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Our objectives were to evaluate the antifungal properties of technical lignins 

against 3 molds and 1 yeast causing hay spoilage, and for their ability to preserve 

alfalfa hay nutritive value. In experiment 1, 8 technical lignins and propionic acid (PRP; 

positive control) were tested at a dose of 40 mg/mL. The experiment had a randomized 

complete block design (RCBD, 4 runs) and a factorial arrangement of 3 molds × 10 

additives (ADV). The effects of ADV on the yeast were also evaluated with a RCBD. 

Across fungi, sodium lignosulfonate (NaL) and PRP were the only treatments with a 100 

± 2.8% inhibition. In experiment 2, the minimum inhibitory (MIC) for selected technical 

lignins and PRP were determined. Among technical lignins, NaL had the lowest MIC 

across molds (< 33.3 mg/mL) and MgL for the yeast (26.7). However, PRP had values 

that were several fold lower across all fungi (< 3.33). In experiment 3, a RCBD (5 

blocks) with a 3 (ADV; NaL, MgL, and PRP) × 4 (doses: 0, 0.5, 1, and 3% w/w fresh 

basis) factorial arrangement of treatments was used to evaluate the preservative effects 

of ADV in high moisture alfalfa hay inoculated with a mixture of the fungi previously 

tested and incubated under aerobic conditions. After 15 d, relative to untreated hay 

(14.9 ± 0.77%), DM losses were lessened by doses as low as 1% for NaL (3.39) and 



 

 

0.5% for PRP (0.81). This was explained by a reduced mold count in both NaL at 3% 

(3.92 ± 0.55 log cfu/fresh g) and PRP as low as 0.5% (3.94) relative to untreated hay 

(7.76). Consequently, sugars were best preserved by NaL at 3% (10.1 ± 0.283% DM) 

and PRP as low as 0.5% (10.5) vs. untreated (7.99), while keeping NDF values lower in 

NaL (45.9 ± 0.66% DM) and PRP-treated (45.1) hays at the same doses, respectively, 

relative to untreated (49.7 ± 0.66% DM). Hay DMD was increased by doses as low as 

3% for NaL (67.5± 0.77%), 1% MgL (67.0), and 0.5% PRP (68.5) vs. untreated hay 

(61.8). In the case of NDFD, 0.5% for MgL and PRP (30.5 and 30.1 ± 1.09% DM, 

respectively) and 1% for NaL (30.7) were the lowest doses increasing NDFD relative to 

untreated hay (23.3). Total volatile fatty acids were increased to the greatest extent by 

NaL at 3% (111.9 ± 1.3 mM) relative to spoiled hay (86.7). Across technical lignins, NaL 

was the best hay preservative. However, its effects were limited compared to PRP at 

equivalent doses. Despite not having an effect on preservation, MgL improved DMD by 

stimulating NDFD. Further research needs to be conducted to isolate the most 

antifungal fraction of NaL and to understand the stimulatory effects of MgL on fiber 

degradation. 

Keywords: hay preservation, technical lignins, ruminal digestibility. 
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CHAPTER 1 

INTRODUCTION 

Forages are the largest dietary component for ruminant animals representing 61% 

and 83% of dairy and beef cattle diets, respectively (Barnes and Nelson, 2003). During 

periods of scarcity caused by limited pasture growth or inadequate pasture conditions, 

or when fed as a supplement, forages are preserved either as hay or silage (Romero et 

al., 2015). Despite the recent growth of silage production, haymaking remains the 

prevailing forage conservation method in the U.S. (NASS, 2017). The greatest issues in 

haymaking are the large losses of dry matter (DM) and nutritive value that occur during 

harvest due to increased leaf fragility below 20% moisture, and during storage if bales 

are stored with a moisture concentration above 20% (or 15% for large round bales), due 

to unpredictable weather. When hay is baled above the maximum recommended 

moisture levels (high moisture hay), microbial spoilage ensues by metabolizing the most 

nutritive fractions (e.g. sugars) and leaving behind the most recalcitrant ones (e.g. fiber), 

releasing heat in the process which will further reduce nutritional value due to the 

Maillard reaction (Rotz and Shinners, 2007). Furthermore, excessive mold growth in 

high moisture hays poses a health risk to farmers in the form of “farmer’s lung” 

(Emanuel et al., 1964) and mycotoxins that can get into the food chain potentially 

affecting consumers (Raymond et al., 2000). 

Additives have been developed to prevent spoilage in high moisture hay. These 

include organic acids, anhydrous ammonia, and microbial inoculants (Rotz and 

Shinners, 2007). Anhydrous ammonia is effective at preventing spoilage but the high 

costs of application and caustic nature have prevented its widespread use (Muck and 

Shinners, 2001), and it cannot be used on high quality forages due to toxicity problems 
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(Rotz and Shinners, 2007). Organic acids such as propionic and acetic acid also 

prevent spoilage of hays with up to 35% moisture, but effects do not last more than 6 

months and its acidic nature quickly corrodes farm equipment (McCartney, 2005). 

Buffered propionic acid such as ammonium propionate reduces damage to harvesting 

equipment (Rotz and Shinners, 2007). Results from propionic acid-based additives have 

been inconsistent and beneficial effects seem to be mostly limited to reducing 

spontaneous heating (i.e. microbial respiration; Coblentz et al., 2013). Microbial 

inoculants have had very limited effects on hay preservation which have limited their 

adoption in the field (Shinners, 2000). Because of the limitations listed above, there are 

no methods that have been widely implemented by hay producers due to high-cost, 

hazardousness, and minimal effectiveness. Further research needs to be conducted to 

evaluate alternative additives that can offer a low-cost (< $4,000/Mg) and effective hay 

preservative. 

Technical lignins are byproducts of paper mills, approximately 50 million Mg/y are 

produced worldwide but only 2% are commercialized (Gosselink et al., 2004). Certain 

technical lignin types, such as kraft lignins and lignosulfonates, have been reported to 

have antibacterial (Dong et al., 2011), antifungal (Jha and Kumar, 2018), and antiviral 

activities (Gordts et al., 2015), and prebiotic effects (Flickinger et al., 1998). 

Furthermore, lignosulfonates have been long used to increase soybean protein bypass 

in the rumen (Borucki Castro et al., 2007) and as feed binders (Corey et al., 2014). 

These properties could be adapted to prevent hay spoilage and consequently increase 

animal performance. 
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The objectives of this study were to evaluate the antifungal properties of technical 

lignins against four fungi isolated from spoiled alfalfa (Medicago sativa) hay and their 

potential preservation properties on dry matter losses, nutritional composition, 

digestibility, and the fermentation profile of high moisture alfalfa hay. 
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CHAPTER 2 

LITERATURE REVIEW 

Hay Production 

Forage can be preserved either as hay, haylage, or silage, depending on the crop 

type, available resources (e.g. storage capability), weather conditions, and the intended 

use of the conserved forage (Romero et al., 2015). In spite of the growth of the silage 

industry, haymaking remains the prevailing forage conservation method in the United 

States (NASS, 2017). This may be due to a better suitability of hay for long-term 

storage, easier transportation (reduced fresh weight per unit of dry matter; DM), and 

marketing (Collins and Owens, 2003). In fact, hay is the third most valuable crop in the 

U.S. and the second in the state of Maine worth $16 billion and $39 million per year, 

respectively (NASS, 2017) Although hay can be made from a variety of crops, alfalfa is 

the most important crop for production of high-quality hay. In the U.S. and in the state of 

Maine, alfalfa hay contributes $8 billion and $3 million per year to agricultural 

economies, respectively (NASS, 2016). 

Definition 

Hay is defined as the aerial portions of fine-stemmed forages, mostly legumes and 

grasses, which are dried, conserved, and stored under aerobic conditions (Horrocks 

and Valentine, 1999). With haymaking, the primary objective is to decrease the moisture 

content in no more than 3-5 d to a stable long-term storage level (<15-20%) while 

capturing most of the forage stand yield and nutrients (Rees, 1982). However, nutrient 

losses during hay harvest and storage are interdependent; as hay moisture decreases 

below 20%, leaf losses increase substantially during harvest (Rotz and Shinners, 2007) 

but above 20%, storage losses rise due to plant enzymatic and microbial activity (Muck 
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and Shinners, 2001; Coblentz and Hoffman, 2009). If hay could be baled above 

recommended moisture levels, harvested yield could be increased by up to 7% (Rotz et 

al., 1992). Considering leaves are the most nutritionally rich plant organ (Albert et al., 

1989) and that most of the field losses are leaves (Rees, 1982), it is evident that a 

technology that could allow for the safe long-term storage of high moisture hay would 

have a great impact in the efficiency of hay production and consequently, in the 

profitability and environmental impact of this economic activity. 

Hay production practices 

Hay can be produced under a variety of systems combining several processes and 

equipment. The goal of these processes is to further increase the drying rate of the 

forage, produce a homogeneously dry crop, and reduce field exposure time (Rees, 

1982). In the U.S., typical hay production involves mowing, curing, tedding, raking, 

baling, and storage, as described next. 

Mowing 

There are four major types of hay mowing equipment, sickle cutter bar, rotary disk, 

rotary drum, and flail mowers (McCartney, 2005). The sickle bar mower (reciprocating 

knives) is the traditional method used worldwide, due to its reliability and low cost (Fig. 

2-1a; Collins and Owens, 2003). However, it has limited speed and swath width 

capacity, which led to the development of rotary disk mowers (Porter, 2017). Disk 

mowers cut forage with knives that are attached to rotating disks on a horizontal plane, 

which provides higher cutting capacity (Fig. 2-1b; Rotz and Shinners, 2007). However, 

these mowers require more power (4×) and fuel per hour of use relative to cutter bar 

mowers (Rotz, 2001). 
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Figure 2-1a. Sickle bar and 2-1b. Rotary disc mower. Reproduced from Romero et al. 
(2015). 

Curing 

Fresh forage usually contains ~80% moisture, therefore, large amounts of water 

need to be removed through evaporation to produce hay with the desired moisture level 

(< 15-20%). The entire process usually takes 3 to 5 d under ideal weather conditions 

(Collins and Owen, 2003). However, the speed of the drying process will depend on the 

crop, weather, and management factors (McCartney, 2005). Relevant crop factors 

influencing the curing process include plant species, growth stage, and leaf:stem ratio 

(McCartney, 2005). Overall, grasses have a superior drying rate relative to legumes, 

due to the greater leaf:stem ratio in grasses because leaves dry faster than stems 

(reduced curing time; Rotz, 1995). Across legumes, alfalfa (Medicago sativa) dries 

faster than red clover (Trifolium pratense), due to the latter’s thicker stems which 

increases radial distance from the stem core to the epidermis (Macdonald and Clark, 

1987). 

Weather is the most unpredictable variable influencing haymaking. Environmental 

factors are highly correlated with each other, and it is therefore difficult to separate the 

effects of each. Among these, ambient temperature, relative humidity (curing time 

increases when > 70%), wind speed (ideally < 19 km/h), solar radiation, and soil 
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moisture are the most important (Rotz and Shinners, 2007). Management factors will be 

discussed in detail next. 

Losses during hay curing 

Physical, biological, and chemical changes occur in forage as it dries in the field 

(Rees, 1982). After cutting the forage, the primary metabolic loss is derived from plant 

cell respiration, which ceases when forage moisture falls below 40% moisture. At this 

level the plant respiration is null (Wolf and Carson, 1973). Respiration losses of 4, 5 and 

7% DM have been reported for alfalfa, ryegrass (Lolium multiflorum), and white clover 

(Trifolium repens) hay, respectively, dried under appropriate weather conditions (Rotz et 

al, 1987). However, during warm and humid conditions, alfalfa hay can lose > 10% DM 

due to plant respiration (Morris, 1972). On the other hand, DM and nutritional quality 

losses may occur during field curing due to rain damage. These losses have been 

reported to range from 2 to > 30% for grass (Dernedde and Wilmschen, 1969) and as 

much as 15.4% for alfalfa hay (Collins, 1996). The rapidly digestible water soluble 

carbohydrates (WSC) have been reported to be the most affected fraction of the crop, 

with 34 and 67% DM losses during curing reported for alfalfa and red clover, 

respectively (Collins, 1996). Therefore, a faster curing process is required in order to 

minimize DM respiration losses and the risk of damage due to unexpected precipitation 

events. 

Conditioning 

Conditioning is the mechanical or chemical process that helps accelerate field 

drying of the hay crop (Collins and Owens, 2003). After mowing, the rate of drying is 

fast at the beginning because the leaf stomata are open. However, after wilting, these 

pores close and moisture is lost only from the waxy epidermis of leaves and stems 
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(Rees, 1982). Therefore, mechanical conditioning is needed in most situations to allow 

additional water loss from openings in the waxy epidermis created during the crushing 

of the forage plant by the conditioner. This reduces curing time by 1 or 2 days (Rotz and 

Shinners, 2007). Currently, most mowing equipment include a mechanical conditioning 

device, with the most common being crimpers, crushing rollers, plastic brushes, or flails 

(McCartney, 2005). From these, impeller or flail conditioners are recommended for 

grass hay (Rotz, 2001), while roll conditioners are best suited for alfalfa and other 

legumes because these are less aggressive, and reduce leaf loss and crop damage 

(Greenlees et al., 2000). Mechanical treatment losses are noticeably larger for legume 

than for grass hay (4 vs. 1% DM; Rotz and Muck, 1994). This could be explained by the 

morphology of legumes (slender petiole) that makes it more susceptible to shattering 

losses than sheaths and blades of grasses (Savoie and Beauregard, 1991). On the 

other hand, chemical conditioners (potassium or sodium carbonate) are applied to the 

crop at the time of mowing to help speed the drying process by modifying the waxy 

materials of the cuticle layer allowing moisture to pass through (Rotz and Shinners, 

2007). These compounds are more effective when used in legumes such as alfalfa and 

clover rather than orchardgrass and timothy (McCartney, 2005). 

Tedding and Raking 

The thickness and density of swaths influence the drying process; generally, more 

dense swaths generate a microclimate that limits moisture loss. Hence, exposing the 

wetter forage by mechanically turning the swath can speed the drying process (Porter, 

2017). Hay tedders are wide machines with orbital wheels that spread and fluff the 

swath as they turn (Fig. 2-2a; Collins and Owens, 2003). These machines create a 

thinner forage layer that is more efficiently exposed to radiation, reducing drying times 
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up to 2 d (Rotz and Shinners, 2007). Tedding should be done when crop moisture 

concentration is > 40% in order to minimize leaf losses that can be > 10% DM in alfalfa 

tedded at 30% moisture (Rotz and Shinners, 2007). 

Once the hay has been tedded and has almost reached the target moisture, the 

forage is raked into a windrow ready to be baled (Romero et al., 2015). Rake designs 

include parallel-bar, wheel, and rotary rakes (Fig. 2-2b). Typical raking losses range 

from 3-6% and are inversely correlated to the area density of the swath (Rotz and 

Abrams, 1988). 

 
Figure 2-2a. Hay tedder, and 2-2b. Parallel bar raker. Reproduced from Fendt (2018) 

and John Deere (2018), respectively. 

Baling 

After the forage crop has reached an ideal moisture concentration (15-20%), 

forage can be packed into round, square, or rectangular bales to simplify handling and 

storage (Rotz and Shinners, 2007). Depending on their size and DM density, a safe 

baling moisture should be considered in order to maintain quality and avoid excessive 

DM losses during storage (Table 2-1; Rotz and Shinners, 2007). Losses during baling 

typically vary between 2-5% of hay yield for small rectangular bales (Rotz and Muck, 

1994). However, for large round bales (the most common type across the U.S.) losses 

can surpass 10% (McCartney, 2005) due to heat accumulation in their compact core 
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(Porter, 2017). Yet, hay producers prefer round bales because they reduce costs of 

labor, infrastructure, and equipment (Huhnke, 2003). 

