of the comparison was between di↵ering brands of CPUs.

One principal di↵erence between that paper and this document is the expansion of

the evaluation criteria to include the requirement for significant memory bandwidth

and an exploration of how that a↵ects portability. The paper also used NASA CFD

code as a benchmark; the ”LU” benchmark was used, which also employs large-scale

Navier-Stokes computations on a three dimensional grid, but their implementation

focused solely on compute performance by presuming that the memory accesses can

be optimized in one of two ways. They allowed either an array-of-structs (AoS) or a

struct-of-arrays (SoA) as the tested memory configuration. In the AoS configuration,

the five values associated with each grid point would be adjacent in memory, which

creates conditions optimal for the best compute performance in a scalar work item.

In the SoA configuration, the values would be split into five separate units, which

would allow the best compute performance in a Single Instruction Multiple Data

(SIMD) parallel architecture. In a real CFD dataset, the data would generally not

be able to be optimized completely for either of these architectures; optimizing some

of the data would require random accesses for another portion of the data as a

tradeo↵ because of the high degree of interdependence between grid points. For



13

this reason, the sparse data access architecture in the Fun3D code is likely a better

representation of the memory performance for real scientific applications in general,

rather than the simplified uncompressed data used with the LU benchmark in [14].

The analysis of the Fun3D code performance on multiple architectures will show

that no matter what compute optimizations are made, memory bandwidth still has

an material importance in the performance of the code as a whole.



14

CHAPTER 4

PROBLEM DEFINITION

The problem can be split into two elements: 1) how can the code be constructed

to take advantage of specific hardware characteristics, and 2) the implementation

cost di↵erential when comparing a portable semi-optimized version to both the un-

optimized version and the fully optimized version.

Defining the specific ways that the code must be altered to take advantage of

hardware acceleration leads to three possible basic versions of code that nominally

accomplish the same tasks. The first version of the code consists of a simplistic se-

quential implimentation that is created without regard to memory or loop structures

that might be more e�cient on alternate architectures; construction of this version

of the code is usually the first step, and while it is likely to be portable across every

other architecture, it will also probably have severely suboptimal characteristics.

From this first version, a second version of the code could be derived and op-

timized for a Single Instruction Multiple Data (SIMD) capable platform such as a

GPU or multi-core GPU; this would be the portable semi-optimized version. De-

pending on the specific vendor, this code could be further branched to create specific

optimizations that could be made to enhance e�ciency at the expense of portability;

this would be the fully optimized version.

Again branching from the first version, a third version of the code could be derived

and optimized for a pipeline parallel platform like a Field Programmable Gate Array

(FPGA); this would also be a portable semi-optimized version. Additional modifi-

cations that enhance exposure to pipeline parallelism but cause increased execution

time on alternate platforms would constitute the fully optimized version for this case.

While there are ways to more fully optimize FPGA platforms that go beyond using

the OpenCL standard, for instance by using Register Transfer Language (RTL) or

some specific Hardware Definition Language (HDL), they require a specialized level

of knowledge that make them an atypical choice as an acceleration technology for

use in general scientific computing.

Portability, in this context, could potentially be achieved by creating semi-optimized

versions derived from the basic naive version that work equally, or nearly equally, well



15

on both an SIMD platform or a pipeline parallel platform. The cost of this portable

version can then be described in terms of the performance di↵erential in terms of

execution time between this version and the fully un-optimized (naive) version as

well as the fully optimized version. The performance gap between fully optimized

and un-optimized versions is the maximum potential benefit, while the location of

the portable semi-optimized version on this continuum can be described in terms of

the fraction of maximum potential benefit either gained or lost.



16

CHAPTER 5

TECHNICAL SOLUTION

The design of code that is portable among several architectures that optimize di↵er-

ently can only be partially e↵ective due to the competing goals of these architectures,

but the gains achieved by making subtle changes to the code can be significant. There

are several major categories of changes that make the biggest di↵erences:

• Consolidate arithmetic operations that make use of intermediate variables or

multiple steps.

• Identify common memory accesses that could be mapped to shared (local)

memory when the opportunity presents itself.

• Access global memory in large contiguous blocks instead of randomly selecting

smaller sections.

• Identify opportunities for vectorizing data/operations.

• Construct independent loops that have a constant number of iterations that

are knowable at compile-time.

• Alternatively, construct independent loops that have a constant number of

iterations for a single work item.

Abiding by these general limitations is relatively simple if it is done while while

composing the code, but it becomes progressively harder when modifying code that

has been previously composed without regard to these guidelines. The degree of di�-

culty added is highly dependent on the specifics of each individual case. In addition,

these modifications can generally be applied to all architectures while accumulating

very little additional overhead.

Each of the above listed optimizations can be identified in the partially optimized

GPU code (see Appendix G) and FPGA code (see Appendix D). The following

sections identify examples of these optimizations and explain why they are necessary.



17

5.1 CONSOLIDATION OF ARITHMETIC OPERATIONS

This is likely the simplest of the optimization steps but can make significant

improvements in pipeline optimized code at no, or virtually no, cost to the run time

measured in alternate architectures. In many cases arithmetic statements can be

spread out over several operations as the unintended result of the evolution of the

code or underlying algorithm over time or simply to make the code more readable.

The following code excerpt (full code is located in Appendix C, lines 118-146) is an

example of un-optimized arithmetic operations:

f1 -= a_off [0+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

f2 -= a_off [1+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

f3 -= a_off [2+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

f4 -= a_off [3+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

f5 -= a_off [4+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

// pipeline will stall here

f1 -= a_off [0+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

f2 -= a_off [1+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

f3 -= a_off [2+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

f4 -= a_off [3+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

f5 -= a_off [4+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

// pipeline will stall here

f1 -= a_off [0+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

f2 -= a_off [1+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

f3 -= a_off [2+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

f4 -= a_off [3+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

f5 -= a_off [4+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

// pipeline will stall here

f1 -= a_off [0+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

f2 -= a_off [1+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

f3 -= a_off [2+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

f4 -= a_off [3+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

f5 -= a_off [4+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

// pipeline will stall here

f1 -= a_off [0+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];



18

f2 -= a_off [1+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

f3 -= a_off [2+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

f4 -= a_off [3+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

f5 -= a_off [4+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

// pipeline will stall here

Each of the variables f1 through f5 in this case are decremented by an amount

calculated from external data. The optimized version of this code excerpt is simply

the consolidation of all of these operations into five single line-items (see Appendix D,

lines 142-170).

f1a[j] = (a_off [0+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [0+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [0+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [0+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [0+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f2a[j] = (a_off [1+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [1+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [1+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [1+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [1+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f3a[j] = (a_off [2+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [2+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [2+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [2+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [2+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f4a[j] = (a_off [3+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [3+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [3+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [3+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [3+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f5a[j] = (a_off [4+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [4+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [4+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [4+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [4+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);



19

// pipeline will stall here

This simple change resulted in a 33.5% reduction in run time when compiled

for an FPGA due to removing the requirement that the intermediate numbers be

stored in the destination memory. This minimizes conflicts when scheduling pipelined

operations and removes the need to stall after every fifth of the computation. A stall

will still occur at the end of the statements, but this consolidated stall will be shorter

and in the case of an FPGA specifically, the number of clock-ticks required to sum

five products is not simply five times the number required to simply calculate a

single product and add it to a register; it is much less. This is because during FPGA

code compilation a custom processing unit instruction will be created to accomplish

this task by physically configuring the hardware. This custom instruction that is

produced will, in e↵ect, take 10 arguments and produce a sum of products in the

minimum number of clock-ticks. This modification will have zero cost with respect

to run time on alternate architectures.

5.2 IDENTIFY COMMON MEMORY ACCESSES

Identifying common memory accesses can show improvements across a wide range

of architectures since many language extensions, including OpenCL, OpenMP, and

CUDA all provide infrastructure to take advantage of on-device memory (if it exists).

If on-device memory does not exist for whatever reason, the code behaves as if it were

written without taking advantage of the added infrastructure. This optimization

category is somewhat harder to implement since it requires a degree of familiarity

with the algorithm that is being implemented. The following code example from the

optimized GPU code (Appendix H), and the extra time taken to read and store this

data into shared memory should be regarded as overhead.

__shared__ real8_t

a_diag_lu_shared [5][5][ BLOCK_DIM_Y ];

int const k = threadIdx.x % 5;

int const l = threadIdx.x / 5;

int n = start + blockIdx.x * blockDim.y + threadIdx.y - 1;

if (n >= end || l >= 5)

return;



20

// additional unrelated code here

.

.

.

// end - unrelated code

// Collectively load a_diag_lu into shared memory

a_diag_lu_shared[k][l][ threadIdx.y] = A_DIAG_LU(k, l, n);

__syncthreads ();

This speed gain is realized is within the code that follows:

if (threadIdx.x < BLOCK_DIM_Y && threadIdx.y == 0 && n < end) {

// additional unrelated code here

// Forward ... sequential access to a_diag_lu

f2 = f2 - a_diag_lu_shared [1][0][ threadIdx.x] * f1;

f3 = f3 - a_diag_lu_shared [2][0][ threadIdx.x] * f1;

f4 = f4 - a_diag_lu_shared [3][0][ threadIdx.x] * f1;

f5 = f5 - a_diag_lu_shared [4][0][ threadIdx.x] * f1;

f3 = f3 - a_diag_lu_shared [2][1][ threadIdx.x] * f2;

f4 = f4 - a_diag_lu_shared [3][1][ threadIdx.x] * f2;

f5 = f5 - a_diag_lu_shared [4][1][ threadIdx.x] * f2;

f4 = f4 - a_diag_lu_shared [3][2][ threadIdx.x] * f3;

f5 = f5 - a_diag_lu_shared [4][2][ threadIdx.x] * f3;

f5 = ((f5 - a_diag_lu_shared [4][3][ threadIdx.x] * f4)

* a_diag_lu_shared [4][4][ threadIdx.x]);

// Backward ... sequential access to a_diag_lu.

f1 = f1 - a_diag_lu_shared [0][4][ threadIdx.x] * f5;

f2 = f2 - a_diag_lu_shared [1][4][ threadIdx.x] * f5;

f3 = f3 - a_diag_lu_shared [2][4][ threadIdx.x] * f5;

f4 = ((f4 - a_diag_lu_shared [3][4][ threadIdx.x] * f5)



21

* a_diag_lu_shared [3][3][ threadIdx.x]);

f1 = f1 - a_diag_lu_shared [0][3][ threadIdx.x] * f4;

f2 = f2 - a_diag_lu_shared [1][3][ threadIdx.x] * f4;

f3 = ((f3 - a_diag_lu_shared [2][3][ threadIdx.x] * f4)

* a_diag_lu_shared [2][2][ threadIdx.x]);

f1 = f1 - a_diag_lu_shared [0][2][ threadIdx.x] * f3;

f2 = ((f2 - a_diag_lu_shared [1][2][ threadIdx.x] * f3)

* a_diag_lu_shared [1][1][ threadIdx.x]);

f1 = ((f1 - a_diag_lu_shared [0][1][ threadIdx.x] * f2)

* a_diag_lu_shared [0][0][ threadIdx.x]);

// additional unrelated code here

}

This additional code at the beginning will take a small amount of extra time, but

the speed gains that are realized after repeated accesses to the same set of elements far

exceed the little time spent at the beginning reading and storing the data. Elements

can be retrieved from shared (on-chip) memory approximately one-hundred times

faster than uncached global memory. There are several requirements that limit the

gains that can be had using this optimization:

• The absolute size of the common elements must be small (16-64 kB - depending

on the platform).

• There must be enough repeated accesses of these elements to make the addi-

tional overhead at the beginning of the code advantageous.

• The number of threads that can access common shared memory has a hard

limit in the case of GPUs (32 for all major brands - termed a ”warp”), and

there is a somewhat more flexible limit in the case of FPGAs.

Almost all of the speed improvement from the non-optimized (basic) version of

the GPU code (Appendix F) is due to this enhancement. This optimization resulted

in an 85% reduction in run time versus the basic version of the GPU code.

5.3 ACCESS MEMORY IN LARGE CONTIGUOUS BLOCKS



22

This optimization is largely done by organizing the data prior to running the

code. Knowing what order the code segments are likely to read the data will allow

the data to be organized such that global memory calls start at low addresses and

then sequentially progress in a predictable fashion; this may not be possible in every

case. The di↵erences in types of memory accesses in GPUs are covered extensively in

ref [14]. Enhancing reading the data in this manner can likely be accomplished inde-

pendent of code organization, so a quantitative treatment of the timing advantages

will not be covered here.

5.4 IDENTIFY OPPORTUNITIES FOR VECTORIZING

Explicit vectorization can o↵er some advantages similar to accessing global mem-

ory in larger blocks, as in section 5.3. A vector of four integers that can be read

at once, for instance, will take far less time to read than four independent reads

of a single integer. In addition, if subsequent operations on each of the integers in

that vector are identical, the operations can be conducted on the vector as a whole

instead of the individual integer components. This will explicitly invoke SIMD com-

piler optimizations. While these data constructs o↵er some additional possibilities

for speed-up, most modern compilers will be able to do these optimizations implicitly.

