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Trophic interactions are an enduring framework for ecological thought. Broad and growing 

evidence for contemporary evolution has demonstrated that ecology and evolution dynamically 

interact on similar time scales. In this dissertation, I seek to understand how genetic and plastic 

trait change in human-influenced systems shape trophic dynamics, how such trait changes are 

constrained by inherent tradeoffs, and the broad implications of such trait change for ecological 

communities. I advance the premise that competition-defense tradeoffs are the essential 

mechanism behind many eco-evolutionary trophic dynamics that can reshape multi-trophic 

communities. In support of this view, I assess the presence of ecologically relevant genetic 

evolution along a competition-defense tradeoff in a model species. I also employ models and 

experiments to quantify how the particularly strong genetic and plastic trait changes in 

population phenotypes generated by humans can rearrange ecological communities by altering 

trophic interaction strengths.
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

1.1.1 Evolution is contemporary 

Overwhelming evidence has demonstrated that evolution can occur on ecologically relevant, 

“contemporary” time scales of just a few generations (Carroll et al., 2007; Hairston et al., 2005; 

Hendry and Kinnison, 1999; Kinnison and Hendry, 2001). This evidence supplants the classical 

Darwinian view that: “we see nothing of these slow changes in progress, until the hand of time 

has marked the long lapse of ages.” (Darwin, 1859; Pianka, 2011). Murmurings of contemporary 

evolution occurred in the 1950s (Fenner and Marshall, 1957; Kettlewell, 1955). Pimentel’s 

“genetic feed-back” (Pimentel, 1961) and Van Valen’s “Red Queen hypothesis” (Van Valen, 

1973) both posited that dynamic, adaptive, evolution over ecological timescales was a stabilizing 

force for populations and communities. Meta-analyses by Kinnison and Hendry in the late 1990s 

(Hendry and Kinnison, 1999; Kinnison and Hendry, 2001) showed that evolution appeared to 

proceed more quickly when observed over shorter timeframes. This pattern suggested that longer 

studies of evolution with few observation points neglected more rapid—often dynamic or 

reversing—episodes of evolution by essentially smoothing them over. 

 

There are now numerous synchronic examples allowing us to deduce divergent evolution over a 

few generations (reviewed in (Carroll et al., 2007; Hairston et al., 2005; Hendry and Kinnison, 

1999; Kinnison and Hendry, 2001; Post and Palkovacs, 2009)). In addition, a few high-resolution 
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allochronic studies have documented evolution occurring in real, contemporary time in a single 

population: 

- Beak size evolution in Galapagos finches in response to environmental change and 

competition (Grant and Grant, 2002, 2006). 

- Evolution of armor plating in threespine stickleback (Bell et al., 2004). 

- Evolution of chemical defenses in algal-rotifer chemostats (Yoshida et al., 2003). 

- Antler morphology in red deer (Hoffmann et al., 2016). 

- Horn size in bighorn sheep (Pigeon et al., 2016). 

- Body size in great tits (Garant et al., 2004). 

Aside from being academically interesting, the consequences of evolution over ecological time 

scales are of broad applied concern as well. 

 

1.1.2 Humans and evolution 

Contemporary evolution may even be faster if humans are the root cause (Darimont et al., 2009a; 

Hendry et al., 2008). Humans generate strong selection through harvest (Fenberg and Roy, 2008; 

Heino et al., 2015; Hutchings and Fraser, 2008; Jørgensen et al., 2007; Sharpe and Hendry, 

2009), habitat change (Fountain et al., 2016; Hoffmann and Sgrò, 2011; Kinnison and Hairston, 

2007; Stockwell and Weeks, 1999; Stockwell et al., 2003), species introductions (Lambrinos, 

2004; Prentis et al., 2008; Sax et al., 2007) and removals (Khater et al., 2014; Palkovacs et al., 

2011), captive propagation (Bilio, 2007; Hutchings and Fraser, 2008; Lorenzen et al., 2012; 

Teletchea and Fontaine, 2012), and numerous other intentional and unintentional actions. It is 

unclear whether the relatively higher strength of human-induced evolution is due to stronger, 

more consistent, or simpler selection (i.e. humans select on a few, obvious traits, rather than 
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complex, correlated networks of traits). The high strength and frequency of human-induced 

ecological and evolutionary change suggests that eco-evolutionary dynamics caused by humans 

may be among the most prevalent and the most likely to generate lasting ecological change. 

 

1.1.3 Eco-evolutionary dynamics 

Ecology and evolution both have the same currencies: births, deaths, immigration and emigration 

(Urban and Skelly, 2006; Urban et al., 2008; Vellend, 2010). When these demographic 

processes, which are driven by ecological interactions, change allele frequencies (i.e. through 

directional, stabilizing, or frequency-dependent selection), contemporary evolution has occurred. 

When changes in allele frequencies drive ecological change (e.g. through changes in population 

size or ecologically-relevant functional traits), then contemporary evolution has affected ecology. 

Thus, ecology and contemporary evolution can interact through what are sometimes referred to 

as “eco-to-evo” and “evo-to-eco” pathways (Hendry, 2016). 

 

Eco-to-evo. While recognition of eco-to-evo interactions is as old as the premise of adaptation 

itself, our understanding of its prevalence and extent in contemporary time has changed 

dramatically in the past few decades. Adaptive contemporary evolution has been documented in 

response to biotic (e.g. predators (Khater et al., 2014), abiotic (e.g. temperature (Meffe et al., 

1995) and anthropogenic (e.g. domestication (Duarte et al., 2007) perturbations. In some cases, it 

has been feasible to show that such trait change has a heritable basis, and in other cases it is 

assumed that the trait change represents some combination of genetic change and plastic 

responses to environments. Regardless, the general view is that such contemporary evolution 

often aids populations in persisting or thriving under changing ecological environments 



- 4 - 

(‘adaptive tracking’ or ‘evolutionary rescue’: Bell and Gonzalez, 2009; Carlson et al., 2014; 

Gonzalez et al., 2013; Kinnison and Hairston, 2007; Tallmon et al., 2004; Whiteley et al., 2015). 

Interestingly, this commonly assumed benefit of adaptation itself constitutes a form of eco-

evolutionary dynamic in that it implies that ongoing evolution has some ecological effect on 

population growth through the shared link of absolute fitness (gross reproductive success) 

(Gomulkiewicz and Holt, 1995; Kinnison and Hairston, 2007; Stockwell et al., 2003). 

 

Evo-to-eco. Contemporary evolution can also have a much wider array of ecological 

consequences beyond a population’s growth rate. Contemporary evolution often shapes the 

functional traits that determine how organisms broadly interact with one another and their abiotic 

environments (Des Roches et al., 2018; Palkovacs et al., 2012; Schmitz et al., 2008). Example 

traits can include feeding morphology (Palkovacs and Post, 2009; Palkovacs et al., 2011), habitat 

use (Des Roches et al., 2013; Harmon et al., 2009; Tuckett et al., 2017), antipredator defenses 

(Friman et al., 2014; Yoshida et al., 2003), body size (Audzijonyte et al., 2013a), and growth and 

maturation rate (Audzijonyte et al., 2014; Kuparinen et al., 2016). Changes in these traits can 

generate novel predator-prey cycling (Hiltunen et al., 2014), modify interaction strengths 

(terHorst et al., 2010), alter nutrient fluxes (Carlson et al., 2011), and even mask trophic 

interactions (Yoshida et al., 2007), all of which can have broad ecological consequences. 

 

Eco-evolutionary dynamics. While it is interesting to understand how ecology shapes evolution 

and how ongoing evolution shapes ecology, a particularly intriguing aspect of eco-evolutionary 

dynamics are the emergent feedbacks (Fussmann et al., 2007; Hendry, 2016; Post and Palkovacs, 

2009; Schoener, 2011) that come with coupling the eco-to-evo and evo-to-eco pathways. Eco-
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evolutionary feedbacks are defined as bidirectional interactions between evolution and ecology 

(Hendry, 2016; Post and Palkovacs, 2009). Eco-evolutionary feedbacks are considered strong 

when the same trait that generates ecological change is selected upon by the ecological change 

(Hendry, 2016). Negative, or stabilizing eco-evolutionary feedbacks occur when ecological 

change and trait change are mutually offsetting. Positive, or destabilizing eco-evolutionary 

feedbacks occur when ecological change and trait change are mutually reinforcing; these 

feedbacks can result in “runaway” eco-evolutionary dynamics. Thus, when ecology and 

evolution are interconnected, even relatively small perturbations in ecology or evolution can 

have effects that are long lasting and difficult to reverse (Abrams and Matsuda, 1997a; Cortez et 

al., 2018; Marrow and Cannings, 1993). 

 

Eco-evolutionary dynamics may be difficult to detect—and therefore frequently overlooked—

due to their often-cryptic nature (Kinnison et al., 2015). For example, adaptation may prevent 

prey densities from responding to changes in predator densities, thereby masking predator-prey 

interactions (Yoshida et al., 2007). Such cryptic dynamics could have important roles in food 

webs (Griffiths et al., 2018), but would be missed by classical ecological measurements (e.g. 

abundance counts). Adaptation in the face of environmental change may also prevent declines in 

population size, thus masking the potential impact of environmental change (i.e. cryptic 

evolutionary rescue: Kinnison et al., 2015). Given this potentially cryptic nature, it is important 

to study systems by coupling theory with rigorous observation that includes traits and interaction 

strengths in addition to simple densities. 
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1.1.4 The primacy of competition-defense tradeoffs 

I suggest that competition-defense tradeoffs are an essential—but painfully overlooked—

component of contemporary evolution and eco-evolutionary dynamics. Constraints on the long-

term evolution of defenses (i.e. the evolution of defenses seldom proceeds without limit) imply 

that defenses must eventually come at a cost (Agrawal, 2007; Bazzaz et al., 1987; Koricheva, 

2002; Tollrian and Harvell, 1999). Repeated evolution of prey naivete when predators are 

removed (Palkovacs and Post, 2009; Reznick et al., 1990) also suggests that there are benefits to 

being undefended when predators are absent, indicating that defenses have inherent competitive 

costs. Resource limitations that constrain allocation of material to feeding morphology or armor, 

or force budgeting of time for either hiding or foraging create numerous scenarios where 

competitive ability and defendedness are negatively related. Competition-defense tradeoffs have 

been explored in a wide range of organisms, including fish, (Langerhans, 2009; Palkovacs et al., 

2011) plants, (Mole, 1994) insects, (Fellowes et al., 1999; Kraaijeveld et al., 2002) algae, 

(Agrawal, 1998; Kasada et al., 2014; Yoshida et al., 2003) and bacteria (Lennon and Martiny, 

2008). Such tradeoffs may be behavioral, (Conrad et al., 2011; Langerhans, 2009) 

morphological, (Langerhans, 2009; Palkovacs et al., 2011) physio-chemical, (Agrawal, 1998; 

Lind et al., 2013) or life-historical. (Reznick et al., 1990; Stearns, 1983b, 1983a, 1989). While 

the specific traits behind competition-defense tradeoffs are diverse, their functional outcomes for 

interaction strengths between focal species and their predators and prey may be generalizable.  

 

This ability to generalize competition-defense tradeoffs could provide an important mechanistic 

link between evolution and community ecology. If a predator introduction results in defense 

evolution in prey, then the competitive cost of such evolution should result in prey having 
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weaker growth or feeding efficacy (Yoshida et al., 2004), potentially leading to cascading food 

web consequences. Furthermore, the competitive cost of evolved defenses implies that prey will 

evolve increased competitive ability (and decreased defendedness) if the abundance of predators 

ever decreases (Palkovacs et al., 2011; Reznick and Endler, 1982; Reznick et al., 1990). Thus, 

when prey trait evolution is constrained by a competition-defense tradeoff, predator abundance 

and prey traits are directly coupled, creating the potential for strong eco-evolutionary dynamics. 

 

Contemporary evolution along competition-defense tradeoffs can substantially influence the 

abundance and stability of both predator and prey populations (Abrams, 2009; Abrams and 

Matsuda, 1997a, 1997b; Ehrlich et al., 2018; Kasada et al., 2014; Yoshida et al., 2003). 

Specifically, the slope of the competition-defense tradeoff can itself determine whether eco-

evolutionary dynamics will be present, and whether they will be stabilizing or destabilizing 

(Abrams, 2009; Kasada et al., 2014; Loeuille et al., 2002). 

 

Despite the potential universality and significance of competition-defense tradeoffs, they can be 

surprisingly challenging to quantify, particularly in terms of such functional slopes. In part this 

challenge is because tradeoffs can shape and be shaped by a range of processes, including trait 

correlations, pleiotropy, or resource allocation (e.g. time can be allocated to feeding or hiding). 

Furthermore, these tradeoffs are likely context-dependent, as the efficacy of competitive or 

defended traits likely depends on the density of prey, conspecifics, and predators (Siemens et al., 

2003; Tollrian and Harvell, 1999). Moreover, what we understand as tradeoffs may vary in 

strength and pattern at different scales, such as across or within populations (Hahn and Maron, 

2016). 
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1.1.5 Evolution and trophic dynamics 

One way that eco-evolutionary dynamics may extend beyond a focal species is via food web 

interactions. Contemporary evolution can be a cause and consequence of trophic cascades. 

Contemporary evolution in upper trophic levels can cause cascading top-down effects on food 

webs (Ousterhout et al., 2018; Palkovacs et al., 2012; Walsh et al., 2012). The rearranging of 

relative interaction strengths during a classic density-mediated trophic cascade can also alter 

selection pressures on lower trophic levels, driving contemporary evolution (Wood et al., 2018). 

Ecological compensation, which is essentially evolution across rather than within species (i.e. 

community evolution) can also dampen trophic cascade strength (Fahimipour et al., 2017). 

However, the specific role of contemporary trait change in contemporaneously modifying trophic 

cascade strength is largely unknown. 

 

While trophic cascades remain among the strongest, most widely-tested paradigms in ecology 

(Borer et al., 2005; Pace et al., 1999; Ripple et al., 2016), only a few studies have incorporated 

evolutionary processes into trophic cascade theory (Griffiths et al., 2018; Mooney et al., 2010; 

Ousterhout et al., 2018; Start, 2018). One body of work that comes close is the trait-mediated / 

non-consumptive literature, which focuses on the role of prey traits (i.e. behavior) in generating 

food web impacts of introduced predators (Preisser and Bolnick, 2008b, 2008a; Schmitz et al., 

1997, 2004). This work has examined the relative strength and commonness of density- versus 

trait-mediated processes in trophic dynamics (Křivan and Schmitz, 2004; Peacor et al., 2013; 

Preisser and Bolnick, 2008b; Schmitz et al., 2004; Trussell et al., 2006). However, density- and 

trait-mediated interactions are likely inter-dependent (Griffiths et al., 2018), as evolution of prey 

traits that generate trait-mediated trophic cascades may also increase survival (Sih et al., 2010). 
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Through intra-generational plasticity (Lönnstedt et al., 2012; McCormick and Holmes, 2006), 

inter-generational plasticity (e.g. epigenetic and maternal effects) (Storm and Lima, 2010), and 

genetic evolution (Wund et al., 2015), prey may display antipredator adaptations in the face of 

shifting predator densities. If these defenses are linked to typical competition-defense tradeoffs 

(see earlier), then evolution of defense during trophic cascades may have its own cascading 

effect through changes in competitive ability (feeding). 

 

1.1.6 Genetic and plastic contributions 

A major nuance that is missing in many eco-evolutionary studies is the assessment of the genetic 

basis for focal traits. Therefore, the relative contributions of genetic evolution and plastic change 

to evo-to-eco interactions are poorly understood. Furthermore, with the approaches often used, it 

is easy to overlook how trait change is not limited to ‘evolution or plasticity’ but also includes 

‘evolution of plasticity’. Thus, the bulk of evo-to-eco studies may be grossly overestimating the 

ecological impacts of genetic evolution if the real mechanism behind their focal traits is transient 

phenotypic plasticity or a reaction norm removed from its realistic context. On the other hand, 

evo-to-eco studies may be grossly underestimating the ecological impacts of contemporary trait 

change if common rearing masks reaction norms by which genetic and plastic change work 

synergistically (e.g. genetic evolution of a reaction norm by which plasticity amplifies existing 

genetic differences). 

 

Evidence suggests that phenotypic plasticity may buffer against genetic evolution (Oostra et al., 

2018; Price et al., 2003) or facilitate it (Ghalambor et al., 2007, 2015), depending on the 

environmental context. Thus, some trait differences across populations may be mostly due to 
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plasticity, while others are mainly due to genetic evolution. Teasing apart the two is necessary 

for understanding the timescale and reversibility of contemporary trait change. 

 

1.2 DISSERTATION STRUCTURE 

In this dissertation, I argue that human perturbations generate ecologically impactful evolution 

along competition-defense tradeoffs that may in turn generate important eco-evolutionary 

feedbacks in such systems. Specifically, I seek to advance the following theoretical and 

empirical considerations: 

1. The slope, trophic level, and organizational level of competition-defense tradeoffs 

determines the strength, stability, and trophic reach of eco-evolutionary dynamics. 

2. Adaptive evolution produces two ecologically important effects: the direct ecological 

impact of the altered functional traits, and the indirect ecological impact of the increased 

abundance of the adapting population. Both need to be considered together to understand 

the full ecological role of contemporary evolution, particularly when trait and density 

effects are opposing in direction. 

3. Adaptive evolution in response to humans produces combinations of traits not seen in 

wild environments, and thus leads to novel ecological impacts of human-adapted 

populations. 

4. Cascading ecological effects of trait change, which are often attributed to plastic 

antipredator defenses, are actually generated by a combination of plastic and genetic 

adaptation to predators and local environments. 

 

To support these arguments, I have assembled five chapters, with each tackling multiple sub-

questions (Figure 1.1). These chapters span a mixture of theoretical and empirical work. Many of 
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the chapters include western mosquitofish (Gambusia affinis) as a focus species, but with 

generalized implications for different systems strongly considered. Each chapter also centers 

around applied issues associated with human effects on populations and ecosystems, including 

harvest, captive propagation, and predator invasion, under the general premise that humans are 

now the world’s greatest evolutionary driver. 
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Figure 1.1. Dissertation structure schematic. 

Chapter II 

Adaptation along a competition-defense 

tradeoff leads to cascading trophic 

dynamics. 

Chapter III 

How is this adaptation and ensuing 

cascade different if humans are the 

underlying cause? 

Chapter IV 

Does adaptation cause a trophic cascade 

by modifying focal taxa densities 

(survival) or traits (feeding ability)? 

Chapter V 

At what level of organization 

(individual, population, multiple 

populations) does this tradeoff occur? 

Chapter VI 

Is ecologically -relevant adaptation 

plastic or genetic, and in response to 

predators or other local factors? 

Theoretical exploration 

Empirical testing with 

western mosquitofish 
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1.2.1 Chapter 2: Eco-evolutionary feedbacks from nontarget species influence harvest yield 

and sustainability  

In this chapter, I use individual-based model simulations to investigate how the slope and trophic 

level of a competition-defense tradeoff lead to eco-evolutionary dynamics during the harvest of a 

top-predator. Through these simulations, I provide an example of how competition-defense 

tradeoffs can be an essential mechanism in multi-trophic eco-evolutionary dynamics, tying prey 

traits to predator abundance. Limited empirical and theoretical work has shown that the slope of 

competition-defense tradeoffs can determine system stability and the potential for eco-

evolutionary dynamics (Abrams, 2009; Ehrlich et al., 2018; Kasada et al., 2014). However, much 

of this work is limited to very simple predator-prey systems in which only the prey evolve, 

which constrains the relevance of such theory to many real-world systems. 

 

Here I use a four trophic level individual-based model to investigate evolution along 

competition-defense tradeoffs in the lowest three trophic levels of a food chain while the top 

trophic level is subjected to harvest. I demonstrate extensive theoretical evidence that the slope 

of competition-defense tradeoffs in all trophic levels predictably sets the potential for 

contemporary evolution before and during harvest. I also show that evolution along this tradeoff 

predictably exacerbates or dampens the effect of harvest, depending on which trophic level(s) 

evolve(s). I argue that these results demonstrate the primacy of competition-defense tradeoffs in 

driving eco-evolutionary dynamics in complex systems. I also argue that the role of evolution in 

trophic dynamics can reach many trophic levels beyond the evolving trophic level, depending on 

food web structure. 
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1.2.2 Chapter 3: Phenotypic and community consequences of captive propagation in 

mosquitofish 

In this chapter, I investigate how captive propagation by humans potentially alters the 

phenotypes of mosquitofish, and how these altered phenotypes change pond mesocosm 

communities. Adaptation to human environments (i.e. domestication) can lead to marked trait 

divergence from wild populations (Bilio, 2007; Huntingford, 2004; Lorenzen et al., 2012; Price, 

2002; Teletchea and Fontaine, 2012), but is such anthropogenic evolution unique relative to 

patterns of adaptation in nature (e.g., is domestication similar to evolution of prey naivete 

(Langerhans et al., 2004; Lönnstedt et al., 2012; Wund et al., 2015))? Moreover, does trait 

change associated with human environments lead to different ecological outcomes when human-

impacted phenotypes are introduced back into wild habitats (Araki et al., 2007, 2008, 2009)? 

 

Here I compare the phenotypes and ecological impacts of mosquitofish from captive propagation 

facilities with those from high- and low-predation wild ponds. I posit that captive propagation in 

mosquitofish produces unique mixtures of traits due to intense competition and harvest in 

propagation facilities. I also show that this unique mixture of traits leads to a completely novel 

ecological niche for captive propagated mosquitofish in the wild. As in my first chapter, I show 

that the ecological effects of trait change can extend well beyond the changing taxa, particularly 

when humans are the agents of change. 
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1.2.3 Chapter 4: Prey experience cryptically shifts trophic cascades from density- to trait-

mediated 

In this chapter, I examine how adaptation along a competition-defense tradeoff in mosquitofish 

facilitates density- or trait-mediated trophic cascades in the face of bass predation, using pond 

mesocosms. In my first chapter, I demonstrate how adaptation along a competition-defense 

tradeoff can have cascading impacts on lower trophic levels. However, there are two potential 

drivers in cascading impacts of adaptation: 

1. Density: adaptation positively affects population size, leading to a cascade 

2. Traits: adaptation alters feeding ability or mode, leading to a cascade 

 

Here we introduced mosquitofish from two populations: predator-experienced or predator-naïve, 

into mesocosms with largemouth bass, measuring mosquitofish survival and mosquitofish 

ecological impact. I demonstrate that these populations fall along a competition-defense tradeoff 

axis and argue that density- and trait-mediated effects of mosquitofish are opposed, with higher 

survival (density effects) connected to lower feeding ability (trait effects). I thus show that prey 

adaptation along this tradeoff axis determines whether trophic cascades are dominated by 

density- or trait-mediated effects. I also evaluate the relative strength of density- versus trait-

mediated trophic cascades and discuss implications for detecting adaptation during trophic 

cascades. 

 

1.2.4 Chapter 5: Levels of competition-defense tradeoffs in mosquitofish 

In this chapter, I investigate individual-, population-, and background-level genetic competition-

defense tradeoffs in mosquitofish, using a serial growth and antipredator survival experiment. 
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While competition-defense tradeoffs are an essential component in eco-evolutionary dynamics 

and appear in numerous taxa (see earlier review), few studies have examined the genetic basis of 

competition-defense tradeoffs. Furthermore, given that tradeoffs may shape both population 

evolution and divergence, I ascertain whether competition-defense tradeoffs are expressed and 

comparable at within versus among population scales. 

 

Here I use growth and survival trials in mosquitofish to quantify competitiveness and 

defendedness in individuals from numerous common-reared populations representing a few 

different predation regimes. I demonstrate that within a background (i.e. within multiple 

populations of fish that have similar predator regimes), there is compelling evidence for 

competition-defense tradeoffs linked to body size. I also show that across landscapes, 

competitiveness and defendedness are positively related, and I argue that this trend indicates 

ongoing local adaptation due to the fairly recent introduction of mosquitofish. I note that this 

genetic competition-defense tradeoff provides a compelling explanation for the abundant 

evidence of eco-evolutionary dynamics in mosquitofish, including in other chapters of this 

dissertation. 

 

1.2.5 Chapter 6: Ecological and phenotypic causes and consequences of eco-evolutionary 

trophic cascades in mosquitofish 

In this chapter, I investigate the plastic and genetic contributions to antipredator adaptation in 

mosquitofish, and the ecological impacts of such adaptation in pond mesocosms. Numerous 

experiments have shown contemporary local and antipredator adaptation in poecilid fishes 

(Bassar et al., 2010, 2012; Langerhans, 2009; Langerhans and Makowicz, 2009; Langerhans et 
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al., 2004; Meffe, 1991; Palkovacs et al., 2009, 2011; Reznick and Endler, 1982; Reznick et al., 

1990; Stearns, 1983b, 1983a; Stockwell and Weeks, 1999), and many have shown that this 

adaptation can cause contemporary ecological change (Bassar et al., 2010, 2012; Palkovacs et al., 

2009, 2011). Much of this (and other (Des Roches et al., 2013; Palkovacs and Post, 2009)) evo-

to-eco work has assumed that adaptation is a mixture of plastic and genetic change, without 

disentangling the two. 

 

Here I assess morphological and behavioral traits in replicate populations of western 

mosquitofish from three backgrounds: low-predation, bass-predation, and bluegill predation, 

which have each undergone multi-generational common-rearing with or without bass cues. This 

crossed, population-replicated design allows me to quantify genetic and plastic local- and anti-

predator adaptation. I then use pond mesocosms experiments to examine the ecological 

consequences of the above fish adaptation. I compare the relative effect sizes of adaptation 

versus fish density. I show that trait variation in mosquitofish is caused by a diverse mix of 

genetic and plastic processes. I also show broadly-reaching impacts of mosquitofish trait 

variation on food web form and function.



- 18 - 

CHAPTER 2 

ECO-EVOLUTIONARY FEEDBACKS FROM NON-TARGET SPECIES INFLUENCE 

HARVEST YIELD AND SUSTAINABILITY 

 

2.1 ABSTRACT 

Evolution in harvested species has become a major concern for its potential to affect yield, 

sustainability, and recovery. However, the current singular focus on harvest-mediated evolution 

in target species overlooks the potential for evolution in non-target members of communities. 

Here we use an individual-based model to explore the scope and pattern of harvest-mediated 

evolution at non-target trophic levels, and its potential feedbacks on abundance and yield of the 

harvested species. The model reveals an eco-evolutionary trophic cascade, in which harvest at 

top trophic levels drives evolution of greater defense or competitiveness at subsequently lower 

trophic levels, resulting in alternating feedbacks on the abundance and yield of the harvested 

species. The net abundance and yield effects of these feedbacks depends on the intensity of 

harvest and attributes of non-target species. Our results provide an impetus and framework to 

evaluate the role of non-target species evolution in determining fisheries yield and sustainability. 

 

Keywords: Harvest-induced evolution, eco-evolutionary feedbacks, individual based modeling 

 

2.2 INTRODUCTION 

Harvest by humans is frequently associated with significant accumulating changes in the traits of 

targeted species (Darimont et al., 2009b; Sharpe and Hendry, 2009). In marine and freshwater 

systems, selective harvesting of the largest and oldest fish often favors smaller fish that mature 
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earlier (Audzijonyte et al., 2013b; Carlson et al., 2007; Heino et al., 2015; Jørgensen et al., 

2007), thereby driving trait changes that increase the fishing effort necessary to yield a consistent 

biomass haul (Conover and Munch, 2002; Law et al., 2015). Harvest-induced trait changes can 

also alter demographic parameters linked to sustainable stock growth or recovery of stocks 

following moratoria (Enberg et al., 2009). Concerns for these effects on sustainable yield and 

population abundance have prompted growing demand for evolutionary impact assessments 

(Laugen et al., 2014; Mollet et al., 2015) that link different harvest intensities and patterns to 

anticipated dynamics of trait change, abundance and yield over contemporary time scales (i.e., 

50-100 years).  

 

Recently, concerns for sustainability have further expanded to consider ways in which evolution 

in harvested species can cause cascading ecological changes in lower trophic levels (Audzijonyte 

et al., 2013a, 2014; Fenberg and Roy, 2008), sometimes reducing community stability and 

resilience (Kuparinen et al., 2016). To date, the common denominator to this work has been an 

almost singular attention to evolution of the harvested species themselves. In this study, we 

expand focus to ways in which harvested species abundance and yield could be impacted by 

evolution in lower trophic levels. We use an eco-evolutionary dynamic modelling framework 

(Fussmann et al., 2007; Kinnison and Hairston, 2007; Post and Palkovacs, 2009) to explore 

whether there is reason to cast our Darwinian net more broadly to consider trait changes and their 

ecological feedbacks in non-harvested members of communities. 

 

Cascading community changes caused by harvest are likely to generate contemporary evolution 

in trophic levels below those occupied by harvested species. Many harvested species are at or 
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near the apex trophic level in many communities (Pauly et al., 1998). Harvest-induced 

depression of these top trophic levels can therefore cause cascading density- and behaviorally-

mediated changes in lower, non-harvested trophic levels (Frank et al., 2005; Schmitz et al., 

2004). Such changes in community structuring mirror changes in predation regimes that have 

generated many examples of contemporary evolution in lower trophic levels (Langerhans, 2009; 

Magurran, 1990; Palkovacs et al., 2011). Indeed, contemporary evolution in response to changes 

in predation has been documented in all levels of pelagic food chains: piscivorous fishes 

(Carlson et al., 2007), planktivorous fishes (Bassar et al., 2010; Langerhans et al., 2004; 

Palkovacs et al., 2011), zooplankton (Hairston et al., 2005), and phytoplankton (Kasada et al., 

2014; Yoshida et al., 2003). This body of work not only suggests that cascading ecological 

changes due to harvest might drive evolution in lower trophic levels, but also hints at a trophic 

pathway by which such evolution could reciprocally feed back on the abundance dynamics of 

harvested species. 