Table 2-1. Typical dimensions, size, DM density, and baling moisture for hay bales. 
Adapted from Collins and Owens (2003). 

Bale shape Dimensions (m)1 Volume 
(m3) 

Weight (kg) 
DM density 

(kg/m3) 
Safe baling 

moisture (%) 

Rectangular 0.45 × 0.97, 0.36 0.15 27 128 – 176 20 
0.91 × 0.18, 2.0 1.6 408 224-256 12-16 
1.2 × 2.4, 1.2 3.2 816 224-256 12-16 

Round 1.2, 1.2 1.4 227 160-208 18 

1.2, 1.5 1.8 386 160-208 18 

1.5, 1.2 2.2 454 160-208 18 

1.5, 1.5 2.8 590 160-208 18 

1.8, 1.5 3.9 862 160-208 18 
1For rectangular bales, width × length, diameter. For round bales length, diameter. 

Storage 

Ideally, all types of hay bales should be stored under cover to prevent weather 

damage and reduce DM losses, particularly in high rainfall areas (McCartney, 2005). 

The economic value of storage losses is substantial (surpassing $2 billion/year; Ball et 

al., 1998) and can be described as a function of the extent of DM loss and the quality of 

the remaining forage (Rotz and Shinners, 2007). Even when bailing moisture is 

adequate and storage conditions are appropriate, typical DM losses during storage are 

5% (Romero et al., 2015). On the other hand, if hay is baled above 20% (15% for large 

round bales), DM losses are expected to be greater relative to normal moisture hay 

(Coblentz et al., 2004). The internal temperature of the bale increases, due to the 

respiration of both plant and epiphytic microorganisms (Roberts, 1995). The initial 

heating spike lasts for approximately 5 d, and it is followed by an extended phase of 

heating led by storage microorganisms that can last for several weeks, which intensifies 
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in high moisture hays (Fig. 2-3; Coblentz and Bertram, 2012) resulting in a major 

decrease in nutritive value and increase in DM losses (Coblentz and Hoffman, 2009).  

 
Figure 2-3. Internal bale temperature over storage time curved for conventional 

rectangular bales of alfalfa baled at 20 and 30% moisture. Reproduced from 
Coblentz et al. (1996). 

Further losses can occur in unprotected hays depending on weather conditions 

(Rotz and Shinners, 2007). Storing hay outside in dry regions result in minimal DM 

losses compared to regions with high annual rainfall (> 76 cm) where round bales can 

lose up to one third of their initial DM (Collins, 1996). Typically, greater losses occur in 

the most exposed outer layer (10 - 20 cm) while the core of the bale has comparable 

losses to barn stored hay (Rotz and Shinners, 2007). Furthermore, rain damage 

reduces DM digestibility and palatability of hay (Ball et al., 1998). Alfalfa-grass hay 

exposed to rainfall had a marked reduction of DM digestibility compared to unweathered 

hay (34 vs. 57% DM digestibility, respectively (Lechtenberg et al., 1980). This decrease 

may be explained because most digestible fractions of the forage (WSC) are lost during 

storage rain damage (Collins and Owens, 2003). The following section focuses on how 

hay management practices affect microbial succession and its effects on hay nutritional 

value and voluntary intake across the different stages of making hay. 
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Hay Spoilage 

A limited number of studies have described the microbial community of hay 

(Breton and Zwaenepoel, 1991; Taffarel et al., 2013). Moreover, most of the research 

efforts on hay microbiology have focused on depicting the microbial population changes 

that occur during the storage phase and that result in spoilage when moisture 

concentrations are above 20% at bailing (Undi et al., 1997). From a microbiological 

perspective, particular attention has been paid to molds over yeasts and bacteria, and 

spontaneous heating has been frequently used as a proxy of the aerobic respiration of 

plant nutrients (mainly nonstructural carbohydrates) by spoilage microorganisms 

(Coblentz et al., 2012). From a nutritional perspective, important changes including an 

increased concentration of fiber components, and reduced protein digestibility and 

energy density due to spoilage have been reported (Coblentz and Hoffman, 2009). 

Furthermore, excessive mold growth in high moisture hay poses a health risk for both 

farm workers and livestock in the form of pulmonary allergies (i.e. farmer’s lung; 

Emanuel, 1964), and mycotoxins that can get into the food chain potentially affecting 

consumers (Raymond et al., 2000). 

Microbiology of Hay 

The microbial community structure of conserved forages is dynamic and changes 

during harvest, storage, and feeding (Muck, 2013). The dynamics of those changes are 

affected by factors such as the phyllosphere at mowing (Mogodiniyai Kasmaei et al., 

2017), forage type (Duniere et al., 2017), plant variety (Romero et al., 2018), plant 

physiological stage (Gdanetz and Trail, 2017), moisture concentration (Undi et al., 

1997), environmental temperature (Rotz and Muck, 1994), storage conditions (Taffarel 

et al., 2013), and feeding management (Belyea et al., 1985). Next, we will review the 
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microbial communities that characterize each stage of hay production and how they 

relate to changes in forage nutritional value. 

Epiphytic community 

In conserved forages, the composition of the epiphytic community influences the 

stability and feeding value, particularly of silage, being less important for the successful 

preservation of hay (Lin et al., 1992). Epiphytic populations across forage crops have 

been described (Table 2-2; Pahlow et al., 2003). For alfalfa, Enterobacteriaceae, 

Lactobacillaceae, and fungal populations of 6.06, 3.76, and 5.07 log cfu/fresh g have 

been reported, respectively (Lin et al., 1992). Typically Enterobacteriaceae is the 

predominant family, while Lactobacillaceae populations are less abundant (McDonald et 

al., 1991), and much less when the community is described using amplicon-based NGS 

(next generation sequencing; Romero et al., 2018). In fact, many microbes part of the 

phyllosphere are viable but unculturable, thus, the complexity and diversity of epiphytic 

communities is often underestimated (Rastogi et al., 2012). Only few recent studies 

have used amplicon-based NGS to describe the epiphytic community structure 

associated with forages. Across studies, the main family in the phyllosphere seems to 

be Enterobacteriaceae (~50% relative abundance; McGarvey et al., 2013; Romero et 

al., 2018; Dunière et al., 2017). Among the most abundant genera, Cronobacter, 

Erwinia, and Sphingobacterium have been reported for corn (Ni et al., 2017; Romero et 

al., 2018), Erwinia, Escherichia, Pseudomonas, and Enterobacter for alfalfa, 

Sphingomonas for timothy (Phleum pratense)-meadow fescue (Festuca pratensis), and 

Pseudomonas predominated in red clover (Mogodiniyai et al., 2016). Numerous 

bacterial species belonging to these genera are described as important pathogens in 

plants and animals (Toth et al., 2016). 
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Fewer studies have described the fungal phyllosphere. Using curated fungal 

databases (e.g. UNITE), most of the sequences remain unidentified (~45.0% relative 

abundance; Romero et al., 2018). The small grain (oats, barley and triticale) fungal 

microbiome was dominated by unidentified members of the order Capnodiales, 

Pucciniales (rust fungi), and Tremellales with relative abundance of 31, 21, and 18%, 

respectively (Duniere et al., 2017). For corn, the most abundant taxa were Incertae 

sedis Tremellales (12.5%), followed by unidentified Ascomycota, and 

Debaryomycetaceae (both at ~11.3%) and unidentified Pleosporales (9.1%; Romero et 

al., 2018). Among the most abundant genera in corn, yeasts such as Hannaella, 

Bullera, Bulleromyces, Meyerozyma, and molds such as Fusarium and Gibberella were 

reported (Romero et al., 2018). Members of these genera are reported as plant, human, 

and animal pathogens (Kurtzman et al., 2011). 

Table 2-2. Typical populations of epiphytic organisms in forage crops. Adapted from 
Pahlow et al. (2003). 

Microorganism Population (CFU1/g fresh forage) 

Total aerobic bacteria 1×107 
Enterobacteria 1×103 to 1×106 
Molds 1×103 to 104 
Yeasts 1×103 to 1×105 

1Colony forming units 
 
Wilting community 

The microbial community of hay during wilting and baling primarily comprises 

mesophilic organisms that propagate on high moisture plant tissues (Magan and Lacey, 

1986). Typically, a greater fungal diversity during wilting is observed relative to the 

community found during storage, where few species dominate (Wittenberg, 1997). A 

small number of studies have described wilting community dynamics (Breton and 

Zwaenepoel, 1991; Taffarel et al., 2013). The fungal community of wilted tall fescue 
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grass hay consisted primarily of molds such as Cladosporium herbarum, Fusarium 

poae, Alternaria alternata (6×104, 6×103, and 6×103 CFU/g fresh hay, respectively), and 

fewer yeasts (1×102 CFU/g fresh hay) belonging to the genera Sporobolomyces and 

Trichosporon (Breton and Zwaenepoel, 1991). The presence of these molds may have 

adverse effects on humans and livestock health, including respiratory allergies caused 

by C. herbarum and A. alternata (Breitenbach and Simon-Nobbe, 2002), and production 

of mycotoxins (type A trichothecenes) by F. poae (Dinolfo and Stenglein, 2014).  

Storage community 

Field fungi rapidly disappear upon exposure to high temperatures (> 50°C) after 

the second or third day of storage due to their thermo sensitivity (Breton and 

Zwaenepoel, 1991). Simultaneously, species belonging to the genera Rhizopus, 

Absidia, Aspergillus, and Penicillium thrive during the storage phase (Undi et al., 1997). 

These fungi are described to proliferate on dryer plant tissues and at higher 

temperatures (Roberts, 1995). The microbial community of Tifton 85 bermudagrass 

(Cynodon dactylon) hay dried under field or shed conditions consisted of the molds 

Fusarium, Penicillium, and Aspergillus across cutting, baling, and storage (Taffarel et 

al., 2013). Fusarium was the most abundant genus across all stages and storage 

conditions with populations reaching up to 9×103 CFU/g fresh forage after the storage 

period (Fig. 2-4), followed by Penicillium and Aspergillus with populations reaching 103 

and 102 CFU/g fresh forage, respectively during baling (Taffarel et al., 2013). 
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Figure 2-4. Total fungi during haymaking phases (cutting baling and storage) dried 

under field conditions (1) or under shed (2). Modified from Taffarel et al. 
(2013). 

The moisture content of forage at the time of baling is an important factor 

influencing microbial counts and species diversity during storage (Undi et al., 1997). 

Kaspersson et al. (1984) described those dynamics for an unspecified grass species 

hay stored under high moisture conditions (30%). Relative to the initial nutritional 

composition, increased concentrations of acid detergent fiber (ADF) and acid detergent 

insoluble nitrogen (ADIN; 20.0 and 16.2% DM, respectively), lower levels of 

metabolizable energy (-8%), and a simultaneous increase in bale temperature were 

observed due to spoilage ensued by microbial succession (Kaspersson et al., 1984). 

During the first 3 days of storage, the population of mesophilic bacteria, primarily 

members of the genus Micrococcus decreased from an initial population of more than 

107 to approximately102 cfu/g forage. On the other hand, populations of thermophilic 

bacteria increased two logs until they reached a maximum of 109 cfu/g forage after six 

days and remained high throughout the storage phase (Fig. 2-5). Also, the fungal 

community during baling was dominated by mold species from the genera 

Cladosporium and Fusarium with populations of 106 cfu/g forage. After five days of 
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storage, there was a shift to species predominantly from the genus Aspergillus (A. 

flavus and A. glaucus). 

 
Figure 2-5. Changes in the number of bacteria during storage of hay       CFU/g forage 

of thermophilic bacteria;       CFU/g forage of mesophilic bacteria. Adapted 
from Kaspersson et al. (1984). 

Similarly, Gregory et al. (1963) investigated these dynamics for mixed grass hay 

baled at high (30%) and low (15%) moisture concentration. Compared to high moisture 

hay, low moisture bales were characterized as having a diverse fungal community, 

including members of Cladosporium, Penicillium, and Aspergillus, with total fungal 

populations of log 104 spores/g DM (Fig. 2-6). On the other hand, high moisture hay 

was dominated by thermophilic fungi, particularly members from Absidia and Mucor as 

well as by diverse actinomycetes (mainly Micromonospora vulgaris), with populations of 

107 and 108 spores/g DM for total fungi and total actinomycetes, respectively (Gregory 

et al., 1963). Conversely, higher populations of bacteria were found in low moisture 

bales (108 vs. 105 CFU/g DM). In addition, low moisture hay remained stable and no 

substantial changes were observed in pH (6), sugar content (4% DM), as well as volatile 

(2% total N) and soluble N (35% total N) over the storage phase for low moisture hay 

(Fig. 2-6; Gregory et al., 1963). In contrast, for high moisture hays, moisture content 
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decreased overtime and the temperature reached a maximum of 55°C (Gregory et al., 

1963). As for nutritional components, sugar content decreased considerably (from 4% to 

0.09% DM), while volatile N increased from the first day of baling until reaching 6% of 

total N after 77 d of storage (Gregory and Lacey, 1963). 
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Figure 2-6. Changes in wet (A, x), dry (B, ●) baled hay, and grass dried in the field (○). 

Modified from Gregory et al. (1963). 
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Aerobic spoilage in other harvested high fiber crops 

Spoilage community in silage crops 

Due to the limited information on hay microbiota, the fungal and bacterial 

communities of silages during aerobic exposure will be described to draw a parallel with 

high moisture hay. As silage is exposed to oxygen during the feeding phase, 

undesirable aerobic microorganisms thrive, causing spoilage (Driehuis et al., 2001). The 

fungal community of corn silage after 14 d of aerobic exposure was characterized using  

denaturing gradient gel electrophoresis (Dolci et al., 2011). Among the identified 

species, the mold Aspergillus fumigatus, and the yeasts Kazachstania exigua and 

Pichia kudrivzevii were described (Dolci et al., 2011). These findings agree with Li and 

Nishino (2011b), who identified the yeasts P. kudriavzevii and Saccharomyces exiguous 

after 14 and 56 d of aerobic exposure in corn silage. In the case of ryegrass silage, 

marked changes in the fungal communities after 56 d of aerobic spoilage were 

observed using denaturing gradient gel electrophoresis (Li and Nishino, 2011). This was 

characterized by the disappearance of Fusarium equiseti and Paecilomyces sp. after 

aerobic exposure, while Penicillium roquefortii, Pichia anomala, Pichia burtonii, and S. 

cerevisiae appeared (Li and Nishino, 2011). 

Spoilage community in vegetables 

Likewise, some useful parallels can be drawn between the characterized microbial 

communities in spoiled vegetables and in high moisture hay. In the study of Harding et 

al. (2017), 386 and 344 bacterial and fungal isolates, respectively, were isolated from a 

wide variety of fresh produce. Then, representative isolates were sequenced and 

characterized by their spoilage potential after being re-inoculated in fruits and 

vegetables. Species from the genera Fusarium, Penicillium, and Aspergillus were the 
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most frequently identified for having spoilage potential for fresh produce (Harding et al., 

2017). Likewise, the fungal communities of spoiled seeds across a wide range of 

soybean varieties were determined using next generation sequencing for the nuclear 

ribosomal internal transcribed spacer-1 (ITS1; Liu et al., 2017). Most fungi belonged to 

the Mycosphaerellaceae family (59.7% relative abundance) in spoiled black soybeans, 

while for yellow soybeans the most abundant fungi belonged to the genera Giberella 

(Fusarium graminareum) and Alternaria (39.5 and 32.01% relative abundance, 

respectively; Liu et al., 2017). In addition, Aspergillus flavus, A. niger, Fusarium 

monoliforme, and Penicillium chrysogenum were isolated and identified for their 

potential role in spoilage (Liu et al., 2017). 

Methods to measure fungal contamination in hay 

Researchers have relied on both qualitative and quantitative methods to describe 

the degree of microbial spoilage in hay, with most procedures aiming to estimate mold 

presence (Roberts, 1995). These procedures can be classified as visual estimation, 

viable counting (dilution plating), and chemical methods (Wittenberg, 1997). 