For that reason, a quantitative treatment of vectorization will not be covered here.

5.5 CONSTRUCT INDEPENDENT LOOPS THAT HAVE A

CONSTANT NUMBER OF ITERATIONS

Making the number of iterations predictable at compile time can have significant

implications that can impact both SIMD and pipeline parallel structures. Included

in this is the requirement that each loop iteration be independent of previous itera-

tions. For GPU architectures, this allows the ability to independently schedule loop

iterations to arbitrary threads and in some cases unroll loops. For pipelined code,

this can potentially allow a new loop iteration to start at each new clock tick. These

restrictions, however, are very di�cult to meet and none of the outer loops in the

evaluated code could meet this standard.

5.6 CONSTRUCT INDEPENDENT LOOPS THAT ARE HAVE A

CONSTANT NUMBER OF ITERATIONS FOR A SINGLE

WORK ITEM



23

If a constant number of iterations across all work items cannot be accomplished,

it is still possible to achieve a significant level of speed-up by making the number

of iterations constant across a single work item. As with section 5.5, the greatest

speed-up will be observed in pipeline parallel architectures. In the FPGA tested code

(Appendix E) this was done by iterating through the outer loops once in advance

and noting the largest number of variable loops.

for (int sweep =0; sweep < n_sweeps; ++ sweep) {

int cmax =0;

int nmax = 0;

for (int i=sweep_start; i!= sweep_end; i+= sweep_stride) {

if ((( color_boundary_end[i]-1) - color_indices [2*i]) > cmax)

cmax = (( color_boundary_end[i]-1) - color_indices [2*i]);

if (( color_indices [2*i+1] - color_indices [2*i]) > cmax)

cmax = (color_indices [2*i+1] - color_indices [2*i]);

if (( color_indices [2*i+1] - (color_boundary_end[i]+1)) > cmax)

cmax = (color_indices [2*i+1] - (color_boundary_end[i]+1));

} //end for (i)

for (int j=sweep_start; j!= sweep_end; j+= sweep_stride) {

for (int ipass =1; ipass <=2; ++ ipass) {

int start , end;

if (j > colored_sweeps) {

start = 1;

end = 0;

} // end if

else {

switch(ipass) {

case 1:

if (color_boundary_end[j] == 0) {

start = 1;

end = 0;

} // end if

else {

start = color_indices [2*j];

end = color_boundary_end[j] - 1;

} // end if

break;

case 2:

if (color_boundary_end[j] == 0) {



24

start = color_indices [2*j];

end = color_indices [2*j+1];

} // end if

else {

start = color_boundary_end[j] + 1;

end = color_indices [2*j+1];

} // end if

break;

} // end switch

} // end else

for (int i=0; i<=cmax; i++) {

if ((i+start) <= end) {

if ((( iam[i+start] - 1) - iam[i+start -1]) > nmax)

nmax = (iam[i+start] - 1) - iam[i+start -1];

} // end if (i+start)

} // end for (i)

} // end for (ipass)

} // end for (j)

Every subsequent loop was then iterated at these maximum values. For loops

in which no calculation would have occurred, no operations are executed. This is

accomplished by a simple if-statement that encapsulates the interior of the loop and

acts as a gatekeeper to ensure that only loops that would result in a valid calculation

are performed.

#pragma ivdep

for (int i=0; i <= cmax; i++) {

int irow , icol; // declaring these up here outside of if

-blocks

float f1_temp , f2_temp , f3_temp , f4_temp , f5_temp;

n = i + start;

// this if -statement acts as the gatekeeper to ensure that

no loops

// are executed on nonsense values

if (n <= end) {



25

if (solve_backwards > 0) {

f1 = -res[0 + (n-1)*NB];

f2 = -res[1 + (n-1)*NB];

f3 = -res[2 + (n-1)*NB];

f4 = -res[3 + (n-1)*NB];

f5 = -res[4 + (n-1)*NB];

} // end if (sweep_stride);

else {

f1 = res[0 + (n-1)*NB];

f2 = res[1 + (n-1)*NB];

f3 = res[2 + (n-1)*NB];

f4 = res[3 + (n-1)*NB];

f5 = res[4 + (n-1)*NB];

} // end else (sweep_stride)

istart = iam[n - 1];

iend = iam[n] - 1;

#pragma ivdep

for (int j = 0; j <= nmax; j++) {

irow = j + istart;

icol = jam[irow -1] - 1;

f1_temp =( a_off [0+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [0+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [0+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [0+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [0+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f2_temp =( a_off [1+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [1+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [1+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [1+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [1+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f3_temp =( a_off [2+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [2+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [2+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [2+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [2+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);



26

f4_temp =( a_off [3+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [3+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [3+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [3+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [3+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

f5_temp =( a_off [4+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

a_off [4+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

a_off [4+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

a_off [4+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

a_off [4+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

if ((j+istart) <= iend) {

f1 -= f1_temp;

f2 -= f2_temp;

f3 -= f3_temp;

f4 -= f4_temp;

f5 -= f5_temp;

} // end if (j+istart)

else {

f1 -= 0;

f2 -= 0;

f3 -= 0;

f4 -= 0;

f5 -= 0;

} // end else (j+istart)

} // end for loop (j)

f2 -= a_diag_lu [1 + 0*NB + (n-1)*NB*NB] * f1;

f3 -= a_diag_lu [2 + 0*NB + (n-1)*NB*NB] * f1;

f4 -= a_diag_lu [3 + 0*NB + (n-1)*NB*NB] * f1;

f5 -= a_diag_lu [4 + 0*NB + (n-1)*NB*NB] * f1;

f3 -= a_diag_lu [2 + 1*NB + (n-1)*NB*NB] * f2;

f4 -= a_diag_lu [3 + 1*NB + (n-1)*NB*NB] * f2;

f5 -= a_diag_lu [4 + 1*NB + (n-1)*NB*NB] * f2;

f4 -= a_diag_lu [3 + 2*NB + (n-1)*NB*NB] * f3;

f5 -= (a_diag_lu [4 + 2*NB + (n-1)*NB*NB] * f3)

+ (a_diag_lu [4 + 3*NB + (n-1)*NB*NB] * f4);



27

f5 *= a_diag_lu [4 + 4*NB + (n-1)*NB*NB];

// Backward ... sequential access to a_diag_lu.

f1 -= a_diag_lu [0 + 4*NB + (n-1)*NB*NB] * f5;

f2 -= a_diag_lu [1 + 4*NB + (n-1)*NB*NB] * f5;

f3 -= a_diag_lu [2 + 4*NB + (n-1)*NB*NB] * f5;

f4 -= a_diag_lu [3 + 4*NB + (n-1)*NB*NB] * f5;

f4 *= a_diag_lu [3 + 3*NB + (n-1)*NB*NB];

f1 -= a_diag_lu [0 + 3*NB + (n-1)*NB*NB] * f4;

f2 -= a_diag_lu [1 + 3*NB + (n-1)*NB*NB] * f4;

f3 -= a_diag_lu [2 + 3*NB + (n-1)*NB*NB] * f4;

f3 *= a_diag_lu [2 + 2*NB + (n-1)*NB*NB];

f1 -= a_diag_lu [0 + 2*NB + (n-1)*NB*NB] * f3;

f2 -= a_diag_lu [1 + 2*NB + (n-1)*NB*NB] * f3;

f2 *= a_diag_lu [1 + 1*NB + (n-1)*NB*NB];

f1 -= a_diag_lu [0 + 1*NB + (n-1)*NB*NB] * f2;

f1 *= a_diag_lu [0 + 0*NB + (n-1)*NB*NB];

dq[4 + (n-1)*NB] = f5;

dq[3 + (n-1)*NB] = f4;

dq[2 + (n-1)*NB] = f3;

dq[1 + (n-1)*NB] = f2;

dq[0 + (n-1)*NB] = f1;

} // end if (n) - the gatekeeper if-statement

} // end for loop (i)

} // end for loop (ipass)

} // end for loop (color)

} // end for loop (sweep)

As a result of this code modification, some overhead calculation time is accumu-

lated and more loop iterations occur, but each iteration can reliably start on a new

clock-tick and proceed for a predictable number iterations. If this had not occurred,

multiple interior loops of varying length would prevent pipelining the outer loops.

This modification resulted in an 88.7% reduction in run time from the version with

the simple statement consolidation optimization, and a 92.5% reduction in run time



28

from the un-optimized version.



29

CHAPTER 6

EVALUATION OF DEVELOPED SOLUTION

The same data set was used for all runs and consists of one million grid points in

order to provide a challenging computation.

Optimizing with CUDA provided a unique way to validate the timing results

obtained for the comparison to the OpenCL code executing on the same platform.

Nvidia provides a profiling tool (”nvprof”) that calculates the cumulative time spent

executing each particular kernel, but requires software hooks inserted by the CUDA

compilation tools in order to work. As a result, GPU code executed under an OpenCL

framework could not be timed using this utility even when running on Nvidia hard-

ware. To validate the times calculated using a monotonic clock executed from the

CPU, the results from the Nvidia profiling utility were directly compared with mono-

tonic clock times for the same runs. To summarize, the following general procedure

was used:

1. Initiate code execution with the profiler.

2. Start time recorded in CPU code.

3. CUDA version of the code was executed on the GPU.

4. End time recorded in CPU code.

5. Start time recorded in CPU code.

6. OpenCL version of the code was executed on the GPU

(same physical hardware as #3).

7. End time recorded in CPU code.

8. Profiling results were compared to monotonic clock di↵erential for CUDA.

As would be expected on a shared resource (see data Table 4 in Appendix I),

there was some variability in run times, but Nvidia profiler results compared favorably

with the results gleaned from tabulating the run times using the CPU clock. The



30

TABLE 2: Time Comparison Summary table (times shown in ms)

Code Version CUDA nvprof CUDA mclock di↵ OpenCL mclock

Optimized 121.09 125.65 4.56 126.38

Opt/No Profiler NA 124.67 NA 126.78

Non-Optimized 806.35 812.49 6.14 817.40

Non-Opt/No profiler NA 812.41 NA 818.25

di↵erence was constant to within a 0.33 ms maximum variability and represents the

aggregate overhead required to actually invoke the kernel from the CPU.

Since there might also be some small amount of overhead involved in profiling,

an additional set of runs was conducted in which the profiler was not used (shown

as ”No Profiler” runs in the summary Table 2). This data gathering procedure was

the same with the exception of starting the profiler and reviewing its results:

1. Initiate code execution.

2. Start time recorded in CPU code.

3. CUDA version of the code was executed on the GPU.

4. End time recorded in CPU code.

5. Start time recorded in CPU code.

6. OpenCL version of the code was executed on the GPU.

7. End time recorded in CPU code.

These results do indicate a slight advantage when running native CUDA code over

OpenCL code on the same device, though the di↵erence is a minimal 0.6% speedup.

This speedup was constant between the optimized and non-optimized versions of the

code.

Note that when the FPGA performance number is scaled by the memory band-

width measured performance (292 GB/s vs. 3.69 GB/s) and the floating point per-

formance (15.7 TFLOPS vs. 1.5 TFLOPS), the 11.83 second result is scaled to 143

ms, which compares favorably with the 125.65 ms number measured on the GPU;

this implies that the greater proportion of the performance di↵erential can be traced



31

TABLE 3: Optimization Continuum Results

Platform Not Optimized semi-Optimized Optimized

CPU (x86) - 16 cores 3768.25 ms 1121.4 ms 986.19 ms

CPU (ARM) - 16 cores 9903.13 ms 1349.7 ms 1340.03 ms

GPU (Nvidia) 812.49 ms 126.38 ms 125.65 ms

FPGA (PAC-10) 2.63 min 1.75 min 11.83 sec

back to these two performance statistics. Su�cient improvements in these perfor-

mance metrics with respect to FPGAs could give an indication of when might be a

prudent time to investigate optimizing a specific piece of code for pipeline parallelism

with the ultimate goal of FPGA deployment.



32

CHAPTER 7

MAJOR CONTRIBUTIONS

The major contributions of this document lie in two areas:

• Enumeration of specific code modifications to employ in scientific code that will

allow the streamlined optimization on multiple platforms and architectures.

• Identification of the costs associated with those modifications so that their

worth can be evaluated.

In Chapter 5, I introduced several methods that will likely result in code that

executes faster on specific architectures:

• Consolidation of arithmetic operations that make use of intermediate variables

or multiple steps.

– Makes code on pipelined architectures faster (33.5% reduction in run-time

in this case study).

– Has a negligible (but probably positive) e↵ect on other architectures.