 

Although specific adaptations to predator or prey regimes are diverse, the nature of these 

adaptions can be broadly classified along a competition-defense tradeoff spectrum, in which 

feeding ability and vulnerability to predators are positively related. Such tradeoffs have been 

explored in a wide range of organisms, including fish (Langerhans, 2009; Palkovacs et al., 2011), 

plants (Mole, 1994), insects (Fellowes et al., 1999; Kraaijeveld et al., 2002), algae (Agrawal, 

1998; Kasada et al., 2014; Yoshida et al., 2003), and bacteria (Lennon and Martiny, 2008). 

Competition-defense tradeoffs may be behavioral (Conrad et al., 2011; Langerhans, 2009), 

morphological (Langerhans, 2009; Palkovacs et al., 2011), physio-chemical (Agrawal, 1998; 

Lind et al., 2013), or life-historical (Reznick et al., 1990; Stearns, 1983b, 1983a, 1989). 
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Importantly, a substantial body of theory and experimentation, much beginning with Pimentel’s 

(Pimentel, 1961) pioneering work on the ‘genetic feed-back’, indicates that contemporary 

evolution along this tradeoff can substantially influence the abundance and stability of both 

predator and prey populations (Abrams, 2009; Abrams and Matsuda, 1997a, 1997b; Kasada et 

al., 2014; Yoshida et al., 2003). The population dynamical signatures of evolution along this 

trade-off have recently been uncovered in many “classic” predator-prey experiments, in which 

evolution was not originally considered (Hiltunen et al., 2014). 

 

Here we investigated the eco-evolutionary consequences of contemporary evolution in non-

harvested species during harvest. We sought to develop a generalized model to explore the scope 

(capacity) and pattern of evolution of non-target evolution and feedbacks on stability and yield of 

the harvested species, with the intent that our findings might serve to generate baseline 

predictions for future empirical and theoretical exploration. We took an eco-evolutionary 

dynamics approach, employing a multi-trophic-level, individual-based model (Fussmann et al., 

2007; Post and Palkovacs, 2009). Because other models exist to predict trait and ecological 

consequences of evolution in harvested species, we focus here on the evolutionary outcomes and 

feedbacks originating in non-harvested members of the community, which were modeled as 

discreet trophic levels. Genotypes and phenotypes of specific non-harvested trophic levels were 

allowed to evolve (eco-evolutionary model), or not (ecology-only model), in bifurcated model 

runs that split after the onset of harvest. These bifurcated runs allowed us to isolate eco-

evolutionary from purely ecological processes. Although greater complexity might be added to 

our approach, the consistent and generalizable patterns we observed provide insight into specific 
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conditions under which non-target evolution and eco-evolutionary feedbacks might be most 

overt and critical to harvest sustainability.  

 

2.3 METHODS 

2.3.1 Model overview 

We used a generalized individual-based model to extend our eco-evolutionary framework 

beyond classic two-level predator-prey models to simulate a four trophic-level community in 

which the top or penultimate trophic levels (referred to as the top predator and secondary 

consumer, respectively) were subjected to a range of harvest intensities. We simulated evolution 

and ecology dynamically along a competition-defense tradeoff axis separately in each trophic 

level below the harvested level by allowing genotypes and phenotypes at that focal level to 

undergo selection based on the reciprocally interacting abundance dynamics of their own 

predators and prey. Evolution was an emergent property of this system (Epstein, 1999), with 

selection a byproduct of predator and prey dynamics and inheritance determined by genetic and 

environmental components. We analyzed the effect of contemporary evolution in non-harvested 

species on abundance and yield of the harvested species by comparing bifurcated models: an 

eco-evolutionary model, in which evolution was allowed to continue after the initiation of 

harvest, and an ecology-only model, in which genotypes were frozen at the harvest onset mean, 

although environmental variation was retained. This approach allowed us to compare models to 

determine the extent to which evolution in non-harvested species impacts yield and sustainability 

of harvest for targeted species. 
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Competition-defense tradeoffs. Preliminarily, we tested a wide range of competition-defense 

tradeoff slopes (Fig. A.1) in trophic levels below the harvested species to determine the trait 

space within which evolution in response to harvest would occur. We calculated tradeoff slope 

as: 

(2.1) 

𝑆 =  
 
𝜕𝑎
𝜕𝐺

 

 
𝜕𝑣
𝜕𝐺

 
 

 

In which S = tradeoff slope, a = attack rate on resources, v = vulnerability to predators, and G = 

genotype (coded as a continuous quantitative trait). We ran simulations at moderate harvest 

levels (levels that would visibly reduce the abundance of the harvested species but would almost 

never lead the harvested species to extirpation). For these initial runs we simulated evolution 

separately for each trophic level (i.e. we allowed only one trophic level to evolve at a time). For 

all tested trophic levels in all model structures, we observed a central range of competition-

defense tradeoff slopes that led to marked evolution after harvest onset (see Results and 

Discussion). Because our primary goal was to discern generalized patterns of potential feedbacks 

from non-target evolution (to inform future data collection and investigations), we selected 

competition-defense tradeoff ratios roughly in the middle of these slope ranges for the following 

analyses. 

 

Single trophic level evolution. Using the above selected values for competition-defense tradeoff 

ratios, we simulated a range of consistent effort harvest from negligible harvest to overharvest 

resulting in harvested species extirpation. We ran a separate model for each non-harvested 
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trophic level, allowing only that trophic level to evolve. We observed differences in eco-

evolutionary and eco-only model results for harvested species abundance, yield, and stability 

across the harvest intensity gradient. We attributed differences between these two models to eco-

evolutionary processes rooted in evolution in the lone evolving trophic level. 

 

Multi-trophic evolution. We subsequently tested for effects of evolution in multiple non-

harvested trophic levels on the harvested species. Using our four-trophic level model in which 

the top predator was harvested, we allowed pairs of trophic levels to evolve to examine the 

potential for evolutionary reinforcement or compensation at multiple trophic levels. We also ran 

models in which all trophic levels below the harvested species evolved and varied food web 

length (four or three trophic levels total) to examine how “fishing down the food web”(Pauly et 

al., 1998) would change the net effect of evolution on the harvested species.  

 

2.3.2 Model design and details 

We built an individual-based model framework using Matlab R2015b software. The model uses 

iterative Monte Carlo methods to simulate four discrete populations, with each population 

constituting an entire trophic level (Figure 2.1). 
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Trophic level 
Harvest-mediated 

abundance change 

Direction of 
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Effect of evolution on 
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Harvested top 

predator 

 

- 
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consumer + 
↑ Competitiveness 

↓ Defense 
+ 

 

 

Primary 

consumer - 
↓ Competitiveness 

↑ Defense 
- 

 

 

Producer + 
↑ Competitiveness 

↓ Defense 
+ 

 

Figure 2.1. Harvest-induced eco-evolutionary trophic cascades. Cascading harvest-mediated 

abundance changes cause evolution in lower, non-target species, which then feeds-back to 

bolster or undermine the harvested top predator. Directions of abundance changes, evolution, and 

feedbacks alternate predictably down the food chain. Results are from an individual-based model 

with four trophic levels, each feeding exclusively on the level below it. Patterns are robust to 

models in which the penultimate trophic level (secondary consumer) was harvested instead of the 

top predator. 

 

Representing populations, genotypes and phenotypes. Each population was represented by a 

data table, in which each row represented an individual and each column represented a trait. 

Births were appended to each table; deaths were deleted. 

 

Each individual in each population had a quantitative trait genotype influencing its competition-

defense phenotype. Our assumption of polygenic inheritance is grounded in the premise that such 

performance phenotypes likely reflect the additive influence of many interacting traits that may 

or may not be polygenic themselves. For efficiency and generalizability, we produced 

subsequent generations by sampling directly from standing genetic variation (i.e. asexually) and 
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applying a mutational component. Sampling to produce offspring was weighted by the survival 

and reproductive probabilities of current organisms. Such inheritance is generalizable as an 

additive polygenic trait (Hill et al., 2008), and is robust to most dominance and recombination 

structures, while avoiding variance deflation (Fisher, 1930). We allowed a small chance of 

mutational input to variation during each reproductive event:  

(2.2) 

𝐺𝑜𝑢𝑚𝐶𝑟𝑖𝑛𝑒𝑦𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐺𝑝𝑎𝑟𝑒𝑛𝑡 + 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) ∗ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) 

 

G = genotype; Pmutation = mutation probability; and σmutation = average mutation severity. 

Mutation probability was set to 0.12 for all trophic levels, consistent with mutational inputs for a 

highly polygenic phenotype (i.e. mutation is rare (Baer et al., 2007; Drake et al., 1998; Eyre-

Walker and Keightley, 2007), but an effectively large number of loci makes mutations likely). 

The standard deviation of mutation severity was set to 0.05 for all trophic levels. The starting 

mean and standard deviation for G were 0 and 0.25, respectively. In our model, the individual’s 

genotype simultaneously defines its competitiveness and defense, defined proximately as its 

attack rate, vulnerability, and death rate. Therefore, these three characteristics covaried, 

consistent with observed competition-defense tradeoffs (see Introduction). Finally, consistent 

with quantitative polygenic inheritance, attack rate, vulnerability, and death rate were all affect 

by a coefficient of environmental variation error term (noise), with the net effect that effective 

heritability was roughly 0.60. 

(2.3) 

𝑎𝑖 = (𝑎0 + 𝜖)(100 + 𝐴𝐺𝑖) 
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(2.4) 

𝑣𝑖 = (𝑣0 + 𝜖)(100 + 𝑉𝐺𝑖) 

(2.5) 

𝑑𝑖 = (𝑑0 + 𝜖)(100 + 𝑀𝐺𝑖
2) 

 

ai = attack rate; a0 = inherent attack rate; ϵ = normally distributed error term; A = contribution of 

focal gene to attack rate; Gi = genotype; vi = vulnerability; v0 = inherent vulnerability; V = 

contribution of focal gene to vulnerability; di= death rate; d0 = inherent death rate; M = 

contribution of focal gene to death rate. 

 

A heritability of 0.6 is relatively high (Serbezov et al., 2010), but we suggest this is justifiable on 

the grounds that contemporary evolution of performance tradeoffs leverages heritability of 

multiple traits, including component traits with higher than average heritability (but see 

Discussion). 

 

We manipulated the tradeoff ratio (A/V) to determine the slope of the competition (A) – defense 

(V) tradeoff for each population. A high tradeoff ratio indicated “cheap” competition, while a 

low tradeoff ratio indicated “cheap” defense (Fig. A.1). Death rates increased quadratically with 

extreme phenotypes in order to prevent runaway evolution in cases of complete predator absence 

and to ensure some measure of canalization (Abrams and Matsuda, 1997b). 
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Iterating events. Births were dependent on the total number of prey consumed by each 

individual, which were in turn dependent on its phenotypic attack rate and the pool of available 

prey (determined by the death rate of the next lower trophic level): 

(2.6) 

𝐿𝑖 = 𝑏𝑖

𝑎𝑖

1 + ℎ𝑖𝑎𝑖𝑁𝑝𝑟𝑒𝑦
𝑁𝑝𝑟𝑒𝑦 𝑒𝑎𝑡𝑒𝑛

(
𝑎

1 + ℎ𝑎𝑁𝑝𝑟𝑒𝑦
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑁

 

 

Li = birth probability; bi = conversion efficiency; ai = attack rate; hi = handling time; Nprey = prey 

abundance; Nprey eaten = number of prey whose deaths were from predation (see death formula).; N 

= number of consumers. Note that the denominator is a mean quantity for the entire population. 

 

We determined deaths through an intrinsic mortality rate plus deaths from predation, as 

determined by an individuals’ phenotypic vulnerability to predators: 

(2.7) 

𝑑𝑃𝑖
= (

𝑎𝑝𝑟𝑒𝑑

1 + ℎ𝑝𝑟𝑒𝑑𝑎𝑝𝑟𝑒𝑑𝑁𝑝𝑟𝑒𝑑
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑣𝑖𝑁𝑝𝑟𝑒𝑑 

 

dPi = death probability from predation; apred = predator attack rate; hpred = predator handling time; 

Npred = number of predators; vi = vulnerability to predators. 

 

(2.8) 

𝐷𝑖 = 1 − (1 − 𝑑𝑖)(1 − 𝑑𝑃𝑖
) 
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Di = total death probability; di = intrinsic death probability; dPi = death probability from 

predation. 

 

We accounted actual births by sampling a Poisson distribution with a mean of Li. We accounted 

actual deaths by sampling a binomial distribution with a mean of Di. To quantify which deaths 

were actually from predation, we summed the proportion of the death probability that was due to 

predation for all dead individuals: 

(2.9) 

𝑁𝑒𝑎𝑡𝑒𝑛 = ∑ (
𝑑𝑃𝑖

𝐷𝑖
|𝑑𝑒𝑎𝑑)

𝑖

 

 

We used this term to inform the number of births at the next higher trophic level (see above). 

Producers consumed a finite but replenishing resource. 

 

Adding harvest. We assumed a consistent effort harvest with a small normally-distributed (5%) 

error term. We added harvest by modifying the death rate of the top or penultimate predator: 

(2.10) 

𝐷𝑖 = 1 − (1 − 𝑑𝑖)(1 − 𝑑𝑃𝑖
)(1 − 𝑓 − 𝜖𝑓) 

 

Di = death rate of the harvested species; dPi = death rate from predation sources; di = inherent 

death rate; f = harvest intensity; ϵf = harvest error from variability, sampled from a normal 

distribution. 

 

We calculated yield as the proportion of deaths each iteration that were due to harvest: 
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(2.11) 

𝑌 =  ∑ (
𝑓 + 𝜖𝑓

𝐷𝑖
|𝑑𝑒𝑎𝑑)

𝑖

 

 

Y = harvest yield; f = harvest intensity; ϵf = harvest error; Di = total death rate of the harvested 

species. 

 

We tested a range of harvest intensities from harvests that had no appreciable impact on the 

harvested species to overharvests that led to harvested species collapse. 

 

Parameterizing the model. We used parameter combinations that generated a primary producer 

population size that was computationally manageable. We then used geometric changes in attack 

rate, handling time, and death rate to create a community in which population size decreased and 

generation time increased with increasing trophic level (Table 2.1). Attack rates, vulnerability, 

and death rates were modified by genotype in focal, evolving trophic levels (see Representing 

populations, genotypes, and phenotypes); the values in Table 1 represent the starting values that 

were then modified by genotypes. 
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Symbol Parameter Producer value 
Geometric change with 

increasing trophic level 

a0 Attack rate 6*10-6 / 2 

v0 Vulnerability 1 * 1 

b Conversion efficiency 1*10-3 * 1 

h Handling time 2*10-10 * 100 

d0 Death rate 1*10-3 / 4 

 

Table 2.1. Starting population parameter values for individual-based model simulations. 

 

Running the model. We ran about 200 batches of simulations for each trophic level below the 

harvested species. In each batch, we allowed only one, non-harvested trophic level to evolve 

(Figure 2.2). We initially ran the model for 12,500 iterations (when the lowest trophic level 

evolved; 20,000 when the next higher trophic level evolved, and 50,000 when the penultimate 

trophic level evolved) to attain quasi-equilibrium. We then initiated harvest and ran for an 

additional 12,500 iterations under harvest conditions (when the lowest trophic level evolved; 

20,000 when the next higher trophic level evolved, and 50,000 when the penultimate trophic 

level evolved). In this model each iteration represents a finite time step. While the total number 

of time steps is very large, the effective generation time (T) of each trophic level spans 1.5 to 640 

iterations. Using the definition of a generation as the mean time between the birth of an 

individual and the birth of its offspring, a 10,000 iteration time window in our model equated 

with 16 generations of the top predator (T = 639.50), 185 generations of the secondary consumer 

(T = 54.15), 580 generations of the primary consumer (T = 17.19), and 6450 generations of the 

producer (T = 1.55).  
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Figure 2.2. Eco-evolutionary consequences of non-target species evolution during harvest. 

Harvest-mediated evolution in non-target trophic levels feeds-back to undermine or bolster the 

harvested top predator. Each column represents a unique set of simulations. Odd-numbered 

trophic levels below the harvested species evolve increased competitive ability and decreased 

defense (increased vulnerability) during harvest, which bolsters the harvested species; even 

numbered trophic levels evolve decreased competitive ability and increased defense (decreased 

vulnerability), undermining the harvested species. Black lines show average results from 12 

simulations with evolution on (eco-evolutionary models); red lines show average results from 12 

simulations in which trait values were fixed at pre-harvest means (ecology only models). Thick 

lines show population abundances; thin dashed lines show genotype means, which code for 

competitiveness and vulnerability to predators. Harvest of top predator begins at arrows. 

Ecology only model 

Eco-evolutionary model 

Harvested species Evolving species 



- 33 - 

Competition-defense tradeoff ratios were set to maximize evolutionary potential (Figure 2.3). 

See Figure 2.1 for model structure schematic. 

 

 

Figure 2.3. Competition-defense tradeoffs and eco-evolutionary potential. Competition-

defense tradeoff ratio in non-target species influences the difference between ecological (red) 

and eco-evolutionary (black) model predictions of harvest-species abundance. “Cheap defense” 

tradeoffs (left side) lead to system destabilization prior to harvest. “Cheap competition” tradeoffs 

(right side) lead to similar predictions from both models. Intermediate competition-defense 

tradeoffs lead to harvest-induced evolution in non-target species (Figure 2.2), which feeds-back 

to bolster or undermine the harvested top predator. Solid and dashed lines indicate mean ± one 

standard deviation for 12 model runs. See Figure 2.1 for model structure schematic. 

 

 

Ecology only model 

Eco-evolutionary model 
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At initiation of harvest, we split the model into two parallel models: one in which evolution 

continued and one in which genotypes of the evolving population were frozen at pre-harvest 

means. The former model therefore includes eco-evolutionary effects of harvest, while the latter 

includes only ecological effects. We ran these simulations with harvest of either the top or 

penultimate trophic level (referred to as the top predator and secondary consumer, respectively). 

To determine the range of harvest intensities to explore with our model, we ran the models with 

no evolution occurring at a wide range of harvest intensities and selected an initial harvest 

intensity that produced a modest depression in the abundance of the harvested species (0.0009 

for the top predator; 0.0077 for the secondary consumer). Using this harvest intensity as a 

setpoint, we ran simulations across a wide range of competition-defense tradeoff ratios (Figures 

2.3, A.7) to examine the sensitivity of harvest stability and yield to trade-off ratio. We then 

subsequently selected a setpoint tradeoff ratio at each trophic level that generated strong 

differences between eco-only and eco-evolutionary models and assessed the sensitivity of 

evolution and feedbacks to varying harvest strengths (Figures 2.4, A.8). For the simulations 

involving top predator harvest (and fishing down the food web example) our setpoint ratios (A, 

V) were (19.1, 52.5),(22.0, 45.4), (29.5, 39.3) for the secondary consumer, primary consumer, 

and producer, respectively. For simulations involving secondary consumer harvest, the setpoint 

ratios (A, V) were (17.0, 58.8), (20.5, 48.8) for the primary consumer and producer, respectively. 

For all models, canalization parameters (M, see Representing populations, genotypes and 

phenotypes) were set to 25.0 for evolving trophic levels. 
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2.3 RESULTS AND DISCUSSION 

Comparing bifurcated simulations consistently revealed a harvest-driven eco-evolutionary 

trophic cascade, in which upper trophic level harvest led to dynamically coupled evolutionary 

and ecological changes at proximate and distant trophic levels (Figures 2.1, 2.2).  

 

2.3.1 Harvest induces an eco-evolutionary trophic cascade 

For any given trophic level, we found that evolution followed a general pattern. Odd-numbered 

trophic levels (starting with the level below harvested) evolved increased competition and lower 

defense and even-numbered trophic levels evolved greater defense and lower competitive ability 

(Figures 2.1, 2.2). This flip-flopping pattern is analogous to the common depiction of alternating 

dominance of predation and competition as regulators of abundance in classical density-mediated 

trophic cascades (Pace et al., 1999). Notably, selection at each intermediate trophic level was 

mutually reinforced by the relative abundances of its predators and prey, providing particularly 

strong and consistent selection along the competition-defense tradeoff. An abundant trophic level 

with relatively few predators and prey faces weaker selection for defense and stronger selection 

for competition (e.g. secondary consumers, Figure 2.1), whereas a less abundant trophic level 

with numerous predators and prey faces stronger selection for defense and weaker selection for 

competitiveness (e.g. primary consumers, Figure 2.1). In this respect, abundance and 

competitiveness tended to track together (Figure 2.2). Shortening of the food chain to three 

trophic levels and harvesting the secondary consumer (“fishing down the food web”) (Pauly et 

al., 1998) led to evolutionary reversal in subsequent non-target trophic levels (Figure A.4), 

suggesting that the most important factor in determining the direction of evolution in any trophic 

level was that level’s food web distance from the harvested species. 
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Importantly, our model shows the direction of causation was not exclusively one of ecology 

driving evolution; evolution also fed back to affect ecology. For example, adaptive evolution of 

more competitive but vulnerable prey of a harvested predator tended to feed back positively on 

that predator’s abundance, causing an increase in the population size of the harvested predator. 

These results are consistent with studies of antipredator evolution and predator abundance in 

simpler predator-prey systems (Duffy and Sivars-Becker, 2007; Kasada et al., 2014; Lennon and 

Martiny, 2008; Pimentel, 1988; Pimentel and Al-Hafidh, 1965). 

 

2.3.2 Evolution in lower trophic levels feeds-back to bolster or undermine harvested species 

Eco-evolutionary feedbacks again followed a consistent pattern that transmitted in a bottom-up 

fashion to the harvested species. Evolution in odd-numbered trophic levels (again starting with 

the level below harvested) fed back positively on abundances of the harvested species, though 

the net extent of the population increase depended on reinforcing or opposing evolution at other 

trophic levels (Figures 2.2, 2.4, A.3). Evolution in even-numbered trophic levels fed back 

negatively on the abundance of the harvested species. Simultaneous evolution at multiple trophic 

levels resulted in stronger or weaker net demographic effects on the harvested species, depending 

on which levels evolved (Figures 2.2, A.3). Neighboring trophic levels’ eco-evolutionary 

feedbacks tended to cancel (a form of cryptic eco-evolutionary dynamics) (Kinnison et al., 2015) 

while once-removed trophic levels’ eco-evolutionary feedbacks were reinforcing (Figure A.3). 

 

These eco-evolutionary feedbacks were able to significantly affect yield and sustainability in our 

simulated harvest fishery (Figure 2.4). Evolution of increased competition in odd-numbered 

trophic levels below the harvested species increased yield and sustainability. Evolution of 
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increased defense in even-numbered trophic levels decreased yield, and lowered the harvest rates 

associated with fisheries collapse (Figure 2.4). Evolutionary effects on yield and abundance (i.e. 

differences between eco-evolutionary and ecology only models) were most pronounced at high 

harvest levels, whereas evolution of non-target species was at times the difference between 

obtaining the highest possible yields and complete harvest collapse (Figure 2.4). Results were 

similar when the penultimate trophic level (secondary consumer) was harvested (Figures A.5-

A.7), although abundance changes in the harvested species were lesser in magnitude.  

 

 

Figure 2.4. Harvest yield predictions from ecology only versus eco-evolutionary models. 

Evolution in non-target trophic levels can lead to significantly higher or lower long-term harvest 

yield, maximum sustainable yield, and appropriate harvest intensity. Considering ecological 

(red) processes only and neglecting eco-evolutionary (black) model predictions can lead to top 

predator overharvest, extirpation, or foregone yield, depending on which trophic levels evolve. 

2˚ consumer 

evolves 
1˚ consumer 

evolves 

Producer evolves All non-target 

evolve 

Ecology only model 

Eco-evolutionary model 
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Dashed lines show ± one standard deviation for 12 model runs. See Figure 2.1 for model 

structure schematic. 

 

2.3.3 Competition-defense tradeoff slope dictates eco-evolutionary potential 

At all trophic levels, evolution and its ecological feedbacks were most pronounced at 

intermediate to somewhat defense-biased tradeoffs, where fitness gains or losses from defense 

were accompanied by similar or slightly smaller changes in competitiveness (Figures 2.3, A.7). 

Tradeoffs that favored very cheap defense (large changes in defense come with small changes in 

competitiveness) resulted in community destabilization and extinctions before harvest had 

started, whereas tradeoffs that favored cheap competition (large change in competitiveness 

associated with small changes in defense) led to little evolutionary change in response to altered 

predation regimes. The competition-defense tradeoff bias that led to the greatest difference 

between eco-evolutionary and ecology only models became more defense-biased with increasing 

trophic level (Figure 2.3, A.7). These findings are consistent with experiments showing stronger 

eco-evolutionary feedbacks from balanced than unbalanced tradeoffs in a simpler predator-prey 

system (Kasada et al., 2014). 

 

2.3.4 Model expansions and future work 

Our models reveal consistent patterns that should inform future study in real-world ecosystems. 

Future work for specific systems should consider nuances and complexities that fall within three 

broad categories: 
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1) Factors affecting the pace of evolution. Factors affecting the relative pace of evolution at 

different trophic levels (e.g. genetic variation, generation time, heritability), should not 

necessarily change the scope of the patterns we observed here, but will change the timescales on 

which patterns could be observed. Lower trophic levels in particular, by virtue of their larger 

population sizes and often shorter generation times, could evolve more quickly in the initial face 

of harvest on higher trophic levels and thus dominate in early harvest-driven feedbacks. We ran 

our models with simple assumptions about the relative generation times (see Methods), and long 

enough to accommodate quasi-equilibrium evolution in any trophic level, but a more nuanced 

understanding of relative evolutionary rates and transitory dynamics is likely important for 

detecting patterns and understanding specific outcomes on the management timeframes of real 

world harvest systems.  

 

2) Factors affecting the scope of evolution. Eco-evolutionary dynamics in our models are 

strongly nuanced by the form of the competition-defense tradeoff ratios (Figure 2.3). While there 

is strong theoretical and empirical basis for this tradeoff across diverse species and ecosystems 

(see Introduction), it remains poorly characterized for many species in harvested ecosystems. 

Because the goal of this study was to assess the scope for evolution and its feedbacks, our 

models centered on tradeoff-ratios for which evolution was likely to happen, but it should be 

noted there exist areas of parameter space for which the eco-evolutionary and ecological 

expectations were relatively similar (Figure 2.3). This result suggests that future research should 

place a priority on quantifying the form and slope of these tradeoff ratios for species in harvested 

ecosystems. 
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The underlying mechanisms for competition-defense tradeoffs may be both shared and unique 

across trophic levels. Certain changes in size or life history may be common tradeoff responses 

at multiple trophic levels (Lind et al., 2013; Mole, 1994; Reznick et al., 1990; Stearns, 1989). 

Other responses may be more unique, such as greater reliance of primary producers on 

investments in defense compounds that reduce growth rate (Agrawal, 1998; Lennon and Martiny, 

2008; Yoshida et al., 2003, 2007), and greater reliance in upper trophic levels on complex 

behavioral competition-defense tradeoffs (Conrad et al., 2011; Langerhans, 2009). Although we 

would contend that competition-defense tradeoffs are broadly universal, it remains to be 

empirically determined whether and how specific tradeoff mechanisms might modify the scope 

for eco-evolutionary feedbacks, as might occur if some of these mechanisms are associated with 

very different tradeoff slopes. 

 

Plastic, rather than genetic, trait change along a competition-defense tradeoff axis could lead to 

similar patterns to those observed in this model, and should not be ignored when considering 

real-world systems. Furthermore, although phenotypic plasticity may modify the strength of the 

genetic evolutionary response to harvest (Ghalambor et al., 2007; Price et al., 2003), plastic 

responses to harvest-induced trophic cascades may be at least as ecologically impactful as 

genetic responses (Schmitz et al., 1997, 2004), and likely occur on more immediate time scales. 

 

We modelled a necessarily simplified food chain with discrete evolving trophic levels. The broad 

phenotypic and feedback patterns we describe are likely robust to the number of evolving species 

at a given trophic level so long as there is genetic variation (within or among species) along a 

competition-defense tradeoff. Indeed, the typically greater phenotypic and genetic variation 
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among species could provide faster rates of net phenotypic change. In complex food webs, 

cascading responses are likely to involve change in both species and intraspecific diversity (Estes 

et al., 2011; Pace et al., 1999). 

 

3) Factors affecting the scope of eco-evolutionary feedbacks. Ecosystems vary in their 

connectivity and interspecific interaction strengths, and this variation can dictate the potential for 

cascading ecological impacts and system stability (Gross et al., 2009; Kondoh, 2003; LeCraw et 

al., 2014). For example, omnivory, in which one organisms consumes individuals from multiple 

adjacent trophic levels, might be predicted to alter the strength of the eco-evolutionary dynamics 

we described here, either by dampening the net feedback—if omnivores integrate opposing 

feedbacks at neighboring trophic levels—or strengthening the net feedback—if large changes in 

omnivore abundance generate selection in the same direction at multiple adjacent trophic levels 

below the omnivore. Along these lines, we would suggest that ecological metrics of cascade 

strength (Borer et al., 2005; Shurin et al., 2002) or interaction strength (Berlow et al., 1999; 

Paine, 1980) might be used as an initial means to identify harvested communities where strong 

non-target evolution and eco-evolutionary feedbacks may be most evident and influential. 