Visual estimation 

Traditionally, fungal contamination of hay has been evaluated through visual 

assessment of mycelia and spores presence related to a defined scale of contamination 

which may range from 1 to 5, where 1 means no visible spores or mycelia and 5 

substantial evidence of mycelia throughout the bale (Wittenberg, 1995). Hay 

appearance is also a factor to be considered, due to the changes in hay color that occur 

along with microbial growth and heating. Depending upon the magnitude of spoilage 

(i.e. heating), hay may change from green color at baling to different shades of brown at 

the end of the storage period (Collins, 1996). However, some drawbacks can occur with 
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this method. First, visual estimation is a subjective measurement that poses 

inconveniences for comparison across quantitative studies. In addition, in some cases it 

is difficult to differentiate fungal spores from dust (e.g. red clover hay). 

Enumeration techniques 

Among quantitative methods, plate and spore counts have been frequently used to 

detect and enumerate fungi from a hay sample (Roberts, 1995). However, these 

techniques may underestimate the true microbial diversity since many of the 

microorganisms associated with forages are viable but not culturable (McAllister et al., 

2018). Traditionally, all-purpose media such as malt extract (MEA), yeast glucose, 

Sabouraud, and peptone dextrose agar have been described as standard media to 

isolate and enumerate fungi from spoiled hay (Lacey and Dutkiewicz, 1976). Malt 

extract agar has been the most consistently used and no other medium was reported to 

grow more total fungal colonies (Lacey and Dutkiewicz, 1976). More recent reports of 

media used for isolation, enumeration and identification of food spoilage fungi have 

described dichloran rose bengal chloramphenicol (DRBC) agar as an ideal medium to 

count more accurately, since it contains rose bengal and dichloran, which limit rapidly 

spreading molds (e.g. Rhizopus and Mucor) without disturbing spore germination (Pitt 

and Hocking, 2009). 

Chemical methods 

Chemical methods consist of quantifying fungal constituents such as ergosterol or 

chitin, which are used as markers for total mycelial dry matter (Roberts, 1995). Chitin is 

a simple polysaccharide present in the fungal cell wall (Latge, 2007). It is widely used as 

a marker for mold contamination in different crops including hay, it is stable for years, 

and it has been reported to accurately measure mycelial contamination in several 
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forages (Wittenberg et al., 1989). However, relationships between chitin concentration 

and fungal growth can be biased by the different chitin concentrations that exist across 

fungal species (Roberts et al., 1987) and the stage of mycelial development (Plassard 

et al., 1982). Additionally, chitin coming from the exoskeleton of arthropods can 

potentially interfere with the accuracy of the method (Roberts, 1995). 

Ergosterol on the other hand, is the predominant sterol present in fungal 

membranes and it is specific to fungi (Seitz, 1979). However, it fluctuates among 

species and mycelia growth phase (Tothill et al., 1992). Ergosterol markers are 

particularly used in moldy grain analysis. However, it has been suggested that 

concentrations could decrease over the long storage period of hay bales, as ergosterol 

is easily oxidized, particularly in southern climates (Roberts, 1995). 

Forage quality losses due to spoilage 

During storage, microbial and plant respiration and the resultant heating affect the 

nutritional value and voluntary intake of high moisture hay (Rotz and Muck, 1994). 

These changes have been reported to occur within 12 d of baling (highest microbial 

activity), with most of the DM loss arising from the oxidation of water soluble 

carbohydrates (WSC, Turner, 2002). The concentration of WSC declines linearly 

throughout the storage phase and its extent is driven by hay moisture content 

(Coblentz, 2004). For low moisture alfalfa hay, WSC decreased from 7.29 at d 0 to 

4.21% DM at d 60, while for high moisture hay (30%), WSC went from 5.96 to 2.07% 

DM (Coblentz et al., 1996). Consequently, an increase in NDF and ADF fractions is 

expected due to a reduced concentration of non-fiber components (e.g. WSC; Coblentz 

et al., 2000). Changes in concentration of crude protein (CP) are influenced by storage 

time. During the first 60 d of storage, protein loss is minor and its concentration can 
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even increase because of oxidation of WSC (Coblentz et al., 2013). On the other hand, 

long term storage (6 months) of alfalfa hay bales will result in losses of 0.25% DM of CP 

per month due to volatilization of ammonia (Rotz and Muck, 1994). Other nitrogen (N) 

losses are derived from the formation of insoluble N components through Maillard 

reactions, which are measured as acid detergent insoluble nitrogen (ADIN) that is 

essentially indigestible in ruminants (Guerrero and Shenvood, 1997). Concentrations of 

ADIN of 0.6 and 1.4% of total N were reported for large round alfalfa hay baled at 

normal (15%) and high (27%) moisture concentrations, respectively (Jin et al., 2018). 

Consequently, the digestibility of hay DM and nutrient constituents declines, mainly due 

to the oxidation of highly digestible components (e.g. WSC), and to the reduction of CP 

digestibility through the formation of ADIN (Rotz and Muck, 1994). A comprehensive 

review of typical losses and forage quality changes during haymaking processes for 

legume and grass hay is summarized in Table 2-3. 

Table 2-3. Typical dry matter (DM) losses and changes in nutrient composition during 
haymaking practices. Adapted from Rotz and Muck, 1994 

Practice 
DM loss 

(average %) 

Changes in nutrient concentration (% 
DM) 

Crude 
protein 

Neutral 
detergent fiber 

DM 
digestibility 

Legume hay     
Mowing 1 -0.4 0.6 -0.7 
Conditioning 2 -0.7 1.2 -1.4 
Tedding 3 -0.5 0.9 -1.2 
Raking 5 -0.5 1 -1.2 
Baling     

       Small rectangular 4 -0.9 1.5 -2.0 
   Large rectangular 3 -0.7 1.0 -1.5 
   Large round 6 -1.7 3.0 -4.0 
Storage     
   Inside 5 -0.7 2.1 -2.1 
   Outside 15 0.0 5.0 -7.0 

Grass hay     
Mowing 1 0 0 0 



 

25 

Conditioning 1 0 0 0 
Tedding 1 -0.2 0.4 -0.4 
Raking 5 -0.3 0.5 -0.6 
Baling     
   Small rectangular 4 -0.5 0.9 -1.0 
   Large rectangular 3 -0.4 0.7 -0.8 
   Large round 6 -1.0 1.8 -2.0 
Storage     
   Inside 5 -1.3 3.2 -1.8 
   Outside 12 0.0 8.0 -4.8 

 

As described earlier, field losses are greatly reduced when hay is baled at high 

moisture concentrations. However, this type of hay can deteriorate rapidly during 

storage due to fungal spoilage and resultant heating. Consequently, safe and 

inexpensive preservatives are needed to allow producers to bale hay above safe 

moisture levels, reducing the risk of weathering and decreasing field losses (Rotz and 

Much, 1994). However, current hay preservatives are mostly hazardous compounds, 

costly, and inconsistent in their effects (Rotz and Shinners, 2007). 

Hay preservation 

Definition and importance 

Preservatives are defined as compounds added to products such as food or feed 

to prevent spoilage (Wittenberg, 1997). Hay preservatives inhibit the growth of 

undesirable microorganisms to minimize storage losses and maintain pre-storage 

nutritive quality (Rotz and Shinners, 2007). Ideally, hay preservatives should neither 

impact livestock health and productivity nor leave residue in milk or meat, and should be 

safe to handle and have a return on investment of at least 3:1. In Canada and the 

United States, about 134 additives are registered as hay preservatives (Manitoba-

Agriculture, 2015) including organic acids (primarily propionic acid), ammonia-based 

compounds (anhydrous ammonia and urea), and microbial inoculants, which are 
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predominantly homofermentative lactic acid bacteria (LAB) inoculants (McCartney, 

2009). For the purpose of assessing the effects of the three major hay preservative 

categories on forage quality, preservation, and animal performance, a literature search 

was conducted using the Web of Science database on August 2018. A total of 94 peer 

reviewed publications were retrieved using the terms “hay” and “preservative”. The 

inclusive criteria for selecting studies were as follows. Studies had to (1) be published in 

English language peer-reviewed journals; (2) report the preservative application rate; 

and (3) measure a proxy variable for spoilage (spontaneous heating measurements or 

DM loss). For each preservative category, the relative differences between means for 

treated (TRTm) and untreated (CONm) hay were estimated using the following formula, 

Relative Difference (%) = ((TRTm - CONm)/CONm) × 100. Factors such as moisture 

concentration, type of bale, and application dose were not controlled statistically. 

However, these data will be useful to understand the changes and draw comparisons 

between preservatives relative to untreated hay values. 

Organic acids 

Organic acids and their salts constitute the major additive class used to improve 

preservation of high moisture hay (Coblentz et al., 2013). In most commercially 

available products, propionic acid (PRP) is the active (i.e. antimicrobial) and most 

abundant ingredient (typically present at ~67% v/v), although some mixtures may 

contain acetic or formic acid (McCartney, 2005). Currently, the use of buffered PRP 

products (ammonium or sodium propionate) containing 10 to 20% undissociated acid is 

recommended over PRP because these reduce corrosion damage to baler machines 

(EFSA, 2011). The antimicrobial mechanism of action of PRP consists of the disruption 

of the electrochemical proton gradient when undissociated acid molecules penetrate the 
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cell wall and dissociate internally. This process depletes cellular energy and therefore, 

limits cellular growth and metabolic functions (Davidson, 2001). In fungi, recent 

research suggested that PRP induces the generation of reactive oxygen species and 

mitochondrial dysfunction leading to oxidative stress and apoptosis (Yun and Lee, 

2016). In addition, because the proportion of undissociated acid declines as pH 

increases, preservatives are more effective at lower pH (Lück and Jager, 1997), in fact 

PRP fungistatic properties are enhanced at low pH (< 4.5; (Woolford, 1984), Therefore, 

it has been suggested that PRP effectiveness is determined by the interaction between 

forage buffering capacity, epiphytic microbial communities (as some can metabolize the 

free acid form), and the application rate (Mahanna and Soderlund, 1990). Typically, 

PRP-based preservatives are applied at 1 to 2% (w/w) to hay of up to 35% moisture 

(Rotz, 2003). 

Across 25 studies (Table A-1), PRP-based preservatives decreased DM losses, 

visible moldiness, maximum internal bale temperature, and NDF concentration (-32.2,   

-18.9, -19.0, and -5.8%, respectively), relative to untreated hay values. In addition, this 

additive class increased WSC concentration and DMD (+8.9 and +4.0%, respectively). 

Differences observed for ADF, CP, and DMI (-2.8, +2.4, and -2.0%, respectively) were 

considered not biologically meaningful. 

Anhydrous ammonia 

Ammonia-based compounds, including anhydrous ammonia (NH3) and urea have 

been used effectively as hay preservatives (McCartney, 2005). However, ammoniation 

is primarily used as a method to improve forage quality by increasing the rate and 

extent of digestibility (Brown, 1988). Additionally, NH3 increases the concentration of CP 

by adding non-protein nitrogen (Lines and Weiss, 1996). Ammonia is applied to a stack 
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of bales through a pipe connected to a tank (Rotz and Shinners, 2007). The period of 

treatment varies from 48 h (Knapp et al., 1976) to 14 weeks (Mir et al., 1991), and 

treated hay must be covered with plastic throughout the storage time to maximize the 

reaction between NH3 and hay, increasing labor and materials cost (Rotz and Shinners, 

2007). The precise mechanism of antimicrobial action of anhydrous ammonia has not 

been fully elucidated; it has been suggested that NH3 can cross the cell membrane by 

simple diffusion, cause a rapid alkalization of the cytoplasm, and form NH4
+, which 

results in low concentration of protons and depletion of ATP (Park and Diez-Gonzalez, 

2003). 

Due to its caustic nature, improper handling of anhydrous ammonia can cause 

chemical burns, blindness, and death upon direct exposure, which has limited its 

adoption by hay producers in the US (Muck and Shinners, 2001; Rotz and Shinners, 

2007). In addition, when applied to forage with high soluble sugar concentrations, NH3 

can potentially cause toxicity in livestock due to formation of 4-methyl imidazole (Mir et 

al., 1991). 

Across 11 peer-reviewed articles, hay treated with anhydrous ammonia had 

reduced DM losses, visual moldiness, as well as NDF concentration (-25.8, -54.2, and   

-4.08%, respectively), relative to untreated hay values (Table A-2). Furthermore, 

increased CP concentration, DMD, and DMI (+35.1, +10.4, and +4.49%, respectively) 

were observed. However, marginal differences were observed for maximum internal 

bale temperature (+0.5%), ADF (-0.21%), and ADG (-0.91%). 

Microbial inoculants 

Currently marketed microbial products were originally developed as silage 

inoculants (Mahanna and Soderlund, 1990). These consist of strains including 
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Lactobacillus plantarum, Pediococcus pentosaceous, Bacillus subtilis, and Bacillus 

pumulus. To be effective, inoculants must be applied at a much higher rate relative to 

epiphytic LAB (Wittenberg, 1995). The typical recommendation is log 5 cfu/g forage DM 

for both hay and silage  (Manitoba-Agriculture, 2015). The antifungal activity of LAB is 

explained by mechanisms including nutrient competition and synthesis of antagonistic 

products (Magnusson et al., 2003). In the case of homofermentative LAB, undissociated 

lactic acid molecules penetrate and dissociate inside the fungal cell membrane, 

releasing H+ ions that reduce pH, and consequently inhibit growth (Stratford and Eklund, 

2003). Furthermore, this reduction of intracellular pH has an effect on the extent of 

inhibition by acetic and propionic acid produced by heterofermentative LAB (Schnürer 

and Magnusson, 2005). Acetic acid’s mode of action is similar to the mechanism 

described for PRP. In hay, inoculants have shown inconsistent results (Shinners, 2000). 

Table A-3 summarizes the effect of homofermentative LAB inoculants (mostly combo 

inoculants of L. plantarum and P. pentosaceous) on the preservation of high moisture 

hay relative to untreated hay values across 6 studies. Inoculants only increased visible 

moldiness (+32.3%) and negligible differences were observed for variables such as DM 

loss, maximum internal bale temperature, NDF, ADF, CP, DMD, and DMI (+0.28, +2.99, 

+2.85, -0.44, +1.27, +2.4, and -2.5%, respectively). 

In conclusion, PRP has been shown to be the most effective additive at preventing 

spoilage and thus the most popular type of preservative used on high moisture hay. 

However, PRP effects do not last for more than 6 months and its acidic nature quickly 

corrodes farm equipment (Rotz and Shinners, 2007). Buffered propionic acid such as 

ammonium propionate reduces damage to harvesting equipment. Overall, results from 
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propionic acid-based additives have been inconsistent and beneficial effects seem to be 

mostly limited to reducing spontaneous heating (i.e. microbial respiration; Coblentz et 

al., 2013). Furthermore, propionic acid and ammonium propionate cannot be used in 

organic hay production (NOP, 2016). Anhydrous ammonia is an effective hay 

preservative, but the high costs of application and caustic nature have prevented its 

widespread use (Rotz and Shinners, 2007), and it cannot be used on high quality 

forages due to toxicity problems. Extra costs are incurred during the application of 

ammonia and urea due to the need to cover the forage with a plastic sheet. Because of 

the limitations listed above, there are no methods that have been widely implemented 

by hay producers due to high cost, hazardousness, and lack of effectiveness. Further 

research needs to be conducted to evaluate alternative additives that can offer a low 

cost and effective hay preservation. 