• Identification of common memory accesses that could be mapped to shared

(local) memory when the opportunity presents itself

– Makes code that uses an acceleration platform faster, since these accel-

eration platforms typically have a small amount of low latency on-chip

memory (85% reduction in run-time in this case study).

– Requires some code redesign that may not apply to all architectures, and

frequently will require some trial and error as well a significant develop-

ment time investment to implement.

– Has no e↵ect on architectures that do not have this capability if a sin-

gle framework (like OpenCL) is used across all architectures. If multiple

frameworks are used to achieve this instead, additional complexity would

be required in the form of multiple blocks of code that accomplish the

same tasks for alternate frameworks activated and deactivated by pragma

if/then/else blocks.



33

• Access global memory in large contiguous blocks instead of randomly selecting

smaller sections.

– Mostly accomplished by preprocessing the input data with knowledge

about the order in which the code will access the data.

– Can be done without a↵ecting the code at all in many cases.

• Identify opportunities for vectorizing data/operations.

– O↵ers many of the same advantages discussed when with respect to access

of global memory in large contiguous blocks.

– Can be accomplished by the compiler in large part without explicitly vec-

torizing the code.

– Explicit vectorization can provide a small speed-up e↵ect, but is unlikely

to make a large di↵erence above the implicit vectorization provided by the

compiler.

• Construct independent loops that have a constant number of iterations that

are knowable at compile-time.

– Can make a big di↵erence in pipeline parallel code, as well as a significant

(but smaller) di↵erence in SIMD parallel code.

– A di�cult standard to meet in code that requires converging on an an-

swer after a specific criteria is met or in cases where some parts of the

calculation have more nonzero data input than other parts.

• Alternatively, construct independent loops that have a constant number of

iterations for a single work item.

– Can make a big di↵erence in pipeline parallel code (92.5% reduction in run-

time in this case study), but due to the overhead required to determine

the right number of iterations, the di↵erence in SIMD parallel code is

unpredictable.

– Doing this removes some of the advantage of using sparse data sets since

this will require iterating over zeroes. These loops will essentially be no-

operation (NOOP) iterations.



34

CHAPTER 8

CONCLUSIONS

In summary, there are three major areas that are worth optimizing and that will

have beneficial e↵ects across multiple architectures and increase the portability of

scientific code:

• Consolidation of arithmetic operations (33.5% reduction in run-time in this

case study).

• Identification of common memory accesses that could be mapped to shared

(local) memory for optimizing over a single work item (85% reduction in run-

time in this case study).

• Construction of independent loops that have a constant number of iterations

over a single work item (92.5% reduction in run-time in this case study).

These code constructs, either used in the initial implementation of new code or

introduced as a reworking of existing code can o↵er scaling and speed benefits over

an extended period of time and likely will expose more parallelism across mutliple

architectures as acceleration platforms mature and incorporate functional elements

from competing architectures.

In the case of these modifications, implementation on architectures in which there

is no immediate benefit will cause neglible or no detriment, and will position the code

for re-use in di↵ering architectures as opportunity allows.



35

REFERENCES

[1] “The exascale e↵ect: Benefits of supercomputing investment for u.s. industry.”

Council on Competetiveness and Intersect360 Research, Sept 2014.

[2] J. D. Mooney, “Developing portable software.” International Federation for In-

formation Processing Digital Library; Information Technology, 2004.

[3] W. Zhu, C.-L. Wang, and F. C. M. Lau, “Jessica2: A distributed java virtual

machine with transparent thread migration support.” IEEE International Con-

ference on Cluster Computing, 2002.

[4] T. E. Oliphant, “Python for scientific computing,” Computing in Science and

Engineering, vol. 9(3), 2007.

[5] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matri-

ces,” Proceedings of the 1969 24th National Conference, ACM ’69, p. 157–172,

1969.

[6] Y. Saad, “Iterative methods for sparse linear systems,” Society for Industrial

and Applied Mathematics, 2003.

[7] L. Chen, I. Fujishiro, and K. Nakajima, “Parallel performance optimization

of large scale unstructured data visualization for earth simulator,” Proceedings

of the Fourth Eurographics Workshop on Parallel Graphics and Visualization,

pp. 133–140, 2002.

[8] C. Garcia, M. Prieto, J. Setoain, and F. Tirado, “Enhancing the performance

of multigrid smoothers in simultaneous multithreading architectures,” Interna-

tional Conference on High Performance Computing for Computational Science,

pp. 439–451, June 2006.

[9] R. Biedron, J. Carlson, J. Derlaga, P. Gno↵o, D. Hammond, W. Jones, and

B. Kleb, “Fun3d manual.” NASA, 2018.

[10] Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability in scien-

tific numeric computing,” European conference on Parallel Processing, pp. 558–

569, August 2015.



36

[11] F. Perez, B. E. Granger, and J. D. Hunter, “Python: an ecosystem for scientific

computing,” Computing in Science and Engineering, vol. 13(2), pp. 13–21, 2011.

[12] S. Z. Guyer and C. Lin. Springer, Boston, MA, 2001.

[13] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas, “Towards e�ciency

and portability: Programming with the bsp model,” Proceedings of the eighth

annual ACM symposium on Parallel alogorithms and architectures, pp. 1–12,

June 1996.

[14] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller, and

S. A. Jarvis, “An investigation of the performance portability of opencl,” Journal

of Parallel and Distributed Computing, vol. 73(11), pp. 1439–1450, 2013.



37

APPENDIX A

BASIC SEQUENTIAL POINT SOLVER

The following is the basic sequential code written in C that was the basis for all

of the other code adaptations. Note the structure of the loops; there is an outer

iterative sweep, a color sweep (every ”color” is verified to designate nodes that can be

computed independently of any other node of the same ”color”, see the ”Background”

section for a more complete explanation), and then the inner loops that are suitable

for fully parallel computation. Additional commenting within the code indicates

which portion of the code was used in the GPU benchmarking process as the ”Non-

Optimized” code.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define N_SWEEPS 1

5 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

6 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

7

8 extern "C" {

9 void point_solve_5_cl

10 (intptr_t *ocl_params , intptr_t *ocl_data , int colored_sweeps ,

11 int *color_indices , int neq0 , int nja , int *iam , int *jam ,

12 int solve_backwards , int nb , int n_sweeps , double *res , float *dq

,

13 double *a_diag_lu , float *a_off , int *color_boundary_end) {

14

15 int j,n,sweep ,icol ,istart ,iend ,start ,end ,ipass , color ,

16 sweep_start , sweep_end , sweep_stride;

17 float f1 ,f2 ,f3 ,f4 ,f5;

18 double f[5];

19 sweep_start = 1;

20 sweep_end = colored_sweeps;

21 sweep_stride = 1;

22



38

23 if (( solve_backwards > 1) || (solve_backwards < -1)) {

24 sweep_start = colored_sweeps;

25 sweep_end = 1;

26 sweep_stride = -1;

27 } // end if (solve_backwards)

28

29 if (neq0 <= 0) {

30 sweep_start = 1;

31 sweep_end = 2;

32 sweep_stride = -1;

33 } // end if (neq0)

34

35 for (sweep = 1; sweep <=n_sweeps; sweep ++) {

36 for (color = sweep_start; color <= sweep_end;

37 color += sweep_stride) {

38 for (ipass = 1; ipass <= 2; ipass ++) {

39

40 if (color > colored_sweeps) {

41 start = 1;

42 end = 0;

43 } // end if (color)

44 else {

45 switch (ipass) {

46 case 1:

47 if (color_boundary_end[color -1] == 0) {

48 start = 1;

49 end = 0;

50 } // end if (color_boundary_end)

51 else {

52 start = color_indices [2*( color -1)];

53 end = color_boundary_end[color -1];

54 } // end else (color_boundary_end)

55 break;

56 case 2:

57 if (color_boundary_end[color -1] == 0) {

58 start = color_indices [2*( color -1)];

59 end = color_indices [2*( color -1) +1];

60 } // end if (color_boundary_end)

61 else {

62 start = color_boundary_end[color -1] + 1;

63 end = color_indices [2*( color -1) +1];



39

64 } // end else (color_boundary_end)

65 } // end switch (ipass)

66 } // end else (color)

67

68 for (n = start; n <= end; n++) {

69 // *******************************************************

70 // * CODE WITHIN THIS LOOP IS USED IN SIMD (GPU) KERNELS *

71 // *******************************************************

72 if (solve_backwards > 0) {

73 f1 = -res[0 + (n-1)*nb];

74 f2 = -res[1 + (n-1)*nb];

75 f3 = -res[2 + (n-1)*nb];

76 f4 = -res[3 + (n-1)*nb];

77 f5 = -res[4 + (n-1)*nb];

78 } // end if (solve_backwards);

79 else {

80 f1 = res[0 + (n-1)*nb];

81 f2 = res[1 + (n-1)*nb];

82 f3 = res[2 + (n-1)*nb];

83 f4 = res[3 + (n-1)*nb];

84 f5 = res[4 + (n-1)*nb];

85 } // end else (solve_backwards)

86

87 istart = iam[n-1];

88 iend = iam[n] - 1;

89

90 for (j = istart; j <= iend; j++) {

91 icol = jam[j-1] - 1;

92

93 f1 -= a_off[0 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

94 f2 -= a_off[1 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

95 f3 -= a_off[2 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

96 f4 -= a_off[3 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

97 f5 -= a_off[4 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

98

99 f1 -= a_off[0 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

100 f2 -= a_off[1 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

101 f3 -= a_off[2 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

102 f4 -= a_off[3 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

103 f5 -= a_off[4 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

104



40

105 f1 -= a_off [0 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

106 f2 -= a_off [1 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

107 f3 -= a_off [2 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

108 f4 -= a_off [3 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

109 f5 -= a_off [4 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

110

111 f1 -= a_off [0 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

112 f2 -= a_off [1 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

113 f3 -= a_off [2 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

114 f4 -= a_off [3 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

115 f5 -= a_off [4 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

116

117 f1 -= a_off [0 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

118 f2 -= a_off [1 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

119 f3 -= a_off [2 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

120 f4 -= a_off [3 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

121 f5 -= a_off [4 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

122

123 } // end for (j)

124

125 f[0] = f1;

126 f[1] = f2;

127 f[2] = f3;

128 f[3] = f4;

129 f[4] = f5;

130

131 // Forward ... sequential access to a_diag_lu.

132 f[1] -= a_diag_lu [1 + 0*nb + (n-1)*nb*nb] * f[0];

133 f[2] -= a_diag_lu [2 + 0*nb + (n-1)*nb*nb] * f[0];

134 f[3] -= a_diag_lu [3 + 0*nb + (n-1)*nb*nb] * f[0];

135 f[4] -= a_diag_lu [4 + 0*nb + (n-1)*nb*nb] * f[0];

136

137 f[2] -= a_diag_lu [2 + 1*nb + (n-1)*nb*nb] * f[1];

138 f[3] -= a_diag_lu [3 + 1*nb + (n-1)*nb*nb] * f[1];

139 f[4] -= a_diag_lu [4 + 1*nb + (n-1)*nb*nb] * f[1];

140

141 f[3] -= a_diag_lu [3 + 2*nb + (n-1)*nb*nb] * f[2];

142 f[4] -= a_diag_lu [4 + 2*nb + (n-1)*nb*nb] * f[2];

143

144 f[4] -= a_diag_lu [4 + 3*nb + (n-1)*nb*nb] * f[3];

145 f[4] *= a_diag_lu [4 + 4*nb + (n-1)*nb*nb];



41

146

147 // Backward ... sequential access to a_diag_lu.

148 f[0] -= a_diag_lu [0 + 4*nb + (n-1)*nb*nb] * f[4];

149 f[1] -= a_diag_lu [1 + 4*nb + (n-1)*nb*nb] * f[4];

150 f[2] -= a_diag_lu [2 + 4*nb + (n-1)*nb*nb] * f[4];

151 f[3] -= a_diag_lu [3 + 4*nb + (n-1)*nb*nb] * f[4];

152 f[3] *= a_diag_lu [3 + 3*nb + (n-1)*nb*nb];

153

154 f[0] -= a_diag_lu [0 + 3*nb + (n-1)*nb*nb] * f[3];

155 f[1] -= a_diag_lu [1 + 3*nb + (n-1)*nb*nb] * f[3];

156 f[2] -= a_diag_lu [2 + 3*nb + (n-1)*nb*nb] * f[3];

157 f[2] *= a_diag_lu [2 + 2*nb + (n-1)*nb*nb];

158

159 f[0] -= a_diag_lu [0 + 2*nb + (n-1)*nb*nb] * f[2];

160 f[1] -= a_diag_lu [1 + 2*nb + (n-1)*nb*nb] * f[2];

161 f[1] *= a_diag_lu [1 + 1*nb + (n-1)*nb*nb];

162

163 f[0] -= a_diag_lu [0 + 1*nb + (n-1)*nb*nb] * f[1];

164 f[0] *= a_diag_lu [0 + 0*nb + (n-1)*nb*nb];

165

166 dq[4 + (n-1)*nb] = f[4];

167 dq[3 + (n-1)*nb] = f[3];

168 dq[2 + (n-1)*nb] = f[2];

169 dq[1 + (n-1)*nb] = f[1];

170 dq[0 + (n-1)*nb] = f[0];

171

172 // *******************************************************

173 // *******************************************************

174 // *******************************************************

175 } // end for loop (n)

176

177 } // end for loop (ipass)

178

179 } // end for loop (color)

180

181 } // end for loop ( sweep)

182

183 } // end point_solve_5 ()

184

185 } // end extern "C"



42

APPENDIX B

FPGA WRAPPER CODE

The following is an excerpt from the main FORTAN code that invokes the OpenCL

code:

1 write (*,*) ’  Starting OpenCL point_solve_5 ...’