 

2.3.5 Conclusions 

The capacity for large differences between purely ecological versus eco-evolutionary models 

(Figures 2.2-2.4) in our study supports many prior calls for greater consideration of evolutionary 

processes when managing biological resources (Kinnison and Hairston, 2007; Schoener, 2011; 

Smith et al., 2014; Stockwell et al., 2003). Under some scenarios, the predictions from ecology-

only simulations differed substantially from eco-evolutionary simulations, suggesting that failure 
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to account for evolution in non-target species could appreciably influence risks associated with 

overharvest or sacrificed yield (Figure 2.4). Likewise, our results hint that harvesting at some 

trophic levels might be more prone to positive or negative feedbacks than others due to 

compensatory effects at other trophic levels. Taken broadly our findings suggest that 

evolutionary impact assessments that focus exclusively on evolution in harvested species may 

provide an incomplete picture of evolution’s role in harvested ecosystems. However, this result 

does not imply that evolutionary management is complex beyond reach, or that non-target 

evolution is intrinsically bad for fisheries outcomes. While our model highlights some 

considerations that may ostensibly complicate real-world resource management, it also 

highlights general patterns that are testable in natural systems and processes that could convey a 

degree of resiliency in harvested ecosystems. Finally, our results a logical next step of 

investigating the interaction between evolutionary processes in harvested trophic levels (i.e. 

harvest-induced evolution) and evolutionary processes in lower trophic levels. 
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CHAPTER 3 

PHENOTYPIC AND COMMUNITY CONSEQUENCES OF CAPTIVE PROPAGATION 

IN MOSQUITOFISH 

 

3.1 ABSTRACT 

Captive propagation can lead to phenotypic change in fish populations, but the broader 

community-level consequences of captive phenotypes remain largely unknown. We investigate 

the degree to which captive propagation alters the phenotypes and ecological roles of fish 

stocked into wild communities. We focus on captive propagation of western mosquitofish 

(Gambusia affinis) for biocontrol, which represents one of the largest-scale production efforts for 

any fish released into the wild. Captive propagation in mosquitofish consistently generated novel 

mixtures of morphological and behavioural traits that deviate from those of wild populations. A 

mesocosm experiment showed that mosquitofish from captive propagation facilities differ from 

wild fish in their effects on aquatic community structure by shifting their consumption to less-

mobile, benthic prey. Captive-propagated and translocated wild fish stocks not only differ in 

phenotype, but can have substantially different ecological effects on the communities into which 

they are introduced. Therefore, captive propagation programs involving continual release should 

expand their concerns beyond altered phenotypes and fitness to include whether propagated fish 

actually provide the intended ecological roles and services associated with their wild 

counterparts. Infusions of wild alleles and captive environments that mimic wild conditions are 

recommended strategies to retain the desired ecological role of captive-propagated fish. 

 

Keywords: biological control, domestication, captive propagation, trophic cascades, fish 

introductions, antipredator evolution, mosquitofish  
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3.2 INTRODUCTION 

Captive propagation and stocking of fishes constitutes a massive human intervention in many 

wild ecosystems. Hundreds of species are currently reared at least partially in captive 

environments (e.g. hatcheries), with limited genetic input from wild populations (Bilio, 2007; 

Teletchea and Fontaine, 2012). Captive propagation and release programs are commonly 

operated with the intent to bolster declining wild populations (Araki and Schmid, 2010; Brown 

and Day, 2002), support commercial or sport-fishing activities (Halverson, 2008), or produce 

fish for biological control of pest species (Chandra et al., 2008; Swanson et al., 1996). Growing 

focus has been given to whether captive-propagated fish provide the socio-economic or 

ecological services associated with wild fish (Ham and Pearsons, 2001; Pearsons and Hopley, 

1999; Pister, 2001). Whereas captive-propagated fish can fill some socio-economic roles of wild 

fish—providing food or recreation—we know much less about the extent to which captive-

propagated fish serve as true ecological surrogates for wild fish. Recent evidence suggests that 

divergent phenotypes of fishes and other organisms can lead to markedly different ecological 

conditions (Des Roches et al., 2018). Here we test the extent to which phenotypic (plastic and 

genetic) divergence of captive-propagated and wild fish may change the functional traits and 

ecological roles of captive lines in ways that alter aquatic community structure and ecosystem 

function following stocking. 

 

Multi-generational captive rearing is widely associated with marked divergence from wild 

sources in morphology, life-history, and behaviour. Captive-propagated fish are often larger and 

have different fin placement and body shapes than wild fish (Pulcini et al., 2013). Propagated 

fish also tend to grow and mature more rapidly (Lorenzen et al., 2012; Vøllestad et al., 2004). 
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Behaviourally, propagated fish are generally less aware of predators, worse at identifying 

profitable food sources, and have inappropriate levels of aggression towards conspecifics 

(Fenderson and Carpenter, 1971; Huntingford, 2004; Swain and Riddell, 1990). Such phenotypic 

change can markedly decrease survival and reproduction in the wild (Araki et al., 2007, 2008; 

Bowlby and Gibson, 2011; Christie et al., 2014; Milot et al., 2013). However, such a focus on 

reduced fitness does not fully address the extent to which captive-propagated fish fill the same 

ecological roles as wild fish. 

 

While little work has directly examined the ecological role of captive-propagated fish in wild 

environments, suspected changes in the functional traits of propagated fish hint at important 

consequences for communities and ecosystems. Divergence in morphological traits that affect 

feeding mode and efficiency—i.e. head shape and body streamlining (Albertson et al., 2003; 

Domenici et al., 2008; Langerhans, 2009)—are especially likely to have strong community 

impacts by determining the type and quantity of prey consumed and ability to avoid predators. 

Divergence in behavioural traits may also be important, including traits associated with habitat 

use, risk avoidance, and foraging patterns (Schluter, 1993; Werner et al., 1983). 

 

Here we assess phenotypic divergence and resulting ecological consequences around 

introductions of captive-propagated versus wild western mosquitofish (Gambusia affinis). 

Mosquitofish are the most commonly used form of mosquito biocontrol in the world (Swanson et 

al. 1996). We evaluate two hypothetical mechanisms for how captive propagation might shape 

the traits and community effects of propagated mosquitofish relative to wild-sourced fish: 
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1. A main goal of captive propagation is to increase survival by removing predation. 

Therefore, captive propagation may produce functional traits and ecological 

consequences similar to those of wild, predator-naïve populations. 

2. Additionally, captive environments may differ from wild environments—not only 

through predator absence but also in a host of other important ways (e.g., higher 

densities, artificial feeding, simplified environments). Therefore, captive propagation 

may produce novel combinations of functional traits, which lead captive-propagated fish 

to have unique ecological consequences when released into the wild. 

 

We examined behavioural and morphological traits across multiple captive-propagated and wild 

mosquitofish populations. We also used replicated pond mesocosms to assess cascading 

community effects of stocking captive-propagated versus wild-translocated fish. By comparing 

the community-level effects of mosquitofish from mosquito-control propagation facilities with 

those caused by mosquitofish from wild populations, we assess the ecological implications of 

stocking captive-propagated fish versus the alternative of translocating wild fish. As both 

methods are widely employed by mosquito control districts (Swanson et al., 1996), this 

comparison not only provides novel insights into ecological consequences of captive 

propagation, but also illuminates yet unknown environmental impacts of these alternative 

biocontrol approaches. 

 

3.3 METHODS 

We studied 11 populations of western mosquitofish (Gambusia affinis) from central California, 

USA (Figure B.1, Table B.1 in Supporting Information) representing three different source-
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types: (1) mosquitofish produced for biocontrol in captive propagation facilities, (2) wild 

mosquitofish from low-predation ponds lacking largemouth bass (Micropterus salmoides), and 

(3) wild fish from high-predation ponds with largemouth bass present. Largemouth bass are a 

dominant predator of mosquitofish and have been shown to play a strong role in shaping the 

functional traits of mosquitofish populations (Langerhans, 2009; Langerhans et al., 2004). 

 

Western mosquitofish were introduced to California in the 1920s for mosquito control (Lenert, 

1923). Although detailed stocking records and population genetic surveys are lacking these 

original fish were widely stocked and translocated throughout the region over a period of 

decades. As such, any differences among wild populations are presumed to reflect a combination 

of recent local divergence (through genetic adaptation and genetic drift) and phenotypic 

plasticity. 

 

In central California, millions of mosquitofish are stocked annually with the intent to control 

mosquito borne diseases (Contra Costa Mosquito Vector Control, 2016; Sacramento-Yolo 

Mosquito & Vector Control, 2016). The potential for ecologically-relevant phenotypic change in 

captive-propagated mosquitofish is high due to their capacity for contemporary adaptation 

(Langerhans, 2009; Langerhans et al., 2004; Stearns, 1983b; Stockwell and Weeks, 1999). The 

widespread introduction of mosquitofish, despite their strong, often harmful ecological effects on 

aquatic communities (Hurlbert and Mulla, 1981; Hurlbert et al., 1972; Pyke, 2008) makes it 

particularly important to assess how captive propagation might shape these effects. In 

mosquitofish propagation facilities, fish breed volitionally in indoor tanks or in covered outdoor 
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ponds where they are surface fed a powdered diet of fish meal. A subset of fish are periodically 

netted for stocking.  

 

We compared the following traits and ecological effects among captive-propagated, wild high-

predation, and wild low-predation mosquitofish populations: 1) morphology: 10 populations 

(two captive-propagated, five wild low-predation, and three wild high-predation); 2) exploratory 

behaviour: 10 populations (three captive-propagated, four wild low-predation, and three wild 

high-predation); 3) boldness and activity behaviour: 3 populations (one captive-propagated, one 

wild low-predation, one wild high-predation; 4) ecological effects: 3 populations (the same as 

(3)). Differences in the number of population sources for each response were due to differences 

in availability of fish sources at the time of each study and infrastructure requirements (small 

tanks versus large mesocosms). For wild sources, we collected mosquitofish using a mixture of 

seine- and hand-netting; for captive sources, we used hand-nets, only. The predation regime of 

each pond was determined by performing repeated fish surveys over multiple dates using beach 

seines. 

 

3.3.1 Morphology 

For morphological analyses, we used adult mosquitofish collected in July and August 2015. We 

euthanized all fish on-site and froze them for later morphometric analyses. We also 

supplemented our morphology dataset with individuals from the populations that were used in 

the subsequent mesocosm experiment (see below). 
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3.3.2 Exploratory behaviour 

To assay exploratory behaviour, we collected adults in June, July, and August 2016. We held 

these fish at the University of California-Santa Cruz, Coastal Science Campus for 18-24 hours to 

acclimate without food prior to experimentation.  

 

We assayed mosquitofish exploratory behaviour within a social context by measuring the latency 

time it took male-female pairs of the same population source to exit a refuge. We assessed 

exploratory behaviour in pairs because mosquitofish are extensively social, and males are almost 

always found in close company of females. Here we define exploratory behaviour as 

“willingness to investigate novel environments” (Conrad et al., 2011). We used an experimental 

arena consisting of an opaque plastic tank (49 cm x 34 cm x 21.5 cm) with a cylindrical PVC 

refuge (20.5 cm tall, 11 cm diameter) secured to the inside wall of the tank. The PVC cylinder 

(refuge) contained a remotely operated door that could be opened or closed by rotating the 

cylinder. We placed cardboard around each trial enclosure to minimize exposure of the fish to 

movement outside the tank and observed fish through a small hole. 

 

For each trial, we placed one female and one male fish inside the PVC refuge and allowed them 

to acclimate for five minutes. After allowing the fish to acclimate, we opened the refuge door 

and recorded the time each fish remained in the refuge before exiting, with a maximum trial time 

of 10 minutes. After each trial, we measured total length (including caudal fin) of each fish. 

 

We calculated individual latency to exit the refuge as the proportion of the 600-second trial spent 

inside the starting refuge by each fish. We arcsine-square-root transformed these proportions for 
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normality, then calculated the mean transformed latency of each pair of fish. We analyzed mean 

transformed latency of each pair, rather than individuals, as latency times of individuals within a 

pair were correlated (Figure B.2) (Arrington et al., 2009). 

 

3.3.3 In-mesocosm boldness and activity behaviour 

We examined predation/propagation source-type differences in mosquitofish boldness and 

activity level using in-mesocosm behavioural assays (see mesocosm setup below) on day 18 after 

mosquitofish introduction. Here we define boldness as “reaction to a situation perceived as 

dangerous” and activity as degree of movement in the same situation (Conrad et al., 2011; Réale 

et al., 2007). Mosquitofish tended to associate in tight shoals within our mesocosms. The same 

(treatment-blind) observer stood motionless next to each mesocosm and observed the shoal of 

mosquitofish for 150 seconds. At 30 second intervals, after a 30 second waiting period, the 

observer noted depth, distance from the observer, and activity level of the shoal, all on a scale of 

1-4. We calculated depth and distance by visually dividing the mesocosms into four equal 

thickness zones (perpendicular to the observer), then recording which zone the majority of the 

shoal occupied at the time of recording. Activity level ranks were based on type of shoal 

movement: 1-no movement; 2-slow, steady movement; 3-exploring, foraging; 4-burst-

swimming, aggressive interactions. 

 

3.3.4 Ecological consequences 

To assess ecological consequences of mosquitofish introduction and trait divergence, we used 

fish collected in May 2016. Our captive line was provided by Contra Costa Vector Control in 

Concord, California. This lineage has been reared in captivity with very limited genetic input for 
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over 10 years, or roughly 30 mosquitofish generations (Chris Miller, personal communication). 

Our wild low-predation line for this experiment (Table B.1) was taken from the primary wild 

source location used to establish the Contra Costa captive-propagated population (Chris Miller, 

personal communication). These three populations exhibited morphological and behavioural 

traits distributions that mirrored those of other populations from their respective source-type 

(captive-propagated, wild high, wild low; Figures B.3, B.4, B.5). We held all three populations in 

outdoor 330 L Rubbermaid cattle tanks for a week before experimentation.  

 

We established 48 1,100 L mesocosms in Santa Cruz, California, which we seeded with benthic 

and pelagic components of local pond ecosystems. We added unfiltered water (4 L total) equally 

from West Lake (N 36.976083°, W 122.045683°) and Antonelli Pond (N 36.955566°, W 

122.060489°), both in Santa Cruz, to foster colonization by a diverse pelagic community. We 

added 20 L air-dried sediment and 1 L active sediment from West Lake, Santa Cruz. We added 

equal aliquots of zooplankton (> 80 μm) from tows taken at both West Lake and Antonelli Pond 

to all mesocosms. We allowed mesocosms to settle and develop for 5 days before fish addition. 

We added dechlorinated city water to the mesocosms halfway through the experiment to 

compensate for evaporation. 

 

We established four mesocosm treatments, one for each mosquitofish background (captive-

propagated, wild low-predation, wild high-predation), plus a fish-free control. Each mesocosm, 

except those in the control treatment, received six fish, which were a haphazard mixture of 

mature males and females. Fish remained in each mesocosm for three weeks. The three-week 

duration of this experiment is similar to that of other mosquitofish mesocosm experiments, which 
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documented consistent ecological consequences of mosquitofish phenotype (Fryxell and 

Palkovacs, 2017), and was long-enough for us to observe consistent ecological effects of 

mosquitofish presence and phenotype (see Results). 

 

We sampled common mosquitofish prey (zooplankton and benthic chironomid larvae) and 

primary producers to examine cascading ecological effects of mosquitofish presence and 

phenotypic divergence. Starting on the day of fish addition, we collected zooplankton weekly 

from 4 L water samples on 80 µm mesh and phytoplankton from 1 L water samples on a 0.7 µm 

filter. We later identified zooplankton to common taxonomic clades (cladocerans and copepods 

[adult and nauplii]) under a dissecting microscope. We estimated phytoplankton abundance as 

chlorophyll-a concentration measured fluorometrically (Turner Designs, Trilogy Module CHL-

NA). We measured 24-hour gross primary production (GPP) using three dissolved O2 

measurements over a 24-hour period (dawn, dusk, and dawn) 1 and 2.5 weeks after fish addition. 

We calculated GPP as the amount of oxygen produced during one day + the amount of oxygen 

consumed during the following night (Harmon et al., 2009). We added plastic tiles (28 cm2 

surface area) on the day of fish addition. These were removed two and three weeks after fish 

addition to measure benthic chlorophyll a and benthic chironomid larva abundance. At the end of 

the experiment, we measured total adult fish dry biomass, adult sex ratio, and counted the 

number of fry present in each mesocosm.  

 

3.3.5 Analyses 

We used R software (R Core Team, 2016) for all statistical analyses. All general and generalized 

linear mixed models were fit with the functions lmer and glmer, respectively, in the lme4 
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package (Bates et al., 2015). We conducted likelihood ratio tests on the components of all 

models with the default anova(glmer or lmer) functions. We also categorized source-type level 

differences within all models (except exploratory behaviour) using post-hoc multiple comparison 

tests with the function glht in the multcomp package (Hothorn et al., 2008). 

 

We used allometric models to examine differences in mosquitofish morphology across captive 

propagation and wild source-types. We used Image J (Schneider et al., 2012) to measure several 

morphometric distances on each adult mosquitofish: snout – posterior edge of eye, snout – dorsal 

fin, snout – anal fin, minimum caudal peduncle depth, and total body length (excluding caudal 

fin). We fit the following allometric model for each morphometric variable: 

(3.1) 

ln(𝑌) = 𝑎 ∙ 𝑆 + 𝑏 ∙ ln(𝐿) + 𝑃 

 

Y is a morphometric variable, S is source-type, L is body length, P is a random effect term for 

population within source-type, and a and b are model coefficients. We fit models using ln-ln-

transformed data, separately for each sex. 

 

To analyze the effects of source-type, body length, and the interaction thereof on pair exploration 

latency, we fit the following general linear mixed model: 

(3.2) 

𝐸𝑝𝑎𝑖𝑟 = 𝑎 ∙ 𝑆 + 𝑏1 ∙ 𝑆 ∙ 𝐿𝑓 + 𝑏2 ∙ 𝑆 ∙ 𝐿𝑚 + 𝑃 
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Epair is pair mean transformed exploration latency, S is source type, Lf and Lm are female and 

male length, respectively, P is a random effect term for population within source-type, and a, b1, 

and b2 are model coefficients. 

 

We tested for source-type differences in shoal distance from observer and depth using 

generalized linear mixed models: 

(3.3) 

𝐷 = 𝑎 ∙ 𝑆 + 𝑀 + 𝑇 

 

D is distance or depth, S is source-type, M is a random effect term for mesocosm identity within 

source-type, T is a random effect term for time since the start of observation, and a is a model 

coefficient. 

 

We tested for predation/hatchery source differences in activity level using two binary activity 

metrics: activity > 1 (any movement) and activity > 2 (any foraging, fast-swimming, or 

aggressive behaviour). We used a generalized linear mixed model with a binomial distribution 

and a logit link function to predict activity: 

(3.4) 

𝐴 =
𝑒𝑋

1 + 𝑒𝑋
 

(3.5) 

𝑋 = 𝑎 ∙ 𝑆 + 𝑀 + 𝑇 
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A is activity, S is source-type, M is a random effect term for mesocosm identity within source-

type, T is a random effect term for time since the start of observation, and a is a model 

coefficient. 

 

To test for fish source effects on community composition, we built models that predicted each 

producer or consumer metric: 

(3.6) 

𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = 𝑎 ∙ 𝑆 + 𝑏1 ∙ 𝐵 + 𝑏2 ∙ 𝑅 + 𝑏3 ∙ 𝐹 

(3.7) 

𝑁𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 = e𝑎∙𝑆+𝑏1∙𝐵+𝑏2∙𝑅+𝑏3∙𝐹 

 

N is abundance, S is source-type, B is adult fish biomass, R is adult sex ratio (males/total), F is 

number of fry, and a, b1, b2, b3 are model coefficients. We used only mesocosms that contained 

fish for these models. We used a general linear model for each producer metric, and a 

generalized linear model with a log link function and a Poisson distribution for each consumer 

metric. 

 

3.4 RESULTS 

We found significant differences among population sources (captive-propagated, wild high 

predation, wild low predation) in morphology, behaviour, and community effects. Captive-

propagated fish did not simply resemble low predation fish; they showed traits and community 

effects that differed from both wild source types. All model coefficient estimates and likelihood 

ratio test outputs can be found in Appendix B.1. 
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3.4.1 Morphology 

There was significant variation in mosquitofish morphology across source-types, with the largest 

differences between captive-propagated and wild sources (Figure 3.1, Table B.2). Captive-

propagated mosquitofish had more posterior eyes (larger heads) than fish from wild populations 

(likelihood ratio test for source-type effect: χ2 > 10, df = 2, p < 0.01 for both males and females; 

Figure 3.1; Table B.2). Captive-propagated and wild high-predation male mosquitofish both had 

deeper caudle peduncles than male wild low-predation fish (likelihood ratio test for source-type 

effect: χ2 = 11.0, df = 2, p < 0.01; Figure 3.1; Table B.2). 

 

 
 

Figure 3.1. Mosquitofish morphology. Morphology measurements for Gambusia affinis from 

three source types: captive-propagated (black +), high-predation wild (red o), and low-predation 

wild (blue x), with population-level variation within source-types removed. Captive-propagated 

G. affinis had more posterior eyes and deeper caudal peduncles than wild fish. Lines show 
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predictions from general linear mixed models. Note the log-scaled axes. Letters show groupings 

based on Tukey post-hoc tests. 

 

3.4.2 Exploration latency 

The slope and direction of the size-latency relationship varied across source-types and sexes 

(likelihood ratio test for source-type × male length: χ2 = 9.36, df = 2, p < 0.01; likelihood ratio 

test for source-type × female length: χ2 = 9.03, df = 2, p = 0.011; Figure 3.2, Table B.3). Captive-

propagated females had similar exploration patterns to wild high-predation females, while 

captive-propagated males had similar exploration patterns to wild low-predation males. 

Specifically, pair latency increased (exploration decreased) with female size in both captive-

propagated and wild high-predation populations; whereas, pair latency decreased (exploration 

increased) with larger female size in low-predation populations (Figure 3.2). Both the captive-

propagated and wild low-predation pairs showed increased pair latency (decreased exploration) 

with increased male size, whereas wild high-predation pairs showed a weak negative relationship 

between latency (positive with exploration) and male length (Figure 3.2).  

 

3.4.3 In-mesocosm boldness and activity behaviour 

Captive-propagated mosquitofish had similar in-mesocosm boldness and activity behaviour to 

low-predation wild fish. Captive-propagated and low-predation wild mosquitofish stayed farther 

from the observer and deeper in the water column than high-predation wild fish (Likelihood ratio 

test on source-type effect: χ2 > 10, df = 2, p < 0.01 for distance; χ2 = 6.32, df = 2, p = 0.042 for 

depth; Figure 3.3; Table B.6). Captive-propagated and low-predation wild fish were also less 
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active than high-predation wild fish during observation (Likelihood ratio test on source-type 

effect: χ2 > 10, df = 2, p < 0.01; Figure 3.4; Table B.6). 

 

 
 

Figure 3.2. Mosquitofish exploration. Exploration latency for pairs (male-female) of western 

mosquitofish (Gambusia affinis) based on source-type and individual body length, with male and 

female contributions to pair latency shown separately. Vertical axis data are arcsine-square root 

transformed proportions of a 600-second trial spent in an initial refuge before exploring, with 

variation from non-focal fish length (i.e. male length in the female length panels, etc.) and 

population within source-type removed. Lines show predictions from master model (Equation. 
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3.2). Pair latency was analyzed, rather than individual latency, as individuals within a pair had 

correlated leave times (Figure B.2). 

 

 
 

Figure 3.3. In-mesocosm mosquitofish behaviour. Gambusia affinis from a high-predation 

wild source (red o, p) lingered closer to a human observer and higher in the water column than 

captive-propagated (black +, C) or wild low-predation (blue x, n) fish during 150 seconds of 

observation. Source-type means indicated with bold +. Average distances and depths based on 

repeated measurements within each mesocosm are shown as single jittered points. Letters show 

categorization of distance and depth, respectively, based on Tukey post-hoc tests. 

 

 
 

Figure 3.4. Mosquitofish activity. Wild Gambusia affinis shoals from a high-predation source 

(p) were more active than captive-propagated (C) or wild low-predation (n) fish during 150 
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seconds of observation. A shows average frequency of behaviour > rank 1 (see text); B shows 

average frequency of behaviour > rank 2. Thick bars show logit means for each source-type. 

Average activity values based on repeated measurements within each mesocosm are shown as 

single points. Letters show categorizations based on Tukey post-hoc tests. 

  

3.4.4 Ecological consequences 

Fish additions resulted in a trophic cascade, as evident in the generally lower zooplankton and 

higher producer abundances in mesocosm with fish, compared to fishless control mesocosms 

(Figure 3.5). We observed source-type differences in the impact of mosquitofish on all measured 

consumers, but none of our producer metrics (likelihood ratio test for source-type effect on each 

measured consumer: χ2 > 10, df = 2, p < 0.01; Figure 3.5; Tables B.4, B.5). Compared to our two 

wild populations, captive-propagated fish led to reductions in the number of benthic chironomid 

larvae and increases in the number of copepod nauplii (Figure 3.5). Compared to low-predation 

wild fish, high-predation wild fish generated decreases in every pelagic consumer and increases 

in benthic chironomid larvae, which were most abundant in the high-predation source 

mesocosms (Figure 3.5). 
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Figure 3.5. Ecological effects of mosquitofish introduction and source-type. Mesocosm 

community responses to different Gambusia affinis source-types: captive-propagated fish (C), 

low-predation wild fish (n), and high-predation wild fish, with variation from fish biomass, sex 

ratio, and fry count removed. Dashed lines show means from fishless control mesocosms. Fish 
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presence caused a trophic cascade in almost all community variables. Fish source-type had little 

effect on producers (Table B.4), but captive-propagated fish caused a consumer shift that 

strongly favored copepod nauplii and cladocerans and lowered benthic chironomid abundance 

(Table B.7). All responses above were measured 3 weeks after fish introduction, but are largely 

consistent with trends observed earlier in experimentation (Figure B.5). Letters represent 

significant differences among fish population sources based on Tukey post-hoc tests. 

 

3.5 DISCUSSION 

3.5.1 Captive propagation breaks wild trait patterns 

Multiple populations of captive-propagated mosquitofish consistently demonstrated 

combinations of morphological and behavioural traits that deviated from typical suites of high- 

or low-predation wild traits. This result suggests that captive rearing conditions are not merely 

equivalent to other low-predation environments. Captive environments have high densities and 

few predators—much like low-predation wild environments—but also have abundant food and 

periodic removal of individuals—much like high-predation wild environments. Fitting with this 

unique combination of traits, we found evidence that captive-propagated phenotypes had 

cascading effects on pond communities unlike those from either wild type. 

 

Multiple lines of captive-propagated mosquitofish had larger heads and caudle peduncles than 

wild fish (Figure 3.1), which is the opposite trend reported in the bulk of hatchery fish studies 

(which mostly cover salmonids) (Fleming and Einum, 1997; Fleming et al., 1994; Swain et al., 

1991), but see (Von Cramon-Taubadel et al., 2005). Larger tails have been associated with high 

predation in wild mosquitofish (Langerhans, 2009; Langerhans et al., 2004) and other poeciliids 
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(Magurran et al., 1992; Palkovacs et al., 2011; Reznick and Endler, 1982), but head size changes 

are reportedly variable in direction (Langerhans, 2009; Langerhans et al., 2004; Magurran et al., 

1992; Palkovacs et al., 2011; Reznick and Endler, 1982). While fish in most captive propagation 

systems are free from interspecific predation, the enhanced burst-swimming ability conferred by 

a larger caudle peduncle (Langerhans, 2009) may also aid fish in frenzied food capture, net 

evasion (van Wijk et al., 2013), or escape from cannibalism—which can be intense in dense 

populations of captive-propagated mosquitofish (Dionne, 1985). Furthermore, the larger head 

sizes we observed in captive-propagated mosquitofish may increase perceptive ability, aiding in 

all of the above as well. 

 

Female captive-propagated and wild high-predation mosquitofish both exhibited negative size-

exploration relationships, while wild low-predation females drove positive size-exploration 

relationships (Figure 3.2). Decreased exploration with size may be a signature of selection 

against exploratory individuals more easily detected by largemouth bass (which are not gape 

limited when feeding on mosquitofish) in high predation wild females (Blake and Gabor, 2014) 

and more easily captured by nets for stocking-out in captive-propagated females (van Wijk et al., 

2013). In males, captive-propagated mosquitofish and wild low-predation mosquitofish both 

showed decreased exploration tendency with larger size. Our observed trend may indicate an 

energetic tradeoff driven by determinate growth in males, in which smaller, more sexually 

aggressive (Hughes, 1985), exploratory males allocate fewer energetic and material resources to 

growth. As we observed, this tradeoff may be stronger in captive propagation facilities and wild 

low-predation ponds compared to wild high-predation ponds due to more intense competition. 
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During exposure to an observer, captive-propagated and wild low-predation mosquitofish were 

less active than high-predation wild mosquitofish and remained farther in lateral distance and 

depth from the observer (Figures 3.3 and 3.4). Studies of other poeciliids (Archard and 

Braithwaite, 2011; Brown et al., 2005; Magurran et al., 1992) and of European minnows 

(Phoxinus phoxinus) (Magurran, 1990) show increased inspection activity and decreased 

inspection distance in high-predation fish. Such behaviour suggests that efficient risk-perception 

can be a component of antipredator adaptation, and as such high-predation individuals may take 

better advantage of times when predators are not nearby. 