Lignin 

Chemical properties 

Lignin is defined as a complex phenolic polymer formed by the oxidative coupling 

of 4-hydroxyphenylpropanoids (Ralph et al., 2004). The primary lignin precursors are 

coniferyl, sinapyl, and p-coumaryl alcohols (Fig. 2-7a), which undergo enzyme-initiated 

dehydrogenative polymerization during biosynthesis, generating some interunit ether 

and carbon–carbon linkages within the lignin macromolecule (Kai et al., 2016). The 

most predominant being β-O-4 (Fig. 2-7b), which comprises approximately 50% of the 

total linkages (Hatfield and Vermerris, 2001). Lignin polymer is considerably more 

reactive than cellulose or other natural polymers, since it does not have a repetitive 

order of units and because of the presence of different functional groups in lignin 

including methoxyl, carboxyl, carbonyl, hydroxyl, and some minor terminal aldehyde 
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groups (Adler, 1977). The presence and quantities of these functional groups change 

depending on the lignin’s origin and extraction process (Gosselink et al., 2004). 

 

Figure 2-7a. Lignin monomeric building blocks. b. β-O-4 ether lignin bonds. Adapted 
from Xu et al. (2014). 

Lignin is found in higher plant tissues as a cell wall component that provides 

rigidity and strength, controls water conduction, and protects the plant from microbial 

degradation (Boerjan et al., 2003). After cellulose and hemicellulose, lignin is one of the 

most abundant natural terrestrial polymers (Saito et al., 2012) with approximately 300 

billion Mg found at any given time on earth (Buranov and Mazza, 2008), with an annual 

biosynthetic production increase of around 20 billion Mg (Argyropoulos and Menachem, 

1998). In plant tissue, lignin does not exist as an independent polymer but it is linked 

with hemicellulose through covalent bonds, forming carbohydrate polymer matrixes 

termed lignin-carbohydrate complexes (Ralph et al., 1995).  

The plant cell wall is a metabolically active, dynamic compartment with different 

layers, and each layer has different composition and attributes (Evert, 2006). The 

composition of a typical softwood cell wall (Fig. 2-8) includes the primary wall (P), the 

secondary wall which is divided into three sub layers (outer layer S1, middle S2, and 

inner S3), and the middle lamella (ML). In plant tissues that undergo lignification such 

as the sclerenchyma, epidermis (not lignified in legumes), xylem, and 
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nonclorenchymatous parenchyma, lignin synthesis starts during secondary cell wall 

formation at the cell corners in the ML and the P when S1 formation initiates (Cazacu et 

al., 2013; Terashima, 1993). As observed in Fig. 2, ML and P as well as S1 are mostly 

composed of lignin (80 and 52.7% of the total weight), while S2 is mostly cellulose 

(54.3%). However, because the secondary wall occupies a larger portion of the wall, it is 

recognized for having the highest lignin content (Baucher et al., 1998). 

 

Figure 2-8. Representation of a Scotch pine cell wall with the chemical composition as a 
percent of total weight. Adapted from Winandy and Rowell (1984). 

During lignin deposition, monolignols (coniferyl, sinapyl, and p-coumaryl alcohols) 

are synthetized in the cytoplasm from phenylalanine, via general phenyl-propanoid and 

monolignol-specific pathways (Fig. 2-9) and transported to the cell wall where they 

undergo oxidation and polymerization reactions to form lignin (i.e. lignification). The 

formation of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units occurs when the 

respective monolignols are being incorporated into the lignin polymer (Cazacu et al., 

2013). 
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Figure 2-9. Schematic representation of the monolignol biosynthesis. H lignin, grass 
lignin; G lignin, softwood lignin; S lignin, hardwood lignin. PAL 
phenylammonia lyase, C4H cinnamate 4-hydroxylase, 4CL 
hydroxycinnamate-CoA/5hydroxyferuloyl-CoA ligase, HCT hydroxycinnamoyl-
CoA shikimate/quinatehydroxycinnamoyl transferase, CCR 
hydroxycinnamoylCoA:NADPHoxidoreductase, CAD hydroxycinnamyl alcohol 
dehydrogenase, C3′ H p-coumaroyl shikimate 3′ hydroxylase, CCoAOMT S 
adenosyl-methioninecaffeoylCoA/5-hydroxyferuloyl-CoA O-methyltransferase, 
COMT caffeate O-methyltransferase, F5H ferulic acid 5-hydroxylase. Adapted 
from Ayyachamy et al. (2013). 

Lignins can be classified in three major groups (Evert, 2006), softwood or guaiacyl 

(formed mostly from G structures), hardwood or guaiacyl-syringyl (formed by a mixture 

of S and G structures), and grass or syringyl-p-hydroxyphenyl lignin (formed from all 

three monomers). The rigidity of the structure, one of the main factors determining the 

overall physicochemical properties of lignin and therefore potential applications (Lora et 

al., 2002), will depend on the degree of cross-linking of each lignin group (Doherty et al., 

2011). For example, lignin from soft wood is branched and cross-linked, whereas lignin 
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obtained from hard wood is more linear due to the S unit, which facilitates the retention 

of the linear structure (Thakur et al., 2014). 

Technical Lignins 

The extraction and isolation of lignin from lignocellulosic materials is conducted 

under diverse conditions and multiple reactions (e.g. catalyzed biomass hydrolysis and 

condensation of lignin fragments) resulting in products with different physicochemical 

properties relative to native lignin (Doherty et al., 2011). Therefore, besides lignin 

source, the method of extraction will have a substantial effect on structure and 

properties of the technical lignin (Lora, 2008). Approximately 50 million Mg of lignin are 

separated from wood pulp and paper-making industries via chemical processes each 

year (Wang et al., 2009). However, due to its highly complex structure, only a small 

portion (1 - 2%) of this material is processed into valuable byproducts (Lora et al., 

2002); (Gosselink et al., 2004) with the rest being used as a fuel source for the pulping 

process (Ayyachamy et al., 2013). 

Among the processes used to extract lignin, Kraft pulping is the most important 

pulping process globally, as well as in the United States (North American Pulp and 

Paper Fact Book, 1997). Other major processes include sulfite, soda, and organosolv 

(Espinoza-Acosta et al., 2016). 

Kraft lignin 

In the Kraft process, an aqueous solution of sodium hydroxide and sodium sulfide 

is used to obtain cellulose pulp under a strong alkaline environment in a large pressure 

vessel or digester (Fig. 2-10) followed by a final acidification process (Lange et al., 

2013). This digestion causes the lignin polymer to fragment due to an extensive 

cleavage of β-aryl links, and consequently the generation of free hydroxyl groups 
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(Vishtal and Kraslawski, 2011). The Kraft delignification process occurs in three stages 

at temperatures of 150°C, between 150 and 170°C, and >170°C, respectively. Then, 

lignin is recovered from the black liquor by decreasing the pH to 5 with sulfuric acid 

(Koljonen et al., 2004). Kraft lignins are hydrophobic, therefore they need to be modified 

to improve solubility (Doherty et al., 2011). Molecular weights ranging from 200 to 

200,000 g/mol (Niemela, 1992), and ash content of < 3% DM (Lora, 2008) have been 

described for this type of technical lignin. The production of Kraft lignin is reported to be 

95% (47 million Mg) of all lignin produced worldwide (Gosselink et al., 2004). However, 

Kraft lignin is mostly used in low added-value applications (e.g. power generation; 

Mohan et al. (2006), and only about 100,000 Mg are commercially used in other 

products and applications (El Mansouri et al., 2006). These include binders and resins 

(Tejado et al., 2007), carriers for fertilizers and pesticides (Zhang et al., 2007), and 

production of low molecular weight compounds such as vanillin, aliphatic acids, and 

hydroxylated aromatics (Holladay et al., 2007). 

 

Figure 2-10. Production pathway of Kraft lignin. Adapted from Lora (2008). 
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Lignosulfonates 

In the sulfite chemical pulping process, delignification of wood is carried out using 

sulfur dioxide and a base (Lora, 2008). Thus, lignosulfonates contain a high 

concentration of sulfur in the form of sulfonated groups on the aliphatic chains 

(Laurichesse and Averous 2014). The type of base used, typically, calcium, ammonium, 

magnesium, or sodium, and its solubility and dissociation properties influence the pH of 

the digestion (Doherty et al., 2011). Lignosulfonates can be obtained by diverse 

methods including alcoholic fermentation followed by distillation, ultrafiltration, or 

precipitation, which simultaneously can yield co-products such as vanillin (Fig. 2-11; 

Lora, 2008). This technical lignin is characterized for being soluble in water, having 

relatively high molecular weight ranging from 1,000 to 150,000 g/mol (Lora, 2008), and 

high ash content ranging from 9.3% DM for calcium lignosulfonate (Lignotech Iberica 

S.A., Spain) to 29.4% DM for a commercial mixed hardwood lignosulfonate (LRV, 

France). Also, total sugar content has been reported to be as high as 10.1% DM for a 

commercial mixed hardwood lignosulfonate (LRV, France). 

 

Figure 2-11. Production pathways for lignosulfonates. Adapted from Lora (2008). 
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The production of lignosulfonates has been reported as one million Mg per year 

(Belgacem and Gandini, 2008), constituting the bulk of technical lignins commercially 

used for materials and chemical applications. The variety of existing functional groups 

(hydroxyl, carboxylic, and sulfur containing groups) provides this lignin with distinctive 

colloidal properties, including superior wettability, dispersive ability, and absorptivity 

(Areskogh and Henriksson, 2011). Consequently, lignosulfonates are commercially 

used as dispersing agents, binders, adhesives, and stabilizers (Ghaffar and Fan, 2014). 

However, at present they are predominantly used as concrete dispersing agents as well 

as binders in animal feed pellets and agricultural fertilizers (Lora, 2008). Because of the 

hydrosoluble nature of lignosulfonates, the fertilizers can break down without difficulty in 

the environment or, in the case of feed pellets, in the animal digestive tract (Pye, 2008). 

Lignosulfonates have shown a capacity to decrease the ruminal degradation of 

proteins (Wright et al., 2005; Borucki Castro et al., 2007; Wang et al., 2009). High 

producing dairy cattle need to supplement microbial protein with significant amounts of 

high quality dietary protein that can escape rumen fermentation (rumen undegradable 

protein) in order to meet their amino acid requirements (Harstad and Prestløkken, 

2000). Currently, lignosulfonates are commercially used (e.g. Soypass; Borregaard 

Lignotech, WI) to increase ruminal protein bypass of legume seeds (soybean and 

canola) by up to 173% (Petit et al., 1999) with no negative effects on performance 

(McAllister et al., 1993; Stanford et al., 1995). Similarly, they have been used as a 

precipitator for protein recovery (Cerbulis, 1978, Becker and Lebo, 2002). In non-

ruminants, lignosulfonates have been shown to increase desirable cecal and colonic 

microbial populations such as Lactobacillus and Bifidobacterium, and positively affect 
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pH (decreased to 6.5), relative to the control group in adult mice (Flickinger et al., 1998). 

Other applications are outlined in Table 2-4. 

Table 2-4. Lignosulfonate products in speciality markets. Adapted from Doherty et al. 
(2011). 

Product Reference 

Vanillin (Bjørsvik and Minisci, 1999; Gogotov, 2000) 
Pesticides (Lebo, 1996) 
Water treatments (Zhuang and Walsh, 2013) 
Industrial cleaners (Jones, 2008) 
Emulsifiers (Gundersen et al., 2001) 
Wood preservatives (Dumitrescu et al., 2002) 
Battery expanders (Pavlov et al., 2000) 

 
Soda lignin 

This type of lignin is produced by treating non-wood fibers such as bagasse, flax, 

straws, or sugarcane with highly alkaline solutions of sodium hydroxide, and unlike Kraft 

lignin, the cooking process is done in a sulfur-free medium (Duval and Lawoko, 2014). 

In the soda pulping process, lignin is extracted by acid precipitation, heating, and 

filtration (Doherty et al., 2011). The chemical properties of the soda lignin are 

considerably different from lignosulfonates, as these are hydrophobic lignins with lower 

molecular weights (ranging from 1,000 to 3,000 g/mol; Lora, 2008). Due to the absence 

of sulfur, it is suggested that the composition of soda lignin is closer to native lignin 

relative to other technical lignins (Nadif et al., 2002). Potential application in areas such 

as animal feed and nutrition have been reported, particularly for the treatment of enteric 

disturbances in ruminants (Cruz et al., 1997), and as alternatives for antibiotics (Lora, 

2008). 

Organosolv lignin 

The organosolv process consists of solubilization of wood using a mixture of 

organic solvents, predominantly formic or acetic acid and ethanol, followed by filtration, 
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and drying (Xu et al., 2006). Organosolv lignin has a high lignin purity due to minimal 

carbohydrate and ash content (Doherty et al., 2011), is hydrophobic, and has a low 

molecular weight (500 to 5,000 mol/g; Lora and Glasser, 2002). Several organosolv 

pulping processes are commercially registered, among which organosolv lignin from the 

Alcell (extracted with ethanol) process has been the most studied to date (Lora, 2008). 

Alcell lignin has been reported to have in vitro (Nelson et al., 1994) (Phillip et al., 2000) 

and in vivo antibacterial activity (Baurhoo et al., 2007a), as well as prebiotic effects by 

improving intestinal morphology and supporting growth of beneficial bacteria in broiler 

chickens (Baurhoo et al., 2007b). Furthermore, Wang et al. (2009) reported linear 

reductions in 24 h methane emissions and ammonia-N accumulation when Alcell lignin 

was added to feedlot lamb diets and fermented in vitro. Methane production is 

negatively correlated with energy utilization in ruminants (Ørskov et al., 1968). 

Furthermore, reduced methane has a positive impact on the environment (Smith et al., 

2010). 

Antimicrobial activity of lignin 

A limited number of studies have evaluated the antimicrobial activity of technical 

lignins, which will be discussed next. Interpretation of these results can be challenging 

due to the different technical lignin types and sources tested, microorganisms, and 

methodologies used. In many studies, a thorough description of the chemical properties 

of the lignins tested is often lacking, which impedes direct comparisons among studies.  

Lignosulfonates 

Lignosulfonates represent the most widely used type of technical lignins. Recent 

reports of antimicrobial properties could expand their potential applications. Jha and 

Kumar (2018) reported MIC values for sodium lignosulfonate (Sigma-Aldrich Corp, St. 
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Louis, MO) of 50, 62, 62, 60, and 80 μg/mL for Candida dubliniensis, C. tropicalis, C. 

albicans, C. glabrata, and C. parasilopsis, respectively. When these values were 

evaluated using the disc diffusion method, it was observed that relative to fluconazole, 

the inhibition of diameter growth was 6, 10.3, and 23% for C. glabrata, C. tropicalis, and 

C. albicans, respectively.Similarly, Núñez-Flores et al. (2012) evaluated a sodium 

lignosulfonate extracted from eucalyptus wood (LignoTech Ibérica, S.A. Torrelavega, 

Spain) with a molecular weight of 7,085 Da, 4% reducing sugar content, and antioxidant 

activity of 97 μg/mL (DPPH IC50). An undisclosed dose of this byproduct showed a 9.9% 

growth inhibition for D. hansenii using the disk diffusion method. However, no antifungal 

activity was observed against Aspergillus niger or Penicillium expansum. 

Regarding antibacterial activity, Kim et al. (2013) reported that lignosulfonate 

nanoparticles isolated from calcium lignosulfonate (Borregaard-LignoTech, Sarpsborg, 

Norway) had a bacteriostatic effect at a dose of 5×1010 particles/mL against 

Staphylococcus aureus, Bacillus subtilis and Escherichia coli with an inhibition of 95, 58, 

and 13%, respectively, using a turbidimetric method (Kim et al., 2013). Furthermore, it is 

noteworthy to mention that antiviral activity has also been reported for lignosulfonates 

(Suzuki et al., 1989). Sodium lignosulfonate was highlighted as a potential microbicide 

with anti-HSV (herpes simplex virus) and anti-HIV activity (human immunodeficiency 

virus; Gordts et al., 2015). It is hypothesized that the strong surfactant properties of 

lignosulfonates may explain their antimicrobial activity (Núñez-Flores et al., 2012). 