2

3 ! calling once just to ensure that it is loaded on the device

4 ! before timing

5 call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), 1)

6

7 call fpga_setvar_f(c_loc(ocl_params), c_loc(ocl_data), D_DQ , &

8 c_loc(dq_data01))

9 call fpga_setvar_d(c_loc(ocl_params), c_loc(ocl_data), D_RES , &

10 c_loc(res))

11 call fpga_setvar_d(c_loc(ocl_params), c_loc(ocl_data), D_ADIAG , &

12 c_loc(a_diag_lu))

13 write (*,*) ’    Setting of variables complete.’

14 call fpga_setvar_f(c_loc(ocl_params), c_loc(ocl_data), D_AOFF , &

15 c_loc(a_off))

16

17 call fpga_init_events(c_loc(ocl_params))

18 call cpu_time(start_time)

19

20 call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), &

21 n_meanflow_iters)

22 call fpga_wait_event(c_loc(ocl_params),PARAM_EVENT1)

23 call cpu_time(finish_time)

24 ps5_dt_ocl = (finish_time - start_time)*1E3 - to

25

26 write (*,*) ’    Copying data ...’

27 call cpu_time(start_time)

28 call fpga_getvar_f(c_loc(ocl_params), c_loc(ocl_data), D_DQ , &

29 c_loc(dq_ocl))

30 call cpu_time(finish_time)

31 write (*,’(A,F12.3,A)’) ’      Time to retrieve dq: ’, &

32 (( finish_time -start_time)*1E3 -to),’ ms’

33 write (*,*) ’    Done.’



43

The following is the wrapper for the OpenCL code that is invoked in the main

FORTRAN code:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <CL/cl.h>

4

5 #include "ocl_defs.h"

6 #include "ocl_helpers.h"

7

8 #define N_SWEEPS 1

9 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

10 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

11 #define DIV ((int)10)

12

13 extern "C" {

14

15 void point_solve_5_cl(intptr_t *ocl_params , intptr_t *ocl_data ,

16 int nsweeps) {

17

18 cl_int ret;

19 cl_command_queue *command_queue;

20 cl_kernel *kernel;

21 cl_event *event1 , local_events [5];

22 cl_mem *dq_obj , *njac_obj , *nnodes01_obj;

23 float* dq;

24 int njac , nnodes01;

25

26 unsigned long int npass1;

27

28 command_queue = (cl_command_queue *) ocl_params[PARAM_COMQUE ];

29 kernel = (cl_kernel *) ocl_params[PARAM_PS5_KNL1 ];

30 event1 = (cl_event *) ocl_params[PARAM_EVENT1 ];

31

32 local_events [0] = *event1;

33

34 npass1 = (unsigned long int)nsweeps;

35 ret = clSetKernelArg (*kernel , 0, sizeof(unsigned long int),

36 &npass1);

37



44

38 if (( local_events [0] == NULL))

39 ret = clEnqueueTask (* command_queue , *kernel , 0, NULL ,

40 &local_events [1]);

41 else

42 ret = clEnqueueTask (* command_queue , *kernel , 1, local_events ,

43 &local_events [1]);

44

45 if (ret != CL_SUCCESS)

46 fprintf(stderr ,"ERROR executing kernel1 (ps5)\n");

47

48 local_events [0] = local_events [1];

49

50 *event1 = local_events [0];

51

52 } // end point_solve_5_cl ()

53

54 } // end extern "C"



45

APPENDIX C

FPGA BASIC CODE

The following is the basic code that was adapted to run on the FPGA prior to any

optimization, it is little more than the basic sequential C code.

1 #include "../ include/ocl_defs.h"

2

3 #define NB 5

4 #define N_SWEEPS 1

5 #define DIV ((int)10)

6

7 __attribute__ (( reqd_work_group_size (1,1,1)))

8 __kernel void point_solve_5_knl

9 (unsigned long int npass1 , unsigned long int npass2 ,

10 __global int* restrict colored_sweeps_in ,

11 __global int* restrict color_indices , __global int* restrict

12 neq0_in ,

13 __global int* restrict neq_in , __global int* restrict

14 solve_backwards_in ,

15 __global int* restrict color_boundary_end , __global int* restrict

16 iam ,

17 __global int* restrict jam , __global double* restrict res ,

18 __global float* volatile dq, __global float* restrict a_off ,

19 __global double* restrict a_diag_lu) {

20

21 int colored_sweeps = *colored_sweeps_in;

22 int neq0 = *neq0_in;

23 int neq = *neq_in;

24 int solve_backwards = *solve_backwards_in;

25

26 int n, i, j, k, istart , iend , icol , jam0 , jam1 , gid;

27 int start , end , solve_sign , n_sweeps;

28 int bk;

29 double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;

30 double a_diag_lu_local [5][5];

31



46

32 // initial color index

33 int sweep_start = 0;

34 // final color idx +/- sweep_stride

35 int sweep_end = colored_sweeps;

36 // +/- 1

37 int sweep_stride = 1;

38

39 // parse dynamic arguments

40 n_sweeps = npass1;

41

42 if ( solve_backwards > 1 || solve_backwards < -1 ) {

43 sweep_start = colored_sweeps - 1;

44 sweep_end = -1;

45 sweep_stride = -1;

46 } // end if

47

48 if ( neq0 <= 0 ) {

49 sweep_start = 0;

50 sweep_end = 1;

51 sweep_stride = -1;

52 } // end if

53

54 for (int sweep =0; sweep < n_sweeps; ++ sweep) {

55 for (int color=sweep_start; color!= sweep_end;

56 color += sweep_stride) {

57 for (int ipass =1; ipass <=2; ++ ipass) {

58 int start , end;

59 if (color > colored_sweeps) {

60 start = 1;

61 end = 0;

62 } // end if

63 else {

64 switch(ipass) {

65 case 1:

66 if (color_boundary_end[color] == 0) {

67 start = 1;

68 end = 0;

69 } // end if

70 else {

71 start = color_indices [2* color ];

72 end = color_boundary_end[color] - 1;



47

73 } // end if

74 break;

75 case 2:

76 if (color_boundary_end[color] == 0) {

77 start = color_indices [2* color ];

78 end = color_indices [2* color +1];

79 } // end if

80 else {

81 start = color_boundary_end[color] + 1;

82 end = color_indices [2* color +1];

83 } // end if

84 break;

85 } // end switch

86 } // end else

87

88 for (n = start; n <= end; n++) {

89 // read in a_diag_lu

90 for (i=0; i<5; i++) {

91 for (j=0; j<5; j++) {

92 a_diag_lu_local[i][j] =

93 a_diag_lu[i + j*NB + (n-1)*NB*NB];

94 } // end for (j)

95 } // end for (i)

96

97 if (solve_backwards > 0) {

98 f1 = -res[0 + (n-1)*NB];

99 f2 = -res[1 + (n-1)*NB];

100 f3 = -res[2 + (n-1)*NB];

101 f4 = -res[3 + (n-1)*NB];

102 f5 = -res[4 + (n-1)*NB];

103 } // end if (solve_backwards);

104 else {

105 f1 = res[0 + (n-1)*NB];

106 f2 = res[1 + (n-1)*NB];

107 f3 = res[2 + (n-1)*NB];

108 f4 = res[3 + (n-1)*NB];

109 f5 = res[4 + (n-1)*NB];

110 } // end else (sweep_stride)

111

112 istart = iam[n - 1];

113 iend = iam[n] - 1;



48

114

115 for (j = istart; j <= iend; j++) {

116 icol = jam[j-1] - 1;

117

118 f1 -= a_off [0+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

119 f2 -= a_off [1+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

120 f3 -= a_off [2+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

121 f4 -= a_off [3+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

122 f5 -= a_off [4+0*NB+(j-1)*NB*NB]*dq[0+ icol*NB];

123

124 f1 -= a_off [0+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

125 f2 -= a_off [1+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

126 f3 -= a_off [2+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

127 f4 -= a_off [3+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

128 f5 -= a_off [4+1*NB+(j-1)*NB*NB]*dq[1+ icol*NB];

129

130 f1 -= a_off [0+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

131 f2 -= a_off [1+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

132 f3 -= a_off [2+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

133 f4 -= a_off [3+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

134 f5 -= a_off [4+2*NB+(j-1)*NB*NB]*dq[2+ icol*NB];

135

136 f1 -= a_off [0+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

137 f2 -= a_off [1+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

138 f3 -= a_off [2+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

139 f4 -= a_off [3+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

140 f5 -= a_off [4+3*NB+(j-1)*NB*NB]*dq[3+ icol*NB];

141

142 f1 -= a_off [0+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

143 f2 -= a_off [1+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

144 f3 -= a_off [2+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

145 f4 -= a_off [3+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

146 f5 -= a_off [4+4*NB+(j-1)*NB*NB]*dq[4+ icol*NB];

147

148 } // end for (j)

149

150 f2 -= a_diag_lu_local [1][0] * f1;

151 f3 -= a_diag_lu_local [2][0] * f1;

152 f4 -= a_diag_lu_local [3][0] * f1;

153 f5 -= a_diag_lu_local [4][0] * f1;

154



49

155 f3 -= a_diag_lu_local [2][1] * f2;

156 f4 -= a_diag_lu_local [3][1] * f2;

157 f5 -= a_diag_lu_local [4][1] * f2;

158

159 f4 -= a_diag_lu_local [3][2] * f3;

160 f5 -= (a_diag_lu_local [4][2] * f3)

161 + (a_diag_lu_local [4][3] * f4);

162

163 f5 *= a_diag_lu_local [4][4];

164

165 // Backward ... sequential access to a_diag_lu.

166 f1 -= a_diag_lu [0 + 4*NB + (n-1)*NB*NB] * f5;

167 f2 -= a_diag_lu [1 + 4*NB + (n-1)*NB*NB] * f5;

168 f3 -= a_diag_lu [2 + 4*NB + (n-1)*NB*NB] * f5;

169 f4 -= a_diag_lu [3 + 4*NB + (n-1)*NB*NB] * f5;

170 f4 *= a_diag_lu [3 + 3*NB + (n-1)*NB*NB];

171

172 f1 -= a_diag_lu [0 + 3*NB + (n-1)*NB*NB] * f4;

173 f2 -= a_diag_lu [1 + 3*NB + (n-1)*NB*NB] * f4;

174 f3 -= a_diag_lu [2 + 3*NB + (n-1)*NB*NB] * f4;

175 f3 *= a_diag_lu [2 + 2*NB + (n-1)*NB*NB];

176

177 f1 -= a_diag_lu [0 + 2*NB + (n-1)*NB*NB] * f3;

178 f2 -= a_diag_lu [1 + 2*NB + (n-1)*NB*NB] * f3;

179 f2 *= a_diag_lu [1 + 1*NB + (n-1)*NB*NB];

180

181 f1 -= a_diag_lu [0 + 1*NB + (n-1)*NB*NB] * f2;

182 f1 *= a_diag_lu [0 + 0*NB + (n-1)*NB*NB];

183

184 dq[4 + (n-1)*NB] = f5;

185 dq[3 + (n-1)*NB] = f4;

186 dq[2 + (n-1)*NB] = f3;

187 dq[1 + (n-1)*NB] = f2;

188 dq[0 + (n-1)*NB] = f1;

189

190 } // end for loop (n)

191

192 } // end for loop (ipass)

193

194 } // end for loop (color)

195



50

196 } // end for loop (sweep)

197

198 } // end point_solve_5_knl ()



51

APPENDIX D

FPGA PARTIALLY OPTIMIZED CODE

The following is a partially optimized version of the code that was adapted to run

on the FPGA. The principal di↵erence between this code and the basic code is the

consolidation of several arithmetic operations to make the execution more amenable

to pipelining. This simple change resulted in a 33.5% reduction in runtime on the

FPGA and is completely transparent to all other code execution architectures.