 

3.5.2 Captive propagation alters communities 

Captive-propagated mosquitofish significantly rearranged consumer communities. Relative to 

both wild source-types, captive-propagated mosquitofish reduced the abundance of benthic 

invertebrates (chironomids) and increased the abundance of pelagic invertebrates (zooplankton) 

(Figure 3.5). This community change suggests a substantial shift in captive fish foraging niche 

and/or reduced ability to capture smaller, more mobile prey. The more posterior eyes of captive-

propagated fish (Figure 3.1) may decrease recognition and capture of small, mobile prey. Captive 

lines that become adapted or habituated to food that settles to the bottom of tanks might maintain 

these benthic feeding habits in the wild. Furthermore, the behavioural changes in captive 

propagated fish—which may be due to avoidance of human “predators” (see above)—may shift 

the preferred habitat of captive propagated mosquitofish to benthic areas away from possible net 

capture. Indeed, changes in feeding style or efficiency have been noted for captive populations of 

other species (Huntingford, 2004), including masu salmon (Oncorhynchus masou) (Reinhardt, 

2001), rainbow trout (Oncorhynchus mykiss) (Lucas et al., 2004), Atlantic salmon (Einum and 
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Fleming, 1997), and zebra danio (Robison and Rowland, 2005). These prior studies did not 

examine the effects of feeding differences on foodwebs, but widespread observations of feeding 

changes caused by captive propagation suggest that broader ecological effects, as shown here, 

could be common. Although rarely considered, such a niche shift—as opposed to some general 

reduction in vigor—may be at least partly responsible for observations of low fitness of captive 

fish lines stocked into wild environments. Likewise, niche shifts might partly explain why 

captive-propagated fish sometimes fail to achieve biocontrol goals (Blaustein, 1992). 

 

While mosquitofish presence significantly altered pelagic production through a trophic cascade 

(Figure 3.5), differences among mosquitofish source-types in invertebrate community structure 

did not overtly extend to primary producers. Cascading effects of captive propagation on 

producers could have occurred on longer or shorter timescales than our sampling schedule, or 

could have been missed by our particular producer metrics. Community compensation in the 

producer or consumer trophic levels could also dampen the effect of mosquitofish phenotype on 

producers (Pace et al., 1999) and could be missed by measures like total chlorophyll-a and GPP 

(i.e. cryptic eco-evolutionary trophic cascades, Kinnison et al., 2015). In another model system 

for evo-to-eco effects, evolutionary divergence in stickleback (Gasterosteus aculeatus) feeding 

modes led to consumer community divergence, but this consumer restructuring did not always 

cascade down to the producer level (Des Roches et al., 2013). 

 

In the ecological frame, a shifting niche in captive fish lines has potentially broad ecosystem 

implications. Phenotypic divergence leading to shifts from pelagic to benthic feeding, as we 

observed in captive-propagated sources, has the potential to alter food web interactions and 
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nutrient pathways (Tuckett et al., 2017) potentially leading to a range of unintended ecological 

consequences, from simple community composition shifts to full ecosystem regime shifts (Evans 

and Loftus, 1987; Jackson et al., 2014; Tuckett et al., 2017). Given that much fish stocking 

occurs into already stressed ecosystems, the scope and consequences of such divergence 

deserves much broader consideration. 

 

The consistent morphological and behavioural differences between replicate populations of 

captive and wild mosquitofish suggest that captive propagation has an identifiable phenotypic 

and ecological signature in mosquitofish. While we focused on mosquitofish taken directly from 

their respective sources to reflect the reality of stocking and translocation programs (i.e. instead 

of using common garden rearing), there is widespread evidence for genetic local adaptation in 

Gambusia spp. (Brown, 1985; Meffe et al., 1995; Stearns, 1983a), suggesting that at least some 

of the trait variation we observed has a genetic basis. Thus, the community changes wrought by 

captive-propagated mosquitofish suggest that the syndrome of captive propagation extends to the 

ecological role of fish after release. This syndrome may eventually be reversed through plastic 

and genetic re-adaptation to the wild (i.e. feralization (Daniels and Bekoff, 1989; Stringwell et 

al., 2014)), dampening the environmental impact of one-time fish introductions. However, 

continued introduction of captive propagated fish to the same area (e.g. supplementation) is 

likely to sustain the persistence and ecological impacts of captive phenotypes. Based on the high 

frequency of continued intentional (Pister, 2001) or unintentional (Naylor et al., 2005) releases of 

captive-propagated organisms into the wild, the degree to which captive propagation alters the 

ecological role and ecosystem services of fish demands greater attention. 
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3.5.3 Conclusions 

A unique combination of environmental conditions and selective processes—likely including 

competition, harvest, and cannibalism—creates unique combinations of morphological and 

behavioural traits in captive-propagated mosquitofish. Such trait change also appears to shift the 

foraging niche of captive bred mosquitofish to favor consumption of relatively immobile, benthic 

food resources. This change in feeding niche altered aquatic prey community outcomes of fish 

introduction. Despite the potential negative environmental consequences of mosquitofish 

introductions (Pyke, 2008), mosquitofish remain a widespread tool for biocontrol, and large-

scale introduction is likely to continue (Swanson et al., 1996). We suggest that the choice of 

stocking from wild translocations or captive sources should be a conscious decision that weighs 

the potential broader ecological effects and services afforded by different phenotypes. Infusions 

of wild fish into captive programs, and captive environments that more closely mimic wild 

conditions are common recommendations to slow inadvertent domestication (Hutchings and 

Fraser, 2008). Our results suggest that these tools may also have broader roles in achieving some 

ecosystem service goals of stocking. 
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CHAPTER 4 

PREY EXPERIENCE CRIPTICALLY SHIFTS TROPHIC CASCADES FROM 

DENSITY- TO TRAIT-MEDIATED 

 

4.1 ABSTRACT 

Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains 

about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) 

effects in trophic cascades. This debate has largely ignored the role of prior prey experience with 

predators, which shapes prey traits (through genetic and plastic adaptation) and influences prey 

survival (and therefore density). Here, we investigate the cascading role of prey experience 

through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-

naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), 

zooplankton, and phytoplankton. Predator-naïve mosquitofish suffered higher predation rates, 

which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited 

higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in 

strength, leading to indistinguishable ecological signatures. Therefore, the accumulation of prey 

experience with predators can cryptically shift cascade mechanisms from density- to trait-

mediated. 

 

Keywords: predator experience, trophic cascades, consumptive effects, non-consumptive effects, 

trait-mediated indirect interactions, cryptic dynamics, Gambusia affinis 
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4.2 INTRODUCTION 

Trophic cascades—effects of predators that propagate downward through food webs (Ripple et 

al., 2016)—are a dominant but frequently-revisited (Borer et al., 2005; Polis et al., 2000; Strong, 

1992) paradigm in ecology. Understanding the mechanisms underlying trophic cascades is 

essential to understanding how manipulation of one trophic level will effect entire food webs 

(Fahimipour et al., 2017; Finke and Denno, 2004). Trophic cascades are of broad environmental 

concern since the addition of novel predators (e.g. invasive species) (Walsh et al., 2016) or 

removal of top-predators (e.g. harvest) (Daskalov et al., 2007; Frank et al., 2005) can reshape 

entire food webs, often in undesirable ways. 

 

Trophic cascades can be driven by consumptive—or density-mediated—effects, in which changes 

in prey abundance propagate through food webs, and non-consumptive—or trait-mediated—

effects, in which changes in prey functional traits (often behavior) propagate (Grabowski and 

Kimbro, 2005; Preisser and Bolnick, 2008a; Schmitz et al., 1997). There has been persistent 

debate in the literature over which mechanism is stronger or more common, with little practical 

consensus (Křivan and Schmitz, 2004; Peacor et al., 2013; Preisser and Bolnick, 2008b; Schmitz 

et al., 2004; Trussell et al., 2006). However, density- and trait-mediated interactions are likely 

inter-dependent, as prey traits that generate trait-mediated trophic cascades (e.g. predator 

avoidance) also increase survival (Sih et al., 2010). Thus, interacting density- and trait-mediated 

processes should be considered together to assess the nature and strength of trophic cascades and 

maximize predictive power (Griffiths et al., 2018). Our work here aims to do just this, 

elucidating the role of prey experience with predators in shaping whether density- or trait-

mediated processes will dominate. 
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Prior experience with predators can mediate the extent to which predator introductions cause 

density and trait changes in prey populations. Through phenotypic plasticity (Lönnstedt et al., 

2012; McCormick and Holmes, 2006), trans-generational plasticity (e.g. epigenetic and maternal 

effects) (Storm and Lima, 2010), and genetic evolution (Wund et al., 2015), accrued experience 

with predators can lead prey populations to display antipredator behaviors that enhance survival. 

Experience with native predators may also increase prey survival rates in the face of a novel 

predator (Dunlop-Hayden and Rehage, 2011). Antipredator behaviors that increase prey survival 

include fleeing (Langerhans, 2009), aggregating (Magurran et al., 1992; Seghers, 1974), freezing 

(Eilam, 2005; Vilhunen and Hirvonen, 2003), hiding (Romare and Hansson, 2003; Templeton 

and Shriner, 2004), and predator inspection (Magurran, 1986; Magurran et al., 1992). Such 

behaviors may lead to a decrease in feeding in a given habitat if they restrict the space or time 

available for foraging (Schmitz et al., 2004). Thus, natural selection imposed by predators may 

shift populations along a feeding-survival tradeoff where individuals from predator-experienced 

populations survive longer but feed less in the face of predators. This evolutionary tradeoff could 

shape the strength of trait- and density-mediated processes (Peacor et al., 2013). Furthermore, 

evolution in the face of predators—presumably along this tradeoff—has already been 

theoretically and empirically shown to have cascading ecological effects by modifying feeding 

behavior, morphology, and effectiveness (Bassar et al., 2010; Ousterhout et al., 2018; Palkovacs 

et al., 2011; Start, 2018; Wood et al., 2018). 

 

We hypothesize that prior prey experience with predators dictates the extent to which trophic 

cascades induced by predators are density- or trait-mediated (Figure 4.1). Naïve prey are less 

likely to exhibit antipredator behaviors, and thus may suffer high mortality upon predator 
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introduction, driving a density-mediated trophic cascade. Experienced prey are more likely to 

employ antipredator behaviors, which decrease mortality rates (Sih et al., 2010). However, 

reduced feeding in risky habitats should alternatively generate a trait-mediated trophic cascade 

(Trussell et al., 2006). In theory, the nature of this feeding-survival tradeoff should dictate the 

relative strength of interacting density- versus trait-mediated trophic cascades.  

 

 

Figure 4.1. Mosquitofish experience and trophic cascade mode. Anti-predator experience, 

which is driven by genetic and plastic adaptation, may shape the strength of density- and trait-

mediated trophic cascades. Predator-naïve prey are predicted to have high feeding and high 

mortality rates, leading to a density-mediated trophic cascade. Predator-experienced prey are 

predicted to have low feeding and low mortality rates, driving a trait-mediated trophic cascade. 
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Here we investigate the cascading ecological consequences of prior prey experience with 

predators for western mosquitofish (Gambusia affinis) exposed to piscivorous largemouth bass 

(Micropterus salmoides). In our experiment, prey experience represents a combination of genetic 

evolution, maternal effects, and phenotypic plasticity. Mosquitofish are an ideal study system to 

address the cascading effects of prey experience because they have strong effects on pelagic 

communities (Hurlbert and Mulla, 1981; Hurlbert et al., 1972; Pyke, 2008) and show potential 

for adaptation and plasticity in response to predators (Langerhans and Makowicz, 2009; 

Langerhans et al., 2004). We established pond mesocosms seeded with phytoplankton and 

zooplankton, then added bass and predator-experienced or predator-naïve source mosquitofish. 

We quantified cascading effects of predators as contingent on mosquitofish experience, 

separating density-mediated (survival) and trait-mediated (per-capita consumption) effects. We 

detected trophic cascades mechanistically by relating changes in mosquitofish density throughout 

the experiment – caused by bass predation – to changes in zooplankton density. Mosquitofish 

introduction in this system has a clear trophic cascade signature, with most zooplankton 

abundances decreasing and phytoplankton increasing as a result (Fryxell and Palkovacs, 2017; 

Fryxell et al., 2015, 2016; Hurlbert et al., 1972). Therefore, we expected bass introduction to 

generally cause the opposite response, decreasing mosquitofish abundances, increasing 

zooplankton, and decreasing phytoplankton. 

 

4.3 METHODS 

4.3.1 Fish sources 

We collected mosquitofish using hand nets and beach seines from two ponds in eastern 

California in March 2016: Fish Slough Northeast Spring (N 37.518003°, W 118.400157°), which 
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is protected from downstream predators (United States Bureau of Land Management. Bishop 

Resource Area and U.S. Fish and Wildlife Service, 1985) by a dam and diligent predator 

monitoring and removal (US Fish and Wildlife Service, 2005), and Furnace Creek Pond (N 

36.460453°, W 116.872978°), which contains a high density of largemouth bass (Micropterus 

salmoides) and no other piscine mosquitofish predators. Both of these ponds are small, 

clearwater, spring-fed desert ponds. Largemouth bass are a common mosquitofish predator and 

play a strong role in mosquitofish functional ecology(Langerhans, 2009; Langerhans et al., 

2004). We classified mosquitofish from these ponds as predator-naïve and predator-experienced, 

respectively. Mosquitofish density and body size in these populations are representative of other 

experienced and naïve populations (Table C.1). As we were concerned with the maximum 

functional scope of mosquitofish antipredator experience (plastic and genetic), we used fish 

collected from the wild in this experiment. We held fish in 100 L tanks (3 tanks per population) 

for 8 days on a diet of TetraMin tropical flakes before they were stocked into experimental 

mesocosms. 

 

4.3.2 Mesocosm experiment 

Our experiment used 16 mesocosms in Santa Cruz, California in March 2016. We filled each 

1,100 L mesocosm with municipal water and 18.5 L of sand, then added 4 L of homogenized 

sediment from two nearby ponds: West Lake (N 36.976083°, W 122.045683°) and Antonelli 

Pond (N 36.955566°, W 122.060489°). We also added homogenized zooplankton from the above 

ponds. We installed plastic mesh cylinders (29 cm diameter, 22 mm mesh) filled with plastic 

artificial macrophytes as mosquitofish refuges from predation (mosquitofish could enter the 

refuge and used it freely; bass were excluded by the mesh). We allowed mesocosms to 
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equilibrate for 15 days prior to fish introductions. We introduced 10 predator-experienced or 

predator-naïve mosquitofish into each mesocosm (8 mesocosms per fish source). This density of 

mosquitofish (3.64 m-2) falls within the range of mosquitofish densities observed in the wild 

from ponds with largemouth bass (Table C.1). We introduced a single one-year-old bass from a 

hatchery source (Freshwater Fish Co., Elk Grove CA) into each mesocosm. 

 

To measure the effects of largemouth bass on mosquitofish density, we conducted weekly visual 

counts of the mosquitofish in each mesocosm. An observer standing adjacent to each mesocosm 

counted all mosquitofish seen during a 5-minute interval. A second observer repeated this 

process for an additional 5-minute interval. If the mosquitofish counts differed between 

observation periods, a third observer did an additional 5-minute observation. At the end of the 

experiment, we used paired visual counts (using the methods above) and exhaustive netting of all 

mosquitofish in each mesocosms to build an observed ~ actual mosquitofish count relationship 

(see Appendix C.1, Figure C.1, Table C.2). We used this relationship to correct our mosquitofish 

counts from earlier in the experiment; these corrected counts were used for all successive 

analyses. 

 

We sampled zooplankton and phytoplankton weekly for 6 weeks after fish introduction. 

Zooplankton were collected from 1 L depth-integrated water samples, preserved in 80% ethanol, 

and identified under a dissecting microscope. Phytoplankton concentrations were measured using 

pelagic chlorophyll-a (chl-a), collected using 1L depth integrated water samples, filtered onto 

0.7 μm filters (Whatman GF/F), and measured using fluorometry (Turner Designs, Trilogy 
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Module CHL-NA). We estimated 24-hour gross primary production (GPP) using diel changes in 

dissolved oxygen concentrations (Harmon et al., 2009).  

 

4.3.3 Analyses 

Cascading effects of mosquitofish experience. We conducted all analyses in this study in R (R 

Core Team, 2016), using default packages, except where specified. We analyzed per-capita 

effects of mosquitofish on consumers (zooplankton) and producers (phytoplankton) using a two-

step general linear mixed model. The first step predicted responses based solely on a random 

time effect. The second step predicted the residuals from the first step with a fixed, source-

specific fish abundance effect and a random mesocosm identity effect. Removing time effects 

before considering fish abundance effects avoided conflating successional changes in mesocosm 

communities with top-down effects of mosquitofish abundance. Our model formulations were: 

(4.1.a) 

𝑁 = 𝛽0 + 𝑇 + 𝜀0 

 

(4.1.b) 

𝜀0 = 𝛽1 + 𝐹
1
3 + 𝐶𝑆 + 𝑀 + 𝜀1 

 

where N is the concentration or density of each response variable, β0 and β1 are intercepts, T is a 

random time effect, ε0 and ε1 are residuals, F is number of mosquitofish (calculated as the 

average of fish observed at the beginning and end of each week), CS is a source-specific 

coefficient, and M is a random mesocosm identity effect. We ln(X + 1) transformed zooplankton 

abundances for normality. We included the effect of mosquitofish as a nonlinear term due to 



- 78 - 

obvious non-linear trends in the data (see Results). We included all time points for this analysis 

(i.e. mosquitofish survival data from weeks 1-6 and ecological data from weeks 2-6—due to the 

way F was calculated). We used maximum-likelihood (non-restricted) model fitting within the 

lme4 package in R for all mixed models (Bates et al., 2015). 

 

For each response variable, we used likelihood ratio tests to sequentially test for effects of 

mosquitofish density, then source-specific effects of mosquitofish density. Significant source-

specific effects of mosquitofish density indicated that mosquitofish from the different sources 

had different per-capita consumptive or cascading effects on zooplankton or producers, 

respectively. We analyzed the following broad taxonomic groups for zooplankton: all adult 

crustaceans, copepods (together or separated into adults, copepodites, and nauplii), cladocerans 

(together, or separated into Bosmina, Daphnia, and Ceriodaphnia), and rotifers. Mosquitofish 

consume all of the above taxa (Mansfield and Mcardle, 1998) and commonly reduce their 

abundances upon introduction (Hurlbert and Mulla, 1981). 

 

Mosquitofish survival. We analyzed weekly mosquitofish survival rate using a general linear 

model of the form: 

(4.2) 

𝐹𝑡+1 = 𝐹𝑡 ∙ 𝐿𝑆 

 

where F is number of mosquitofish, t is time (in weeks), and LS is a source-specific coefficient. 

We used a likelihood ratio test to determine whether LS varied significantly across predator-

experienced and predator-naïve sources. 
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4.4 RESULTS 

Our mesocosms showed a clear temporal pattern of a bass-mosquitofish-zooplankton-

phytoplankton trophic cascade, such that after bass were added, 1) mosquitofish were frequently 

consumed or confined to cover, 2) most pelagic zooplankton increased (Figure 4.2, C.2) and 3) 

pelagic chlorophyll-a decreased during the course of the experiment (GPP, which includes 

pelagic and benthic producers and turnover rates, increased) (Figure C.2). These patterns were 

consistent with our expectations of a trophic cascade driven by bass consumption of 

mosquitofish, as they were roughly the opposite of documented trophic cascades generated by 

mosquitofish introduction (Fryxell and Palkovacs, 2017; Fryxell et al., 2015, 2016; Hurlbert et 

al., 1972). Interestingly, there were no major differences in any observed zooplankton or 

producer abundances across mosquitofish treatments (Figure 4.2, C.2). 

 

The strength of the cascade, measured in terms of zooplankton dynamics, was approximately 

equal between the predator-naïve and predator-experienced mosquitofish populations, but the 

mechanism differed. The density-mediated effect was stronger when mosquitofish were 

predator-naïve—bass increased zooplankton density by reducing mosquitofish density. In 

contrast, the trait-mediated effect was greater when mosquitofish were predator-experienced—

bass increased zooplankton density by suppressing mosquitofish feeding. Thus, the tradeoff 

between feeding and survival across mosquitofish populations shaped the relative strength of the 

density- and trait-mediated cascade mechanisms in this experiment. 
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Figure 4.2. Temporal emergence of trophic cascades following bass additions. Abundances 

of copepod nauplii (A), rotifers (B), and adult crustaceans (C) all increased sharply after bass 

introduction. Pelagic Chl-a (D) decreased over time. The strength of this cascade was similar in 

mesocosms with predator-naïve and predator-experienced mosquitofish despite significantly 

lower survival (and therefore lower abundance) of predator-naïve mosquitofish with bass. Points 

and bars are mean ± one standard error; N = 8 per point. 

 

4.4.1 Cascading effects of mosquitofish source 

Mosquitofish had negative, source-specific, per-capita effects on copepods and rotifers (Table 

4.1, Figure 4.3), with the trend in copepods mostly driven by nauplii (Table 4.1). Mosquitofish 

also had a negative marginally-significant effect on total adult crustaceans (Table 4.1, Figure 
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4.3). In all cases, predator-naïve mosquitofish had stronger estimated per-capita consumptive 

effects on zooplankton than predator-experienced mosquitofish. Nauplii and rotifers were by far 

the most numerous zooplankton, and both increased during the experiment as a result of the 

trophic cascade (Figure 4.2). Mosquitofish had no effect on any other zooplankton, GPP, or 

pelagic chl-a (Table 4.1). 

 

4.4.2 Mosquitofish survival 

Predator-experienced mosquitofish had significantly higher weekly survival rates compared to 

predator-naïve mosquitofish (0.86 ± 0.04 vs. 0.52 ± 0.09, respectively; χ2 = 11.4, df = 1, p < 

0.001; Figure 4.4). This survival difference led predator-experienced mosquitofish to persist 

much longer in mesocosms than predator-naïve mosquitofish (Figure 4.4). Combining the 

estimated source-specific effects of mosquitofish on zooplankton (above) and survival rates 

revealed a feeding-survival tradeoff, in which the predator-naïve population had higher apparent 

zooplankton consumption rates but lower survival rate (Figure 4.5). 
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Figure 4.3. Effects of mosquitofish density on zooplankton density. Prey densities were 

negatively related to mosquitofish densities, with the slope of the relationship dependent on 

mosquitofish source. Mosquitofish from a predator-naïve source had a strong per-capita effect 

(i.e. consumption rate) on copepods nauplii (A), rotifers (B), and adult crustaceans (C), while 

mosquitofish from a predator-experienced source had a weak per-capita effect. Lines show 
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general linear mixed model predictions for each source-type. Data from weeks 2-6 are pooled, 

with variation from time and mesocosm identity effects removed; N = 80. 

 

Dependent variable 

Explanatory variable 

Fish⅓ Fish⅓ ∙ Experience 

χ2 df p χ2 df p 

All adult crustaceans 0.0122 1 0.91 3.67 1 0.055 

All copepods 0.11 1 0.74 10.5 1 0.0012 

Adult copepods 1.05 1 0.30 0.90 1 0.34 

Copepodites 0.49 1 0.48 0.40 1 0.53 

Copepod nauplii 0.21 1 0.65 3.93 1 0.047 

All cladocerans 0.025 1 0.87 2.01 1 0.16 

Bosmina 0.085 1 0.77 1.74 1 0.19 

Daphnia 0.17 1 0.68 0.13 1 0.72 

Ceriodaphnia 0.31 1 0.58 2.84 1 0.09 

Rotifers 2.67 1 0.10 6.01 1 0.014 

Chlorophyll a 0.41 1 0.52 0.94 1 0.33 

GPP 1.54 1 0.22 0.73 1 0.39 

 

Table 4.1. Mosquitofish effects on zooplankton and producers. Mosquitofish had source-

specific per-capita effects on some groups of zooplankton but not primary producers. Tests 

shown are likelihood ratio tests, conducted sequentially (fish, then fish ∙ experience). Null model 

includes fixed time factor effect and random mesocosm identity effect. N = 80 for each model. 



- 84 - 

 

Figure 4.4. Mosquitofish survival in the face of bass predation. Mosquitofish from a from a 

predator-experienced source had higher week-to-week survival rates than mosquitofish from a 

predator-naïve source (A) and thus persisted longer in mesocosms with bass (B). Data from 

weeks 1-6 are pooled for (A), and points are jittered to aid visual comprehension. Lines on (A) 

show general linear model predictions for each source-type. Bars on (B) show ± one standard 

error. N = 80 for (A) and 8 per point for (B). 
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Figure 4.5. Feeding-survival tradeoffs. Mosquitofish exhibited a feeding-survival tradeoff: 

predator-experienced mosquitofish had higher survival but lower consumption rates on copepods 

(A) and rotifers (B). Points are source-level estimates (i.e. LS and CS from Equations 4.2 and 

4.1.b, respectively). Bars indicate ± 1 standard error. 
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4.5 DISCUSSION 

Our results show that prey experience with predators—likely resulting from a mixture of genetic 

and plastic adaptation—determined the extent to which mosquitofish density versus traits drove 

the bass-mosquitofish-zooplankton trophic cascade. Predator-naïve mosquitofish had lower 

survival in the presence of bass but higher per-capita feeding rates, whereas predator-

experienced mosquitofish had higher survival and lower per-capita feeding rates. Thus, the high 

mortality of predator-naïve mosquitofish facilitated a stronger density-mediated trophic cascade, 

whereas the low feeding rate of predator-experienced mosquitofish facilitated a stronger trait-

mediated trophic cascade (Figure 4.1). Importantly, the feeding-survival tradeoff exhibited 

across mosquitofish populations (Figure 4.5) generated net trophic cascades of roughly equal 

strength. In other words, there was no significant difference in zooplankton abundances between 

the two treatments despite the predator-naïve treatment having significantly lower mosquitofish 

density following bass addition. Thus, increasing prior prey experience with predators cryptically 

shifted the dominant trophic cascade mechanism from density-mediated to trait-mediated.  

 

Accumulating prey experience with predators through plasticity and adaptation may mediate the 

cascading effects of predator introductions, shifting the cascade mechanism from density-

mediated to trait-mediated as prey become more experienced. The degree to which this shift 

remains ecologically cryptic depends on the relative strength of opposing density (survival) and 

trait (feeding) mechanisms. In our experiment, these opposing mechanisms were roughly equal 

in effect size. The decrease in density-mediated effects was compensated by an increase in trait-

mediated effects, leading the net strength of the cascade to remain about constant. This scenario 

represents a cryptic shift in the mechanism driving the trophic cascade. However, such complete 
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compensation may not be present in all instances. Indeed, the relative strength of density and 

trait effects may determine whether antipredator traits reduce trophic cascades (density > trait), 

remain cryptic (density ≈ trait), or amplify trophic cascades (density < trait). For predator 

introductions into communities with predator-experienced prey, trait-mediated processes may 

dominate trophic cascades from onset (Carpenter et al., 1987). 

 

This work adds to the growing literature suggesting that population adaptation, in all its genetic 

and plastic forms, can generate or alter trophic cascades. Contemporary adaptation in upper 

trophic levels can cause cascading top-down effects on food webs (Ousterhout et al., 2018; 

Palkovacs et al., 2012; Start, 2018; Walsh et al., 2012). The rearranging of relative interaction 

strengths during a classic density-mediated trophic cascade can also alter selection pressures on 

lower trophic levels, driving contemporary adaptation (Wood et al., 2018). Prey adaptation at the 

population (Mooney et al., 2010) or community level (Fahimipour et al., 2017) can mediate the 

strength and reach of trophic cascades (Wood et al., 2018). Our work here demonstrates that 

adaptation can not only affect the strength and extent of trophic cascades, but also the specific 

mechanisms underlying trophic cascades. 

 

A cryptic shift from density- to trait-mediated trophic cascades may be a stabilizing force in food 

webs. The increased survival of predator-experienced mosquitofish could take the form of a 

rescue dynamic (Gonzalez et al., 2013), which keeps mosquitofish at higher densities, buffering 

them against direct extirpation or indirect risks from processes like Allee effects (Gascoigne and 

Lipcius, 2004). A more stable, defended mosquitofish resource may also prevent bass from self-

extirpating through resource depletion (Yamamichi and Miner, 2015). Weaker interaction 
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strengths between bass, mosquitofish, and zooplankton generated by antipredator traits may also 

contribute to increased overall food-web network stability (McCann et al., 1998; Neutel et al., 

2002).  

 

While we found strong evidence for a cascading effect of bass on producers, we did not detect a 

measurable effect of mosquitofish experience on pelagic producers (Table 4.1, Figure C.2). This 

result could be because cladocerans, especially Daphnia, were uncommon in all mesocosms 

throughout the experiment (Figure C.2). Daphnia are highly efficient grazers, and their reduction 

by mosquitofish is known to have large effects on the abundance and composition of pelagic 

phytoplankton (Hurlbert et al., 1972). Thus, with Daphnia comparatively rare throughout this 

experiment, effects of mosquitofish experience on zooplankton may not have been transmitted 

strongly to phytoplankton. Alternatively, changes in phytoplankton community composition (i.e. 

compensation) can sometimes mask overall changes in phytoplankton density (Bell, 2002; 

Sommer et al., 2003; Tessier and Woodruff, 2002). Thus, we may have failed to detect 

compositional changes that might have occurred in the phytoplankton community. 

 

4.5.1 Conclusions 

Our results show that density- and trait-mediated effects are functionally interconnected through 

tradeoffs underlying the antipredator traits of prey, and their relative importance in trophic 

cascades can be driven by prior prey population experience with predators. Here we found that 

increasing prey experience cryptically shifted the trophic cascade mechanism from density-

mediated to trait-mediated. Our results suggest that debates about the dominant cascade 

mechanism in nature may be a false dichotomy, since traits that reduce feeding in the presence of 
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predators also increase survival. It may therefore be profitable to broadly consider cascade 

mechanisms along a continuum of prey experience with predators. 
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CHAPTER 5 

ECO-EVOLUTIONARY COMPETITION-DEFENSE TRADEOFFS IN WESTERN 

MOSQUITOFISH 

 

5.1 ABSTRACT 

Evolution can contemporaneously interact with ecology, leading to eco-evolutionary dynamics. 