Surfactants interact with different cellular constituents, especially lipids and proteins, 

causing adverse effects on the growth and viability of cells by disrupting normal 

microbial cellular functions (Merianos, 1991; Hugo, 1992). 
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Kraft lignins 

Fewer studies are available for Kraft lignins. Dong et al. (2011) reported a MIC of 

0.01 and 0.0025 μg/mL using alkali Kraft lignin (Sigma-Aldrich Corp, St. Louis, MO) 

against Candida lipolytica and S. aureus. However, no antibacterial activity was 

reported against Listeria monocytogenes. The lignin tested by Dong et al. (2011) had an 

antioxidant activity of 3.5 μmol TE/g (TE, Trolox equivalent) and 165.5 mg/g total 

soluble phenolics. Similarly, Durmaz et al. (2015) evaluated the antifungal activity of 

Kraft black liquor extracted from Scots pine, and reported that a concentration of 5% 

liquor protected wood samples from fungal degradation by two species of brown-rot 

fungi, Coniophora puteana, and Poria placenta. Although the mode of action of Kraft 

lignins against fungi is unknown, Dizhbite et al., 2004 suggested that for bacteria it is 

associated with the inhibition of radical processes of bacterial cells. Hence, a correlation 

between radical scavenging (antioxidant) and antimicrobial activities was suggested 

(Dizhbite et al., 2004). Similarly, Dong et al. (2011) reported a positive association 

between antimicrobial and antioxidant activities of lignins. Conversely, Núñez-Flores et 

al. (2012) did not find such a relationship. 

Lignin phenolic monomers 

Lignin is a natural source of phenolic compounds (Fig. 2-12) with well-recognized 

antimicrobial properties (Baurhoo et al., 2008). Phenolic monomers, such as carvacrol 

and cinnamaldehyde, have shown antimicrobial effects when tested in fresh fruits and 

vegetables and meat (Ultee et al., 2000; Roller and Seedhar, 2002). Early studies have 

reported that lignin constituents (i.e. phenolic monomeric fragments) such as isoeugenol 

and ferulic acid can inhibit the growth of S. cerevisiae, C. albicans, and A. niger at 
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doses of 100 and 187; 100 and 375; and 250 and 700 μg/mL, respectively (Zemek et 

al., 1979). 

Similarly, when vanillin, eugenol, and cinnamaldehyde were extracted from lignin 

by alkaline oxidation with benzene, these were found to be fungicidal at doses of 0.01% 

against Fusarium sp. (Telysheva et al., 1968). De Greef and van Sumere (1966) found 

that ferulic acid at 2.5 mM had antifungal activity against S. cerevisiae. Likewise, 

Baranowski et al. (1980) reported antimicrobial activity for ferulic acid against the same 

organism at a dose of 0.23 mM. The difference among these two studies was attributed 

to the lower pH of the medium in the second study (6.0 vs. 3.5, respectively), given that 

at lower pH the efficacy of ferulic acid is boosted due to an enhanced membrane 

permeability in the undissociated state (Baranowski et al., 1980).

 

Figure 2-12. Structure of representative phenolic lignin model compounds. Adapted 
from Stanzione et al. (2016). 

The MIC for the three main classes of intermediates of the lignin specific pathway 

(Hydroxycinnamaldehydes, hydroxycinnamic acids, and hydroxycinnamyl alcohols) 

were reported for S. cerevisiae, Schizosaccharomyces pombe, and Sporobolomyces 

roseus, and B. subtilis, E. coli, and Pseudomonas syringae (Barber et al., 2000). 

Hydroxycinnamaldehydes were the most antimicrobial compounds, with 

coniferaldehyde being the most antifungal (MIC 1.2 mM) and p-coumaraldehyde, the 

most antibacterial (MIC 2.0 mM). In the case of the hydroxycinnamic acids (p-coumaric, 
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cafeic, ferulic, and sinapic acid; Fig. 2-13), a higher inhibitory effect against bacteria 

relative to fungi was observed (MIC 3.0 vs. > 8 mM), except for ferulic acid, which inhibit 

S. cerevisiae at a concentration of 4.0 mM. The hydroxycinnamyl alcohols (p-coumaryl, 

coniferyl, and sinapyl alcohol) had the lowest antimicrobial properties (MIC ≥ 8.0 mM; 

Barber et al., 2000). 

 

Figure 2-13. Structure of hydroxycinnamic acids. Adapted from Aguilar-Hernández et al. 
(2017). 

Lignin-carbohydrate complexes 

LCCs have been reported to have antimicrobial, antiparasitic, antitumor, and 

antiviral properties (Sakagami et al., 2010; Abe et al., 1989; Lee et al., 1993; Sakagami 

et al., 2008). LCC extracted from pine trees had an inhibitory effect against S. aureus, 

E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and C. albicans, but no 

antibacterial activity was reported against Salmonella enteriditis in mice at an 

undisclosed dose (Harada et al., 1988; Oh-hara et al., 1990). In that study, it was 

suggested that the sugar moiety of LCC had a significant influence on the induction of 

antimicrobial activity, because when the sugar fraction was removed with sulfuric acid, 

the antimicrobial activity decreased significantly (Sakagami et al., 2010). Moreover, LCC 

extracted from a pine species (Pinus parviflora) with an alkaline solution, evaluated at 

an undisclosed dose, showed a high anti-tumor activity in mice, which was increased 

when LCC was acidified (Sakagami et al., 2010). In addition, the same LCC extract 

applied subcutaneously at a dose of 10 mg/kg live weight, protected mice from infection 
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caused by the cestode Hymenolepis nana (Sagakami et al., 2010). Moreover, LCCs 

extracted from pine cone (Lai et al., 1990), Theobroma cacao (Sakagami et al., 2008), 

mulberry juice (Sakagami and Watanabe, 2010) were reported for having unique 

antiviral activity in vivo against HIV, HSV and influenza virus. 

Lignin-based biopolymers 

The current interest and demand for novel biopolymers have led to the exploration 

of lignin’s antibacterial and antifungal properties as new materials, including lignin-

based polymers (films, fibers, and hydrogels), as well as lignin nanoparticles (LNP). The 

risk of bacterial colonization is a frequent complication associated with the use of 

biomedical devices (Kai et al., 2016). Thus, Larrañeta et al. (2018) investigated the 

potential of lignin-based hydrogels for biomedical applications as material coatings. A 

substantial superior resistance to bacterial adherence from hydrogels containing 38 % 

(w/w) dealkaline lignin relative to a commonly employed medical material was observed 

against S. aureus and Proteus mirabilis (Larrañeta et al., 2018). Moreover, in the same 

study, lignin-based hydrogels were evaluated as hydrophobic drug delivery systems and 

concluded that those same hydrogels were able of sustaining the release of curcumin 

for up to 4 d (Larrañeta et al., 2018). In addition, nanocomposite fibers made from Alkali 

Kraft lignin with low sulfonate content (Sigma-Aldrich Corp, St. Louis, MO) were tested 

against S. aureus and E. coli. Fibers with 29% (w/w) lignin showed a 99.9% reduction 

rate of S. aureus populations, however no inhibition was observed for E. coli (Lee et al., 

2017). Regarding nanotechnology assays, LNPs synthetized by dissolving alkali Kraft 

lignin into ethylene glycol followed by acidolysis were tested against plant pathogens 

including Pseudomonas syringae, Xanthomonas axonopodis, and Xanthomonas 

arboricola (Yang et al., 2018). LNP at a dose of 4% had the highest antibacterial activity 
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against X. arboricola with a 3-log reduction (1×108 to 5×104 CFU/mL) after 24 h of 

incubation using a broth susceptibility assay (Yang et al., 2018). These results had an 

important implication considering the economic losses caused by this pathogen on 

plum, peach, apricot, and cherry trees (Yang et al., 2018). The authors suggested that 

there are three possible antimicrobial mechanisms of action of LNPs (Fig. 2-14; Yang et 

al., 2018). First, lignin polyphenols cause lysis, damage to the cell wall, and 

consequently leakage of bacterial cell internal fluid. Alternatively, reactive oxygen 

species (ROS) in the surface of LNP induce oxidative stress by altering the normal 

redox physiological processes of bacteria. Lastly, because of their small size LNPs are 

able to penetrate the bacterial cell evading the cell membrane (i.e., Trojan horse 

approach), decrease the intracellular pH and consequently ATP levels, and lastly lead 

to the death of the cell (Yang et al., 2018). 

 

Figure 2-14. Involved mechanisms for antibacterial behavior of extracted LNP. Adapted 
from Yang et al. (2018). 

Non-conventional lignins 

Lignocellulosic materials such as crop residues are abundant, readily available, 

and low-cost (Doherty et al., 2011). The antibacterial properties of a lignin extracted 
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from sugarcane bagasse with alkaline solutions, and different modified lignins i.e. 

acetylated, epoxy, and hydroxymethyl lignin, were evaluated against Bacillus 

aryabhattai and Klebsiella sp. using the disk diffusion method (Kaur et al., 2017). Epoxy 

lignin (lignin extracted using a chlorinated cyclic ether) was the most effective among 

unmodified and modified lignins with MIC values of 90 and 200 µg/disc for each 

bacterium, respectively. The presence of methoxyl and epoxy groups in lignin was 

responsible for the enhanced antibacterial activity of the lignin modified by epoxidation 

(Kaur et al., 2017). Similarly, the antifungal properties of different lignin fractions from 

apple tree pruning waste obtained by autohydrolysis, organosolv treatment with acid, or 

with ethanol, and soda hydrolysis were investigated against A. niger, and S. cerevisiae 

(García et al., 2017). None of the lignins tested exhibited antifungal activity against A. 

niger for any lignin at doses of 500 and 5,000 ppm, and indeed the lower dose 

enhanced mold growth, which was explained by the presence of minerals and 

hemicelluloses of the lignin fractions (García et al., 2017). On the other hand, all of the 

tested lignin fractions decreased the growth of S. cerevisiae at 5,000 and 10,000 ppm, 

with autohydrolysis lignin at 10,000 ppm being the most antifungal fraction as observed 

by a 78.7% decrease in growth vs. control, using a spectrophotometric method. In 

addition, the pigmentation of A. niger was affected by lignin fractions at doses of 5,000 

ppm with the colonies exhibiting pale blue, green or yellow pigmentation, compared to 

colonies growing on the control plates (García et al., 2017). These results agree with 

Rahouti et al. (1999), who studied seven phenolic lignin model compounds against 

various fungi, and observed that guaiacol and syringic acid induce production of atypical 

pigments and viscous compounds. Likewise, Coral Medina et al. (2016) evaluated the 
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antimicrobial activity of one of six lignins isolated from oil palm empty fruit bunches 

using a sequential acid-alkaline pretreatment. The lignin tested (L3) was selected for 

having the highest total phenolic content (181.21 mg GAE/mg). However, L3 did not 

have an effect against C. albicans or A. niger at 2000 µg/mL using the disk diffusion 

method. Conversely, using a spectrophotometric technique, L3 exhibited antibacterial 

activity, with the greatest inhibition observed at 250 µg/mL for B. subtilis (39%), 1000 

µg/mL for S. enterica (31%), and 2000 µg/mL for E. coli (50%), and S. aureus (67%), 

using a broth antimicrobial assay (Coral Medina et al., 2016). 
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Summary 

This first portion of this review summarized hay production practices, and the DM 

and nutritional losses that characterize each hay production phase. The second part 

reviewed the microbiology of hay production and spoilage related to changes in 

nutritional value. The third revised the state of the art in hay preservatives, which relies 

heavily on organic chemicals, remaining the same since the 1970s, with limited recent 

progress observed with the use of hay inoculants. Consequently, in the fourth part, 

technical lignins are proposed as novel low cost-antimicrobials that could be used to 

prevent microbial spoilage. Therefore, the objective of this study was to evaluate the 

effect of technical lignins on the preservation of high moisture alfalfa (Medicago sativa) 

relative to propionic acid effects. 
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CHAPTER 3 

IMPROVING HAY NUTRITIVE VALUE AND REDUCING DRY MATTER LOSSES  

BY USING TECHNICAL LIGNINS AS ADDITIVES TO PREVENT MICROBIAL  

SPOILAGE 

Introduction 

In the U.S., hay is the predominant forage conservation method, the third most 

valuable crop ($16 billion/y), and the second in harvested acres (54 million acres, 

NASS, 2017). The main goal in haymaking is to decrease the moisture concentration to 

less than 15-20% in no more than 3-5 d so most of the forage crop nutrient yield can be 

stored long-term (Rees, 1982). However, nutrient losses during hay harvest and storage 

are interdependent. During harvest, field losses occur due to increased leaf fragility as 

moisture decreases, especially below 20%. However, if hay is baled above 15-20% 

moisture, extensive microbial spoilage will occur during storage resulting  in a significant 

decline in nutritive value (Coblentz and Hoffman, 2009) and increased DM losses (up to 

30%; Ball et al., 1998). Thus, there is a great need for preservatives that can allow for 

baling hay above 20% moisture so both field and storage losses can be reduced. 

Currently, propionic acid-based products (~$4,000/Mg of preservative) are the most 

used hay preservatives, but their efficacy in preventing spontaneous heating is limited to 

6 months (Coblentz et al., 2013). Therefore, more effective an inexpensive hay 

preservatives are needed to improve the efficiency of hay production. 

Technical lignins are byproducts of paper mills, approximately 50 Mg/y are 

produced worldwide but only 2% are commercialized with the rest being incinerated 

(Gosselink et al., 2004). Certain technical lignin types, such as Kraft lignins and 

lignosulfonates, have reported antibacterial (Dong et al., 2011), antifungal (Jha and 
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Kumar, 2018), and antiviral activities (Gordts et al., 2015), and prebiotic effects 

(Flickinger et al., 1998). In fact, lignosulfonates have been long used to increase 

soybean protein bypass in the rumen (Borucki Castro et al., 2007) and as feed binders 

(Corey et al., 2014). These properties could be adapted to prevent hay spoilage and 

consequently increase animal performance. 

The first objective of this study was to screen a set of technical lignins for their 

antifungal properties against four fungi isolated from spoiled alfalfa (Medicago sativa) 

hay. A second objective was to find the minimum inhibitory and minimum fungicidal 

concentration of the most promising technical lignins from Experiment 1. The third 

objective was to evaluate the dose-optimized technical lignins from Experiment 2 for 

their potential preservation properties in high moisture alfalfa hay on dry matter losses, 

microbial counts, nutritional composition, ruminal digestibility and fermentation profile. 

We hypothesized that certain technical lignins can reduce the DM losses and preserve 

the nutritive value of high moisture alfalfa hay during the storage phase. 

Materials and Methods 

Fungal isolates 

Colonies of fungi were isolated from spoiled alfalfa (Medicago sativa, Pioneer 

54QR04) harvested in Exeter, Maine, in the fall of 2016. Isolates were extracted as 

outlined by Queiroz et al. (2012). Identification to the species level was accomplished by 

a combination of morphological (Malloch, 1981) and genetic sequencing evaluations. 

Molecular identification used the internal transcribed spacer regions (ITS 1 and 2) of the 

rRNA genes, the β-tubulin (BenA), and the 28S large-subunit ribosomal RNA (rDNA) 

genes. 
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Genetic identification 

DNA isolation 

Fungal isolates were grown for 7 d at 25°C on malt extract agar (MEA; BD Difco, 

Franklin Lakes, NJ) covered with sterile transparent cellophane (Flexel, Covington, IN). 

The mycelia were carefully removed with the aid of a scalpel, transferred to a sterile 

microcentrifuge tube, and ground to a fine powder under liquid N2 with a pestle 

(Goodwin and Annis, 1991). DNA was extracted using an E.Z.N.A. fungal DNA Mini Kit 

(Omega biotek, Norcross, GA). DNA quality and quantity were evaluated by absorbance 

spectroscopy at 260 and 280 nm with NanoDrop 2000 (Thermo Fisher Scientific, 

Waltham, MA). 