1 #include "../ include/ocl_defs.h"

2

3 #define NB 5

4 #define N_SWEEPS 1

5 // must be a power of 2, upper limit of lmax variable

6 #define LMAX 32

7 #define DIV ((int)10)

8

9 #define IDX1(A,B,R) A+B*NB+((R+istart) -1)*NB*NB

10 #define IDX2(A,R) A+(jam[(R+istart) -1]-1)*NB

11

12 typedef union varr {

13 double a[16];

14 double16 v;

15 } varr;

16

17 __constant int POW2[] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

18 1024, 2048, 4096, 8192 };

19

20 __attribute__ (( reqd_work_group_size (1,1,1)))

21 __kernel void point_solve_5_knl

22 (unsigned long int npass1 , unsigned long int npass2 ,

23 __global int* restrict colored_sweeps_in ,

24 __global int* restrict color_indices , __global int* restrict

25 neq0_in ,

26 __global int* restrict neq_in , __global int* restrict

27 solve_backwards_in ,



52

28 __global int* restrict color_boundary_end , __global int* restrict

29 iam ,

30 __global int* restrict jam , __global double* restrict res ,

31 __global float* restrict dq, __global float* restrict a_off ,

32 __global double* restrict a_diag_lu) {

33

34 int colored_sweeps = *colored_sweeps_in;

35 int neq0 = *neq0_in;

36 int neq = *neq_in;

37 int solve_backwards = *solve_backwards_in;

38

39 int n, i, j, k, l, istart , iend , jam0 , jam1 , gid;

40 int start , end , solve_sign , n_sweeps;

41 int lmax , lmax_input , lmax_log2 , i1 , i2 , i3;

42 double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;

43

44 local double a_diag_lu_local [5][5][4];

45

46 int sweep_start = 0; // initial color index

47 int sweep_end = colored_sweeps; // final color idx +/-

sweep_stride

48 int sweep_stride = 1; // +/- 1

49

50 // parse dynamic arguments

51 n_sweeps = (int)npass1;

52 lmax_input = (int)npass2;

53

54 // find the smallest power of 2 that contains lmax_input (min 16)

55 lmax_log2 = 4;

56 for (lmax = 16; lmax < lmax_input; lmax *=2) { lmax_log2 ++; }

57

58 if ( solve_backwards > 1 || solve_backwards < -1 ) {

59 sweep_start = colored_sweeps - 1;

60 sweep_end = -1;

61 sweep_stride = -1;

62 } // end if

63

64 if ( neq0 <= 0 ) {

65 sweep_start = 0;

66 sweep_end = 1;

67 sweep_stride = -1;



53

68 } // end if

69

70 for (int sweep =0; sweep < n_sweeps; ++ sweep) {

71 for (int color=sweep_start; color!= sweep_end; color+=

sweep_stride) {

72 for (int ipass =1; ipass <=2; ++ ipass) {

73 int start , end;

74 if (color > colored_sweeps) {

75 start = 1;

76 end = 0;

77 } // end if

78 else {

79 switch(ipass) {

80 case 1:

81 if (color_boundary_end[color] == 0) {

82 start = 1;

83 end = 0;

84 } // end if

85 else {

86 start = color_indices [2* color ];

87 end = color_boundary_end[color] - 1;

88 } // end if

89 break;

90 case 2:

91 if (color_boundary_end[color] == 0) {

92 start = color_indices [2* color ];

93 end = color_indices [2* color +1];

94 } // end if

95 else {

96 start = color_boundary_end[color] + 1;

97 end = color_indices [2* color +1];

98 } // end if

99 break;

100 } // end switch

101 } // end else

102

103 for (n = start; n <= end; n++) {

104 // read in a_diag_lu

105 int m = n % 4;

106 for (i=0; i<25; i++) {

107 i1 = i / 5;



54

108 i2 = i % 5;

109 i3 = i1 + i2*NB + (n-1)*NB*NB;

110 a_diag_lu_local[i1][i2][m] = a_diag_lu[i3];

111 } // end for (i)

112

113 if (solve_backwards > 0) {

114 f1 = -res[0 + (n-1)*NB];

115 f2 = -res[1 + (n-1)*NB];

116 f3 = -res[2 + (n-1)*NB];

117 f4 = -res[3 + (n-1)*NB];

118 f5 = -res[4 + (n-1)*NB];

119 } // end if (sweep_stride);

120 else {

121 f1 = res[0 + (n-1)*NB];

122 f2 = res[1 + (n-1)*NB];

123 f3 = res[2 + (n-1)*NB];

124 f4 = res[3 + (n-1)*NB];

125 f5 = res[4 + (n-1)*NB];

126 } // end else (sweep_stride)

127

128 istart = iam[n - 1];

129 iend = iam[n] - 1;

130

131 double f1a[LMAX] = { 0 };

132 double f2a[LMAX] = { 0 };

133 double f3a[LMAX] = { 0 };

134 double f4a[LMAX] = { 0 };

135 double f5a[LMAX] = { 0 };

136

137 for (j = 0; j < lmax; j++) {

138 int irow = j+istart;

139 if (irow <= iend) {

140 int icol = jam[irow -1] - 1;

141

142 f1a[j] = (a_off [0+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

143 a_off [0+1* NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

144 a_off [0+2* NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

145 a_off [0+3* NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

146 a_off [0+4* NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

147

148 f2a[j] = (a_off [1+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +



55

149 a_off [1+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

150 a_off [1+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

151 a_off [1+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

152 a_off [1+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

153

154 f3a[j] = (a_off [2+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

155 a_off [2+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

156 a_off [2+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

157 a_off [2+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

158 a_off [2+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

159

160 f4a[j] = (a_off [3+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

161 a_off [3+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

162 a_off [3+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

163 a_off [3+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

164 a_off [3+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

165

166 f5a[j] = (a_off [4+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

167 a_off [4+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

168 a_off [4+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

169 a_off [4+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

170 a_off [4+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

171

172 } // end if (irow)

173

174 } // end for (j)

175

176 for (j = 0; j < LMAX; j++) {

177 f1 -= f1a[j];

178 f2 -= f2a[j];

179 f3 -= f3a[j];

180 f4 -= f4a[j];

181 f5 -= f5a[j];

182 } // end for (j)

183

184 f2 -= a_diag_lu_local [1][0][m] * f1;

185 f3 -= a_diag_lu_local [2][0][m] * f1;

186 f4 -= a_diag_lu_local [3][0][m] * f1;

187 f5 -= a_diag_lu_local [4][0][m] * f1;

188

189 f3 -= a_diag_lu_local [2][1][m] * f2;



56

190 f4 -= a_diag_lu_local [3][1][m] * f2;

191 f5 -= a_diag_lu_local [4][1][m] * f2;

192

193 f4 -= a_diag_lu_local [3][2][m] * f3;

194 f5 -= (a_diag_lu_local [4][2][m] * f3)

195 + (a_diag_lu_local [4][3][m] * f4);

196

197 f5 *= a_diag_lu_local [4][4][m];

198

199 // Backward ... sequential access to a_diag_lu.

200 f1 -= a_diag_lu_local [0][4][m] * f5;

201 f2 -= a_diag_lu_local [1][4][m] * f5;

202 f3 -= a_diag_lu_local [2][4][m] * f5;

203 f4 -= a_diag_lu_local [3][4][m] * f5;

204 f4 *= a_diag_lu_local [3][3][m];

205

206 f1 -= a_diag_lu_local [0][3][m] * f4;

207 f2 -= a_diag_lu_local [1][3][m] * f4;

208 f3 -= a_diag_lu_local [2][3][m] * f4;

209 f3 *= a_diag_lu_local [2][2][m];

210

211 f1 -= a_diag_lu_local [0][2][m] * f3;

212 f2 -= a_diag_lu_local [1][2][m] * f3;

213 f2 *= a_diag_lu_local [1][1][m];

214

215 f1 -= a_diag_lu_local [0][1][m] * f2;

216 f1 *= a_diag_lu_local [0][0][m];

217

218 dq[4 + (n-1)*NB] = f5;

219 dq[3 + (n-1)*NB] = f4;

220 dq[2 + (n-1)*NB] = f3;

221 dq[1 + (n-1)*NB] = f2;

222 dq[0 + (n-1)*NB] = f1;

223

224 } // end for loop (n)

225 } // end for loop (ipass)

226 } // end for loop (color)

227 } // end for loop (sweep)

228 } // end point_solve_5_knl ()



57

APPENDIX E

FPGA OPTIMIZED CODE

The following is a fully optimized version of the code that was adapted to run on the

FPGA. The di↵erence between this code and the partially optimized code is is that

the loop structure was altered to ensure that the number of iterations was predictable

prior to loop execution. While the number of loops is still unknown at compile time,

there is a pre-calculation done before main loop execution which ensures that the

number of iterations is exactly the same for every kernel execution. This is a more

complex change, but resulted in an 88.7% reduction in runtime over the partially

optimized code and a 92.5% reduction in runtime when compared to the original

unoptimized (basic) code. The extra iterations consume very little in the way of

compute resources, and so add a very small amount to the runtime when compared

to other architectures, but provide a level of predictability that is necessary in order

to more e�ciently pipeline the code execution. The loops in which no calculations

are actually done could be considered manually inserted ”stalls” in the pipeline.

Note the use of the ”ivdep” #pragma statements. These statements inform the

compiler to ignore variable dependencies. This pre-compiler directive must be used

very carefully since the onus of preventing race conditions and out of order calcula-

tions is now placed upon the programmer. In this particular case, the structure of

the data array was generated to preclude these complications, but this may not be

the case with every application.

1 #include "../ include/ocl_defs.h"

2

3 #define NB 5

4 #define N_SWEEPS 1

5 // equivalent to cycle lag for fp operations

6 #define LMAX 12

7 #define DIV ((int)10)

8

9 #define NMAX 32

10



58

11 #define IDX1(A,B,R) A+B*NB+((R+istart) -1)*NB*NB

12 #define IDX2(A,R) A+(jam[(R+istart) -1]-1)*NB

13

14 typedef union varr {

15 double a[16];

16 double16 v;

17 } varr;

18

19 __constant int POW2[] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

20 1024, 2048, 4096, 8192 };

21

22 __attribute__ (( reqd_work_group_size (1,1,1)))

23 __kernel void point_solve_5_knl

24 (unsigned long int npass1 , unsigned long int npass2 ,

25 __global int* restrict colored_sweeps_in ,

26 __global int* restrict color_indices , __global int* restrict

27 neq0_in ,

28 __global int* restrict neq_in , __global int* restrict

29 solve_backwards_in ,

30 __global int* restrict color_boundary_end , __global int* restrict

31 iam ,

32 __global int* restrict jam , __global double* restrict res ,

33 __global float* restrict dq, __global float* restrict a_off ,

34 __global double* restrict a_diag_lu) {

35

36 int colored_sweeps = *colored_sweeps_in;

37 int neq0 = *neq0_in;

38 int neq = *neq_in;

39 int solve_backwards = *solve_backwards_in;

40

41 int n, i, j, k, l, istart , iend , jam0 , jam1 , nmax;

42 int start , end , solve_sign , n_sweeps;

43 int lmax , lmax_input , lmax_log2 , i1 , i2 , i3;

44 double f1=0, f2=0, f3=0, f4=0, f5=0, a=0;

45 local double a_diag_lu_local [5][5][4];

46

47 int sweep_start = 0; // initial color index

48 int sweep_end = colored_sweeps; // final color idx +/-

sweep_stride

49 int sweep_stride = 1; // +/- 1

50



59

51 // parse dynamic arguments

52 n_sweeps = (int)npass1;

53 lmax_input = (int)npass2;

54

55 // find the smallest power of 2 that contains lmax_input (min 16)

56 lmax_log2 = 4;

57 for (lmax = 16; lmax < lmax_input; lmax *=2) { lmax_log2 ++; }

58

59 if ( solve_backwards > 1 || solve_backwards < -1 ) {

60 sweep_start = colored_sweeps - 1;

61 sweep_end = -1;

62 sweep_stride = -1;

63 } // end if

64

65 if ( neq0 <= 0 ) {

66 sweep_start = 0;

67 sweep_end = 1;

68 sweep_stride = -1;

69 } // end if

70

71 for (int sweep =0; sweep < n_sweeps; ++ sweep) {

72 int cmax =0;

73 int nmax = 0;

74 for (int i=sweep_start; i!= sweep_end; i+= sweep_stride) {

75 if ((( color_boundary_end[i]-1) - color_indices [2*i]) > cmax)

76 cmax = (( color_boundary_end[i]-1) - color_indices [2*i]);

77 if (( color_indices [2*i+1] - color_indices [2*i]) > cmax)

78 cmax = (color_indices [2*i+1] - color_indices [2*i]);

79 if (( color_indices [2*i+1] - (color_boundary_end[i]+1)) > cmax)

80 cmax = (color_indices [2*i+1] - (color_boundary_end[i]+1));

81 } //end for (i)

82

83 for (int j=sweep_start; j!= sweep_end; j+= sweep_stride) {

84 for (int ipass =1; ipass <=2; ++ ipass) {

85 int start , end;

86 if (j > colored_sweeps) {

87 start = 1;

88 end = 0;