Competition-defense tradeoffs are an essential mechanism connecting contemporary evolution 

and ecology by linking traits of taxa to densities of their predators and prey, thereby setting the 

stage for eco-evolutionary dynamics. Here we investigate the nature of genetic competition-

defense tradeoffs in western mosquitofish (Gambusia affinis), a model species for eco-

evolutionary dynamics. We use competition (growth) and defense (survival around bass) 

mesocosm trials on a mixture of common-reared mosquitofish from replicate populations within 

four backgrounds: predator-free, bass, bluegill, and captive propagation. We document a 

competition-defense tradeoff dependent on body size within backgrounds, but not populations. 

This finding suggests that selection along tradeoffs is very strong within populations leading 

local optimization that nonetheless varies among populations within backgrounds. Therefore, 

such variation is likely a key determinant of the strength and scope of eco-evolutionary 

dynamics. 

 

Key words: eco-evolutionary dynamics, tradeoffs, competition, antipredator defenses, Gambusia 

affinis, evolution of body size 
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5.2 INTRODUCTION 

Eco-evolutionary dynamics are a growing paradigm linking evolution and ecology (Hendry, 

2016; Schoener, 2011). Mounting evidence demonstrates that evolution can occur 

contemporaneously with ecology (Carroll et al., 2007; DeLong et al., 2016; Hendry and 

Kinnison, 1999; Kinnison and Hendry, 2001), suggesting that evolutionary and ecological 

processes can interact dynamically (Fussmann et al., 2007; Hairston et al., 2005). Such dynamic 

interactions allow for environmental change to cause contemporary trait evolution (Gonzalez et 

al., 2013; Grant and Grant, 2002), and for contemporary trait evolution to cause environmental 

change (Des Roches et al., 2018; Palkovacs et al., 2012). When these pathways mutually interact 

through the same traits, eco-evolutionary feedbacks can occur (Post and Palkovacs, 2009). While 

certain (negative) eco-evolutionary feedbacks can be a source of food web stability, others can 

be destabilizing (Cortez et al., 2018; Marrow and Cannings, 1993), or allow small perturbations 

to cause large food web changes (Audzijonyte et al., 2013a; Kuparinen et al., 2016).  

 

One major focus for eco-evolutionary dynamics has been evolution during predator-prey 

interactions. In some cases, evolution of prey defenses can dampen the impact of introduced 

predators (Pimentel, 1988; terHorst et al., 2010; Yamamichi and Miner, 2015). In other cases, 

evolution of prey in ecological time can lead to novel predator-prey density cycling (Abrams and 

Matsuda, 1997b; Jones and Ellner, 2007; Yoshida et al., 2003). This eco-evolutionary cycling 

tends to be longer in nature than classic predator-prey cycling, and has a stronger offset, with 

predator and prey densities ½ phase offset (antiphase) rather than ¼ phase (Abrams and 

Matsuda, 1997b; Yoshida et al., 2003). In some cases, prey evolution may occur quickly enough 

to prevent prey densities from changing at all (i.e. a cryptic evolutionary rescue (Kinnison et al., 
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2015)), causing only predator densities to cycle (Yoshida et al., 2007). These cycles may be a 

source of system instability, either by being inherently destabilizing (Abrams and Matsuda, 

1997a), or by frequently allowing predator or prey densities to drop dangerously low (Zhou et 

al., 2005). Eco-evolutionary predator-prey cycling has been documented in numerous “classical” 

predator-prey dynamics (Hiltunen et al., 2014). 

 

Eco-evolutionary predator-prey dynamics can have broader food web impacts. Prey evolution at 

the population (Mooney et al., 2010; Ousterhout et al., 2018) or community level (Fahimipour et 

al., 2017) can alter the cascading impact of predator dynamics. Specifically, the trophic level at 

which contemporary evolution occurs can determine whether evolution dampens or exaggerates 

trophic cascades (Wood et al., 2018). In addition to affecting the strength of trophic cascades, 

prey adaptation can also affect the mode of trophic cascades, with predator-naïve prey 

facilitating density-mediated cascades, and predator-adapted prey facilitating trait-mediated 

cascades (Wood et al., in prep). 

 

The theoretically shared mechanism behind eco-evolutionary predator-prey dynamics is a 

competition-defense tradeoff, in which feeding ability and vulnerability to predators are 

positively related (Yoshida et al., 2004). This tradeoff facilitates eco-evolutionary dynamics by 

tying prey traits to predator densities: when predators are dense, prey evolve costly defenses, 

driving down predator abundances. When predator abundances are low and prey competition 

increases, prey evolve increased competitive ability and decreased defendedness, allowing 

predator abundances to climb. Competition-defense tradeoffs have been observed in numerous 

taxa—including fish, (Langerhans, 2009; Palkovacs et al., 2011) plants, (Fernandez et al., 2016; 
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Mole, 1994; Züst and Agrawal, 2017) insects, (Fellowes et al., 1999; Kraaijeveld et al., 2002) 

algae, (Agrawal, 1998; Kasada et al., 2014; Yoshida et al., 2003) and bacteria (Lennon and 

Martiny, 2008)—and can be behavioral, (Conrad et al., 2011; Langerhans, 2009) morphological, 

(Langerhans, 2009; Palkovacs et al., 2011) physio-chemical, (Agrawal, 1998; Lind et al., 2013) 

or life-historical (Reznick et al., 1990; Stearns, 1983b, 1983a, 1989) (Table 5.1).  

 

Tradeoff type Example Reference 

Physio-chemical 
Algae that produce compounds reducing edibility grow 

more slowly 
(Yoshida et al., 2004) 

Morphological 
Mosquitofish can have body forms hydrodynamically 

optimized for efficient feeding or fast escape 
(Langerhans, 2009) 

Life-historical 
Earlier maturation in guppies to avoid predation results in 

decreased reproductive output 
(Reznick et al., 1990) 

Behavioral 
Hiding increases survival in spiders, but decreases feeding 

ability 
(Schmitz et al., 1997) 

 

Table 5.1. Example tradeoffs of various trait types. 

 

Theoretical and empirical work has tied competition-defense tradeoff slope to system stability. 

When prey have “expensive defense” tradeoffs—increasing defense comes at a large competitive 

cost—prey are unlikely to evolve, and eco-evolutionary dynamics are unlikely to occur (Kasada 

et al., 2014). When prey have “cheap defense” tradeoffs—defense comes at little competitive 

cost—then rapid and extensive evolution of prey defenses is likely to lead to destabilizing eco-

evolutionary dynamics or outright predator extirpation (Wood et al., 2018). Intermediate “tit for 

tat” tradeoffs allow for potentially stable or oscillating eco-evolutionary dynamics (Abrams, 
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2009; Ehrlich et al., 2018; Kasada et al., 2014), which can cascade throughout ecosystems 

(Wood et al., 2018). 

 

The underlying genetic mechanisms behind competition-defense tradeoffs are very poorly 

understood. Theoretically, at least three mechanisms are possible depending on how many genes 

or gene networks underly competitive and defended phenotypes (Figure 5.1, 5.2): 

1. Pleiotropy or epistasis, in which competitive traits and defended traits are inversely 

regulated by the same single gene or gene network (Conner et al., 2011; Pavlicev Mihaela 

et al., 2011; Roff, 1994);  

2. Trait correlations, in which competitive and defended traits are regulated by two separate 

genes, but the alleles behind each are negatively correlated (Roff and Fairbairn, 2012), 

possibly through linkage; and  

3. Resource constraint, in which largely independent genes control competitive and 

defended traits, but the nature of finite structural, energy or time budgets necessitate that 

increases in competition or defense necessitate reductions of the other (Arnold, 1992).  

The mode of a given tradeoff should have consequences for its persistence in time and ability to 

constrain evolutionary divergence. Trait correlations may be readily broken under changed 

selection, especially if the traits are weakly linked (Calafell et al., 2001; McVean, 2007), 

whereas traits that are pleiotropic may be slower to remodel (Conner et al., 2011), and tradeoffs 

based on functional constraints may be very difficult to alter (Arnold, 1992). The same tradeoff 

mechanisms apply to plastic traits as well, as they apply to the genes underlying mechanisms for 

plasticity. 
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Figure 5.1. Theoretical mechanisms for competition-defense tradeoffs. Competition and 

defense will trade-off when structures, chemicals, and/or behaviors that favor competition and 
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defense: a) pull from the same resource pool, b) produce low fitness when occurring together, or 

c) are controlled inversely by the same gene. 

 

 

Figure 5.2. Genetic frameworks for three types of competition-defense tradeoffs. G indicates 

a gene; C indicates competitiveness; D indicates defensiveness. In limited resource allocation 

tradeoffs (a), a genetic change increases a competitive trait, which leaves limited resources for 

defense, or vice-versa. In apparent trait correlation tradeoffs (b), correlated genes underlay 

competitive and defensive traits. In pleiotropic tradeoffs (c), one gene directly controls separate 

competitive and defensive traits. 

 

One trait that can generate a relationship between competition and defense is body size. Body 

size can affect competitive ability by determining prey capture success, metabolic demands, and 

resource use efficiency (Bence and Murdoch, 1986; Clarke and Johnston, 1999; Mittelbach, 

1981; Nakayama and Fuiman, 2010; Schmitt and Holbrook, 1984). Smaller organisms have 

higher success feeding on smaller prey and lower net metabolic demands, but larger organisms 

have higher success feeding on larger prey, use resources more efficiently, and may prevail 

during interference competition. Body size can affect survival by determining escape ability, 

detection chances, and gape limitation (Christensen, 1996; Hansen et al., 2013; Lundvall et al., 

1999; Nowlin et al., 2006; Wardle, 1975). Smaller organisms are less likely to be detected by 

predators, while larger organisms are more likely to be able to escape predators or may be too 
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large for predators to eat. Thus, the relative balance of these size-dependent advantages and 

disadvantages will determine whether larger organisms are more or less competitive or defended, 

and thus whether size drives a competition-defense tradeoff. Body size can be regulated 

genetically through genes that code for growth rate, maturation rate, and maximum size 

(Gutierrez et al., 2015; Paibomesai et al., 2010; Tao and Boulding, 2003). 

 

Here we investigate genetic competition-defense tradeoffs linked to body size and source 

population in western mosquitofish (Gambusia affinis). Poeciliid fishes—like mosquitofish—

have been model taxa for evolutionary ecology, showing strong phenotypic responses to predator 

introductions and removals (Langerhans and Makowicz, 2009; Langerhans et al., 2004; 

Magurran et al., 1992; O’Steen et al., 2002; Reznick and Endler, 1982), as well as strong 

ecological impacts of phenotypic change (Bassar et al., 2010, 2012; Palkovacs et al., 2011; 

Fryxell et al., in review; Wood et al., in prep). We examined 10 populations of common-garden-

reared mosquitofish from a variety of predator-rich or predator-free backgrounds in central 

California, USA. We used mesocosms with and without largemouth bass (Micropterus 

salmoides) to measure competitiveness and defendedness, which we linked to individual (sex 

and mass) and population-level traits. We focused on two main questions: 

1. Are competition and defense genetically linked in mosquitofish, creating a competition-

defense tradeoff? 

2. If so, on what demographic level do tradeoffs occur? 

We tested three hypothesized tradeoff levels: individual-, population-, and background-level. At 

the individual level, we examined tradeoffs related specifically to body size (see above). At the 

population- and background-levels, we examined generalized tradeoffs linked to population 
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identity—i.e. whether more defended populations have less-competitive individuals. The level at 

which competition-defense tradeoffs occur should dictate the scope of eco-evolutionary 

dynamics within or across populations. The level at which competition-defense tradeoffs occur 

should also determine whether tradeoffs are universal or differ based on population history or 

predation background. 

 

5.3 METHODS 

5.3.1 Fish sources 

We collected western mosquitofish from multiple sources in central California in May 2017. 

Western mosquitofish were introduced to California in the 1920s for mosquito control (Lenert, 

1923). Although detailed stocking records and population genetic surveys are lacking these 

original fish were widely stocked and translocated throughout the region over a period of 

decades. Thus, we assumed at least some common ancestry among populations within the region. 

We collected individuals from at least two populations (ponds) from each of four background 

types: captive propagated, wild predator-free, wild with bluegill (Lepomis macrochirus) 

predators, and wild with bass predators (Figure 5.3, Table D.1). Depending on fish availability at 

the time of collection, some populations were directly wild captured, while others were obtained 

from new breeding stocks at the University of California Santa Cruz. Fish from these breeding 

stocks were direct offspring of wild fish and had been in captivity less than three months. We 

transported the fish to the University of Maine mosquitofish breeding facility after roughly one 

week of holding in Santa Cruz, CA. We bred mosquitofish for one additional generation in 

separate 300L cattle tanks for each population. We used floating mesh refugia to passively 

separate fry from adults, after which we moved fry to separate 36 L tanks for growth and 
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holding. There was a long delay (ca. six months) between fish importation and volitional fish 

breeding. We fed all fish a mixture of tropical flake food and dried bloodworms. We used the 

offspring of the imported fish (F1s) for experimentation. 

 

 
 

Figure 5.3. Mosquitofish population classifications. Our experiment sourced mosquitofish 

from four different predator or propagation backgrounds. Within those four backgrounds, we 

sourced fish from at least two separate populations (i.e. ponds or captive propagation facilities). 

We used multiple F1 individuals from each population in subsequent competitiveness and 

defendedness trials. 

 

5.3.2 Competition and defense trials 

We placed elastomer-tagged (VIE Northwest Marine Technology) mixtures of mosquitofish 

from the multiple populations in mesocosms with or without bass to study defendedness and 

competitiveness, respectively. We established ten (five bass-present and five bass-absent) 1,100 

Largemouth bass 
Micropterus salmoides 

Bluegill 
Lepomis macrochirus 

No predators Captive propagated 

Individual: one single mosquitofish 

Population: multiple mosquitofish from the same pond or propagation facility 

Background: mosquitofish from multiple ponds of the same predator or propagation type 
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L mesocosms in the University of Maine Roger Clapp Greenhouses in October 2018. On 

October 11, we added to each mesocosm 3.6 L of benthic sediment from an unnamed pond in 

Orono, ME (N 44.900467°, W 68.724374°), and a mixture of zooplankton and whole water from 

Perch Pond (Mud Pond; N 44.946917°, W 68.777578°) and Pushaw Lake (N 44.946527°, W 

68.801038°), both in Old Town, ME. We allowed mesocosms to equilibrate for 40 days prior to 

fish addition. We included a 15 cm diameter cylindrical mesh (1 cm square opening to allow 

mosquitofish entry but exclude bass) refuge filled with artificial macrophytes in the center of 

each mesocosm. 

 

We introduced nine or ten tagged adult mosquitofish into each mesocosm on November 20, 

2017. Other work has shown that mosquitofish consumptive effects on zooplankton saturate 

above roughly 6 individuals per 1,100 L mesocosm (Wood et al., in prep); thus, we expected our 

stocking density of 9-10 individuals per mesocosm to generate intense intraspecific mosquitofish 

competition. This other work also shows that bass predation causes mosquitofish abundances to 

quickly drop below this saturation threshold, thus limiting the extent of competition in the bass-

present mesocosms. Therefore, competition and defense were likely the dominant forces driving 

mosquitofish success in the bass-absent and bass-present mesocosms, respectively. Most 

mosquitofish populations were represented in every mesocosm, with some variability due to high 

or variable numbers of offspring production during breeding. We tagged mosquitofish on 

November 15—5 days before introduction to mesocosms—using 1-2 mm of elastomer. We 

subcutaneously placed a single tag of either red, orange, or yellow elastomer in one of four 

possible locations on each fish, creating unique identifiers within each mesocosm. We measured 

length and towel-blotted wet mass of each fish before and after experimentation. 
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We placed largemouth bass (length range: 11-15 cm) collected from either Pushaw Lake or 

Hermon Pond in Hermon, ME (N 44.779098°, W 68.950479°) in five of the mesocosms roughly 

one hour after mosquitofish introduction. Largemouth bass are a natural predator of 

mosquitofish, and while wild mosquitofish are not present in Maine (Nico et al., 2019), we 

habituated these bass to consuming mosquitofish for several weeks in the lab prior to 

experimentation. We also confirmed that each bass could readily consume mosquitofish from the 

entire size range present in our lab. 

 

We censused each mesocosm every three or four days for a period of 29 days. We removed bass 

from their respective mesocosms prior to censusing to ensure that census activities did not lead 

to mosquitofish depredation. We recorded which fish were present based on elastomer tags, 

using netting when necessary. We concluded the experiment when only one mosquitofish was 

remaining in the bass mesocosms. There was no mortality in the bass-absent mesocosms. 

 

5.3.3 Analyses 

We used absolute growth rate over the study period as an assay for competitiveness. We used 

days survived around bass and number of conspecifics present at death as assays for individual 

defendedness in the bass-present mesocosms; these two defendedness metrics offer absolute and 

relative measures of survival, respectively. Although we analyzed competitiveness and 

defendedness in different fish, we related competitiveness to defendedness by linking both to 

individual-, population-, and background-level traits by applying competitiveness functions from 

our bass-absent treatments to our depredation treatment fish. 
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We calculated absolute growth rate (competitiveness) over the 29-day study period for 

individuals in the bass-absent mesocosms: 

(5.1) 

𝐺 = ln(𝑀𝑓𝑖𝑛𝑎𝑙) − ln(𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

 

G = absolute growth rate; Mfinal = final mass; Minitial = initial mass. 

 

We used the bass-present mesocosms to calculate two defendedness metrics: days survived, and 

number of mosquitofish present at death (which is inversely related to death order): 

(5.2) 

𝑈 =
𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡+𝑇𝑎𝑏𝑠𝑒𝑛𝑡

2
  

(5.3) 

𝐿 =
𝑁𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡

+ 𝑁𝑇𝑎𝑏𝑠𝑒𝑛𝑡

2
 

 

U = days survived, Tpresent = last day a fish was observed present; Tabsent = first day a fish was 

observed absent; L = number of mosquitofish present at death of the focal fish; NTpresent = number 

of fish alive in the focal mesocosm at the last census in which the focal mosquitofish was 

present; NTabsent = number of fish alive in the focal mesocosms at the first census in which the 

focal mosquitofish was absent. 

These equations assumed that deaths happened at the midpoint between the latest fish present 

observation and the first fish absent observation. A few fish in the bass-present mesocosms (five 

total across all five bass-present mesocosms) died from causes besides bass consumption, i.e. 
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were found dead in their mesocosms. We excluded these individuals from both defendedness 

metrics. 

 

Population- and background-level differences in competitiveness and defendedness. We tested 

background- and population-specific identity effects on competitiveness and defendedness using 

maximum-likelihood (non-restricted) general linear mixed models in R (Bates et al., 2015; R 

Core Team, 2016): 

(5.4) 

𝐺, 𝑈, 𝐿 = 𝐵 + 𝐵 × 𝑃 + 𝑆 + ln(𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙) + 𝑅 

 

G = absolute growth rate; U = days survived; L = number of fish remaining at death; B = 

background; B × P = population, nested within background; S = sex; Minitial = initial mass; R = 

random effect for mesocosm (and therefore bass). 

We used type II Wald analysis of deviance tests to examine the significance of all model terms 

(Fox and Weisberg, 2011). 

 

Competition-defense tradeoffs. We tested statistically for several scales of tradeoffs (see Figure 

5.3 for definitions of individual, population, and background): 

1. Individual universal: across all populations and backgrounds, individuals with higher 

competitiveness are less defended 

2. Individual within population: within each population, individuals with higher 

competitiveness are less defended 
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3. Individual within background: within each background type, individuals with higher 

competitiveness are less defended 

4. Population: populations that on average are more competitive are less defended 

5. Background: backgrounds that on average are more competitive are less defended 

 

To test for each tradeoff, we fit a model predicting relative competitiveness (growth rate) based 

on focal traits: for individual-level tradeoffs our focal traits were sex and mass (i.e. body size); 

for population- or background-level tradeoffs, our focal traits were population or background 

identity, respectively. We also included traits for which we wanted to control: for individual-

level tradeoffs we included no controls (individual universal tradeoff), population identity 

(individual within population tradeoff) or background identity (individual within background 

tradeoff); for population- or background-level tradeoffs, we included mass and sex as controls. 

The basic model form was: 

(5.5) 

𝐺 = 𝑋 + 𝐴 + 𝑅 

 

G = absolute growth rate; X = focal trait(s); A = controlled-for traits; R = random mesocosm 

effect. 

We then created a predicted competitiveness metric (C) based only on the focal traits from the 

above model: 

(5.6) 

𝐶 = 𝑋 
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We did not fit Equation 5.6, we calculated C directly from parameters determined from fitting 

the model in Equation 5.5 (see Table D.2). We then used this competitiveness metric to create 

estimated competitiveness values for the individuals in the bass mesocosms. We then fit a model 

predicting days survived (U) or number of conspecifics present at death (L) (defendedness) with 

estimated competitiveness (C), also including the same earlier controlled-for traits (A) and a 

random mesocosm effect (R): 

(5.7) 

𝑈, 𝐿 = 𝐶 + 𝐴 + 𝑅 

 

For expanded model equations for each tradeoff, see Table D.2. We used type II Wald analysis 

of deviance tests to examine the significance of each competition-defense tradeoff (i.e. the C 

term in Equation 5.7) (Fox and Weisberg, 2011). 

 

5.4 RESULTS 

5.4.1 Background- and population-level differences in competitiveness and defendedness 

Absolute growth rate (competitiveness) was significantly related to background (Figure 5.4, 

Table 5.2), with the captive propagated background conferring the highest growth rate, bass 

background conferring the lowest growth rate, and bluegill and predator-free backgrounds 

having intermediate growth rates (Figure 5.4). We found no significant effect of population 

within background on absolute growth rate. Initial mass was also a significant predictor of 

growth rate (Table 5.2), with larger fish having lower growth rates (Figure 5.5). Sex did not 

significantly predict growth rate. 
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Figure 5.4. Mosquitofish competitive ability. Competitiveness (absolute growth rate, adjusted 

for body size and sex) was dependent on mosquitofish backgrounds, with mosquitofish from 

captive propagation (Cap. Prop.) facilities or ponds with no predators having higher absolute 

growth rates than fish from ponds with bass or bluegill predators. 

 

Independent 

variable 

Dependent variable 

Absolute growth rate Days survived Conspecifics at death 

χ2 df p χ2 df p χ2 df p 

Sex 0.53 1 0.47 1.77 1 0.18 1.15 1 0.28 

ln(Mass) 11.63 1 0.0006 0.22 1 0.64 0.92 1 0.34 

Background 15.49 3 0.0014 5.54 3 0.14 4.86 3 0.18 

Population within 

Background 
17.17 6 0.0087 14.73 6 0.023 17.44 6 0.0078 

 

Table 5.2. Testing competitiveness and defendedness. Wald type II analysis of deviance test 

results for models predicting absolute growth rate, days survived, and number of conspecifics 

present at death for western mosquitofish. N = 47, 49, and 49 for absolute growth rate, days 

survived, and conspecifics at death, respectively. 

 

Bass Bluegill No Predators 

Cap. 
Prop. 
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Number of days survived and conspecifics present at death (defendedness) were both related to 

population identity, but not background, mass (size), or sex (Figure 5.6, Table 5.2). However, 

refitting model 4 for days survived (U) without the population term (B×P) results in larger fish 

having significantly higher survival (χ2 = 3.92, df = 1, p = 0.048), due to a significant interaction 

between population and body size (χ2 = 27.55, df = 9, p = 0.0011). 

 

 

Figure 5.5. Competitiveness and fish size. Competitiveness (absolute growth rate) decreased 

with increasing fish mass. Points shown are adjusted for background and population. 
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Figure 5.6. Fish defendedness. Defendedness (number of days survived around bass or number 

of conspecifics present at death, both adjusted for body size and sex) was dependent on 

mosquitofish population, but not mosquitofish predator or hatchery background. 

 

5.4.2 Competition-defense tradeoffs 

We found no significant universal relationship between individual-level predicted 

competitiveness and individual defendedness, using either defendedness metric (Table 5.3). We 

did, however, find a significant, negative relationship (i.e. a tradeoff) between individual-level 

predicted competitiveness and individual days survived around bass within backgrounds, but not 

within populations (Figure 5.7, Table 5.3). We also found a significant, positive relationship 

Bass Bluegill No Predators 
Cap. 
Prop. 

Bass 

Bluegill 

No Predators Captive 
Propagated 
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between both population- and background- level predicted competitiveness and days survived 

(Figure 5.7, Table 5.3), though the population-level relationship between competitiveness and 

defendedness was marginally significant (Table 5.3). 

 

Tradeoff type 

Survival metric 

Days survived Conspecifics at death 

χ2 df p χ2 df p 

Individual within populations 0.05 1 0.83 0.34 1 0.56 

Individual within background 3.99 1 0.046 2.29 1 0.13 

Individual universal 2.55 1 0.11 1.74 1 0.19 

Population-level 3.02 1 0.082 1.11 1 0.29 

Background-level 3.98 1 0.046 2.96 1 0.09 

 

Table 5.3. Testing for competition-defense tradeoffs. Wald type II analysis of deviance test 

results for the competitiveness term in tradeoff models predicting two metrics of defendedness: 

days survived around bass, or number of conspecifics present at death. N = 49. 
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Black = no predator populations; Blue = bluegill populations; Red = bass populations; 
Gray = captive propagation populations. 
 
Figure 5.7. Competition-defense tradeoffs. Days survived and predicted competitiveness were 

negatively related for individuals within backgrounds (A), suggesting a competition-defense 

tradeoff. On the population (B) and background (C) levels, days survived and predicted 

competitiveness were positively related, suggesting a gradient of local adaptation. 

Competitiveness score is based on mass and sex (controlled for background) for (A), and based 

on population and background (both controlled for sex and mass) for (B) and (C), respectively. 

Days survived were controlled for background for (A) and for mass and sex for both (B) and (C). 

N = 49. 

 

5.5 DISCUSSION 

Our results reveal a competition-defense tradeoff due to body size across individual mosquitofish 

within a background, as well as a positive relationship between competitiveness and 

defendedness on the population- and background-levels. These results indicate a mixture of 

Individual-level tradeoff 
within backgrounds Population-level tradeoff Background-level tradeoff 

A B C 
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competition-defense tradeoffs and local adaptation (Figure 5.8) that likely explains the abundant 

examples of eco-evolutionary dynamics in mosquitofish and closely-related taxa. 

 

 
 

Figure 5.8. Conceptual model for detecting competition-defense tradeoffs across 

individuals, populations, and backgrounds. 

 

5.5.1 Background- and population-level adaptation 

Competitive ability was largely driven by size and background, with smaller individuals and 

those from predator-scarce backgrounds (wild no-predator and captive propagated) having higher 

absolute growth rates (Figure 5.4, 5.5). Selection for competition in these backgrounds is 

intuitive, as the paucity of predators and high density of competitors should select for highly 
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variation, making the tradeoff difficult to detect within populations 
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defense and/or competition to achieve equally 

defended or competitive phenotypes, making the 

tradeoff difficult to detect across backgrounds 
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competitive individuals (Palkovacs et al., 2011). Our finding that smaller individuals are more 

competitive contradicts some literature suggesting that larger individuals should have higher 

competitive success through interference competition (Van Buskirk et al., 2017) and ability to 

capture larger prey (Bence and Murdoch, 1986). Furthermore, as mosquitofish commonly grow 

to sizes well beyond those of individuals in our experiment (Pyke, 2005), our finding is unlikely 

to be due to the capping of growth in larger fish. Our findings may instead be a result of 

planktivore grazing patterns. Planktivores, like mosquitofish, tend to initially consume larger, 

slower zooplankton, like Daphnia (Hurlbert and Mulla, 1981; Hurlbert et al., 1972). In a highly 

competitive environment, these zooplankton should be quickly depleted, leaving smaller 

zooplankton like copepods and rotifers, which may be more readily consumed by smaller 

mosquitofish (Bence and Murdoch, 1986). Smaller fish should also be more competitive in 

heavily food-limited environments due to their lower net metabolic costs and higher attack rates 

on smaller prey (Hjelm and Persson, 2001). 

 

Defendedness in mosquitofish was linked only to population—though in our tradeoff models, 

competitiveness calculated from size and sex within background was significantly related to one 

metric of defendedness (Figure 5.7, Table 5.5). Evolution of defenses at the population-, rather 

than the background-level suggests that predator-presence alone may not be a strong determinant 

of genetic (only) antipredator defense evolution in this system. Instead, defenses may be a result 

of plasticity or evolution of reaction norms that would be missed by our common-rearing 

approach. The efficacy of common modes of mosquitofish defense—avoidance and hiding 

(Smith and Belk, 2001; Winkelman and Aho, 1993)—are strongly dependent on the local 

environment, including water clarity and vegetation (Casterlin and Reynolds, 1977). Thus, 
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adaptation to the local environment, rather than adaptation to specific predator regimes, may be 

the main determinant of antipredator success in mosquitofish. 

 

Life-history defenses may also have driven our lack of observed background-level differences in 

survival. In the case of non-gape-limited predation, earlier maturation and increased investment 

in early reproduction ensures that prey are more likely to reproduce before being eaten, thus 

increasing their fitness. Such life-history evolution in response to increased mortality has been 

documented in mosquitofish (Stearns, 1983b, 1983a) and guppies (Reznick and Endler, 1982). 

Early maturation and reproduction often comes at a cost to growth investment (Stearns, 1989). 

Thus, our observed lower growth rates in bass- and bluegill-adapted mosquitofish (Figure 5.4) 

may be due to a defended life-history strategy in addition to decreased competitive ability. 