Amplification of DNA 

The amplification of the ITS regions, 28S rRNA, and β-tubulin genes of these 

isolates was performed using the following primer pairs: for ITS1 and ITS2 regions, 5’-

TCCGTAGGTGAACCTGCGG3’ ITS1 and 5’-TCCTCCGCTTATTGATATGC-3’ ITS4 

(White et al., 1990); for the 28S rRNA, NL1 5’-GCATATCAATAAGCGGAGGAAAAG-3’ 

and NL4 5’-GGTCCGTGTTTCAAGACGG-3’ (O'donnell, 1993); and for β-tubulin 

(BenA), BenA 5’-GGTAACCAAATCGGTGCTGCTTTC-3’ and BenB 5’-

ACCCTCAGTGTAGTGACCCTTGGC-3’ (Glass et al., 1995). PCR amplifications were 

conducted with 25 µl of reaction mix in 0.5 mL PCR tubes using a C1000 Touch 

Thermal Cycler (Biorad, Hercules, CA). The reaction contained 0.2 mM dNTPs 

(Promega, Madison, WI), 0.2 µM of each primer (Integrated DNA technologies, 

Coraville, IA), 0.75 units of OneTaq DNA polymerase (New England Biolabs, Ipswich, 

MA), 1× of OneTaq Standard Reaction Buffer (New England Biolabs, Ipswich, MA), 10 

ng of DNA template adjusted to be in a volume of 5 µl, and DNase-free water to makeup 
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the final volume. For ITS primers, conditions for amplification were: 5 min at 94°C, then 

30 cycles of 60 s at 95°C, 60 s at 55°C, 60 s at 72°C, and a final step of 10 min at 72°C. 

For NL1 and NL4, amplification was performed with a slightly different protocol with 5 

min at 94°C, then 35 cycles of 60 s at 95°C, 60 s at 53°C, 2 min at 72°C, followed by a 

final cycle of 7 min at 72°C. Lastly, reactions with primers BenA and BenB, were carried 

out with 5 min at 94°C, followed by 35 cycles of 60 s at 95°C, 60 s at 58°C, 60 s at 

72°C, and a final cycle of 10 min at 72°C. Amplification products were separated by 

electrophoresis in 1.2% agarose gel (Cambrex Bio Science, Rockland, ME) with 1×TBE 

(0.089 M Tris-borate, 0.002 M EDTA), stained with GelStar (Lonza, Rockland, ME), and 

viewed under 280 nm UV to see band sizes. 

DNA sequencing and identification of isolates 

The amplified products were purified with a QIAquick PCR purification kit (Qiagen, 

Hilden, Germany), and sequenced in the University of Maine DNA Sequencing 

laboratory by the double-strand dideoxynucleotide sequencing method from (Sanger et 

al., 1977). Sequence data was edited, assembled and aligned using the CAP sequence 

assembly program (Huang and Madan, 1999) to obtain high-quality consensus 

sequences. Consensus sequence homologies were compared to those referenced in 

the NCBI database BLASTN search using default parameters (Altschul et al., 1990). 

Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces 

hansenii were each identified by ≥ 99% identity match to published sequences in 

Genbank and E-value = 0.0. Fungal isolates were preserved as spores (molds) and 

cells (yeast) in a 30% glycerol solution at −80°C in cryogenic vials (Corning Inc., 

Corning, NY). 
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Experiment 1 

Additives 

A set of commercially available technical lignins and their fractions were screened 

for antifungal properties to identify antimicrobial candidates that could be evaluated in 

the field. The following additives (ADV) were evaluated: 1) Southern pine softwood Kraft 

lignin (UW; Delignified at an H factor of about 1600 via the Kraft process and 

precipitated using the Lignoboost process with CO2 as the acid; Tomani, 2010), 2) ADV 

1 acetone insoluble fraction (AI), 3) ADV 1 acetone soluble fraction 1 (Hexane insoluble; 

HEX), 4) ADV 1 acetone soluble fraction 2 (Hexane soluble; PI), 5) alkali Kraft lignin 

(AKL; Sigma-Aldrich Corp, St. Louis, MO), 6) sodium lignosulfonate (NaL; Sappi North 

America, Boston, MA), 7) magnesium lignosulfonate (MgL; Sappi North America, 

Boston, MA), 8) ammonium lignosulfonate (AMOL; Sappi North America, Boston, MA), 

9) propionic acid (positive control PRP; MP Biomedicals, Solon, OH, 99.8%), and 10) 

control (untreated). Kraft lignin fractions (ADV 2 - 4) were extracted following the 

procedures outlined by Cui et al. (2014). The ash (AOAC International, 2000; method 

942.05), water soluble carbohydrates (WSC) (Dubois et al., 1956), mineral (Beliciu et 

al., 2012), and total soluble phenolics concentrations, and DDPH (2,2-diphenyl-1-

picrylhydrazyl) antioxidant activity of the technical lignins are listed in Table 3-1. 

Antifungal assay 

The antifungal activity of ADV against the isolated fungi was determined using the 

poisoned food technique according to the method outlined by Balouiri et al. (2016). 

Analysis was done in duplicate in each of four runs for all fungi. The experiment had a 

randomized complete block design (RCBD) with a 10 (ADV) × 3 (molds) factorial 
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arrangement of treatments and 4 blocks (runs). A RCBD also was used to test the effect 

of ADV on yeast (D. hansenii). 

Media preparation 

Sterile MEA was mixed with each ADV (technical lignins or PRP) as follows. 

Solutions of lignin and PRP in sterile nanopure water (20 and 32% w/v, respectively) 

were prepared in 50 mL polypropylene tubes. Dimethyl sulfoxide (DMSO; Fisher 

Scientific, Pittsburgh, PA) was supplemented at 8% (v/v) to increase the solubility of 

Kraft lignins. Solutions were sonicated (non-thermal sterilization technology) for 60 min 

in an 8510 Series Ultrasonic Cleaning Bath (Emerson, St. Louis, MO) containing water 

at 40°C, to ensure sterility with minimal impact on the lignins chemical structure 

(Piyasena et al., 2003). Subsequently, enough ADV stock solution was dispensed to 

sterilized agar (40°C) under stirring to achieve a final concentration of 40 mg/mL of 

ADV, 1% DMSO (v/v; for all ADV), and the manufacturer recommended agar 

concentration. Previous studies indicated that the antimicrobial activity of technical 

lignins increased when pH was modified from 6.0 to 3.5 (Baranowski et al., 1980). 

Furthermore, our preliminary tests across a pH gradient showed that lignins were more 

antifungal at pH 4. Thus, to properly evaluate antimicrobial effects of ADV, enough HCl 

was added to set the initial media pH to 4 for all treatments. 

Molds 

After 14 (A. amoenus and P. solitum) or 3 d of incubation period (M. circinelloides), 

the border of single fungal colonies were punched aseptically with a sterile cork borer (7 

mm diameter), and discs were inoculated on the center of ADV containing and 

untreated MEA. Plates were incubated at 25 ± 1°C for 7 d. At the end of the incubation 

period, the diameters (long and short dimension) of mold growth in control and treated 
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plates were measured using a digital caliper (Beckman Coulter, Pasadena, CA), and the 

antifungal effect was estimated with the formula: Antifungal activity (%) = ((Dc − Ds)/Dc) 

× 100. Where Dc is the average diameter of growth in control plate and Ds is the 

average diameter of growth in the plate containing the ADV (Balouiri, et al., 2016). 

Yeast 

The antifungal activity of ADV against D. hansenii was determined using the 

method outlined by Li et al. (2016) with modifications. MEA plates were inoculated with 

100 µl of yeast inoculum containing approximately 1×103 cfu/mL. Plates were incubated 

at 25 ± 1°C for 72 h before colonies were enumerated. The antifungal effect was 

estimated with the formula: Antifungal activity (%) = ((Cc − Cs)/Cc) × 100, where Cc is 

the number of cfu on control plate, and Cs is the number of cfu on the plate containing 

the ADV. 

Experiment 2 

Additives 

Following the results from experiment 1, the minimum inhibitory concentration 

(MIC) and minimum fungicidal concentration (MFC) was determined for the most 

promising technical lignins (NaL, MgL, and AKL) and PRP (positive control) on each of 

the fungal isolates previously evaluated. Macrodilution assays were carried out 

independently three times in duplicate and values are reported as mean concentrations 

(mg/ml ± standard deviation; SD). 

Antifungal assay 

Molds 

After 14 (A. amoenus and P. solitum) or 3 d of incubation period (M. circinelloides), 

fungal spores were washed from the surface of MEA by adding sterile 0.05% (v/v) 
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tween 20 (Fisher Scientific, Pittsburgh, PA), and then the surface was gently probed 

with a sterile glass hockey stick to loosen spores. This solution was pipetted off into a 

sterile 15 mL tube, heavy particles were allowed to settle for 3 to 5 min, and the upper 

homogeneous suspension was transferred to another sterile tube. Subsequently, the 

spore concentration of this suspension was enumerated with a haemocytometer 

chamber, diluted, and dispensed to obtain a final concentration of 5×104 conidia/mL of 

media, according to the M38-A Broth dilution antifungal susceptibility testing of 

filamentous fungi (Rex et al., 2008). 

Yeast 

Debaromyces hansenii was grown on MEA for 72 h until clear colonies could be 

identified. The inoculum was prepared by picking five yeast colonies of approximately 1 

mm diameter and suspending them in 5 mL of sterile 0.145 M saline solution (8.5 g/L 

NaCl) by shaking on a vortex mixer for 15 s, according to the M27-A2 Broth Dilution 

Antifungal Susceptibility Testing of Yeast (NCCLS, 2002). The suspension was adjusted 

with a spectrophotometer (VWR, Radnor, PA) to an OD600 of 0.2, diluted, and dispensed 

to yield a final concentration of 1×104 cfu/mL of media. 

Assay 

MIC was defined as the lowest concentration of ADV that prevents visible growth 

when compared to untreated controls. The macrodilution testing was performed 

according to the National Committee for Clinical Laboratory Standards (NCCLS). 

Lignins and PRP stock solutions were prepared in sterile malt extract broth (MEB; BD 

Difco, Franklin Lakes, NJ) and sonicated as described in experiment 1, without using 

DMSO. According to the concentration tested (ranging from 1.5 to 60 mg/mL), different 

proportions of stock ADV and sterile MEB were dispensed into 50 mL Erlenmeyer flasks 
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to complete a final volume of 5 mL of media, and enough HCl or NaOH were added to 

achieve a final pH of 4 or 6 in the media, respectively. Flasks were inoculated with each 

test inoculum, covered with a double layer of sterile aluminum foil, and incubated at 

25°C for 5 d with shaking (60 rpm). After this period, an aliquot (100 µl) was taken from 

each flask lacking visible growth and inoculated on fresh MEA. Plates were incubated at 

25°C for 48 h to find the MFC, which was defined as the lowest concentration of ADV 

that decreases 99.8% of the initial fungal concentration. 

Experiment 3  

Substrate, Additives, and Design 

An established stand of alfalfa (Medicago sativa, Pioneer 54QR04) located in 

Exeter, Maine was fertilized based on soil test results and recommendations for alfalfa 

production in Maine (Hoskins, 1997). On June 8th, 2018, five randomly located plots in 

the alfalfa stand (first cut, bud stage) were mowed to 7.6-cm stubble height with a BCS 

725 sickle bar mower (Portland, OR) and allowed to wilt in the field for 5 d to an 80% 

DM concentration. Afterwards, the alfalfa hay collected from each plot was chopped 

with a chipper shredder (DR, Vergennes, VT), dried at 60°C in a convection oven for 48 

h, and ground to pass through a 3-mm screen of a Wiley mill (Arthur H. Thomas 

Company, Philadelphia, PA). 

The effects of two dose-optimized ADV (NaL and MgL), selected due to their 

antifungal activity in aforementioned experiments, and PRP (positive control) on the 

spoilage of high moisture alfalfa hay were evaluated using a RCBD with a 3 (ADV: NaL, 

MgL, and PRP) × 4 (dose: 0, 0.5, 1, and 3% w/w, fresh basis) factorial arrangement of 

treatments and 5 blocks (alfalfa stand plots). 
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Antifungal activity 

The antifungal activity of ADV on high moisture alfalfa hay (30% moisture 

concentration) was evaluated according to the jar method outlined by Lacey and Lord 

(1977) with modifications as shown in Fig. 3-1. 

Sampling and analysis 

At d 0 and 15, samples were taken from each replicate for the determination of 

nutritional value (10 g, fresh basis), and microbial counts (10 g, fresh basis). In the case 

of d 0, samples were obtained immediately after inoculation. 

Nutritional analysis 

From samples taken at d 0 and 15, subsamples were processed for the 

determination of DM concentration by drying at 60ºC until constant weight in a forced-air 

oven. Dried samples were ground to pass a 2-mm screen using a Foss Cyclotec mill 

(Foss, Denmark). Ground samples were analyzed for ash (600°C in a muffle furnace for 

8 h; AOAC, 2000). Concentration of NDF (Van Soest et al., 1991) and ADF (AOAC, 

2000) were measured sequentially using an ANKOM 200 Fiber Analyzer (ANKOM, 

Macedon, NY). Heat-stable-α-amylase was used for NDF assay, but sodium sulfite was 

not used. Hemicellulose concentration (NDF minus ADF) was calculated. Hay N 

concentration was determined using the total Kjeldahl digestion procedure. Digested 

samples were analyzed colorimetrically using the sodium salicylate-nitroprusside 

method (Baethgen and Alley, 1989). Crude protein was calculated by multiplying N 

concentration by 6.25 (Church, 1993). 

Water extracts were prepared by mixing 10 g of fresh alfalfa from subsamples with 

90 mL of 0.1% sterile peptone water in a 400C Stomacher blender for 3 min (Seward 

Ltd., Worthing, UK). The solution was filtered through 2 layers of sterilized cheesecloth 
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and the pH of the fluid was measured with a calibrated Φ34 Beckman pH meter 

(Beckman, Brea, CA) fitted with an Accumet Universal pH electrode with an integrated 

temperature sensor (ThermoFisher Sci., Waltham, MA).  Afterward, a portion of the 

extract was acidified to pH 2 with 50% H2SO4 and frozen (−30°C) until further analysis. 

Thawed samples were centrifuged at 8,000 × g for 20 min at 4°C and the supernatants 

were kept for further analysis. Ammonia-N concentration was measured from the 

acidified samples using an adaptation of the procedure outlined by Weatherburn (1967). 

Water soluble carbohydrates were measured using the protocol outlined by Dubois et 

al. (1956) using sucrose as the standard as described by (Hall, 2003). 

Microbiological analysis 

An aliquot was taken immediately after filtering with sterilized cheesecloth and 

used for enumeration of fungal populations. Serial (10-fold) dilutions were done in 0.1% 

sterile peptone water and plated on Dichloran Rose Bengal Chloramphenicol (BD Difco, 

Franklin Lakes, NJ). Plates were incubated for 72 or 120 h at 25°C for yeast and molds, 

respectively. 

In vitro ruminal digestibility and fermentation  

All ADV were evaluated with a 24-h in vitro ruminal digestibility assay using alfalfa 

hay as the substrate, as described by Hall (2015), using 50 mL borosilicate glass tubes 

(Pyrex 8422; Corning NY) with phenolic screw caps fitted with a rubber liner. The 

ruminal fluid was representatively collected by aspiration 3 h after feeding (1200 h) from 

3 lactating, ruminally cannulated Holstein cows consuming a ration consisting of 

orchardgrass silage (Dactylis glomerata; 6 kg), corn silage (6.8 kg), and concentrate 

(9.5 kg, DM basis). The ruminal fluid collection protocol was approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of Maine. 
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Ruminal fluid was filtered through 2 layers of cheesecloth and flushed with CO2, and 26 

mL of medium containing rumen fluid inoculum and Goering (1970) medium were added 

to each tube and the suspension was incubated for 24 h at 39°C. The fermentations 

were terminated by placing tubes at 5°C. Tubes were centrifuged at 900 × g for 20 min 

at 4°C and filtered through pre-weighed F57 ANKOM bags (ANKOM, Macedon, NY). 