89 } // end if

90 else {

91 switch(ipass) {



60

92 case 1:

93 if (color_boundary_end[j] == 0) {

94 start = 1;

95 end = 0;

96 } // end if

97 else {

98 start = color_indices [2*j];

99 end = color_boundary_end[j] - 1;

100 } // end if

101 break;

102 case 2:

103 if (color_boundary_end[j] == 0) {

104 start = color_indices [2*j];

105 end = color_indices [2*j+1];

106 } // end if

107 else {

108 start = color_boundary_end[j] + 1;

109 end = color_indices [2*j+1];

110 } // end if

111 break;

112 } // end switch

113 } // end else

114

115 for (int i=0; i<=cmax; i++) {

116 if ((i+start) <= end) {

117 if ((( iam[i+start] - 1) - iam[i+start -1]) > nmax)

118 nmax = (iam[i+start] - 1) - iam[i+start -1];

119 } // end if (i+start)

120 } // end for (i)

121 } // end for (ipass)

122 } // end for (j)

123

124 #pragma ivdep

125 for (int color=sweep_start; color!= sweep_end; color+=

sweep_stride) {

126

127 #pragma ivdep

128 for (int ipass =1; ipass <=2; ++ ipass) {

129 int start , end;

130 if (color > colored_sweeps) {

131 start = 1;



61

132 end = 0;

133 } // end if (color)

134 else {

135 switch(ipass) {

136 case 1:

137 if (color_boundary_end[color] == 0) {

138 start = 1;

139 end = 0;

140 } // end if

141 else {

142 start = color_indices [2* color ];

143 end = color_boundary_end[color] - 1;

144 } // end if

145 break;

146 case 2:

147 if (color_boundary_end[color] == 0) {

148 start = color_indices [2* color ];

149 end = color_indices [2* color +1];

150 } // end if

151 else {

152 start = color_boundary_end[color] + 1;

153 end = color_indices [2* color +1];

154 } // end if

155 break;

156 } // end switch

157 } // end else (color)

158

159 #pragma ivdep

160 for (int i=0; i <= cmax; i++) {

161 int irow , icol; // declaring these up here outside of if

-blocks

162 float f1_temp , f2_temp , f3_temp , f4_temp , f5_temp;

163

164 n = i + start;

165

166 if (n <= end) {

167 if (solve_backwards > 0) {

168 f1 = -res[0 + (n-1)*NB];

169 f2 = -res[1 + (n-1)*NB];

170 f3 = -res[2 + (n-1)*NB];

171 f4 = -res[3 + (n-1)*NB];



62

172 f5 = -res[4 + (n-1)*NB];

173 } // end if (sweep_stride);

174 else {

175 f1 = res[0 + (n-1)*NB];

176 f2 = res[1 + (n-1)*NB];

177 f3 = res[2 + (n-1)*NB];

178 f4 = res[3 + (n-1)*NB];

179 f5 = res[4 + (n-1)*NB];

180 } // end else (sweep_stride)

181

182 istart = iam[n - 1];

183 iend = iam[n] - 1;

184

185 #pragma ivdep

186 for (int j = 0; j <= nmax; j++) {

187 irow = j + istart;

188 icol = jam[irow -1] - 1;

189

190 f1_temp =( a_off [0+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

191 a_off [0+1* NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

192 a_off [0+2* NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

193 a_off [0+3* NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

194 a_off [0+4* NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

195

196 f2_temp =( a_off [1+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

197 a_off [1+1* NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

198 a_off [1+2* NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

199 a_off [1+3* NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

200 a_off [1+4* NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

201

202 f3_temp =( a_off [2+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

203 a_off [2+1* NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

204 a_off [2+2* NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

205 a_off [2+3* NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

206 a_off [2+4* NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

207

208 f4_temp =( a_off [3+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

209 a_off [3+1* NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

210 a_off [3+2* NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

211 a_off [3+3* NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

212 a_off [3+4* NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);



63

213

214 f5_temp =( a_off [4+0*NB+(irow -1)*NB*NB]*dq[0+ icol*NB] +

215 a_off [4+1*NB+(irow -1)*NB*NB]*dq[1+ icol*NB] +

216 a_off [4+2*NB+(irow -1)*NB*NB]*dq[2+ icol*NB] +

217 a_off [4+3*NB+(irow -1)*NB*NB]*dq[3+ icol*NB] +

218 a_off [4+4*NB+(irow -1)*NB*NB]*dq[4+ icol*NB]);

219

220 if ((j+istart) <= iend) {

221 f1 -= f1_temp;

222 f2 -= f2_temp;

223 f3 -= f3_temp;

224 f4 -= f4_temp;

225 f5 -= f5_temp;

226 } // end if (j+istart)

227 else {

228 f1 -= 0;

229 f2 -= 0;

230 f3 -= 0;

231 f4 -= 0;

232 f5 -= 0;

233 } // end else (j+istart)

234

235 } // end for loop (j)

236

237 f2 -= a_diag_lu [1 + 0*NB + (n-1)*NB*NB] * f1;

238 f3 -= a_diag_lu [2 + 0*NB + (n-1)*NB*NB] * f1;

239 f4 -= a_diag_lu [3 + 0*NB + (n-1)*NB*NB] * f1;

240 f5 -= a_diag_lu [4 + 0*NB + (n-1)*NB*NB] * f1;

241

242 f3 -= a_diag_lu [2 + 1*NB + (n-1)*NB*NB] * f2;

243 f4 -= a_diag_lu [3 + 1*NB + (n-1)*NB*NB] * f2;

244 f5 -= a_diag_lu [4 + 1*NB + (n-1)*NB*NB] * f2;

245

246 f4 -= a_diag_lu [3 + 2*NB + (n-1)*NB*NB] * f3;

247 f5 -= (a_diag_lu [4 + 2*NB + (n-1)*NB*NB] * f3)

248 + (a_diag_lu [4 + 3*NB + (n-1)*NB*NB] * f4);

249

250 f5 *= a_diag_lu [4 + 4*NB + (n-1)*NB*NB];

251

252 // Backward ... sequential access to a_diag_lu.

253 f1 -= a_diag_lu [0 + 4*NB + (n-1)*NB*NB] * f5;



64

254 f2 -= a_diag_lu [1 + 4*NB + (n-1)*NB*NB] * f5;

255 f3 -= a_diag_lu [2 + 4*NB + (n-1)*NB*NB] * f5;

256 f4 -= a_diag_lu [3 + 4*NB + (n-1)*NB*NB] * f5;

257 f4 *= a_diag_lu [3 + 3*NB + (n-1)*NB*NB];

258

259 f1 -= a_diag_lu [0 + 3*NB + (n-1)*NB*NB] * f4;

260 f2 -= a_diag_lu [1 + 3*NB + (n-1)*NB*NB] * f4;

261 f3 -= a_diag_lu [2 + 3*NB + (n-1)*NB*NB] * f4;

262 f3 *= a_diag_lu [2 + 2*NB + (n-1)*NB*NB];

263

264 f1 -= a_diag_lu [0 + 2*NB + (n-1)*NB*NB] * f3;

265 f2 -= a_diag_lu [1 + 2*NB + (n-1)*NB*NB] * f3;

266 f2 *= a_diag_lu [1 + 1*NB + (n-1)*NB*NB];

267

268 f1 -= a_diag_lu [0 + 1*NB + (n-1)*NB*NB] * f2;

269 f1 *= a_diag_lu [0 + 0*NB + (n-1)*NB*NB];

270

271 dq[4 + (n-1)*NB] = f5;

272 dq[3 + (n-1)*NB] = f4;

273 dq[2 + (n-1)*NB] = f3;

274 dq[1 + (n-1)*NB] = f2;

275 dq[0 + (n-1)*NB] = f1;

276

277 } // end if (n)

278 } // end for loop (i)

279 } // end for loop (ipass)

280 } // end for loop (color)

281 } // end for loop (sweep)

282 } // end point_solve_5_knl ()



65

APPENDIX F

GPU BASIC CODE

The following is non-optimized code that has been altered to run in a naive fashion

on a Graphics Processing Unit (GPU). Although it was written specifically to run

on a GPU, a similar version should run on any Single Instruction Multiple Data

(SIMD) archiecture. The outer loops are executed on the CPU, while the inner loops

are distributed over numerous GPU processors; everything inside the color sweeps

(see the basic code in Appendix A for an implementation of all of the loops in the

same code segment) is included here. The outer loops in this case are implemented

in FORTRAN. An excerpt of the FORTRAN used to implement these outer loops is

shown at the end of this appendix.

1 #include "../ include/ocl_defs.h"

2

3 #define nb 5

4 #define n_sweeps 1

5 #define DIV ((int)10)

6

7 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

8 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

9

10 __kernel void point_solve_5_knl

11 (unsigned long int npass1 , unsigned long int npass2 ,

12 __global int* restrict iam , __global int* restrict jam ,

13 __global double* restrict res , __global float* restrict dq,

14 __global float* restrict a_off ,

15 __global double* restrict a_diag_lu) {

16

17 int n, j, k, l, istart , iend , icol , jam0 , jam1 , gid , lid ,

18 tx , ty;

19 int start , end , solve_sign;

20 int bk;

21 double f1=0, f2=0, f3=0, f4=0, f5=0;

22



66

23 // parse dynamic arguments

24 start = npass1;

25 end = npass2/DIV;

26 solve_sign = npass2 - DIV*end - 2;

27

28 // calculate the index variables

29 gid = get_global_id (0);

30 lid = get_local_id (0);

31 bk = gid/( BLOCK_DIM_X*BLOCK_DIM_Y);

32 ty = lid/BLOCK_DIM_X;

33 tx = lid - BLOCK_DIM_X*ty;

34 l = tx / 5;

35 k = tx - 5*l;

36 n = start + gid/BLOCK_DIM_X; // constant over a warp

37

38 if (n > end || tx > 0) return;

39

40 if (solve_sign > 0) {

41 f1 = -(res[0 + (n-1)*nb]);

42 f2 = -(res[1 + (n-1)*nb]);

43 f3 = -(res[2 + (n-1)*nb]);

44 f4 = -(res[3 + (n-1)*nb]);

45 f5 = -(res[4 + (n-1)*nb]);

46 } // end if (solve_backwards);

47 else {

48 f1 = (res[0 + (n-1)*nb]);

49 f2 = (res[1 + (n-1)*nb]);

50 f3 = (res[2 + (n-1)*nb]);

51 f4 = (res[3 + (n-1)*nb]);

52 f5 = (res[4 + (n-1)*nb]);

53 } // end else (solve_backwards)

54

55 istart = iam[n - 1];

56 iend = iam[n] - 1;

57

58 for (j = istart; j <= iend; j++) {

59 icol = jam[j-1] - 1;

60

61 f1 -= a_off[0 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

62 f2 -= a_off[1 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

63 f3 -= a_off[2 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];



67

64 f4 -= a_off[3 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

65 f5 -= a_off[4 + 0*nb + (j-1)*nb*nb] * dq[0 + icol*nb];

66

67 f1 -= a_off[0 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

68 f2 -= a_off[1 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

69 f3 -= a_off[2 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

70 f4 -= a_off[3 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

71 f5 -= a_off[4 + 1*nb + (j-1)*nb*nb] * dq[1 + icol*nb];

72

73 f1 -= a_off[0 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

74 f2 -= a_off[1 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

75 f3 -= a_off[2 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

76 f4 -= a_off[3 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

77 f5 -= a_off[4 + 2*nb + (j-1)*nb*nb] * dq[2 + icol*nb];

78

79 f1 -= a_off[0 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

80 f2 -= a_off[1 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

81 f3 -= a_off[2 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

82 f4 -= a_off[3 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

83 f5 -= a_off[4 + 3*nb + (j-1)*nb*nb] * dq[3 + icol*nb];

84

85 f1 -= a_off[0 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

86 f2 -= a_off[1 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

87 f3 -= a_off[2 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

88 f4 -= a_off[3 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

89 f5 -= a_off[4 + 4*nb + (j-1)*nb*nb] * dq[4 + icol*nb];

90

91 } // end for (j)

92

93 dq[4 + (n-1)*nb] = f5;

94 dq[3 + (n-1)*nb] = f4;

95 dq[2 + (n-1)*nb] = f3;

96 dq[1 + (n-1)*nb] = f2;

97 dq[0 + (n-1)*nb] = f1;

98

99 } // end point_solve_5_knl ()



68

The following is an excerpt of the FORTRAN code used to implement the outer

loops of the computation. This code segment calls the wrapper that was written in

C and is linked with the compiled FORTRAN code to handle the invokation of the

OpenCL code.

1 write (*,*) ’  Starting OpenCL point_solve_5 ...’