 

5.5.2 Competition-defense tradeoffs within backgrounds 

Within backgrounds, we found a negative relationship between individual predicted 

competitiveness and number of days survived around bass (Figure 5.7), indicating a genetic 

competition-defense tradeoff across individuals within backgrounds. We found no relationship 

between individual competitiveness and number of days survived without controlling for 

background (i.e. no universal individual-level tradeoff), suggesting that the tradeoff occurred in 

different trait space for each background. Food composition (Hambright et al., 1986; Lorenzen et 

al., 2012), predator feeding mode (or harvest by human “predators”) (Olson et al., 1995; Turner 

and Mittelbach, 1990; Werner et al., 1983; van Wijk et al., 2013; Wood et al., in review), and 

conspecific density (Huntingford, 2004; Fryxell et al., in review) certainly vary greatly across the 

four backgrounds considered. Thus, while a competition-defense tradeoff may exist within each 
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background, the trait values that are highly competitive or highly defended are likely contingent 

on the above ecological context. Therefore, the position of the competition-defense tradeoff in 

trait space should not be universal, and instead should vary across backgrounds. 

 

While we found a significant competition-defense tradeoff across individuals within 

backgrounds, we interestingly found no tradeoff across individuals within populations. This 

dichotomy suggests that the competition-defense tradeoff is driven by variation across 

populations within backgrounds, which is supported by our finding that fish body size was 

significantly related to population (see Results). Furthermore, the tradeoff is the most visually 

compelling within the wild, predator-free background (Figure 5.7), for which we included four 

populations, rather than two. Within a population (i.e. a single pond), evolution may converge on 

a single adaptive peak along a background-specific competition-defense tradeoff, thus making 

the tradeoff difficult to detect within populations due to insufficient variation. The location of the 

adaptive peak along the tradeoff should differ across populations within backgrounds due to 

differences in predator density and prey availability. Thus, when multiple populations are 

considered within a background, there exists sufficient variation along a competition-defense 

tradeoff for the tradeoff to be detected. 

 

5.5.3 Landscape-level adaptation 

At the across-background level, competitiveness and number of days survived around bass were 

positively related (Figure 5.7). This relationship suggests that on the landscape level, some 

populations and backgrounds have a higher degree of general adaptedness, or vigor. As 

mosquitofish have been in California for less than a century (Lenert, 1923), local adaptation may 
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be ongoing, and may be constrained by repeated stocking (Contra Costa Mosquito Vector 

Control, 2016; Sacramento-Yolo Mosquito & Vector Control, 2016; Swanson et al., 1996) or 

genetic bottlenecks (Bell and Gonzalez, 2009; Frankham, 1996; Gonzalez et al., 2013). 

Interestingly, captive propagated mosquitofish had the highest vigor on both the population- and 

background-levels (Figure 5.7), which contradicts evidence that hatchery fish often have lowered 

fitness in the wild (Araki et al., 2007, 2008). The trend in vigor appears to be driven mostly by 

predation history, with wild no-predator and captive-propagated populations having higher vigor 

than the bass and bluegill populations. Thus, while there may be a within-background 

competition-defense tradeoff related to body size, the general competitive advantage of fish from 

the predator-scarce backgrounds may also broadly confer higher survival, possibly through 

increased energetic stores for escape or hiding and decreased need for risk-taking (Godin and 

Crossman, 1994). 

 

5.5.4 Tradeoffs, evolution, and eco-evolutionary dynamics 

The presence of a competition-defense tradeoff related to body size in mosquitofish indicates 

significant potential for eco-evolutionary dynamics in this model species. This tradeoff also 

provides some explanation for the broad evidence of contemporary evolution to predators (or 

release therefrom) in mosquitofish and closely-related taxa (Langerhans, 2009; Langerhans et al., 

2004; Reznick and Endler, 1982; Reznick et al., 1990). This tradeoff also supports the findings 

that release from predation in these taxa sparks evolution increasing their top-down per-capita 

effects on food webs (i.e. competitive ability) (Bassar et al., 2010, 2012; Palkovacs et al., 2011).  
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Interestingly, our findings of an individual-level tradeoff within background—but not 

populations—suggests that single populations may not initially contain sufficient variation along 

a tradeoff to generate eco-evolutionary dynamics. Indeed, during numerous predator-prey 

experiments examining eco-evolutionary dynamics, there is significant delay between the onset 

of ecological dynamics (i.e. predator-prey cycling) and the onset of tradeoff-driven eco-

evolutionary dynamics (Hiltunen et al., 2014; Yoshida et al., 2003, 2004, 2007); this delay has 

been attributed to lack of genetic variation (Yoshida et al., 2003). Our findings thus suggest 

that—in mosquitofish and other taxa—variation along a competition-defense tradeoff may be a 

key factor in determining the timing and scope of eco-evolutionary dynamics. Thus, systems that 

are likely to retain variation over time—dynamic, interconnected metapopulations with predator 

and prey regimes varying in space and time—are the most likely to generate strong examples of 

eco-evolutionary dynamics. 

 

5.5.5 Conclusions 

A genetic competition-defense tradeoff dependent on body size exists within various predator 

and hatchery backgrounds of western mosquitofish—a model species for eco-evolutionary 

dynamics. However, lack of evidence for the tradeoff within populations suggests that single 

populations may not initially possess sufficient variation along the tradeoff to generate eco-

evolutionary dynamics in response to ecological perturbations. Therefore, we suggest that 

standing variation along a competition-defense tradeoff, as well as the metapopulation 

characteristics that contribute thereto, are essential characteristics underlying potential eco-

evolutionary dynamics. 
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CHAPTER 6 

ECOLOGICAL AND PHENOTYPIC CAUSES AND CONSEQUENCES OF ECO-

EVOLUTIONARY TROPHIC CASCADES IN MOSQUITOFISH 

 

6.1 ABSTRACT 

Evolution can occur contemporaneously with ecology, allowing ecological and evolutionary 

processes to mutually interact. One important type of contemporary trait change is antipredator 

adaptation in prey, which can influence the persistence of both predator and prey populations and 

generate or mediate trophic cascades. However, few studies have mechanistically linked genetic 

and plastic evolution in specific traits to ecological change. Here we assess morphological and 

behavioral traits in nine populations of common-garden reared western mosquitofish (Gambusia 

affinis) from three different predator backgrounds to quantify heritable and plastic local- and 

anti-predator evolution. We then use pond mesocosm experiments to examine the ecological 

consequences of variation in these traits. We also compare the relative ecological effect sizes of 

population divergence and fish density variation. Evolution in response to two different predators 

generates a similar mixture of heritable and plastic trait changes, likely focused on predator 

avoidance and energetic efficiency, but trait variation from antipredator evolution is significantly 

smaller than that from idiosyncratic local population divergence within predator backgrounds. 

Among-population variation in several mosquitofish traits associated with heritable and plastic 

predator naivete causes cascading zooplankton and primary producer change, likely through both 

top-down and bottom-up pathways. Ecological effects of mosquitofish trait divergence are far 

more extensive than those of fish density variation, reaching almost all studied taxa and 

compartments. As such, this study provides an impactful example of how contemporary trait 
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change—through a variety of genetic and plastic mechanisms—can cascade through food webs 

and alter ecosystem function. 

 

Keywords: Contemporary evolution, antipredator evolution, phenotypic plasticity, eco-

evolutionary dynamics, trophic cascades, Gambusia affinis 

 

6.2 INTRODUCTION 

Contemporary evolution can drive ecological change. Overwhelming evidence for contemporary 

evolution—evolution on ecologically-relevant timescales—(Carroll et al., 2007; Hendry and 

Kinnison, 1999; Kinnison and Hendry, 2001), demonstrates that ecological and evolutionary 

processes can contemporaneously interact (Fussmann et al., 2007; Hendry, 2016; Post and 

Palkovacs, 2009; Schoener, 2011). Thus, ecology can shape evolution, and ongoing evolution 

can shape ecology. Ongoing evolution can shape ecology by influencing species persistence 

(Gonzalez et al., 2013; Kinnison and Hairston, 2007; Yamamichi and Miner, 2015), changing 

population sizes of adapting taxa (Lambrinos, 2004; Stockwell et al., 2003), or changing 

ecologically relevant functional traits (Ellner et al., 2011; Hairston et al., 2005). However, the 

specific mechanisms driving evo-to-eco processes—as well as their relevant effect sizes—are yet 

poorly understood. 

 

When plastic or genetic evolution alters ecologically relevant functional traits, significant 

environmental change may occur. Several case-studies highlight examples of local adaptation in 

fish that have generated ecological change through functional trait change (Table 6.1). Example 

functional traits include feeding morphology, feeding mode (e.g. benthic versus limnetic), 
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growth rate, and antipredator defenses (Palkovacs et al., 2008, 2011; Tuckett et al., 2013; 

Willacker et al., 2010). The common thread to each of these examples is that local adaptation 

affects what, where, and how much an organism eats, thereby leading to top-down ecological 

change. These top-down effects of species adaptation are often greater in magnitude than those 

of species introduction or removal (Des Roches et al., 2018). Understanding the functional links 

between traits and ecological dynamics is a challenge at the heart of any mechanistic 

understanding of eco-evolutionary dynamics. 

 

Taxa Trait Change Ecological Impact  References 

Alewives 

Alosa pseudoharengus 
Loss of anadromy 

Prey size-selectivity alters 

zooplankton communities 

(Palkovacs and Post, 2008, 

2009; Palkovacs et al., 2008; 
Post et al., 2008) 

White perch 

Morone americana 
Adaptation to eutrophication 

Context-dependent shifts 

in pond productivity 
(Tuckett et al., 2013, 2017) 

Threespine stickleback 

Gasterosteus aculeatus 
Benthic vs. limnetic habits 

Feeding mode divergence 

alters water clarity, 

invertebrate composition 

(Des Roches et al., 2013; 

Harmon et al., 2009; Rundle et 
al., 2000; Willacker et al., 2010) 

Trinidadian guppies 

Poecilia reticulata 
Antipredator adaptation 

Cascading changes in 

invertebrate and algal 

biomass and composition 

(Bassar et al., 2010, 2012; 
Palkovacs et al., 2009, 2011; 

Reznick and Endler, 1982; 
Reznick et al., 1990) 

 

Table 6.1. Select examples of contemporary local adaptation in fish that have been linked to 

ecological changes. 

 

One broadly relevant type of functional trait adaptation is the evolution of antipredator defenses. 

Early work suggested that antipredator adaptation in prey stabilizes both predator and prey 

abundances after predator introduction (Pimentel, 1961). Ongoing antipredator evolution in prey 

can determine the impact of introduced predators and the persistence of both predators and prey 

(Sax et al., 2007; Strauss, 2014; Yamamichi and Miner, 2015). In some cases, evolution in prey 
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can reduce the effect size of predators on prey (terHorst et al., 2010). In other cases, adaptation 

of prey can lead to novel predator-prey cycling (Abrams and Matsuda, 1997b; Kasada et al., 

2014; Yoshida et al., 2003), which may destabilize food webs (Abrams and Matsuda, 1997a; 

Cortez et al., 2018). The distinction between these outcomes—as well as their broader ecological 

impacts—depend on the specific form, lability, and tradeoffs of functional traits (Kasada et al., 

2014; Wood et al., 2018). 

 

Fish employ numerous behavioral or morphological defenses to avoid or escape predators. 

Antipredator behaviors include fleeing (Langerhans, 2009), schooling and shoaling (Magurran et 

al., 1992; Seghers, 1974), freezing (Eilam, 2005; Vilhunen and Hirvonen, 2003), hiding (Romare 

and Hansson, 2003; Templeton and Shriner, 2004), and predator inspection (Magurran, 1986; 

Magurran et al., 1992). Morphological defenses include crypsis (Cox et al., 2009; Donnelly and 

Dill, 1984; Donnelly and Whoriskey, 1993), armor (Bell et al., 2004), apparatus for predator 

detection (Brown, 2003; Cowan and Brown, 2000; McCormick and Manassa, 2008), and 

apparatus for predator escape (Domenici et al., 2008; Langerhans, 2009). A variety of life-

history strategies to reduce the fitness impact of predation also exist; these typically involve early 

maturation to increase the chances of reproduction before predation or rapid growth to reach 

inedible sizes (Jennions and Telford, 2002; Reznick and Endler, 1982; Reznick et al., 1990). 

While attention to the ecological relevance of antipredator defenses is growing, fairly little work 

has examined whether contemporary evolution of defenses are consistent across multiple 

predator species (i.e. are generalist) or predator-specific (i.e. specialist) (Strauss et al., 2006). 
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Antipredator defenses can have cascading impacts on food webs through trait- and density-

mediated processes. Many defenses come at a feeding cost, often because behaviors or 

morphologies suited to defense (e.g. hiding) reduce feeding ability (Tymchuk et al., 2007). Thus, 

defended phenotypes can cause defended populations to exert weaker feeding pressures on their 

prey, generating trait-mediated cascading food web dynamics (Griffiths et al., 2018; Ousterhout 

et al., 2018; Preisser and Bolnick, 2008a; Schmitz et al., 2004). These trait-mediated effects may 

be at least partially offset by the increased density of the defended population (Wood et al, in 

preparation). Evolution along the aforementioned feeding-defense tradeoff in intermediate 

trophic levels during a trophic cascade can dampen or exaggerate the cascade, depending on 

which trophic level evolves (Cadier et al., 2019; Wood et al., 2018). Certain defense behaviors, 

like habitat switching, can even shift trophic cascades to other taxa (Grabowski and Kimbro, 

2005; Trussell et al., 2006). Thus, trait changes during a trophic cascade can alter the strength, 

mode, and reach of the cascade. However, the relative strengths of the evolutionary processes 

behind ecologically relevant trait variation are generally poorly understood. 

 

Much of the work on contemporary antipredator evolution has focused on total phenotypic 

change, i.e. the combination of genetic and plastic effects (Hendry, 2016). While such an 

approach is sufficient to determine the immediate net ecological impact of a defended or naïve 

phenotype, it does not yield a complete mechanistic understanding of how evolution affects 

ecology. To understand the ecological role of antipredator evolution during predator invasion, 

requires a disentangling of genetic and plastic evolution—which should occur at different speeds 

(Ghalambor et al., 2007; Lande, 2015). Plastic change may buffer against genetic change in the 

short term (Oostra et al., 2018; Price et al., 2003), or facilitate it, depending on whether the 
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plastic change is adaptive (Ghalambor et al., 2007, 2015). The evolution of reaction norms (gene 

× environment interactions) may cause some populations to have higher plastic capacity than 

others (Dodson, 1989; Tollrian and Harvell, 1999), and make the ecological impacts of genetic 

evolution contingent on environmental context. Therefore, thorough investigation of the plastic 

and genetic mechanisms of adaptation is necessary to assess the long-term fate and ecological-

impact of evolving species. 

 

Here, we investigate the cascading ecological consequences of genetic and plastic antipredator 

divergence among western mosquitofish (Gambusia affinis) populations in order to 

mechanistically link trait variation to ecological change. Specifically, we address the following 

questions: 

1. How does generic or predator-specific antipredator adaptation change mosquitofish traits 

through plastic and genetic mechanisms? 

2. How much trait variation does antipredator adaptation explain, relative to other sources 

of inter-and intra-population trait variation? 

3. What are the cascading ecological impacts of functional trait divergence in mosquitofish? 

4. How do the ecological impacts of trait divergence compare to those of fish introduction 

and density change? 

We examined the morphology, behavior, and impact on pond mesocosms of replicate 

populations of mosquitofish from various depredation backgrounds. We used common-rearing, 

varied predator cues, and varied densities to separate genetic, plastic, and density-dependent 

effects of mosquitofish adaptation. 
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6.3 METHODS 

6.3.1 Mosquitofish sources and rearing 

Western mosquitofish were introduced to California in the 1920s for mosquito control (Lenert, 

1923). Although detailed stocking records and population genetic surveys are lacking, these 

original fish were widely stocked and translocated throughout the region over a period of 

decades. Thus, we assume at least some common ancestry among all study populations. 

 

We collected mosquitofish from 9 populations (i.e. ponds) in central California in early spring 

2017 using beach seine hauls (Table E.1). These populations belonged to one of three predation 

backgrounds: no piscine predators, bluegill (Lepomis macrochirus) predators, or largemouth bass 

(Micropterus salmoides) predators. We bred each of these populations for two generations in 

captivity, keeping fish in 1,100 L outdoor mesocosms, where they were fed abundant flake food. 

We passively separated fry from adults in these mesocosms using floating mesh refugia, from 

which we moved fry to new mesocosms for subsequent breeding or holding. For each 

population, we reared two separate lines: one with bass cues present for the entire two 

generations of breeding, and one with bass cues absent. For the bass-present lines, we introduced 

a single largemouth bass from Freshwater Fish Co, Elk Grove CA into a plastic- and mesh-

walled holding container within the breeding mesocosm. We periodically fed mosquitofish to 

this bass. Thus, mosquitofish in the bass-present mesocosms had visual and chemical cues of 

bass presence and mosquitofish depredation for two generations. This two-generation rearing 

ensured that we were able to observe the full scope of mosquitofish plastic responses to bass 

presence or absence, including maternal effects (Marsh-Matthews et al., 2005; Zhang et al., 

2006). 
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We examined heritable and plastic population differences in mosquitofish morphology and 

behavior. Specifically, we partitioned trait variation into seven possible mechanistic sources: 

1. Generic antipredator evolution—heritable trait divergence in response to piscine predator 

presence (i.e. not distinguishing between bass and bluegill predators) 

2. Specific antipredator evolution—heritable trait divergence in response to a specific local 

predator (bass vs. bluegill) 

3. Local population evolution—heritable trait divergence among populations (ponds) within 

predator-type backgrounds. 

4. General plasticity—environmentally induced trait divergence due to a universal plastic 

response to bass cues 

5. Generic evolution of antipredator plasticity—heritable divergence in environmentally-

induced trait responses to bass cues, regardless of predator background (i.e. not 

distinguishing between bass and bluegill predators) 

6. Specific evolution of antipredator plasticity—heritable divergence in environmentally-

induced trait response to bass cues that is associated with a specific predator background 

(bass vs. bluegill) 

7. Local population evolution of plasticity—heritable divergence in environmentally-

induced trait responses to bass cues that differs across populations (ponds) within 

predator backgrounds 

Types 1-3 represent presumed adaptive evolution, type 4 represents presumed plastic trait 

change, and types 5-7 represent potentially adaptive evolution of reaction norms (i.e. gene × 

environment interactions). 
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6.3.2 Fish morphology 

We analyzed morphometric characteristics of all fish used in the mesocosm experiments after 

experimentation. We took standardized photographs of the left side of each fish. We marked 10 

morphometric landmarks (Langerhans et al., 2004) on each fish picture using tpsdig2 (Rohlf, 

2006), and measured fish length (excluding caudal fin) (Figure E.1). We then used these 

landmarks to calculate several morphological traits (Table E.2). Rather than holistically 

analyzing morphology using geometric morphometric methods (Bookstein, 1997; Zelditch et al., 

2012), we analyzed these specific traits directly due to their adaptive divergence and 

environmental impact in other studies (Des Roches et al., 2013; Harmon et al., 2009; Langerhans 

et al., 2004; Magurran et al., 1992; Palkovacs et al., 2011). 

 

6.3.3 Fish behavior 

We conducted fish behavioral assays before and during mesocosm experimentation to determine 

feeding rate, activity, shoaling depth, and distance from a tank-side observer. As with our 

morphological analyses, we chose behavioral traits that have been linked to adaptive divergence 

and ecological impacts in the literature (Magurran, 1986, 1990; Magurran et al., 1992; Rehage 

and Sih, 2004; Rehage et al., 2005a, 2005b; Sih et al., 2010). 

 

We measured activity level, shoaling depth, and shoaling distance from an observer during 

mesocosm experimentation (see below) using the protocol from Wood et al. (in press). For these 

measurements, a treatment-blind observer stood next to the mesocosm and observed the shoal. 

The observer waited for 5 minutes, then collected measurements every 1 minute for 10 minutes. 
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We measured activity on a 1-4 scale (1: no movement; 2: maintenance movement; 3: modest 

exploratory movement or foraging; 4: burst-swimming or aggressive interactions) (Wood et al., 

in press). We measured shoaling depth and distance by dividing the mesocosm into four zones 

vertically and four zones horizontally, then recording which zone was occupied by the majority 

of the shoal. We conducted these observations on days 1 and 2 after mosquitofish introduction, 

and again on days 7 and 8. 

 

We conducted feeding rate assays before introducing fish into mesocosms. Feeding rate assays 

were conducted between 9:00 am and 5:00 pm. We caught groups of five mosquitofish, 3 

females and 2 males, from each group of fish waiting to be introduced into mesocosms (48 

groups total) using handheld nets, and placed them into plastic aquaria (15W x 20H x 25L cm). 

Each aquarium contained one PVC u-bend pipe positioned in the back-left corner, which 

provided shelter and reduced stress for fish during the trials. We allowed mosquitofish to 

acclimate to the aquaria for 30 minutes, after which trials commenced. Each trial ran for a total 

of 15 minutes. Following a 5-minute acclimation period to the presence of the observer (LKL), 

we added 10 bloodworms (Omega One brand) into the aquarium using a pipette. Over 10 

minutes the number of bloodworms consumed by the group of mosquitofish was recorded. At the 

end of each assay, any remaining worms were removed. The feeding assay was run twice for 

each replicate mosquitofish group, once in the morning and once in the afternoon. 

 

6.3.4 Ecological consequences of fish evolution 

We used replicated pond mesocosms to assess the ecological consequences of mosquitofish 

introduction, density variation, and trait variation. We established 50 experimental 1,100 L 
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mesocosms at the University of California Santa Cruz Long Marine Lab Campus in September, 

2017. We added 2 L of active sediment from Schwann Lake (N 36.962655°, W 121.996843°), as 

well as 10 L of sand to the bottom of each mesocosm. We added whole water and filtered (> 80 

μm) zooplankton from Antonelli Pond (N 36.956292°, W 122.060251°) and West Lake (N 

36.976083°, W 122.045683°). We allowed mesocosms to equilibrate for 6 days prior to fish 

addition. We added 5 mosquitofish (3 females, 2 males) to each of 36 “low-density” mesocosms, 

representing 2 replicates each of every factorial population (9) and bass cue (2) combination. We 

added 10 mosquitofish (6 females, 4 males) to each of 12 “high-density” mesocosms, 

representing 2 replicates each of a factorial combination of a subset of populations (one from 

each predator background for a total of 3) and bass cues (2). We also retained two control 

mesocosms, which received no fish. We assigned the above treatments randomly across the 7 by 

8 grid of mesocosms. Mesocosms containing mosquitofish that had been reared with bass cues 

present received bass cues (50 mL of water from a 100 L tank with ~12 juvenile bass that had 

been consuming mosquitofish) twice during the experiment to sustain the bass cue effect.  

 

We sampled ecological characteristics 0, 3, 6, 9, and 27 days after fish addition. We measured 

gross primary production (GPP) by taking dissolved oxygen measurements at dawn, the 

following dusk, and the following dawn, then calculating GPP as the amount of oxygen 

consumed during the night + the amount of oxygen produced during the day (Harmon et al., 

2009). We measured pelagic chlorophyll-a (chl-a), collected using 0.2-1.0 L depth integrated 

water samples, filtered onto 0.7 μm filters (Whatman GF/F), and measured using fluorometry 

(Turner Designs, Trilogy Module CHL-NA). We filtered 20 L depth-integrated zooplankton 

samples through 80 μm mesh, and preserved them with 70% ethanol. We sorted zooplankton to 
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the following broad taxa: calanoids, cyclopoids, nauplii, Daphnia, Bosmina, Ceriodaphnia, 

chydroids, and ostracods. In this manuscript, we present data from the final sampling date, 27 

days after fish addition. 

 

6.3.5 Analyses 

Fish morphology. We used the following general linear mixed model to analyze mosquitofish 

morphology: 

(6.1) 

M  morphometric (Table E.2) (natural log for lengths and areas; untransformed 

for angles and fin placement ratios) 

= P generic antipredator evolution (any predators historically present) 

+ B specific antipredator evolution (bass or bluegill), nested within general 

antipredator evolution (within P) 

+ S local population identity, nested within backgrounds (within B within P) 

+ C general plasticity to bass cues 

+ C×P generic evolution of antipredator plasticity 

+ C×B specific evolution of antipredator plasticity, nested within backgrounds 

(within P) 

+ C×S local population evolution of plasticity, nested within backgrounds (within B 

within P) 

+ X sex 

+ ln(L) natural log body length 

+ X×ln(L) sex-length interaction 

+ T morphology technician who placed the landmarks (random) 

 

We fit this model using a maximum-likelihood (non-restricted) algorithm via lmer in R (Bates et 

al., 2015; R Core Team, 2016). We analyzed the significance of each model term for each model 

metric using Wald type II analysis of deviance tests (Fox and Weisberg, 2011). 

 

Fish behavior. We used the following general linear mixed model to analyze mosquitofish 

behavior (or generalized linear model when modeling proportion of food consumed): 
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(6.2) 

A  average value for each behavioral assay across 10 mins of observation or 

proportion of food items consumed during a 10 min feeding trial 

= P generic antipredator evolution (any predators historically present) 

+ B specific antipredator evolution (bass or bluegill), nested within general 

antipredator evolution (within P) 

+ S local population identity, nested within backgrounds (within B within P) 

+ C general plasticity to bass cues 

+ C×P generic evolution of antipredator plasticity 

+ C×B specific evolution of antipredator plasticity, nested within backgrounds 

(within P) 

+ C×S local population evolution of plasticity, nested within backgrounds (within B 

within P) 

+ N fish stocking density 

+ T observer (random, not included for feeding trials) 

+ U observation date (random, not included for feeding trials) 

 

We fit this model using a maximum-likelihood (non-restricted) algorithm via glm or lmer in R 

(Bates et al., 2015; R Core Team, 2016). We analyzed the significance of each model term for 

each model metric using Wald type II analysis of deviance tests (Fox and Weisberg, 2011). 

 

Evolutionary effect sizes on traits. We also examined the relative effect size contributions of our 

seven focal types of population divergence to morphology and behavior. We re-fit the above 

models for morphology and behavior, but this time treated all the evolutionary variables as 

random. We again used maximum-likelihood (non-restricted) model fitting. 

 

We extracted the standard deviations from each evolutionary variable, which indicate the 

average contribution of each variable to each morphological or behavioral trait. We calculated 

relative standard deviation for each evolutionary variable for each trait: 

(6.3) 
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𝑟𝑖 =
𝑠𝑖

∑ 𝑠𝑥 + 𝑠𝜀
 

 

ri = relative standard deviation; si = standard deviation for a single evolutionary variable within a 

trait model; Σsx = sum of the standard deviations of all evolutionary variables within a trait 

model; sε = residual standard deviation for the trait model. 

We then fit the following general linear mixed model predicting the values of ri calculated in 

Equation 6.3: 

(6.4) 

𝑟𝑖 = 𝑉 + 𝑇 

 

ri = relative standard deviation; V = type of evolution; T = random effect for trait considered. 

We used Tukey tests using the ghlt function in R to rank the relative contributions of each type 

of evolution to mosquitofish trait variation (Hothorn et al., 2008). We used a likelihood ratio test 

to examine the significance of the V term. 

 

Ecological consequences. We directly examined the effects of specific mosquitofish traits on 

our ecological metrics. We began by fitting basic allometric models for mosquitofish 

morphology: 

(6.5) 

𝑀 = 𝑋 + ln(𝐿) + 𝑋 ∙ ln(𝐿) + 𝑇 

 

M = morphometric (Table E.2); X = sex; L = mass; and T is a random term for morphology 

technician. We used the same model forms and variable transformations as the earlier 
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morphometric analyses (natural log for lengths and areas; untransformed for angles and fin 

placement ratios). 

We also fit a basic observer and date model for our mosquitofish behavioral assays: 

(6.6) 

𝐴 = 𝑇 + 𝑈 

 

A = behavioral metric; T is a random term for observer; and U is a random term for observation 

date, which was not included for the feeding trials. We used the same data distributions as the 

earlier behavioral analyses. 

 

We calculated standardized residuals from the above models for each of the 13 morphometric 

and behavioral variables. We averaged morphometric residuals for all individuals within a 

particular mesocosm and averaged shoal behavior residuals for all time points within a particular 

mesocosm. This created a per-mesocosm average residual or “group deviance” value for each 

morphological or behavioral trait, which we could use to predict our ecological metrics. 

 

We created a general linear model predicting each ecological metric (GPP, chlorophyll a, or 

zooplankton density). We started with a model including all standardized residual morphological 

and behavioral traits, as well as density: 

(6.7) 

𝐸 = 𝑅1 + 𝑅2 … + 𝑁 
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E = ecological metric (ln(Y) transformed for producers, ln(Y + 0.1) transformed for zooplankton); 

R = per-mesocosm average standardized residual trait (morphological or behavioral) value; and 

N = mosquitofish density. 

We performed type II likelihood ratio tests on each model parameter. We sequentially removed 

the parameter with the lowest relative likelihood and re-fit the model until each parameter had p 

< 0.05; we left the mosquitofish density term (N) in the model regardless of its significance. We 

compared the AIC of the resulting model with the AIC from a null model including only density 

(N) to assess relative fit quality of the trait parameters (i.e. relative information gain (Burnham 

and Anderson, 2003)). 

 

Ecological effect sizes. We compared the ecological effect sizes of mosquitofish trait variation 

and density variation. We re-fit the final models from the Ecological consequences section as 

standardized general linear models (i.e. all independent and dependent numeric variables had a 

mean of 0 and a standard deviation of 1). We then extracted the model slope coefficients for the 

various parameters, which provide a measure of effect sizes (Schielzeth, 2010): the standard 

deviation of ecological change expected from a standard deviation in trait change or a doubling 

of mosquitofish density. 