Filtrate samples were analyzed for pH as previously described, acidified to pH 2 with 

50% H2SO4 and centrifuged at 8,000 × g for 20 min at 4°C. The supernatant was frozen 

(−30ºC) and subsequently analyzed for concentration of VFA using an Agilent High 

Performance Liquid Chromatograph 1200 series system fitted with an Agilent Hi-Plex H 

column (Agilent Technologies, Santa Clara, Ca) coupled to an Agilent DAD detector set 

to 210 nm (Siegfried et al., 1984). Ammonia-N concentration was measured as 

described previously. Residues contained in ANKOM bags were analyzed for NDF as 

previously described. True DMD and NDFD were calculated from the residue and 

original sample weights and their DM and NDF concentrations. 

Statistical Analysis 

For experiment 1, a RCBD with a 10 (ADV) × 3 (MOLD) factorial arrangement of 

additives and 4 blocks (runs) was used to determine the effects of ADV on mold 

inhibition. 

The model used to analyze mold inhibition data was: 

Yijkl = µ + MOLDi + ADVj + βk + MOLDADVij + εijk 

Where: 

µ = general mean 

MOLDi = effect of mold i 

ADVj = effect of additive j 
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βk = effect of run k 

MOLDADVij = effect of the MOLDi × ADVj interaction 

εijk = experimental error 

A similar model that included only the ADV effect was used to analyze the yeast 

inhibition data. In the case of experiment 2, MIC and MFC assays were carried out 

independently three times in duplicate and values are reported as mean concentrations 

(mg/mL ± standard deviation; SD). 

For experiment 3, a RCBD with a 3 (ADV) × 4 (dose) factorial arrangement of 

treatments and 5 blocks (stand plots) was used to determine effects of ADV and dose 

on spoilage, nutritional composition, and rumen in vitro digestibility and fermentation 

measures of alfalfa hay. 

The model used to analyze these data was: 

Yijkl = µ + ADVi + DOSEj + βk +ADVDOSEij + εijk 

Where: 

µ = general mean 

ADVi = effect of additive i 

DOSEj = effect of dose j 

βk = effect of block k 

ADVDOSEij = effect of the ADVi × DOSEj interaction 

εijk = experimental error 

The GLM procedure of SAS v. 9.4 (SAS Institute Inc., Cary, NC) was used to 

analyze the data. When an interaction was present the SLICE option was used. In 

experiment 1, mean separation was based on the PDIFF procedure of LSMEANS. For 
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experiment 3, polynomial contrasts were used to determine dose effects and the 

Tukey’s test was used to compare least squares means within dose and ADV. Both of 

these mean characterization and separation tests are considered necessary to properly 

interpret the results because they depict the polynomial trend and the optimal dose, 

respectively. Data were tested for normality using the Shapiro-Wilk test. Significance 

was declared at P ≤ 0.05. 

Results 

Experiment 1 

We found an interaction effect of mold × ADV on antifungal activity (P < 0.001). 

For A. amoenus, M. circinelloides, and P. solitum we observed that PRP and NaL had 

the highest antifungal activity (100 ± 2.77%), followed by MgL (40.9, 73, and 28.1%, Fig. 

3-2, 3-3 and 3-4, respectively). For NaL, PRP, and HEX there were not significant 

differences across molds. However, for MgL, different antifungal activities were 

observed across M. circinelloides, A. amoenus, and P. solitum (72.9, 40.9, and 28.1 ± 

2.77%, respectively; P ≤ 0.05) and a similar trend was observed for AKL (49.7, 12.1, 

and -8.0 ± 2.77 %, respectively; P ≤ 0.05). Overall, M. circinelloides was the most 

sensitive mold, followed by A. amoenus, and P. solitum. For D. hansenii, we identified 

PRP, NaL, and MgL as the most effective treatments with 100 ± 3% antifungal activity 

(Fig. 3-5). 

Experiment 2 

Table 3-2 shows the MIC and MFC of technical lignins and PRP against the fungi 

previously described. Among technical lignins at pH 4, NaL had the lowest MIC across 

molds, with values of 20.0, 25.0, and 33.3 mg/mL for A. amoenus, M. circinelloides, and 

P. solitum, respectively. In the case of MgL, MIC values of 33.3, 36.7, and 46.7 mg/mL 
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were found for A. amoenus, M. circinelloides, and P. solitum, respectively. None of the 

technical lignins tested inhibited the molds at a pH of 6. The PRP (positive control) was 

an effective fungistatic agent at both pH levels tested, but had lower MIC at pH 4, with 

values as low as 1.25 for A. amoenus and P. solitum, and 3.33 mg/mL for M. 

circinelloides. For the yeast D. hansenii, we found that MgL had a lower MIC compared 

to NaL (26.7 vs. 40 mg/mL, respectively) but both had a lower inhibitory activity relative 

to PRP (1.25). No MIC was observed at either pH for AKL. 

Across technical lignins, NaL at pH 4 had a higher fungicidal activity for P. solitum 

(60.0 mg/mL) and lower for D. hansenii (40.0) compared to MgL (> 60.0 and 30.0, 

respectively). For A. amoenus, NaL and MgL had similar fungicidal activity (40.0). 

Across all fungi, PRP (positive control) had a lower MFC at both pH levels compared to 

the technical lignins tested. However, its fungicidal activity was higher at a pH of 4 

relative to 6 for A. amoenus (5 vs. 10 mg/mL), D. hansenii (5 vs. 15), P. solitum (10 vs. 

16.7), and M. circinelloides (20 vs. 40). 

Experiment 3 

Day 15 

DM losses and microbial populations 

Effects of treatments on DM loss and microbial counts are shown in Table 3-3. We 

found an interaction effect of ADV × dose on DM losses, hay pH, and total molds, A. 

amoenus, M. circinelloides, and P. solitum counts (P < 0.001). For DM loss, relative to 

untreated hay (14.9 ± 0.773%), 1% was the lowest dose that resulted in the minimum 

DM losses for NaL (3.39); 3% for MgL (0.37); and 0.5% for PRP (0.47; P < 0.001). At a 

dose of 0.5%, PRP reduced DM losses to a greater extent compared to NaL and MgL, 

which were not different. However, at 1% NaL and PRP had similar results, and at 3% 
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all ADV were similar. Compared to untreated (7.99 ± 0.156), NaL and MgL at 3% (5.37 

and 5.24, respectively), and PRP at a dose as low as 0.5% (5.25) decreased hay pH (P 

< 0.001). At 0.5% and 1%, PRP resulted in a lower pH compared to NaL and MgL, while 

at 3% no differences were observed across ADV. 

Propionic acid had a higher antifungal effect (1.96 ± 0.914 log cfu/fresh g) against 

D. hansenii compared to NaL and MgL, which were similar (3.54 and 4.67, respectively; 

P < 0.001). Across all ADV, a 0.5% dose decreased D. hansenii counts to the greatest 

extent vs. untreated (3.02 vs. 7.0 log cfu/fresh g, respectively; P < 0.001). Total mold 

counts were reduced by 3% NaL (3.92 ± 0.549 log cfu/fresh g) and 0.5% PRP (3.94), 

relative to untreated (7.76; P < 0.001). At both 0.5% and 1%, PRP decreased total mold 

counts further compared to NaL and MgL, which were not different; at 3% all ADV were 

similar. 

Nutritional composition 

Except for CP, ADF, and hemicellulose (P > 0.07), we found an interaction 

between ADV × dose on all other nutritive value estimates at d 15 (P < 0.001; Table 3-

4). Relative to untreated hay (62.4 ± 0.491%), the lowest dose that preserved hay DM 

% at d 0 (69.3%; Table 3-5) was 1% for NaL (68.7); 3% for MgL (69.1), and 0.5% for 

PRP (69.2; P < 0.001). At a dose of 0.5%, PRP-treated hay had a higher DM % vs. NaL 

and MgL, which were similar. However, at 1% no difference was observed between NaL 

and PRP, and at 3% all ADV were comparable. For CP concentration, there were no 

effects of ADV and dose. However, a decrease in hay NH3-N was observed for NaL and 

MgL at 3% (0.043 and 0.062 ± 0.007% DM, respectively) and PRP at 0.5% (0.061) and 

above, compared to untreated hay (0.249; P < 0.001). Across ADV, at 0.5% and 1% 
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NaL and PRP resulted in a lower NH3-N compared to MgL, while at 3% PRP decreased 

NH3-N to a greater extent than MgL, but both were similar to NaL. 

Compared to untreated hay (7.99 ± 0.283% of DM), the doses preserving WSC to 

the greatest extent were 3% for NaL and MgL (10.1 and 10.3, respectively) and 0.5% 

for PRP (10.5; P < 0.001). At 0.5% and 1%, PRP preserved WSC further vs. NaL and 

MgL, and at 3% all ADV were comparable. Consequently, NaL at 3% (45.9 ± 0.663% 

DM) and PRP at a dose as low as 0.5% (45.1), impeded an increase in NDF 

concentration relative to untreated (49.7; P = 0.001). At 0.5% and 1%, a lower NDF was 

observed for PRP-treated hay compared to NaL and MgL; as for 3%, PRP resulted in a 

lower NDF compared to MgL, but both were similar to NaL. 

In vitro ruminal digestibility 

We found an interaction effect of ADV × dose on all ruminal in vitro fermentation 

measures (P < 0.001; Table 3-6), except for ruminal pH and isovalerate concentration. 

An increased DMD was observed for 3% NaL (67.5 ± 0.771%), 1% MgL (67.0), and 

0.5% PRP (68.5) vs. untreated hay (61.8 ± 0.771%). At a dose of 0.5%, MgL and PRP 

increased DMD to the same level but to a greater extent than NaL; at 1%, PRP resulted 

in higher DMD than NaL, but both were similar to MgL; and at 3% all ADV were 

comparable.  In the case of NDFD, MgL and PRP at a dose as low as 0.5% (30.5 and 

30.1 ± 1.09%, respectively) and NaL at 1% increased NDFD (30.7) compared to 

untreated hay (23.3; P < 0.003). At 0.5%, MgL increased NDFD to a larger extent 

relative to NaL, but both were not different from PRP, and all ADV were similar at 1% 

and 3%. 

Sodium lignosulfonate at 3% decreased ruminal NH3-N concentration to the 

greatest extent (49.6 ± 1.50 mg/dL) vs. untreated hay (58.2; P = 0.009). In contrast, 
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relative to untreated (86.7 ± 1.30 mM), NaL at 3% increased TVFA concentration to the 

greatest extent (111.9; P < 0.001). However, MgL decreased TVFA at 0.5% (78.0 mM; 

P = 0.01) while other doses were similar to untreated. No dose of PRP was different 

than untreated. At 0.5, 1, and 3%, NaL increased TVFA to the greatest extent, followed 

by PRP and MgL, which were comparable at 1% and 3%. 

Acetate concentration was increased by NaL at 3% (64.1 ± 0.805 mM) vs. 

untreated hay (48.0; P < 0.001). At 0.5% there was no difference between NaL and 

PRP, both of which resulted in higher acetate than MgL; at 1% NaL resulted in higher 

acetate than MgL, but both were similar to PRP; at 3%, NaL had the highest acetate 

concentration, followed by MgL and PRP, which were comparable. Likewise, a dose of 

1% for NaL and PRP, and 3% for MgL increased propionate concentration to the largest 

extent (21.8, 20.5 and 20.6 ± 0.352 mM, respectively) relative to untreated (18.0; P < 

0.001). At 0.5 and 1%, MgL resulted in lower propionate compared to NaL and PRP, 

which were not different. At 3%, NaL had the highest propionate concentration vs. MgL 

and PRP, which were similar. 

Relative to untreated (10.9 ± 0.418 mM), only 3% NaL increased butyrate 

concentration (13.5). In contrast, 0.5% was the lowest dose decreasing butyrate to the 

greatest extent for MgL and PRP (8.79 and 8.32 mM, respectively; P = 0.001). Within 

dose, NaL had the highest concentration of butyrate compared to MgL and PRP, which 

were not different at 0.5%, 1%, and 3%. Sodium lignosulfonate had more isobutyrate 

compared to MgL and PRP, which were not different at 0.5% (1.71 vs. 1.33 and 1.31 

mM ± 0.06 mM) and 1% (1.68 vs. 1.25 and 1.36, respectively; P < 0.01); at 3%, NaL 
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had more isobutyrate than MgL (1.66 vs. 1.29 mM, respectively), but both were not 

different from PRP (1.43; P = 0.001). 

Discussion 

Experiment 1 and 2 

A limited number of studies have evaluated the antimicrobial activity of technical 

lignins (Kim et al., 2013; Kaur et al., 2017; Jha and Kumar, 2018). Interpretation of 

these results can be challenging due to the type of technical lignin (García et al., 2017), 

microorganisms (Dong et al., 2011), and methodologies used (Yang et al., 2018). In 

most articles, a thorough description of the lignin chemical properties is often lacking, 

which impedes direct comparisons among studies. In our study, NaL and MgL were 

found to have the strongest inhibitory properties among all lignins tested when 

evaluated against A. amoenus, M. circinelloides, P. solitum (molds) and D. hansenii 

(yeast) at a pH of 4. Jha and Kumar (2018) reported MIC values for NaL (Sigma-Aldrich 

Corp, St. Louis, MO) of 50, 62, 62, and 80 μg/mL for Candida dubliniensis, C. tropicalis, 

C. albicans, C. glabrata, and C. parasilopsis, respectively. When these values were 

evaluated using the disc diffusion method, they observed that relative to fluconazole 

(undisclosed source) the inhibition of diameter growth was 6, 10.3, and 23% for C. 

glabrata, C. tropicalis, and C. albicans, respectively. Similarly, Núñez-Flores et al. 

(2012) reported that an undisclosed dose of NaL (4% reducing sugar content; 7085 Da; 

DPPH IC50 97 μg/mL) extracted from eucalyptus wood (LignoTech Ibérica, S.A. 

Torrelavega, Spain) showed a 9.9% growth inhibition for D. hansenii using the disk 

diffusion method. Our results obtained with NaL were comparable to those reported by 

Jha and Kumar (2018) with Candida spp. and Núñez-Flores et al. (2012) with D. 

hansenii. However, Núñez-Flores et al. (2012) did not observe an inhibitory activity for 
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sodium lignosulfonate against P. expansum and A. niger. This discrepancy with our 

study maybe due to the different Penicillium and Aspergillus species tested, as well as 

NaL sources and doses used across studies. Furthermore, these studies did not report 

media pH values. In our study, we observed that media pH plays a major role in the 

extent of the antifungal activity of technical lignins, with a lower pH (4 vs. 6) resulting in 

greater inhibition. Baranowski et al. (1980) hypothesized that at a lower pH the efficacy 

of ferulic acid increases due to an enhanced membrane permeability in the 

undissociated state. In that study, ferulic acid at 0.23 mM had antifungal activity against 

S. cerevisiae at a pH of 3.5 in the medium. However, (De Greef and Van Sumere, 1966) 

reported an antimicrobial activity against the same organism for ferulic acid at a dose of 

2.5 mM and a medium pH of 6.0. 