2 call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_RES , &

3 c_loc(res_seq))

4 call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_ADIAG , &

5 c_loc(a_diag_seq_temp))

6 call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_AOFF , &

7 c_loc(a_off_seq))

8 call ocl_setvar(c_loc(ocl_params), c_loc(ocl_data), D_DQ , &

9 c_loc(dq_seq))

10 call cpu_time(start_time)

11 do i = 1, (n_meanflow_iters +0) ! outer sweeps

12 call point_solve_5_cl(c_loc(ocl_params), c_loc(ocl_data), &

13 colored_sweeps , c_loc(color_indices), &

14 nnodes0 , nnz0 , &

15 relaxation_schedule_direction_1 , &

16 c_loc(color_boundary_end))

17 end do

18 call cpu_time(finish_time)

19 ps5_dt_ocl = (finish_time - start_time)*1E3 - to



69

The following is a listing of the C wrapper that is called by the FORTRAN code

and is used to invoke the OpenCL code.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <CL/cl.h>

4

5 #include "ocl_defs.h"

6 #include "ocl_helpers.h"

7

8 #define N_SWEEPS 1

9 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

10 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

11 #define DIV ((int)10)

12

13 extern "C" {

14 void point_solve_5_cl

15 (intptr_t *ocl_params , intptr_t *ocl_data , int colored_sweeps ,

16 int *color_indices , int neq0 , int neq , int solve_backwards ,

17 int *color_boundary_end) {

18

19 cl_int ret;

20 cl_command_queue *command_queue;

21 cl_kernel *kernel;

22 size_t local_item_size ,global_item_size;

23

24 // initial color index

25 int sweep_start = 0;

26 // final color index +/- sweep_stride

27 int sweep_end = colored_sweeps;

28 // +/- 1

29 int sweep_stride = 1;

30 unsigned long int npass1 ,npass2;

31

32 command_queue = (cl_command_queue *) ocl_params[PARAM_COMQUE ];

33 kernel = (cl_kernel *) ocl_params[PARAM_PS5_KNL ];

34 local_item_size = BLOCK_DIM_X*BLOCK_DIM_Y;

35

36 if ( solve_backwards > 1 || solve_backwards < -1 ) {

37 sweep_start = colored_sweeps - 1;



70

38 sweep_end = -1;

39 sweep_stride = -1;

40 } // end if (solve_backwards)

41

42 if ( neq0 <= 0 ) {

43 sweep_start = 0;

44 sweep_end = 1;

45 sweep_stride = -1;

46 } // end if (neq0)

47

48 for (int sweep =0; sweep < N_SWEEPS; ++ sweep) {

49 for (int color=sweep_start; color!= sweep_end;

50 color+= sweep_stride) {

51 for (int ipass =1; ipass <=2; ++ ipass) {

52 int start , end;

53 if (color > colored_sweeps) {

54 start = 1;

55 end = 0;

56 } // end if (color)

57 else {

58 switch(ipass) {

59 case 1:

60 if (color_boundary_end[color] == 0) {

61 start = 1;

62 end = 0;

63 } // end if (color_boundary_end)

64 else {

65 start = color_indices [2* color ];

66 end = color_boundary_end[color] - 1;

67 } // end else (color_boundary_end)

68 break;

69 case 2:

70 if (color_boundary_end[color] == 0) {

71 start = color_indices [2* color ];

72 end = color_indices [2* color +1];

73 } // end if (color_boundary_end)

74 else {

75 start = color_boundary_end[color] + 1;

76 end = color_indices [2* color +1];

77 } // end else (color_boundary_end)

78 break;



71

79 } // end switch (ipass)

80 } // end else (color)

81

82 if(start < (end + 1)) {

83 npass1 = start;

84 npass2 = DIV*end + (sweep_stride +2);

85 ret = clSetKernelArg (*kernel , 0,

86 sizeof(unsigned long int),

87 &npass1);

88 ret = clSetKernelArg (*kernel , 1,

89 sizeof(unsigned long int),

90 &npass2);

91

92 // Execute the OpenCL kernel

93 global_item_size = EVENSIZE ((end - start + 1)*

BLOCK_DIM_X ,

94 local_item_size);

95 ret = clEnqueueNDRangeKernel (* command_queue , *kernel , 1,

96 NULL , &global_item_size ,

97 &local_item_size , 0, NULL ,

98 NULL);

99 if (ret != CL_SUCCESS)

100 fprintf(stderr ,"ERROR executing kernel (ps5)\n");

101 } // end if (start)

102 } // end for loop (ipass)

103 } // end for loop (color)

104 } // end forloop (sweep)

105 } // end point_solve_5_kernel ()

106 } // end extern "C"



72

APPENDIX G

GPU PARTIALLY OPTIMIZED CODE

The following is code that has been optimized for the GPU in OpenCL; it is con-

sidered partially optimized in this context because it is not the native CUDA code

that shows a marginal, but quantifiable, 0.6% edge over its OpenCL counterpart.

This version makes use of shared memory (this is the same between the CUDA and

OpenCL versions) as well as a reduction vector that executes a 5-thread summation

consolidated to every 5th thread in the warp using three steps. This is less e�-

cient than the CUDA ” shfl” native command (which takes but a single step), but

is more e�cient than adding them up sequentially every 5th thread (which would

take 5 steps). This is emblematic of the types of tradeo↵s that must occur to create

portability. As with the non-optimized GPU version, this code only represents the

code inside the color sweep loop. The FORTRAN code and the C wrapper code

are exactly the same as with the non-optimized version. See Appendix H for the

optimized CUDA code that accomplishes the same task.

1 #include "../../ include/ocl_defs.h"

2

3 #define nb 5

4 #define n_sweeps 1

5 #define DIV ((int)10)

6

7 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

8 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

9

10 #define A_OFF(i,j,k) a_off [(i)+((j)*nb)+ \

11 (( unsigned long long)(k)*nb*nb)]

12 #define A_DIAG_LU(i,j,k) a_diag_lu [(i)+((j)*nb)+((k)*nb*nb)]

13 #define DQ_IN(i,j) dq[(i)+((j)*nb)]

14 #define DQ_OUT(i,j) dq[(i)+((j)*nb)]

15 #define RES(i, j) res[(i)+((j)*nb)]

16

17 // Parallel reduction vector



73

18 typedef struct prvec {

19 union {

20 double a[8];

21 double8 v;

22 } data;

23 } prvec;

24

25 __kernel void point_solve_5_kernel

26 (unsigned long int npass1 , unsigned long int npass2 ,

27 __global int* restrict iam , __global int* restrict jam ,

28 __global double* restrict res , __global float* restrict dq,

29 __global double* restrict a_diag_lu ,

30 __global float* restrict a_off) {

31

32 int n, j, k, l, istart , iend , jam0 , jam1 , gid , lid , tx , ty;

33 int start , end , solve_sign;

34 int bk;

35 double fk;

36 double f1=0, f2=0, f3=0, f4=0, f5=0;

37 __local prvec fc[5][ BLOCK_DIM_Y ];

38 __local double fs[5][ BLOCK_DIM_Y ];

39 __local double a_diag_lu_shared [5][5][ BLOCK_DIM_Y ];

40

41 // parse dynamic arguments

42 start = npass1;

43 end = npass2/DIV;

44 solve_sign = npass2 - DIV*end - 2;

45

46 // initialize parallel reduction vectors

47 #pragma unroll

48 for (int i=0; i < BLOCK_DIM_Y; i++)

49 fc[0][i].data.v = fc[1][i].data.v = fc[2][i].data.v = \

50 fc[3][i].data.v = fc[4][i].data.v = 0.0;

51

52 // calculate the index variables

53 gid = get_global_id (0);

54 lid = get_local_id (0);

55 bk = gid/( BLOCK_DIM_X*BLOCK_DIM_Y);

56 ty = lid/BLOCK_DIM_X;

57 tx = lid - BLOCK_DIM_X*ty;

58 l = tx / 5;



74

59 k = tx - 5*l;

60 n = start + gid/BLOCK_DIM_X - 1;

61

62 // the last 7 threads in the warp are unused

63 if (n >= end || l >= 5) return;

64

65 istart = iam[n];

66 iend = iam[n + 1] - 1;

67

68 // Loop over Non Zeros

69 fk = 0;

70 for(j = istart -1; j < iend; j++) {

71 jam0 = jam[j];

72 f1 = A_OFF(k,l,j);

73 f2 = DQ_IN(l,jam0 -1);

74 fk += f1 * f2;

75 } // end for (j)

76

77 // Reduction along the subcolumns , threads with v.s0 holding

78 // the complete sum

79 fc[k][ty].data.a[l] = fk;

80

81 // Collectively load a_diag_lu into shared memory

82 a_diag_lu_shared[k][l][ty] = A_DIAG_LU(k, l, n);

83

84 // Save results of off -diagonal multiplication in shared memory

85 if (l != 0) return;

86

87 fc[k][ty].data.v.s0123 += fc[k][ty].data.v.s4567;

88 fc[k][ty].data.v.s01 += fc[k][ty].data.v.s23;

89 fc[k][ty].data.v.s0 += fc[k][ty].data.v.s1;

90

91 fs[k][ty] = -solve_sign*RES(k, n) - fc[k][ty].data.v.s0;

92

93 // this must be a barrier and not a simple fence

94 barrier(CLK_LOCAL_MEM_FENCE);

95

96 // Redistribute work from all warps to first four threads

97 // in the first warp

98 n += tx;

99 if ((tx >= BLOCK_DIM_Y) || (ty != 0) || (n >= end)) return;



75

100

101 // Retrieve data from shared memory

102 f1 = fs[0][tx];

103 f2 = fs[1][tx];

104 f3 = fs[2][tx];

105 f4 = fs[3][tx];

106 f5 = fs[4][tx];

107

108 // Forward ... sequential access to a_diag_lu

109

110 f2 = f2 - a_diag_lu_shared [1][0][ tx] * f1;

111 f3 = f3 - a_diag_lu_shared [2][0][ tx] * f1;

112 f4 = f4 - a_diag_lu_shared [3][0][ tx] * f1;

113 f5 = f5 - a_diag_lu_shared [4][0][ tx] * f1;

114

115 f3 = f3 - a_diag_lu_shared [2][1][ tx] * f2;

116 f4 = f4 - a_diag_lu_shared [3][1][ tx] * f2;

117 f5 = f5 - a_diag_lu_shared [4][1][ tx] * f2;

118

119 f4 = f4 - a_diag_lu_shared [3][2][ tx] * f3;

120 f5 = f5 - a_diag_lu_shared [4][2][ tx] * f3;

121

122 f5 = ((f5 - a_diag_lu_shared [4][3][ tx] * f4)

123 * a_diag_lu_shared [4][4][ tx]);

124

125 // Backward ... sequential access to a_diag_lu.

126

127 f1 = f1 - a_diag_lu_shared [0][4][ tx] * f5;

128 f2 = f2 - a_diag_lu_shared [1][4][ tx] * f5;

129 f3 = f3 - a_diag_lu_shared [2][4][ tx] * f5;

130 f4 = ((f4 - a_diag_lu_shared [3][4][ tx] * f5)

131 * a_diag_lu_shared [3][3][ tx]);

132

133 f1 = f1 - a_diag_lu_shared [0][3][ tx] * f4;

134 f2 = f2 - a_diag_lu_shared [1][3][ tx] * f4;

135 f3 = ((f3 - a_diag_lu_shared [2][3][ tx] * f4)

136 * a_diag_lu_shared [2][2][ tx]);

137

138 f1 = f1 - a_diag_lu_shared [0][2][ tx] * f3;

139 f2 = ((f2 - a_diag_lu_shared [1][2][ tx] * f3)

140 * a_diag_lu_shared [1][1][ tx]);



76

141

142 f1 = ((f1 - a_diag_lu_shared [0][1][ tx] * f2)

143 * a_diag_lu_shared [0][0][ tx]);

144

145 DQ_OUT(0,n)= f1;

146 DQ_OUT(1,n)= f2;

147 DQ_OUT(2,n)= f3;

148 DQ_OUT(3,n)= f4;

149 DQ_OUT(4,n)= f5;

150

151 } // end point_solve_5_kernel ()



77

APPENDIX H

GPU OPTIMIZED CODE

The following is code that has been fully optimized for the GPU in CUDA. It makes

use of shared memory and intra-thread communication using the ” shfl” native

CUDA command (which takes a single step to consolidate a sum using information

from 5 separate threads), and is more e�cient than either adding them up sequen-

tially every 5th thread (which would take 5 steps) or the vector reduction strategy

used in the OpenCL version (which takes 3 steps). As stated in the OpenCL code

lead-in (see Appendix G), this is an example of the type of tradeo↵ that must occur

to create portability, but results in increased performance when using language ex-

tensions optimized for specific hardware. As with the non-optimized GPU version,

this code only represents the code inside the color sweep loop. The FORTRAN code

and the C wrapper code are exactly the same as with the non-optimized version.