 

6.4 RESULTS 

6.4.1 Morphology 

Mosquitofish morphology responded genetically and plastically to predators, but these responses 

were generally not predator-specific (Figures 6.1.a, 6.1.b, Table 6.2). Fish from either predator 

background had shallower heads and more posterior dorsal and anal fins than fish from predator-
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naïve sources. Plastically, fish had smaller, shallower tails when exposed to bass cues for two 

generations; this reaction was more pronounced in fish from the predator backgrounds. When 

exposed to bass cues, predator-naïve mosquitofish also had more posterior dorsal and anal fins. 

Plasticity causes opposite reactions in head depth for bass- and bluegill-impacted sources: when 

exposed to bass cues, fish from bass-impacted sources developed shallower heads, while fish 

from bluegill-impacted sources developed deeper heads. There was also population-specific 

genetic evolution within backgrounds for nearly all measured morphological traits (Figure 6.1.a, 

2b, Table 6.2). Fish lateral eye position and eye angle ratio did not vary significantly with any of 

our evolutionary variables (Table 6.2). 
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Figure 6.1.a. Evolution of mosquitofish morphology. Morphological traits for Gambusia 

affinis from various predator backgrounds, with some exposed to bass cues for two generations. 
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Bars show general linear mixed model predictions ± one standard error. Text next to each panel 

indicates significant effects of various types of genetic and plastic evolution on each trait. 

 
 

Figure 6.1.b. Evolution of mosquitofish morphology, continued. 
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Trait 

Genetic Divergence (G) 
General 

Plasticity 

(E) 

 

C 

Reaction Norm Divergence (G×E) 

Predator 

(Generic) 

P 

Predator 

(Specific) 

B 

Pop. 

 

S 

Predator 

(Generic) 

C×P 

Predator 

(Specific) 

C×B 

Pop. 

 

C×S 

Eye Position 
χ2 = 0.42 
p = 0.516 

χ2 = 0.09 
p = 0.758 

χ2 = 11.43 
p = 0.076 

χ2 = 1.21 
p = 0.272 

χ2 = 0.65 
p = 0.42 

χ2 = 1.21 
p = 0.272 

χ2 = 2.89 
p = 0.822 

Eye Angle 

Ratio 
χ2 = 0.18 
p = 0.67 

χ2 = 0.21 
p = 0.646 

χ2 = 9.36 
p = 0.154 

χ2 = 0.53 
p = 0.466 

χ2 = 0.03 
p = 0.855 

χ2 = 1.22 
p = 0.268 

χ2 = 10.05 
p = 0.123 

Head Angle 
χ2 = 6.2 

p = 0.013 

χ2 = 0.58 
p = 0.447 

χ2 = 8.01 
p = 0.238 

χ2 = 0.36 
p = 0.548 

χ2 = 0.11 
p = 0.745 

χ2 = 14.69 

p < 0.001 

χ2 = 1.79 
p = 0.938 

Tail Area 
χ2 = 0.49 
p = 0.485 

χ2 = 1.18 
p = 0.276 

χ2 = 37.63 

p < 0.001 

χ2 = 6.73 

p = 0.009 

χ2 = 14.38 

p < 0.001 

χ2 = 2.75 
p = 0.097 

χ2 = 5.19 
p = 0.52 

Tail Depth 
χ2 = 3.07 
p = 0.080 

χ2 = 2.45 
p = 0.117 

χ2 = 17.25 

p = 0.008 

χ2 = 5.23 

p = 0.022 

χ2 = 0.07 
p = 0.792 

χ2 = 2.16 
p = 0.141 

χ2 = 7.59 
p = 0.270 

Head Area 
χ2 = 0.59 
p = 0.441 

χ2 = 1.2 
p = 0.274 

χ2 = 22.56 

p = 0.001 

χ2 = 1.58 
p = 0.209 

χ2 = 0.01 
p = 0.926 

χ2 = 0.20 
p = 0.654 

χ2 = 2.6 
p = 0.857 

Head Depth 
χ2 = 0.26 
p = 0.609 

χ2 = 3.36 
p = 0.067 

χ2 = 20.31 

p = 0.002 

χ2 = 3.12 
p = 0.077 

χ2 = 0.00 
p = 0.969 

χ2 = 1.05 
p = 0.306 

χ2 = 2.33 
p = 0.887 

Dorsal Fin 

Position 
χ2 = 4.31 

p = 0.038 

χ2 = 2.45 
p = 0.118 

χ2 = 34.72 

p < 0.001 

χ2 = 0.33 
p = 0.565 

χ2 = 4.26 

p = 0.039 

χ2 = 0.43 
p = 0.511 

χ2 = 3.38 
p = 0.760 

Anal Fin 

Position 
χ2 = 4.75 

p = 0.029 

χ2 = 0.34 
p = 0.561 

χ2 = 25.68 

p < 0.001 

χ2 = 0.09 
p = 0.770 

χ2 = 8.50 

p = 0.004 

χ2 = 0.59 
p = 0.442 

χ2 = 7.96 
p = 0.241 

Shoaling 

Depth 
χ2 = 19.16 

p < 0.001 

χ2 = 0.89 
p = 0.346 

χ2 = 21.94 

p = 0.001 

χ2 = 5.65 

p = 0.017 

χ2 = 0.17 
p = 0.678 

χ2 = 2.09 
p = 0.149 

χ2 = 5.77 
p = 0.449 

Distance from 

Observer 
χ2 = 0.71 
p = 0.401 

χ2 = 2.32 
p = 0.128 

χ2 = 19.01 

p = 0.004 

χ2 = 0.48 
p = 0.489 

χ2 = 13.83 

p < 0.001 

χ2 = 0.01 
p = 0.906 

χ2 = 14.21 

p = 0.027 

Activity 
χ2 = 0.74 
p = 0.389 

χ2 = 0.01 
p = 0.921 

χ2 = 7.03 
p = 0.318 

χ2 = 0.76 
p = 0.384 

χ2 = 0.57 
p = 0.45 

χ2 = 2.37 
p = 0.123 

χ2 = 3.04 
p = 0.804 

Feeding 
χ2 = 2.35 
p = 0.125 

χ2 = 0.45 
p = 0.502 

χ2 = 6.8 
p = 0.34 

χ2 = 0.00 
p = 0.954 

χ2 = 1.95 
p = 0.163 

χ2 = 0.05 
p = 0.824 

χ2 = 7.09 
p = 0.313 

 df = 1 df = 1 df = 6 df = 1 df = 1 df = 1 df = 6 

 

Table 6.2. Evolution of mosquitofish traits. Type II Wald test results for genetic and plastic 

evolution of morphological and behavioral traits in Gambusia affinis. N = 266 for all 

morphological and 96 for all behavioral tests. 
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6.4.2 Behavior 

Mosquitofish behavior also responded genetically and plastically to predators and local pond 

environments (Figure 6.2, Table 6.2). Fish from either predator-impacted background type 

shoaled at shallower depths. Shoaling depth and distance from observer also varied genetically 

across populations within backgrounds. Plastically, fish shoaled at even shallower depths after 

being exposed to bass cues for two generations. Fish from predator-naïve backgrounds shoaled 

farther from the observer if they had been exposed to bass cues. The shoaling distance – bass cue 

relationship also varied significantly across populations within backgrounds. Fish activity level 

and feeding rate did not vary significantly with any of our evolutionary variables (Table 6.2). 

 

6.4.3 Evolutionary effect sizes on traits 

We observed significant trait variation due to six of our seven evolution types (Table 6.3). There 

was significant variation in the contribution of these types of evolution to morphological and 

behavioral traits (χ2 = 36.714; df = 6; p < 0.001), with population-specific genetic evolution 

within backgrounds being greater than all other types (Figure 6.3). After population-specific 

genetic evolution, generic antipredator genetic evolution, general antipredator plasticity, and the 

various types of reaction norm evolution all contributed similar but variable amounts to trait 

variation. While the data for this model appear to be significantly skewed, inclusion of the 

random trait term in Equation 4 results in a roughly normal residual distribution (Figure E.2). 
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Figure 6.2. Evolution of mosquitofish behavior. Behavioral traits for Gambusia affinis from 

various predator backgrounds, with some exposed to bass cues for two generations. Bars show 

general[ized] linear [mixed] model predictions ± one standard error. Text next to each panel 

indicates significant effects of various types of genetic and plastic evolution on each trait. 
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Type of Evolution Results 

 

Generic Antipredator Evolution 

 

Shallower heads in predator-experienced populations 

 

More posterior fins in predator-experienced populations 

 

Shoaling at shallower depths in predator-experienced populations 

 

Specific Antipredator Evolution None 

 

Local Population Evolution Changes in nearly all measured traits across populations within backgrounds 

 

General Plasticity Smaller, shallower tails in populations exposed to bass cues 

 

Shoaling at shallower depths in populations exposed to bass cues 

 

Generic Antipredator Reaction 

Norm Evolution 

Steeper tail size reaction norm. in predator-experienced populations 

 

Steeper dorsal and anal fish placement reaction norms in predator-naïve 

populations 

 

Steeper shoaling distance reaction norm in predator-naïve populations 

 

Specific Antipredator Reaction 

Norm Evolution 

Narrower heads in bass-experienced, but wider heads in bluegill-experienced 

populations exposed to bass cues 

 

Local Population Reaction 

Norm Evolution 

Shoaling closer to or farther from the observer when exposed to bass cues in 

various populations 

 

 

Table 6.3. Results summary for mosquitofish morphological and behavioral evolution. 
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Figure 6.3. Relative contributions (see Equation 6.3) of various types of evolution to 13 

morphological and behavioral mosquitofish traits. Bars show means. Letters show 

categorizations based on Tukey tests. 

 

6.4.4 Ecological consequences 

Mosquitofish introduction had a clear cascading effect, leading to declines in most cladocerans 

and increases in pelagic chlorophyll-a and mesocosm general primary production (GPP) (Figure 

6.4). Doubling mosquitofish density generally strengthened these effects in cladocerans—leading 

to further declines—but did not cascade significantly to the producer level (Figure 6.4, Table 

6.4). 
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Figure 6.4. Ecological impacts of mosquitofish density. Bars show mean ± one standard error. 

Mosquitofish introduction led to a trophic cascade, reducing most cladocerans and increasing 

pelagic chlorophyll a and mesocosm primary production. N = 2, 36, and 12, from left to right. 
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Ecological 

Variable 

 Trait 

Eye 

Pos. 

Eye 

Angle 

Ratio 

Head 

Angle 

Tail 

Area 

Tail 

Depth 

Head 

Area 

Head 

Depth 

Dorsal 

Fin 

Pos. 

Anal 

Fin 

Pos. 

Shoal 

Depth 

Dist. 

from 

Obs. 

Activ. 
Feed. 

Rate 
Dens. 

ΔAIC 

from 

Null 

Model 

Calanoid 

Copepods 
- - - 

χ2 = 11.8 

p < 0.01 - - - 
χ2 = 9.93 

p < 0.01 - - - - - 
χ2 = 0.24 

p = 0.62 -9.64 

Cyclopoid 

Copepods 
- - - - - - - - - - - - - 

χ2 = 0.09 

p = 0.76 0 

All Adult 

Copepods 
- - - 

χ2 = 15.3 

p < 0.01 - - - 
χ2 = 6.86 

p < 0.01 - - - - 
χ2 = 4.52 

p = 0.03 
χ2 = 0.01 

p = 0.93 -11.5 

Nauplii - - - 
χ2 = 6.59 

p = 0.01 - - - - - - - - 
χ2 = 5.56 

p = 0.02 
χ2 = 2.79 

p = 0.10 -5.25 

Daphnia - - - - - - - - - - - - - 
χ2 = 0.80 

p = 0.37 0 

Bosmina - - - 
χ2 = 7.24 

p < 0.01 - - - 
χ2 = 6.14 

p = 0.01 - - - - - 
χ2 = 12.3 

p < 0.01 -4.83 

Cerio-

daphnia 
- - - - - - - - - - - - - 

χ2 = 8.46 

p < 0.01 0 

All Adult 

Cladocera 
- - - 

χ2 = 6.44 

p = 0.01 - - - 
χ2 = 6.31 

p = 0.01 - - - - - 
χ2 = 18.2 

p < 0.01 -4.42 

Ostracoda - - - - - - - - - - - - - 
χ2 = 0.24 

p = 0.62 0 

Chl. A - - - - - - - - - - - - - 
χ2 = 0.25 

p = 0.62 0 

GPP - - - 
χ2 = 4.71 

p = 0.03 - - - - - - 
χ2 = 4.80 

p = 0.03 
χ2 = 6.22 

p = 0.01 
- 

χ2 = 1.48 

p = 0.22 -5.86 

 

Table 6.4. Mosquitofish trait effects on zooplankton and producers. Type II likelihood ratio tests for effects of mosquitofish traits 

and density on mesocosm ecology. Dashes indicate removed trait terms, which had p > 0.05. Density terms were included in all  
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models regardless of significance. ΔAIC indicates AIC improvement compared to a null model, 

which included only a mosquitofish density term. df = 1; N = 48 for all tests. 

 

Mosquitofish traits had numerous significant effects on zooplankton. Increasing mosquitofish tail 

area, dorsal fin posteriority, and mosquitofish feeding rate led to declines in most copepods and 

cladocerans (Figure 6.5, Table 6.4). This effect was most noticeable in the most abundant taxa, 

i.e. calanoid copepods and Bosmina. 

 

The effect of mosquitofish tail area cascaded to the producer level; increases in tail area led to 

increased mesocosm gross primary production (Figure 6.6, Table 6.4). Increasing mosquitofish 

shoaling distance from a human observer and activity level also led to increased gross primary 

production, though these traits had no effect on zooplankton (Figure 6.6, Table 6.4). 
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Figure 6.5. Effects of mosquitofish trait variation on zooplankton. Zooplankton densities are 

controlled for mosquitofish densities and other fish traits. Lines show predictions from general 



- 146 - 

liner model. Each X-value represents the average trait value for all fish within a single 

mesocosm, and each Y value represents zooplankton densities 27 days after fish introduction. 

 

 

Figure 6.6. Effects of mosquitofish trait variation on GPP. Gross Primary Production 

increased with mosquitofish tail area, shoaling distance from an observer, and activity level. 

Each X-value represents the average trait value for all fish within a single mesocosm, and each Y 

value represents mesocosm GPP 27 days after fish introduction. GPP values are controlled for 

fish density and other fish traits. Lines show predictions from general liner model. 

 

6.4.5 Ecological effect sizes 

Significant ecological effects of mosquitofish trait variation were more extensive than those of 

mosquitofish density doubling (Table 6.4). Mosquitofish trait variation significantly affected 

copepods, cladocerans, and GPP, while mosquitofish density doubling significantly affected only 

cladocerans. A one standard deviation increase in tail area, dorsal fin posteriority, or feeding rate 

led to anywhere from a 0.29 to 0.58 standard deviation decrease in copepod density (Table 6.5). 

Tail area had the strongest trait-mediated effects on zooplankton; an increase of one standard 

deviation in tail area led to a 0.58 standard deviation decrease in adult copepod density (Table 
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6.5). In cladocerans, which were affected by both mosquitofish traits and density, doubling 

mosquitofish density led to a roughly one standard deviation decrease in cladoceran density, 

which was roughly 3-4 times stronger than the effects of a standard deviation of mosquitofish 

trait change (Table 6.5). Mosquitofish trait change and density change had roughly equal effects 

on GPP, though the effect of fish density change was not statistically significant (Tables 6.4, 

6.5). 

 

Ecological 

Variable 

SD Ecological Change Generated by 1 SD Fish Trait Change 
SD Ecological 

Change Generated 

by Doubling Fish 

Density 
Tail Area 

Dorsal Fin 

Position 

Distance from 

Observer 
Activity 

Feeding 

Rate 

Calanoid 

Copepods 
-0.51 -0.50    0.15 ns 

Cyclopoid 

Copepods 
     0.10 ns 

All Adult 

Copepods 
-0.58 -0.40   -0.29 0.02 ns 

Nauplii -0.36    -0.35 -0.53 ns 

Daphnia      -0.30 ns 

Bosmina -0.40 -0.38    -1.05 

Ceriodaphnia      -0.90 

All Adult 

Cladocera 
-0.36 -0.37    -1.24 

Ostracoda      -0.16 ns 

Chl. A      0.17 ns 

GPP 0.29  0.35 0.40  0.38 ns 

 

Table 6.5. Ecological effect sizes of mosquitofish trait and density change. Effect sizes were 

calculated from slope parameters of standardized general linear models. ns = not significant 

(Table 6.4). 
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6.5 DISCUSSION 

We found numerous examples of contemporary divergence in western mosquitofish, including 

changes in head shape, tail shape, fin placement, and shoaling habits. These population 

differences were from a mixture of genetic and plastic antipredator adaptation and other local 

evolutionary mechanisms, though population-level genetic differences within backgrounds (i.e. 

local population divergence) were by far the greatest source of mosquitofish trait variation. 

Several traits—caudal peduncle size in particular—drove widespread changes in zooplankton 

abundance and gross primary production, demonstrating the cascading community and 

ecosystem effects of functional trait variation. The cascading effects of mosquitofish trait 

variation were weaker but reached more ecological compartments than those of density doubling, 

highlighting the role trait change can play in driving widespread ecological change. 

 

6.5.1 Trait change in mosquitofish 

Our results show a consistent suite of generalist antipredator traits, including shallower and 

smaller caudal peduncles, more posterior fins, and shoaling shallower and farther from a 

disturbance (Figures 6.1.a, 6.1.b, 6.2). These changes were due to a mixture of genetic evolution, 

plastic trait change, and genetic evolution of plastic reaction norms (Table 6.3). With the 

exception of one trait—head angle—genetic antipredator evolution in mosquitofish was the same 

in bass and bluegill backgrounds, suggesting that the mechanisms or benefits of mosquitofish 

antipredator adaptation are not unique to a particular piscine predator (Dunlop-Hayden and 

Rehage, 2011). The generalist nature of these predator-induced trait changes, as well as their 

consistent parallel evolution, may explain the broad ecological success of mosquitofish under 

numerous piscivorous predation regimes (McPeek, 1996; Pyke, 2008). 
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Our results suggest that increased avoidance of predators and resource conservation, rather than 

enhanced predator detection or escape, may be the more important pattern of adaptive 

antipredator evolution in California mosquitofish. We saw no predator-driven divergence in eye 

position, suggesting that predator detection is not strongly selected for in mosquitofish (Hassell 

et al., 2012). Fish exposed to predator cues—particularly those from predator-rich 

backgrounds—developed smaller caudal peduncles, which have been empirically shown to 

reduce burst-swimming ability but enhance general swimming efficiency (Langerhans, 2009). 

Furthermore, mosquitofish from predator-impacted backgrounds or those exposed to bass cues 

tended to shoal farther from human observers and closer to the surface, suggesting that predator 

avoidance through selection of shallow-water refugia, rather than inspection (Magurran, 1986) is 

the common pattern of mosquitofish antipredator behavior. Indeed, smaller caudal peduncles in 

mosquitofish are associated with feeding in protected fringe habitats away from open areas 

(Ruehl and DeWitt, 2005). Thus, predator exposure over the short- and long-term appears to 

favor mosquitofish that use shallow refuge habitats, and efficiently subsist by locally browsing 

for forage. Such a predator avoidance strategy is typically most successful when food resources 

for prey are high, limiting the adaptive cost of reduced prey foraging time (Anholt and Werner, 

1995). Such high-resource conditions are more likely to occur in mosquitofish populations with 

bass and bluegill, where predation, rather than resource competition, limits the population size 

and resource consumption of mosquitofish (Pyke, 2008). 

 

Our findings contrast with other common-rearing studies suggesting that mosquitofish from 

high-predation environments have larger caudal peduncles and enhanced burst-swimming 
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abilities (Langerhans, 2009; Langerhans et al., 2004). This may be due to differences in 

experimental environments across common-rearing studies—fish in other studies were reared in 

aquaria, while ours were reared in mesocosms with limited live food, more closely 

approximating natural foraging and competitive conditions. The unrealistic context of unlimited 

food in more controlled laboratory conditions might permit predator-adapted mosquitofish some 

heightened investment in caudal morphology (Lönnstedt et al., 2012; Magnhagen and 

Borcherding, 2008). Alternatively, it may be that the ecological context of fish predation in 

California mosquitofish habitats are not directly comparable to the predation contexts in other 

studies that often examined different mosquitofish species in different geographic regions and 

used fewer source populations. 

 

Overall, heritable evolution across populations (ponds) within predation backgrounds was by far 

the strongest mode of mosquitofish divergence, influencing the greatest number of traits and 

explaining the greatest proportion of mosquitofish trait variation (Figure 6.3, Table 6.3). Thus, 

despite a common focus on antipredator adaptation in poecilids as a driver of ecologically 

relevant trait change (Bassar et al., 2010, 2012; Palkovacs et al., 2009, 2011), factors other than 

predators may play stronger roles in divergence, including competitors (Schmitt and Coyer, 

1983; Seehausen and Schluter, 2004; Werner and Hall, 1977), parasites (Barber and 

Dingemanse, 2010; Huntingford, 2004), prey (Higham et al., 2007; Palkovacs and Post, 2008), 

and a variety of biotic and abiotic lake characteristics (Moffett et al., 2018; Seehausen et al., 

2008; Tuckett et al., 2013). Genetic drift may also account for some of the divergence in 

mosquitofish traits (Vera et al., 2016). Thus, studies focusing on a single driver of trait change 

may underestimate the size of evo-to-eco interactions. Furthermore, studies that only include a 
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small number of study populations are likely to include confounding effects of local population 

divergence—particularly when local population divergence is greater than divergence from the 

focal driver. 

 

6.5.2 Ecological impacts of mosquitofish density and trait change 

The effects of mosquitofish introduction and density change on zooplankton were mostly limited 

to large cladocerans (Figure 6.4). Mosquitofish introduction decreased cladoceran density 

greatly, suggesting that mosquitofish predation efforts had the greatest impact on larger, slow-

moving taxa (Rehage et al., 2005b). However, mosquitofish have been shown to consume most 

zooplankton (Bence and Murdoch, 1986; García‐Berthou, 1999; Mansfield and Mcardle, 1998; 

Rehage et al., 2005b), including copepods. Thus, the lack of copepod response to mosquitofish 

introduction and density change may be due to an offsetting mixture of mosquitofish consuming 

copepods and simultaneously releasing them from competition, rather than a lack of 

mosquitofish predation (Chase et al., 2002). Furthermore, the direct effects of mosquitofish 

traits—including feeding rate—on copepods (see below) suggest that mosquitofish consumed at 

least some copepods. 

 

The observed reduction in cladocerans upon mosquitofish introduction clearly drove a trophic 

cascade (Ripple et al., 2016), leading to a higher pelagic chlorophyll-a concentration in 

mesocosms with mosquitofish compared to those without (Figure 6). Doubling mosquitofish 

density decreased cladoceran density further, but did not, however, result in further increases in 

chlorophyll-a standing stocks, though there was a nonsignificant increase in GPP related to 

mosquitofish doubling (Figure 6.4). The lack of chlorophyll-a increase in the doubled 
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mosquitofish density treatments could be due to phytoplankton nutrient limitation (Tilman et al., 

1982) or a compensatory response in other zooplankton or phytoplankton taxa (Fahimipour et al., 

2017). 

 

Mosquitofish trait divergence also influenced a broad array of zooplankton densities. Increasing 

mosquitofish caudal peduncle area, dorsal fin posteriority, and feeding rate all reduced copepod 

and cladoceran densities (Figure 6.5). The strongest and most consistent of these effects was due 

to tail size (Table 6.5); larger caudal regions were associated plastically and genetically with bass 

and bluegill absence, but also varied greatly across populations within predator regimes (Figure 

6.1.b). Larger caudal regions—while less efficient—facilitate burst-swimming ability in 

mosquitofish (Langerhans, 2009). Such burst-swimming may be advantageous for both 

exploitative and interference competition for limited zooplankton resources. Larger caudal 

peduncles are associated with profitable (but vulnerable) pelagic feeding in mosquitofish (Bence 

and Murdoch, 1986; Ruehl and DeWitt, 2005). Furthermore, larger tails reduce the impact of 

aggression-induced damage on swimming ability (Sinclair et al., 2011). Therefore, it seems 

likely that increased investment in caudal regions increased resource acquisition of mosquitofish 

under competitive conditions. Thus, larger caudal peduncles led to reductions in most 

zooplankton, particularly more-mobile copepods (Link, 1996). We observed a similar pattern 

with dorsal fin posteriority, which may provide an additional swimming boost. Increases in fish 

feeding rate also decreased some zooplankton densities, which is, of course, intuitive. 

 

Changes in caudal peduncle area in mosquitofish were associated with cascading effects down to 

the producer level, influencing mesocosm GPP (Figure 6.6), but not chlorophyll-a (Table 6.4). 
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Effects of mosquitofish caudal peduncle size on GPP could be top down through changing 

foraging ability on zooplankton (see above), or bottom-up through increased nutrient recycling 

(Horppila et al., 1998; Vanni and Layne, 1997), though the opposite directions of the trait-

zooplankton and trait-GPP relationships (Figures 6.5, 6.6) suggest that the prominent mechanism 

is a top-down, trait-driven trophic cascade (Benndorf et al., 2002; McQueen et al., 1989; Power, 

1992). The effects of mosquitofish density on chlorophyll-a appeared to saturate below our 

minimum density of five fish (Figure 6.4), so cascading effects of mosquitofish traits on 

chlorophyll-a may have been overwhelmed at our stocking densities. Two other fish traits—fish 

activity and fish distance from observer—both did not affect zooplankton, but did positively 

effect GPP (Figure 6.6). Fish activity level should relate positively to nutrient excretion, 

suggesting that fish activity level may also affect primary production through bottom-up 

mechanisms (Horppila et al., 1998; Vanni and Layne, 1997). Thus, we suggest trait variation in 

mosquitofish likely affects ecosystem function (primary production) through both top-down and 

bottom-up mechanisms. 

 

Our work shows that the ecological effects of trait changes in mosquitofish are at least as wide-

reaching as those of density changes. Where we found significant ecological effects of both 

mosquitofish density and trait change (cladocerans), the effects of one standard deviation of trait 

change were roughly one-third to one-quarter as strong as the effects of mosquitofish density 

doubling (Table 6.5). However, whereas doubling mosquitofish density impacted only 

cladocerans, variation in mosquitofish traits affected copepods, cladocerans, and mesocosm 

primary production (Table 6.4). Thus, while increasing the density of mosquitofish exacerbates 

some of the ecological effects of mosquitofish introduction, altering mosquitofish traits expands 
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the cascading effects of mosquitofish introduction to new taxa and food web pathways. Thus, 

trait change in organisms can reshape ecosystems in ways difficult to predict from introduction 

effect sizes or initial species interaction strengths. 

 

6.5.3 Conclusions 

Morphological and behavioral traits in western mosquitofish are influenced by a diverse mixture 

of heritable, plastic, and reaction norm changes in response to predators and other local factors. 

Through a mixture of genetic evolution and plasticity, mosquitofish adapted or exposed to 

predators took on similar conservative body forms and behaviors that likely maximized 

efficiency and minimized predator exposure. Idiosyncratic evolution at the population level (to 

factors other than predators) was by far the strongest form of evolution, influencing the greatest 

number of traits and the highest proportion of trait variation. Trait variation in mosquitofish—

associated in part with genetic and plastic predator naivete—cascaded through ecosystems, likely 

via both top-down and bottom-up pathways. Ecological effects of mosquitofish trait change—

though weaker than some ecological effects of mosquitofish density change—were far more 

extensive, reaching almost all studied taxa and compartments. Thus, the drivers and ecological 

impacts of evolution are pervasive but complex, and singular focus on any particular selective 

agent, trait, mode of trait expression (evolution or plastic), or ecological impact, is to 

underestimate the strength and reach of eco-evolutionary dynamics. 
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APPENDIX A: SUPPLEMENT TO CHAPTER 2 

 

 

 

Figure A.1. Competition-defense tradeoffs. Competition – defense tradeoffs in our model were 

realized by modifying the degree to which attack rate and vulnerability increased with increasing 

genotype values. “Cheap competition” occurs when changes in genotype can increase attack rate 

with little increase in vulnerability, and vice-versa.   
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Figure A.2. Harvest yield and sustainability when lower, non-target trophic levels evolve. 

Evolution in trophic levels below the harvested top predator alternately dampened and 

exacerbated harvest effects with decreasing trophic level. Black lines represent outcomes with 

evolutionary and ecological processes included; red lines represent outcomes with evolution 

frozen and only ecological processes following the initiation of harvest. Evolution in odd-

numbered trophic levels increased harvested species yield and stability, while evolution in even-

numbered trophic levels decreased yield and stability. Lines represent mean ± one standard 

deviation for twelve runs per each point
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Figure A.3. Multi-trophic non-target evolution during harvest of a top predator. Once-removed trophic levels (panel A) evolved 

in similar directions to create a large combined bolstering effect on the harvested species. Neighboring trophic levels (panels B and C) 
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evolved in opposite directions, with effects on the harvested species roughly cancelling. Black lines show the average (dark line) and 

12 example runs (gray lines) when evolution was allowed to proceed. Red lines show the average (dark line) and 12 example runs 

(pink lines) when evolution was frozen at harvest onset (vertical blue lines).  
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Figure A.4. Effects of fishing down the food web. Shortening the food chain from 4 (panel A) 

to 3 trophic levels (panel B) and harvesting secondary consumers (now the top tropic level) led 

to evolutionary reversal in lower trophic levels, though the net effect of evolution was to bolster 

the harvested species in both scenarios. Black lines show the average (dark line) and 12 example 

runs (gray lines) when evolution was allowed to proceed. Red lines show the average (dark line) 
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and 12 example runs (pink lines) when evolution was frozen at harvest onset (vertical blue 

lines). 

 

Figure A.5. Eco-evolutionary consequences of non-target species evolution during harvest 

of the secondary consumer (penultimate trophic level). Even-numbered trophic levels below 
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the harvested species (panel A) evolved increased defense and weakly decreased the abundance 

of the top predator; odd-numbered trophic levels (panel B) evolved increased competitive ability 

and lead to a weak bolstering of the top predator. Black lines show the average (dark line) and 

12 example runs (gray lines) when evolution was allowed to proceed. Red lines show the 

average (dark line) and 12 example runs (pink lines) when evolution was frozen at harvest onset 

(vertical blue lines). 

 

 

Figure A.6. Harvest yield and sustainability when lower, non-target trophic levels evolve. 

Secondary consumer (penultimate trophic level) harvested. Evolution in trophic levels below the 

harvested species alternately dampened and exacerbated harvest effects with decreasing trophic 

level, though these effects were largely attenuated by population size changes in the top predator. 

Black lines represent outcomes with evolutionary and ecological processes included; red lines 

represent outcomes with evolution frozen and only ecological processes following the initiation 

of harvest. Evolution in odd-numbered trophic levels increased harvested species yield and 
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stability, while evolution in even-numbered trophic levels decreased yield and stability. Lines 

represent mean ± one standard deviation for twelve runs per each point. 

 

 

Figure A.7. Competition-defense tradeoffs and eco-evolutionary potential. Secondary 

consumer (penultimate trophic level) harvested. Intermediate competition-defense tradeoff ratios 

in non-harvested species led to divergence between eco-evolutionary (Black) and ecology-only 

(Red) model outcomes for harvested species abundance. Tradeoff ratios necessary to cause 

significant evolution in response to harvest became more biased towards inexpensive defense as 

trophic level increased. Tradeoffs biased strongly towards inexpensive defense led to food web 

collapse and extirpation of the harvested species; tradeoffs biased towards inexpensive 

competition caused no difference between eco-evolutionary and ecology-only models. Lines 

represent mean ± one standard deviation for twelve runs per each point. 
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APPENDIX B: SUPPLEMENT TO CHAPTER 3 

 

Appendix B.1. Model parameters for all reported models. 

(estimates ± standard errors shown) 

 

Morphology:  ln(Y) = a·S + b·ln(L) + P 

Y is a morphometric variable, S is source-type, L is body length, P is a random effect term for 

population within source-type, and a and b are model coefficients. 

 Males Females 

Snout – Eye 
aC = -1.38 ± 0.21; an = -1.49 ± 0.20; 

ap = -1.52 ± 0.19; b = 0.82 ± 0.06 

aC = -1.44 ± 0.11; an = -1.54 ± 0.10; 

ap = -1.51 ± 0.10; b = 0.84 ± 0.03 

Snout – Dorsal Fin 
aC = -0.19 ± 0.09; an = -0.21 ± 0.08; 

ap = -0.20 ± 0.08; b = 0.89 ± 0.03 

aC = -0.57 ± 0.05; an = -0.57 ± 0.05; 

ap = -0.58 ± 0.04; b = 1.04 ± 0.01 

Snout – Anal Fin 
aC = -0.60 ± 0.19; an = -0.57 ± 0.18; 

ap = -0.60 ± 0.18; b = 0.92 ± 0.06 

aC = -1.01 ± 0.06; an = -1.03 ± 0.06; 

ap = -1.02 ± 0.06; b = 1.14 ± 0.02 

Caudle P. Depth 
aC = -2.40 ± 0.15; an = -2.47 ± 0.14; 

ap = -2.44 ± 0.14; b = 1.15 ± 0.05 

aC = -2.01 ± 0.08; an = -2.06 ± 0.08; 

ap = -2.04 ± 0.08; b = 0.99 ± 0.02 

C = captive-propagated; n = wild low-predation; p = wild high-predation 

 

Exploration latency:  Epair = a×S + b1×S×Lf + b2×S×Lm + P 

Epair is pair mean transformed exploration latency, S is source type, Lf and Lm are female and 

male length, respectively, P is a random effect term for population within source-type, and a, b1, 

and b2 are model coefficients. 

 Captive-propagated Wild low-predation Wild high-predation 

a -0.57 ± 0.28 0.06 ± 0.34 0.37 ± 0.25 

b1 0.010 ± 0.004 -0.011 ± 0.006 0.0087 ± 0.0047 

b2 0.020 ± 0.006 0.026 ± 0.011 -0.011 ± 0.009 
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In-mesocosm behavior:  D = a×S + M + T  

  A = eX/(1+eX) 

  X = a×S + M + T 

D is distance or depth, S is source-type, M is a random effect term for mesocosm identity, T is a 

random effect term for time since the start of observation, A is activity, and a is a model 

coefficient. 

 Captive-propagated Wild low-predation Wild high-predation 

Depth a = 3.67 ± 0.18 a = 3.48 ± 0.17 a = 3.05 ± 0.17 

Distance from observer a = 3.51 ± 0.15 a = 3.53 ± 0.14 a = 2.82 ± 0.14 

Activity >1 (binary) a = 0.81 ± 0.75 a = 0.55 ± 0.71 a = 2.89 ± 0.93 

Activity >2 (binary) a = -1.95 ± 0.74 a = -3.88 ± 0.95 a = -0.11 ± 0.59 

 

Producers:  N = a×S + b1×B + b2×R + b3×F 

N is abundance, S is source-type, B is adult fish biomass, R is adult sex ratio (males/total), F is 

number of fry, and a, b1, b2, b3 are model coefficients. 

 GPP Pelagic chl. a Benthic chl. a1 

aC 0.26 ± 0.10 10.7 ± 6.3 -110 ± 332 

an 0.26 ± 0.08 8.8 ± 4.8 65 ± 254 

ap 0.28 ± 0.08 9.1 ± 5.3 14 ± 279 

b1 -0.0067 ± 0.0685 -0.15 ± 4.38 197 ± 230 

b2 -0.0092 ± 0.0714 -4.9 ± 4.6 441 ± 241 

b3 -0.0003 ± 0.0007 0.017 ± 0.043 -1.4 ± 2.3 

C = captive-propagated, n = wild low-predation, p = wild high-predation 

1: μg per 28 cm2 tile 
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Consumers: N = exp( a×S + b1×B + b2×R + b3×F ) 

N is abundance, S is source-type, B is adult fish biomass, R is adult sex ratio (males/total), F is 

number of fry, and a, b1, b2, b3 are model coefficients. 

 Chironomids1 Cladocerans2 Adult copepods2 Copepod nauplii2 

aC 4.78 ± 0.21 -2.61 ± 0.78 2.08 ± 0.55 6.48 ± 0.10 

an 4.98 ± 0.16 -2.61 ± 0.62 2.35 ± 0.42 6.23 ± 0.08 

ap 5.25 ± 0.18 -3.25 ± 0.71 1.67 ± 0.49 6.32 ± 0.09 

b1 -0.31 ± 0.015 3.89 ± 0.43 0.43 ± 0.36 -0.33 ± 0.07 

b2 -0.30 ± 0.15 4.80 ± 0.61 1.37 ± 0.41 0.37 ± 0.08 

b3 -0.0071 ± 0.0015 -0.041 ± 0.0059 -0.053 ± 0.006 -0.0204 ± 0.0009 

C = captive-propagated, n = wild low-predation, p = wild high-predation 

1: individuals per 28 cm2 tile; 2: individuals per 4 L sample 
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Population source Coordinates Background 
Exploration 

latency trials 
Morphometrics 

Mesocosm 

introductions, 

boldness & 

activity 

1. De Laveaga Pond 
N 36.998071° 

W 121.999344° 
No bass 

Summer 2016 

N = 20 pairs 

Summer 2015 

N = 17m, 21f 
 

2. Dodero Pond 
N 36.982388° 

W 122.048387° 
No bass 

Summer 2016 

N = 20 pairs 

Summer 2015 

N = 22m, 25f 
 

3. Shorebirds Marsh 
N 36.873470° 

W 121.821673° 
No bass 

Summer 2016 

N = 20 pairs 

Summer 2015 

N = 15m, 25f 
 

4. Watsonville Lagoon 
N 36.871364° 

W 121.818474° 
No bass 

Summer 2016 

N = 20 pairs 

Summer 2015 

N = 15m, 16f 
 

5. Dow Wetland* 
N 38.018818° 

W 121.836500° 
No bass  

Spring 2016 

(post-mesos) 

N = 27m, 42f 

Spring 2016 

N = 12 groups 

6. Antonelli Pond 
N 36.956292° 

W 122.060251° 
Bass 

Summer 2016 

N = 15 pairs 

Summer 2015; Spring 

2016 (post-mesos) 

N =18m, 25f; 

35m, 33f  

Spring 2016 

N = 12 groups 

7. Neary Lagoon 
N 36.962687° 

W 122.029602° 
Bass 

Summer 2016 

N = 13 pairs 

Summer 2015 

N = 8m, 5f 
 

8. Schwann Lake 
N 36.965141° 

W 121.994765° 
Bass 

Summer 2016 

N = 20 pairs 

Summer 2015 

N = 20m, 22f 
 

9. Sac Yolo MVC 
N 38.424359° 

W 121.383089° 

Captive 

Propagation 

Summer 2016 

N =20 pairs 

Summer 2015 

N = 25m, 25f 
 

10. Contra Costa MVC* 
N 38.009202° 

W 122.037591° 

Captive 

Propagation 

Summer 2016 

N = 20 pairs 

Spring 2016 

(post-mesos) 

N = 55m, 14f 

Spring 2016 

N = 12 groups 

11. Contra Costa MVC 

albino 
N 38.009202° 

W 122.037591° 

Captive 

Propagation 

Summer 2016 

N = 17 pairs 
  

 

Table B.1. Mosquitofish collection and sample size information. Western mosquitofish 

(Gambusia affinis) sources, collection dates, and sample sizes for exploration, morphology, and 

mesocosm experiments. Exploration latency trials, morphometric analyses, and mesocosm 

introduction experiments were conducted on separate groups of individuals, except where noted. 

Numbers correspond to map (Figure B.1) 

*The Contra Costa Mosquito Vector Control population was at least partially established from 

Dow Wetland individuals at least a decade prior to fish collection.  
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Morphometric Sex 
Source-type 

χ2 df p 

Snout – Eye 
Male 16.0 2 0.0003 

Female 11.3 2 0.004 

Snout – Dorsal Fin 
Male 2.98 2 0.23 

Female 0.96 2 0.62 

Snout – Anal Fin 
Male 3.72 2 0.16 

Female 2.09 2 0.35 

Caudle P. Depth 
Male 11.0 2 0.004 

Female 4.54 2 0.10 

 

Table B.2. Morphology likelihood ratio test results. Likelihood ratio tests for source-level 

differences in mosquitofish morphometrics. N = 257 males; 253 females 

 

Component χ2 df p 

Source-type 6.24 2 0.044 

Male length* 6.67 1 0.010 

Female length* 2.72 1 0.10 

Source-type × Male length 9.36 2 0.009 

Source-type × Female length 9.03 2 0.011 

 

Table B.3. Exploration behavior likelihood ratio test results. Likelihood ratio tests for male-

female pair exploration latency in Gambusia affinis. N = 185. 

*Male length and female length likelihood ratio tests were performed on models without their 

respective higher-order interactions. 
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Term (x) 
Producer response (y) 

GPP Pelagic chl. a Benthic chl. a 

 χ2
df p χ2

df p χ2
df p 

Source-type 0.401 2 0.82 0.915 2 0.63 2.46 2 0.29 

Fish mass 0.010 1 0.92 0.001 1 0.97 0.735 1 0.39 

Sex ratio 0.016 1 0.90 1.17 1 0.27 3.36 1 0.067 

Fry produced 0.196 1 0.66 0.148 1 0.70 0.344 1 0.56 

Total ΔAIC -9.45 -6.20 -4.94 

 

Table B.4. Primary producer likelihood ratio test results. General linear model likelihood 

ratio test results for producer metrics in mesocosms containing Gambusia affinis from 

domesticated captive-propagated and wild sources (no fish reference mesocosms excluded). Fish 

source-type had no detected effect on measured producer attributes (Figure 3.5). All responses 

above were measured 3 weeks after fish introduction, but are largely consistent with trends 

observed earlier in experimentation (Figure B.4). N = 36. 

 

Term (x) 

Consumer response (y) 

Benthic 

chironomids 
Cladocerans Adult copepods Copepod nauplii 

 χ2
df p χ2

df p χ2
df p χ2

df p 

Source-type 64.6 2 < 0.0001 14.6 2 0.0007 14.7 2 0.0006 59.6 2 < 0.0001 

Fish biomass 4.46 1 0.034 88.7 1 < 0.0001 1.45 1 0.22 21.2 1 < 0.0001 

Sex ratio 4.02 1 0.045 70.3 1 < 0.0001 11.6 1 0.0007 23.9 1 < 0.0001 

Fry produced 22.0 1 < 0.0001 58.8 1 < 0.0001 106 1 < 0.0001 624 1 < 0.0001 

Total ΔAIC 97.4 752 337 3090 

 

Table B.5. Consumer likelihood ratio test results. Likelihood ratio test results for consumer 

abundances in mesocosms containing Gambusia affinis from captive-propagated (domesticated) 

and wild sources (no fish reference mesocosms excluded). Tests were conducted by removing 

each term individually (nonsequentially) from a poisson-distributed generalized linear model. 
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Fish source-type had a significant impact on all measured consumer abundances (Figure 3.5). All 

responses above were measured 3 weeks after fish introduction, but are largely consistent with 

trends observed earlier in experimentation (Figure B.3). Total ΔAIC is the improvement in AIC 

when each full model is compared to a null model. N = 36. 

 

Metric (y) Model Δ AIC χ2 df p 

Depth Linear 2.32 6.32 2 0.042 

Distance from observer Linear 9.63 13.63 2 0.0011 

Activity >1 (binary) Logit 1.37 5.38 2 0.068 

Activity >2 (binary) Logit 9.87 13.87 2 0.00097 

 

Table B.6. In-mesocosm behavior likelihood ratio test results. Generalized linear model 

results for positioning and activity differences across Gambusia affinis source-types during a 

mesocosm experiment. Depth and distance from observer (Figure 3.3) models were linear; 

activity (Figure 3.4) models were binomial with a logit link function. Likelihood ratio test 

statistics for the source-type term in each model (see Eqns. 3.4-3.6) are presented here. N = 175. 
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Figure B.1. Mosquitofish collection site map. Map of mosquitofish collection sites in east-

central California. Numbers correspond to population information in Table B.1. Points denote 

populations from captive propagation (black +), high-predation wild (red o), and low-predation 

wild (blue x) environments  
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Figure B.2. Mosquitofish exploration latency correlation. Individual exploration latency times 

during paired trials of a single male and female were non-independent. r = 0.19. Points denote 

pairs from captive propagation (black +), high-predation wild (red o), and low-predation wild 

(blue x) environments.  
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Figure B.3. Mosquitofish snout-eye morphology density plots. Density plots of snout-eye 

morphometric residuals for individuals used in mesocosm experiments (thin line) and all 

individuals studied (thick line).  
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Figure B.4. Mosquitofish caudal peduncle morphology density plots. Density plots of caudle 

peduncle depth residuals for individuals used in mesocosm experiments (thin line) and all 

individuals studied (thick line).  
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Figure B.5. Mosquitofish exploration latency density plots. Density plots of latency residuals 

for pairs from the same source populations as individuals in mesocosm experiments (thin line) 
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and all individuals studied (thick line). For wild LP fish, no pairs were tested from the source 

population used for our mesocosm experiment. 

 

 
Figure B.6. Mesocosm time-series data plots. Mesocosm benthic and pelagic responses to 

mosquitofish introduction. Dots and dashes indicate median and first and third quartiles, 

C n p x C n p x C n p x C n p x 

Weeks after fish introduction 

GPP (mg×L-1day-1) 

Pelagic chl. a (μg×L-1) 

Benthic chl. a (μg×cm-1) 

Benthic chironomids (cm-1) 

Cladocerans (L-1) 

Adult copepods (L-1) 

Copepod nauplii (L-1) 
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respectively. C = captive propagated fish, n = wild low predation fish, p = wild high predation 

fish, x = no fish added. Points within the same week are spread horizontally to ease comparison. 
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APPENDIX C: SUPPLEMENT TO CHAPTER 4 

Appendix C.1. Correcting mosquitofish densities. 

We examined the accuracy of our visual counting methods at the end of experimentation (week 

6). Using the same method as throughout our experiment, we visually counted all mosquitofish 

in all mesocosms: An observer standing adjacent to each mesocosm counted all mosquitofish 

seen during a 5-minute interval. A second observer repeated this process for an additional 5-

minute interval. If the mosquitofish counts differed between observation periods, a third observer 

did an additional 5-minute observation, which generally confirmed the higher count. 

 

To determine the actual number of mosquitofish in each mesocosm, we exhaustively captured all 

fish using hand nets. In addition to the mesocosms we studied for this experiment, we included 

mesocosms from a concurrent experiment using the exact same design, except that mosquitofish 

were periodically replenished—for a total sample size of 32. 

 

Analyses 

We used a general linear model in R (R Core Team, 2016) with a poisson independent variable 

distribution (identity link function) to predict the number of mosquitofish missed by the visual 

counts: 

(C.1) 

A – C = β0S + β1S×C 

 

Where A is the actual number of mosquitofish present, C is the number of visually counted 

mosquitofish, and β0S and β1S are mosquitofish source-specific parameters determined by the 
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model fitting process. A - C conforms roughly to a poisson distribution, with a minimum of zero 

(C was never greater than A) and a mild right-skew. 

 

We transformed the model after fitting to generate the predicted number of fish in each 

mesocosm (F) based on visual counts: 

(C.2) 

F = β0S + (1 + β1S)×C 

 

We used this equation to adjust visual fish counts from earlier time points in the experiment. 

 

Results 

We found source-specific differences in β0 and β1 (Table S-2; Type II likelihood ratio tests (Fox 

and Weisberg, 2011): χ2 = 21.13, df = 1, p < 0.001; and χ2 = 2.60, df = 1, p = 0.11; respectively), 

resulting in higher rates of visually missed mosquitofish from high-predation sources (Figure C-

1). 
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Population 
Location 

(CA County) 
Predation Regime 

Density 

(fish/m2) 

Female Length 

(mm) 

Male Length 

(mm) 

Antonelli Pond Santa Cruz Bass 5.75 23.79 19.06 

Furnace Creek Pond* Inyo Bass 18.89 25.08 19.33 

Little Artesian Well Inyo Bass 7.60 25.81 18.13 

Neary Lagoon Santa Cruz Bass <0.01 23.52 17.91 

Schwann Lake Santa Cruz Bass 4.31 27.36 19.35 

   With Bass Mean (SE) 7.31 (3.15) 25.11 (0.70) 18.76 (0.31) 

Artesian Well Inyo No Bass 6.37 29.77 22.61 

Camp Kennolyn Pond Santa Cruz No Bass 11.91 30.02 21.14 

Corcoran Lagoon Santa Cruz No Bass 39.77 25.41 19.36 

De Laveaga Pond Santa Cruz No Bass 6.02 32.56 18.30 

Dodero Spring Santa Cruz No Bass 31.90 30.51 21.86 

BLM Spring Inyo No Bass 10.40 26.73 22.81 

Keough Hot Ditch 2 Inyo No Bass 34.36 27.68 20.84 

Keough Hot Ditch 5 Inyo No Bass 29.64 28.89 20.78 

Larsen Pond Santa Cruz No Bass 77.89 32.13 22.95 

Little Hot Creek Mono No Bass 9.51 27.82 19.35 

Northeast Spring* Inyo No Bass 27.38 28.94 21.65 

Shorebirds Pond Santa Cruz No Bass 1.64 26.74 19.69 

Warm Springs Upper Inyo No Bass 61.12 24.67 20.72 

Watsonville Lagoon Santa Cruz No Bass 8.90 25.19 19.88 

 
 No Bass Mean (SE) 25.49 (6.03) 28.36 (0.66) 20.85 (0.38) 

* Source populations used in the mesocosm experiment. 

 

Table C.1. Mosquitofish densities. Mosquitofish density in ponds with predatory largemouth 

bass and no fish predators, determined with repeated beach seine hauls in 2016. 

 

Source β0 β1 

Predator-experienced (p) 1.87 ± 0.65 0.55 ± 0.22 

Predator-naïve (n) 0.39 ± 0.23 0.08 ± 0.14 

 

Table C.2. Correcting mosquitofish counts. Poisson GLM parameter estimates ± standard 

error for actual vs. counted mosquitofish model. See Equation C.1 for model formulation. 
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 Time model (first) Fish model (second) 

N β0 s(T) β1 Cnaïve Cexperienced s(M) s(ε1) 

All adult crustaceans* 3.53 ± 0.16 0.27 0.66 ± 0.43 -0.72 ± 0.39 -0.30 ± 0.26 0.00 0.83 

All copepods* 3.39 ± 0.08 0.00 0.85 ± 0.34 -0.92 ± 0.31 -0.40 ± 0.20 0.00 0.66 

Adult copepods* 1.68 ± 0.15 0.23 0.73 ± 0.53 -0.67 ± 0.47 -0.42 ± 0.32 0.48 0.80 

Copepodites* 0.71 ± 0.14 0.25 0.35 ± 0.38 -0.32 ± 0.34 -0.21 ± 0.23 0.00 0.74 

Copepod nauplii* 3.01 ± 0.10 0.00 0.44 ± 0.44 -0.55 ± 0.40 -0.16 ± 0.26 0.00 0.85 

All cladocerans* 3.25 ± 0.21 0.40 0.48 ± 0.49 -0.54 ± 0.43 -0.21 ± 0.29 0.00 0.95 

Bosmina* 2.16 ± 0.31 0.64 0.43 ± 0.51 -0.50 ± 0.46 -0.18 ± 0.30 0.00 0.99 

Daphnia* 1.40 ± 0.34 0.72 0.26 ± 0.48 -0.23 ± 0.43 -0.15 ± 0.28 0.00 0.92 

Ceriodaphnia* 1.91 ± 0.33 0.68 0.38 ± 0.52 -0.50 ± 0.46 -0.12 ± 0.31 0.00 1.00 

Rotifers* 2.46 ± 0.39 0.77 1.88 ± 0.76 -1.97 ± 0.64 -0.94 ± 0.47 0.92 1.03 

Chl. a 1.39 ± 0.29 0.62 -0.36 ± 0.34 0.35 ± 0.30 0.20 ± 0.20 0.24 0.55 

GPP 1.82 ± 0.27 0.60 -0.17 ± 0.20 0.06 ± 0.17 0.16 ± 0.13 0.28 0.26 

 

Table C.3. Model parameters for mesocosm response variables. Based on equations 2a and 

2b: 

 N = β0 + T + ε0 

 ε0 = β1 + F⅓×CS + M + ε1 

where N is the concentration or density of each producer assay or consumer, β0 and β1 are 

intercepts, T is a random time effect, ε0 and ε1 are residuals, F is number of mosquitofish 

(calculated as the average of fish observed at the beginning and end of each week), CS is a 

source-specific coefficient, M is a random mesocosm identity effect, and s() is standard 

deviation. 

*N is ln(X + 1) transformed for all consumers   
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Figure C.1. Correcting mosquitofish densities. Actual minus counted (i.e. missed) 

mosquitofish abundances from a low- (n) and high-predation (p) source. Lines show poisson 

GLM mean predictions. Points are jittered slightly to aid viewing.  
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Figure C.2. Ecological variable time-series. Average abundances of all measured producers 

and consumers in predator-naïve ( ) and a predator-experienced ( ) mosquitofish treatments. We 

found no major differences in any measured producer or consumer across the two treatments. 

Bars indicate ± one standard error.  
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APPENDIX D: SUPPLEMENT TO CHAPTER 5 

Population source Code Coordinates Background 

De Laveaga Pond DeL 
N 36.998071° 

W 121.999344° 
No bass 

Shorebirds Marsh Sho 
N 36.873470° 

W 121.821673° 
No bass 

Dow Wetland* PA 
N 38.018818° 

W 121.836500° 
No bass 

Artesian Well AW 
N 37.350584° 

W 118.326576° 
No bass 

Antonelli Pond Ant 
N 36.956292° 

W 122.060251° 
Bass 

Neary Lagoon NL 
N 36.962687° 

W 122.029602° 
Bass 

DeAnza Pond DeA 
N 36.951278° 

W 122.061323° 
Bluegill 

Spring Hills Pond SpH 
N 36.980472° 

W 121.756520° 
Bluegill 

Sac Yolo MVC SY 
N 38.424359° 

W 121.383089° 

Captive 

Propagation 

Contra Costa MVC* CC 
N 38.009202° 

W 122.037591° 

Captive 

Propagation 

 

Table D.1. Western mosquitofish sources. MVC = mosquito vector control. 

*The Contra Costa MVC population was at least partially established from Dow Wetland 

individuals at least a decade prior to fish collection. 
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Tradeoff 

Model predicting AGR Competitiveness metric Model predicting survival 

Fit model 

Calculations based on 

highlighted parameters 

left, not fit model 

Fit model 

Individual—universal 𝐺 = ln(𝑀) + 𝑆 + 𝑅 𝐶 = ln(𝑀) + 𝑆 𝑈, 𝐿 = 𝐶 + 𝑅 

Individual within 

population 
𝐺 = ln(𝑀) + 𝑆 + 𝑃 + 𝑅 𝐶 = ln(𝑀) + 𝑆 𝑈, 𝐿 = 𝐶 + 𝑃 + 𝑅 

Individual within 

background 
𝐺 = ln(𝑀) + 𝑆 + 𝐵 + 𝑅 𝐶 = ln(𝑀) + 𝑆 𝑈, 𝐿 = 𝐶 + 𝐵 + 𝑅 

Population 𝐺 = ln(𝑀) + 𝑆 + 𝑃 + 𝑅 𝐶 = 𝑃 𝑈, 𝐿 = 𝐶 + ln(𝑀) + 𝑆 + 𝑅 

Background 𝐺 = ln(𝑀) + 𝑆 + 𝐵 + 𝑅 𝐶 = 𝐵 𝑈, 𝐿 = 𝐶 + ln(𝑀) + 𝑆 + 𝑅 

G = absolute growth rate (AGR); M = initial mass; S = sex; P = population; B = background; R = mesocosm 

identity random effect; C = estimated competitiveness; U = days survived; L = conspecifics present at death 

 

Table D.2. Models and formulas used to calculate competitiveness and predict survival. 

First, we fit a model that predicted absolute growth rate (left column). Second, we used the 

calculated parameters from that model (highlighted terms) to generate an estimate of 

competitiveness (C) (i.e. through arithmetic, not model fitting). Third, we fit a model predicting 

defendedness using estimated competitiveness and controlled-for parameters.  
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APPENDIX E: SUPPLEMENT TO CHAPTER 6 

Population source Code Coordinates Background 

De Laveaga Pond DeL 
N 36.998071° 

W 121.999344° 
No bass 

Artesian Well AW 
N 37.350584° 

W 118.326576° 
No bass 

Northeast Spring, 

Fish Slough 
NBLM 

N 37.518003° 

W 118.400157° 
No bass 

Antonelli Pond Ant 
N 36.956292° 

W 122.060251° 
Bass 

Schwann Lagoon Sch 
N 36.962655° 

W 121.996843° 
Bass 

Neary Lagoon NL 
N 36.962687° 

W 122.029602° 
Bass 

DeAnza Pond DeA 
N 36.951278° 

W 122.061323° 
Bluegill 

Harkin Slough Har 
N 36.911600° 

W 121.803942° 
Bluegill 

Spring Hills Pond SpH 
N 36.980472° 

W 121.756520° 
Bluegill 

 

Table E.1. Mosquitofish source ponds in California. 
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Trait Measurement Description 

Eye Angle Ratio Angle 2—1—10 / angle 2—1—9 

Ratio of the eye angle (from the top of the head to the 

snout to the eye) to the head angle (from the top of the 

head to the snout to the bottom of the head) 

Head Angle Angle 2—1—9 
Angle from the top of the head to the snout to the 

bottom of the head 

Tail Area Quad. 3—5—6—7 
Area of the caudal peduncle posterior to the dorsal and 

anal fins, excluding the caudal fin 

Tail Depth Segment 5—6 
Depth of the tail where the caudal fin meets the caudal 

peduncle 

Head Area Triangle 1—2—9 Area of the head 

Head Depth Segment 2—9 Maximum depth of the head 

Dorsal Fin 

Position 
Segment 1—midpoint(3,4) / (segment 1—
midpoint(3,4)+segment midpoint(3,4)—5) 

Relative lateral placement of the dorsal fin along the 

dorsal side 

Anal Fin Position 
Segment 1—midpoint(7,8) / (segment 1—

midpoint(7,8)+segment midpoint(7,8)—6) 

Relative lateral placement of the anal fin along the 

ventral side 

 

Table E.2. Morphological trait definitions for mosquitofish. 

 

 
 

Figure E.1. Landmarks used in mosquitofish morphometric analyses. Modified from 

(Langerhans et al., 2004). 
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 Point  Description 

1  Snout 

2  Dorsal head line 

3  Anterior dorsal fin insertion 

4  Posterior dorsal fin insertion 

5  Dorsal caudal fin insertion 

6  Ventral caudal fin insertion 

7  Posterior anal fin insertion 

8  Anterior anal fin insertion 

9  Ventral head line 

10  Eye center 
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Figure E.2. Standardized residuals for type of evolution general linear mixed model 

(Equation 6.4). 
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