1 #include <cstddef >

2 #include <cuda.h>

3 #include "gpu_util.h"

4 #include <assert.h>

5

6 #include "block_dim.h"

7 #define nb 5

8 #define n_sweeps 1

9 #define BLOCK_DIM_X BLOCK_DIM_X_PS5

10 #define BLOCK_DIM_Y BLOCK_DIM_Y_PS5

11

12 #define A_OFF(i,j,k) a_off [(i)+((j)*nb)+ \

13 (( unsigned long long)(k)*nb*nb)]

14 #define A_DIAG_LU(i,j,k) a_diag_lu [(i)+((j)*nb)+((k)*nb*nb)]

15 #define DQ_IN(i,j) dq_in [(i)+((j)*nb)]

16 #define DQ_OUT(i,j) dq[(i)+((j)*nb)]

17 #define RES(i, j) res[(i)+((j)*nb)]

18

19

20 __global__ void cuda_point5_kernel



78

21 (int solve_sign ,idx_t start , idx_t end ,

22 int_const_ptr_t const iam , int_const_ptr_t const jam ,

23 real_const_ptr_t const a_off , real8_const_ptr_t const

a_diag_lu ,

24 real_ptr_t dq, real8_const_ptr_t const res)

25 {

26

27 real_const_ptr_t const dq_in = dq;

28

29 __shared__ real_t

30 fs[5][ BLOCK_DIM_Y ];

31 __shared__ real8_t

32 a_diag_lu_shared [5][5][ BLOCK_DIM_Y ];

33

34 int const k = threadIdx.x % 5;

35 int const l = threadIdx.x / 5;

36 int n = start + blockIdx.x * blockDim.y + threadIdx.y - 1;

37

38 if (n >= end || l >= 5)

39 return;

40

41 idx_t istart = iam[n];

42 idx_t iend = iam[n + 1] - 1;

43

44 real_t fk;

45 real8_t f1 , f2 , f3 , f4 , f5;

46

47 // Loop over Non Zeros , 2x unrolled

48 fk = 0;

49 int jam0 , jam1;

50 // double dq0 , dq1;

51

52 int j = istart -1;

53

54 jam1 = jam[j];

55

56 for( ; j<iend; j++) {

57 jam0 = jam1;

58 jam1 = jam[j+1];

59 fk += A_OFF(k,l,j)* DQ_IN(l,jam0 -1);

60 }



79

61

62 // Reduction along the subcolumns ,

63 // threads with l=0 hold the complete sum

64 f1 = fk;

65 f1 = f1 + __shfl(fk , k + 1 * 5);

66 f1 = f1 + __shfl(fk , k + 2 * 5);

67 f1 = f1 + __shfl(fk , k + 3 * 5);

68 f1 = f1 + __shfl(fk , k + 4 * 5);

69

70 f1 = -solve_sign*RES(k, n) - f1;

71

72 // Save results of off -diagonal multiplication in shared memory

73 if (l == 0) {

74 fs[k][ threadIdx.y] = f1;

75 }

76

77 // Collectively load a_diag_lu into shared memory

78 a_diag_lu_shared[k][l][ threadIdx.y] = A_DIAG_LU(k, l, n);

79

80 __syncthreads ();

81

82 // Redistribute work from all warps to first four threads

83 // in the first warp

84 n += threadIdx.x;

85

86 if (threadIdx.x < BLOCK_DIM_Y && threadIdx.y == 0 && n < end) {

87

88 // Retrieve data from shared memory

89 f1 = fs[0][ threadIdx.x];

90 f2 = fs[1][ threadIdx.x];

91 f3 = fs[2][ threadIdx.x];

92 f4 = fs[3][ threadIdx.x];

93 f5 = fs[4][ threadIdx.x];

94

95 // Forward ... sequential access to a_diag_lu

96

97 f2 = f2 - a_diag_lu_shared [1][0][ threadIdx.x] * f1;

98 f3 = f3 - a_diag_lu_shared [2][0][ threadIdx.x] * f1;

99 f4 = f4 - a_diag_lu_shared [3][0][ threadIdx.x] * f1;

100 f5 = f5 - a_diag_lu_shared [4][0][ threadIdx.x] * f1;

101



80

102 f3 = f3 - a_diag_lu_shared [2][1][ threadIdx.x] * f2;

103 f4 = f4 - a_diag_lu_shared [3][1][ threadIdx.x] * f2;

104 f5 = f5 - a_diag_lu_shared [4][1][ threadIdx.x] * f2;

105

106 f4 = f4 - a_diag_lu_shared [3][2][ threadIdx.x] * f3;

107 f5 = f5 - a_diag_lu_shared [4][2][ threadIdx.x] * f3;

108

109 f5 = ((f5 - a_diag_lu_shared [4][3][ threadIdx.x] * f4)

110 * a_diag_lu_shared [4][4][ threadIdx.x]);

111

112 // Backward ... sequential access to a_diag_lu.

113

114 f1 = f1 - a_diag_lu_shared [0][4][ threadIdx.x] * f5;

115 f2 = f2 - a_diag_lu_shared [1][4][ threadIdx.x] * f5;

116 f3 = f3 - a_diag_lu_shared [2][4][ threadIdx.x] * f5;

117 f4 = ((f4 - a_diag_lu_shared [3][4][ threadIdx.x] * f5)

118 * a_diag_lu_shared [3][3][ threadIdx.x]);

119

120 f1 = f1 - a_diag_lu_shared [0][3][ threadIdx.x] * f4;

121 f2 = f2 - a_diag_lu_shared [1][3][ threadIdx.x] * f4;

122 f3 = ((f3 - a_diag_lu_shared [2][3][ threadIdx.x] * f4)

123 * a_diag_lu_shared [2][2][ threadIdx.x]);

124

125 f1 = f1 - a_diag_lu_shared [0][2][ threadIdx.x] * f3;

126 f2 = ((f2 - a_diag_lu_shared [1][2][ threadIdx.x] * f3)

127 * a_diag_lu_shared [1][1][ threadIdx.x]);

128

129 f1 = ((f1 - a_diag_lu_shared [0][1][ threadIdx.x] * f2)

130 * a_diag_lu_shared [0][0][ threadIdx.x]);

131

132 DQ_OUT(0,n)= f1;

133 DQ_OUT(1,n)= f2;

134 DQ_OUT(2,n)= f3;

135 DQ_OUT(3,n)= f4;

136 DQ_OUT(4,n)= f5;

137 }

138 }



81

APPENDIX I

DATA TABLES

Tables of data from trial runs using optimized and non-optimized code.

TABLE 4: Clock Validation for Optimized Code (time in ms)

Run # CUDA nvprof CUDA mclock di↵ OpenCL mclock

1 120.60 124.91 4.31 126.15

2 120.40 125.29 4.89 126.13

3 120.55 125.37 4.82 126.24

4 120.50 125.09 4.59 127.43

5 123.11 127.44 4.33 127.03

6 123.51 128.05 4.54 126.42

7 120.61 125.22 4.61 125.87

8 120.66 125.22 4.56 126.15

9 120.59 125.22 4.63 126.11

10 120.38 124.65 4.27 126.29

AVG 121.09 125.65 4.56 126.38

Note: Ten runs were performed and their results averaged to produce the numbers

displayed in Tables 8 and 9.



82

TABLE 5: Clock times for Optimized Code without profiler (time in ms)

Run # CUDA mclock OpenCL mclock

1 126.22 126.52

2 126.29 126.60

3 123.06 126.38

4 123.38 127.78

5 123.40 126.53

6 123.31 126.28

7 123.61 126.51

8 126.35 126.68

9 127.68 126.73

10 123.38 127.76

AVG 124.67 126.78

TABLE 6: Clock Validation for Non-Optimized (Baseline) Code (time in ms)

Run # CUDA nvprof CUDA mclock di↵ OpenCL mclock

1 805.67 811.74 6.07 821.92

2 805.15 811.43 6.28 817.08

3 805.12 811.43 6.31 816.68

4 805.19 811.69 6.50 817.05

5 805.18 811.05 5.87 816.92

6 809.78 815.87 6.09 816.63

7 811.25 817.31 6.06 816.78

8 805.51 811.72 6.21 816.83

9 805.25 811.11 5.86 817.31

10 805.39 811.51 6.12 816.73

AVG 806.35 812.49 6.14 817.40



83

TABLE 7: Clock times for Non-Optimized code without profiler (time in ms)

Run # CUDA mclock OpenCL mclock

1 816.12 818.22

2 812.95 818.22

3 810.67 817.99

4 814.10 818.06

5 811.61 818.48

6 810.67 818.11

7 815.19 818.81

8 811.02 818.36

9 810.98 818.24

10 810.78 818.04

AVG 812.41 818.25

TABLE 8: OpenMP Trials for ARM CPU (times in ms)

Run Type 2-Cores 4-Cores 8-Cores 16-Cores

Generic OpenMP 73948.36 38184.80 19856.00 9903.13

Native Compiler 7778.57 4245.74 2507.89 1349.70

Optimized 7173.11 4073.80 2448.82 1340.03

TABLE 9: OpenMP Trials for Intel x86 CPU (times in ms)

Run Type 2-Cores 4-Cores 8-Cores 16-Cores

Generic OpenMP 23189.99 12067.51 7222.09 3768.25

Native Compiler 7725.20 3731.14 2024.83 1121.40

Optimized 6235.33 3028.18 1725.86 986.19



84

APPENDIX J

HARDWARE SPECIFICATIONS

The following data describe the hardware on which the code was ultimately executed.

This data is meant to provide context for the statistical timing data used to compare

algorithm implimentations. While the platforms themselves are not being compared

as such, the data is still useful as a touchstone to provide an indication of how well

the code could be expected to run additional hardware platforms.

TABLE 10: GPU Hardware Data
Description Value

Vendor Nvidia

Identity String Pascal P100

Nominal Bandwidth 732 GB/s max

Measured Bandwidth 292 GB/s

# Cores (FP32) 3584

FP32 TFLOPS 9.3

Memory 16 GB

L2 Cache 4096 KB

Shared (local) Memory up to 96 KB

Since the Nvidia profiling utility does not explicitly calculate real memory band-

width used, a special kernel was prepared that performed all of the same floating

point reads that are actually performed within the point solver kernel, but none of

the floating point operations. The time di↵erence between the fully functional kernel

and this specially prepared kernel (with the overhead subtracted out) is indicative of

the amount of time actually spent reading the data from the on-device memory.

Cost data for AWS Graviton indicates that identical instances run at about 40%

less per core than an equivalent Intel x86 instance (Skylake architecture optimized for

computational e�ciency) as of November 2018. Whether this is more e�cient clearly

depends on the specific characteristics of the computational load being studied. In

this case, noting that the point solver problem runs in 1340 ms (see Table 8) using



85

TABLE 11: FPGA Hardware Data
Description Value

Vendor Intel

Identity String PAC10 (Aria)

Nominal Bandwidth 36 GB/s max

Measured Bandwidth 3.69 GB/s

# Cores (FP32) NA

FP32 TFLOPS 1.5

Memory 8 GB

L2 Cache 512 KB

Shared (local) Memory 256 KB

TABLE 12: ARM CPU Hardware Data
Description Value

Vendor Arm

Identity String AWS Graviton (Cortex-A72)

Nominal Bandwidth 51.2 GB/s max

Estimated Bandwidth 25.6 GB/s max

Clock Speed 1.3 GHz

# Cores 16

FP32 TFLOPS 0.166 (8 FLOPS/core/cycle)

Memory 32 GB

L2 Cache 2048 KB

Shared (local) Memory NA

optimized command line options on the ARM (Graviton) processor and at 986 ms

(see Table 9) on the x86 Skylake architecture, the cost to run on ARM is (1340*(1-

0.4))/986 = 81.5% of the x86.



86

TABLE 13: x86 CPU Hardware Data
Description Value

Vendor Intel

Identity String Haswell (Family: 6, Model: 63)

Nominal Bandwidth 128 GB/s

Estimated Bandwidth 61.5 GB/s max

Clock Speed 2.9 GHz

# Cores 16

FP32 TFLOPS 1.484 (32 FLOPS/core/cycle)

Memory 32 GB

L2 Cache 1024 KB

Shared (local) Memory NA



87

VITA

Jason Orender

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

Jason Orender spent a 20 year career as an o�cer in the US Navy and retired in

the Summer of 2015, whereupon he promptly initiated a degree plan in Computer

Science at Old Dominion University. He has participated in multiple NASA hack-a-

thons with the intent to contribute to the Fun3D fully unstructured 3D computational

fluid dynamics code base and has been cited as a contributor in several of NASA’s

more recent papers and presentations on the subject. He developed an interest in

high performance computation, and this work is one result of that e↵ort. He is also

currently enrolled in the PhD program at the time of submission of this thesis and

intends to continue his scholarship in this area.

Typeset using LATEX.


	Old Dominion University
	ODU Digital Commons
	Spring 2019

	Enhancing Portability in High Performance Computing: Designing Fast Scientific Code with Longevity
	Jason Orender
	Recommended Citation


	tmp.1562686036.pdf.98NDC