Although the antimicrobial mechanism of lignosulfonates has not been yet 

elucidated, it is hypothesized that is linked with the strong surfactant properties of 

lignosulfonates (Núñez-Flores et al., 2012). Surfactants interact with different cellular 

constituents, especially lipids and proteins, causing adverse effects on the growth and 

viability of cells by disrupting normal microbial cellular functions (Merianos, 1991; 

(Hugo, 1992). Hugo and Russell, 1992). For B. subtillis, surfactants such as triton X-100 

and palmityltrimethylammonium iodide have been shown to cause cell autolysis at 

doses of 150 µM and 10 µM, respectively (Tsuchido et al. 1990). Similarly, bile salts 

(anionic surfactants) resulting from the metabolism of cholesterol inhibit bacterial 

growth, by affecting cell morphology, leading to the breakdown of the bacterial cell wall 

and cell death (Ronsin et al., 2002). Evidently, the mechanism of action of 

lignosulfonates needs to be further investigated. 
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Fewer studies have been conducted using Kraft lignins. Dong et al. (2011) 

reported a MIC of 0.01 and 0.0025 μg/mL using alkali Kraft lignin (Sigma-Aldrich Corp, 

St. Louis, MO) against Candida lipolytica and S. aureus. However, no antibacterial 

activity was reported against L. monocytogenes. The lignin tested in that study had an 

antioxidant activity of 3,517 μmol TE/g (TE, Trolox equivalent) and 165.5 mg/g total 

soluble phenolics. We believe that the absence of activity against yeast for AKL in our 

study compared to Dong et al. (2011) is mostly a consequence of the different species 

evaluated, considering that the lignin source was the same and the methodologies 

comparable. Although the mode of action of Kraft lignins against fungi is unknown, 

Dizhbite et al., 2004 suggested that for bacteria it is associated with the inhibition of 

radical processes of bacterial cells. Hence, a correlation between radical scavenging 

(antioxidant) and antimicrobial activities was suggested (Dizhbite et al., 2004). Similarly, 

Dong et al. (2011) reported a positive association between antimicrobial and antioxidant 

activities of lignins. Conversely, Núñez-Flores et al. (2012) did not find such a 

relationship, which agrees with our findings as the technical lignins with higher radical 

scavenging activity were less antifungal (Table 3-1). 

In the current study, PRP had fungistatic and fungicidal activity against fungi 

isolated from spoiled hay at much lower doses compared to NaL and MgL. The 

antimicrobial mechanism of action of PRP consists of the disruption of the 

electrochemical proton gradient when undissociated acid molecules penetrate the cell 

wall and dissociate internally. This process depletes cellular energy and therefore, limits 

cellular growth and metabolic functions (Davidson et al., 2013). In fungi, recent research 

suggested that PRP induces the generation of reactive oxygen species and 
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mitochondrial dysfunction, leading to oxidative stress and apoptosis (Yun and Lee, 

2016). In addition, because the content of undissociated acid declines as pH increases, 

PRP is more effective at a lower pH (< 4.5; Woolford, 1984; Lück and Jager, 1997). The 

lowest doses that were selected for further testing in experiment 3 (0.5-1%, w/w; fresh 

basis) corresponded to the actual concentrations typically used in the field for propionic 

acid (~0.67-1.34%, w/w; fresh basis), considering the application rate of commercially 

available propionic acid-based preservatives (1-2%, w/w; fresh basis; Rotz, 2003) and 

the typical concentration of propionic acid in those commercial products (~67%, v/v; 

EFSA, 2011). 

Experiment 3 

Hay baled above recommended moisture levels (15-20%) results in spoilage 

during the storage phase, with DM losses being as high as 40% (Ball et al., 1998) 

caused by proliferating fungal populations (Roberts, 1995) that preferably oxidize WSC 

(Turner et al., 2002) releasing moisture and CO2 (Rees, 1982) and reducing OM 

concentrations (Coblentz and Hoffman, 2009). Plant proteins are also decomposed in 

this spoilage process (i.e. proteolysis), releasing NH3-N in the process (Rotz and Muck, 

1994). The breakdown and oxidation of rapidly digestible fractions by the spoilage 

microbial community leaves behind the most recalcitrant and slowly degradable 

fractions such as NDF and ADF (Coblentz et al., 2012), which impacts not only the 

nutritional composition of spoiled hay but also its digestibility (Montgomery et al., 1986) 

(McBeth et al., 2001) (Coblentz and Hoffman, 2010) and the extent and composition of 

volatile fatty acids being produced during ruminal fermentation (Mohanty et al., 1969). 

This was evident when the nutritional values of untreated hay at d 15 (Table 3-4) were 

compared to the ones obtained from untreated hay at d 0 (Table 3-5).The overall 
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nutritional value is severely compromised along with the potential voluntary intake, if we 

were to consider the NDF % increase in the spoiled alfalfa hay (Mertens, 1977). Both, 

the decrease in nutritional value and voluntary intake can explain the decrease animal 

performance that has been reported in spoiled vs. well preserved hays (Deetz et al., 

1989; Ziemer et al., 1991). 

At d 15, alfalfa hay DM losses were mitigated to the same extent by NaL and PRP 

at a dose of 1%, with no further benefit observed at a higher dose for both. However, 

PRP was the only ADV that was able to impede DM losses at a dose 0.5%, due its 

more potent antifungal activity relative to the other ADV, as reported in experiment 1 

and 2. The mold and yeast counts closely followed the DM loss results, with decreasing 

counts being observed as doses were increased to different extent across ADV. It is 

interesting to note that at a dose of 1%, NaL decreased the yeast but not the total mold 

counts in spite of a reduction in DM loss. We believe that this apparent discrepancy is 

explained by the differences in metabolic activity between fungal communities exposed 

(or not) to antifungal compounds. For instance, Vale-Silva et al. (2012) observed that 

essential oils from oregano decreased metabolic activity (viability) of fungi without 

affecting their sporulation. 

In this study, A. amoenus and P. solitum seemed to have caused most of the 

spoilage observed for alfalfa hay, compared to M. circinelloides and D. hansenii (Table 

A-4). Furthermore, these two molds, also appeared to be the most resistant fungi across 

experiment 1 (Fig. 3-2 and 3-4) and 2 (Table 3-2). More research needs to be 

conducted in order to understand the relative contribution to hay spoilage across fungal 

taxa and their relative resistance to preservatives. (Magan and Aldred, 2007) reported 
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that Penicillium verrucosum and Aspergillus ochraceus caused DM losses of 7.5 and 

4%, respectively, in high moisture wheat grain after 14 d of incubation. 

A positive relationship between spoilage extent and fiber concentration has been 

reported in hay (Coblentz and Hoffman, 2009; Coblentz et al., 2013). This is a 

consequence of the preferential oxidation of rapidly degradable fractions, such as WSC 

(Coblentz et al., 1996), which leaves recalcitrant fiber behind, causing a relative 

increase in fiber concentration (Coblentz and Hoffman, 2009). In our study, NaL and 

MgL at a dose of 3% prevented the increase of NDF and the decrease of OM observed 

in untreated hay, and preserved WSC to the same extent as PRP at 0.5%. These 

effects were attributed to the antifungal properties of lignosulfonates (Jha and Kumar, 

2018) and PRP (Lacey et al., 1978). Numerous studies have reported PRP as a 

successful ADV preserving WSC (Knapp et al., 1976; Davies and Warboys, 1982), OM 

(Coblentz and Hoffman, 2009), and NDF concentrations (Coblentz et al., 2000; 

Coblentz et al., 2013) found at the time of hay baling. 

Sodium lignosulfonate and PRP at 0.5% showed a protective effect against 

proteolysis, which was observed as a reduction in NH3-N relative to the spoiled hay. 

These results confirm that preservatives can prevent the degradation of plant proteins, 

preserving their biological value (Rotz and Muck, 1994). Unfortunately, CP is a 

measurement with a limited ability to describe proteolysis because it only measures N 

concentration. Coblentz et al. (2013) reported minimal changes in CP concentration 

during the first 60 d of hay storage. However, after 6 months, losses of 0.25% DM of CP 

per month were observed due to ammonia volatilization (Rotz and Muck, 1994). The 

incubations of hay and molds in the current study only lasted for 15 d. Other important 
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protein quality changes result from the formation of insoluble N components through 

Maillard reactions, measured as acid detergent insoluble nitrogen (ADIN; Guerrero and 

Shenvood, 1997). These compounds are essentially indigestible in ruminants (E 

Schroeder et al., 1996) . However, in our study the amount of hay biomass in the 

incubation (25 g, DM basis), which was kept at 25°C, was not enough to accumulate 

heat as observed in hay bales (McDonald et al., 1991). These conditions limited the 

formation of ADIN as a temperature > 50°C is required for the Maillard reaction to occur 

(Guerrero and Shenvood, 1997). Thus, our laboratory model is not suited for evaluating 

the effect of spoilage on ADIN formation (Lacey and Lord, 1977). 

Sodium lignosulfonate at 3% had an effect preventing the increase in pH observed 

in the untreated alfalfa hay at d 15, which was caused by spoilage. (Chancharoonpong 

et al., 2012) observed that Aspergillus oryzae increased the pH of a soybean incubation 

due to the production of metabolites that included undescribed extracellular proteins. 

Furthermore, we hypothesize that the increasing NH3-N concentration due to spoilage 

contributed to the pH increase in untreated hay at d 15. Table A-4 results seem to 

indicate that there may be a difference among fungi relative to their effect on pH during 

spoilage. Aspergillus amoenus and P. solitum seemed to have increased the pH to a 

greater extent compared to D. hansenii and M. circinelloides (7.7 and 7.0 vs. 5.1 and 

5.0, respectively), and relative to the pH of the untreated hay at d 0 (5.51). 

Despite not having an effect on the preservation of most nutrient constituents 

compared to PRP and NaL, MgL applied at 1 and 3% increased DMD relative to 

untreated hay at d 15 to the same extent as PRP at the same doses and NaL at 3%. In 

the case of PRP and NaL it is evident that the increment in DMD was partially the result 
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of halting the increase in NDF observed with greater spoilage, as their DMD results 

were similar to untreated at d 0. However, MgL did not prevent the increase in NDF due 

to spoilage and yet it seemed to have stimulated rumen fibrolytic bacteria activity as 

observed by an increased NDFD for all doses ≥ 0.5% relative to untreated (32.4 vs. 

23.3%), and a numerical increase relative to NaL and PRP at 1% (34.7 vs. 30.7 and 

30.4, respectively) and 3% (32.0 vs. 29.1 and 28.9, respectively). We hypothesize that 

the surfactant properties of MgL explained this stimulatory effect on NDFD. Surfactants 

have been previously reported to improve the adsorption of microbial enzymes onto 

feed particles, which results in an increase in the rate of digestion of cellulose 

(Kamande et al., 2000). Also, it is unlikely that a Mg deficiency may explain the increase 

in in vitro digestibility since the Van Soest medium is supplemented with this 

micromineral (Goering, 1970). The reasons why NaL did not have the same effects 

even though it is also a surfactant, remain unclear. 

Several studies evaluating the positive effects of lignosulfonates on rumen 

undegradable protein have reported increases in NDFD of ruminant diets. Stanford et 

al. (1995) reported that a barley-based diet supplemented with soybean and canola 

meal treated with calcium lignosulfonate, increased in vivo NDFD relative to control in 

lambs. Similarly, (Hussein et al., 1991) found that in grass hay-based diets 

supplemented with barley treated with calcium lignosulfonate, in vitro NDFD increased 

relative to control. Furthermore, Wang et al. (2009) reported that diets containing Alcell 

lignin increased gas production relative to control diets during a 24 h in vitro ruminal 

fermentation. Conversely, Windschitl and Stern (1988) found a decrease in ruminal in 

situ ADFD but no effect on NDFD with a corn silage-based diet supplemented with 
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soybean meal treated with calcium lignosulfonate in dairy cattle. Overall, for PRP and 

NaL, the increase in DMD is explained by a decrease in NDF concentration and an 

increase in NDFD (Mertens, 2003). However, stimulatory effects of MgL on DMD and 

NDFD remain unclear due to its null impact on NDF concentration relative to untreated 

hay at d 15. It is important to note that a 1% unit increase in in vitro NDFD is associated 

with a 0.25 kg/d increase in 4% FCM (Oba and Allen, 1999). Therefore, feeding hay 

treated with 1% MgL can potentially increase milk production by 2.9 kg/d, respectively, 

relative to spoiled alfalfa hay, which in a medium-size dairy operation with 200 cows, 

could represent an increase in 580 kg/d 4% FCM. Further research is needed to 

understand the effects of lignosulfonates on in vitro ruminal NDFD. 

In our study, the increased DMD observed with MgL and PRP relative to untreated 

at d 15 did not result in a TVFA increment. It seems that for these treatments more OM 

was used for microbial growth or gas production (Owens and Basalan, 2016). 

Conversely, NaL had greater TFVA at all doses with the highest concentration observed 

at a dose of 3% relative to untreated at d 15 (111.9 vs. 86.7 mM, respectively). Volatile 

fatty acids contribute with 70% of the caloric requirements in ruminants (Bergman, 

1990), therefore an increase in TVFA could potentially provide lactating cows with a 

higher energy supply for maintenance, gain, and lactation requirements. Furthermore, 

NaL increased acetate concentration at all doses relative to untreated at d 15. This 

increased acetate availability may result in additional building blocks for de novo fat 

synthesis in the mammary gland (Mohammed et al., 2011). Similarly, NaL at 1 and 3% 

increased propionate relative to untreated at d 15. Propionate is an important VFA used 

for glucose synthesis, which is crucial for dairy cattle, especially at early lactation 
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(Drackley, 1999). Butyrate is known to have a stimulatory effect on cell proliferation and 

ruminal epithelial growth (Górka et al., 2009). Sodium lignosulfonate at 3% increased 

butyrate concentration, which could have enhanced VFA absorption. Conversely, MgL 

(0.5-3%) and PRP (0.5 and 1%) had less butyrate concentration. Across doses, NaL 

increased isobutyrate compared to MgL and PRP. Isobutyrate is required by ruminal 

cellulolytic bacteria for optimal growth (Liu et al., 2009). Hence, it may have contributed 

to the improvement in NDFD for NaL at a dose of 3%. 

High producing dairy cattle need to supplement microbial protein with significant 

amounts of high quality dietary protein that can escape rumen fermentation (rumen 

undegradable protein) in order to meet their amino acid requirements (Harstad and 

Prestløkken, 2000). Lignosulfonates have shown a capacity to increase the ruminally 

undegradable protein fraction (Wright et al., 2005; Borucki Castro et al., 2007; Wang et 

al., 2009) since they seem to bind and precipitate proteins, as observed in other 

applications (Cerbulis, 1978; Becker, 2002). Therefore, a decrease in ruminal NH3-N 

seems to indicate that NaL at a dose of 3% reduced ruminal proteolysis and could 

increase rumen undegradable protein in vivo. Further research is needed to confirm 

these effects. 

Overall, NaL was the most promising technical lignin preventing spoilage in high 

moisture alfalfa hay. We observed that the antifungal properties of lignosulfonates were 

underestimated when evaluated using an artificial media vs. a hay substrate (~5 fold 

difference). This was most likely due to the limited availability of nutrients and moisture 

in the hay. However, before its implementation in the field, NaL antifungal activity needs 

to be increased further in order to match PRP effects. Since the cost of lignosulfonates 



 

77 

is around $400/Mg and PRP-based products are $4,000/Mg, there is enough 

economical margin for the removal of impurities in lignosulfonate products and the 

isolation of the active antimicrobial fraction, which will allow for a much lower application 

rate. Few studies have fractionated lignosulfonates into fractions with unique 

physicochemical properties (Ringena et al., 2005; Duval et al., 2015). Unfortunately, 

none of these studies have evaluated the antimicrobial activity of these fractions. For 

instance, the NaL evaluated in our study had high ash and sugar impurities that if 

removed should significantly increase the antifungal effect. García et al. (2017) reported 

that the presence of impurities such as minerals and hemicelluloses in different lignin 

fractions from apple tree pruning waste, increased the growth of A. niger, and S. 

cerevisiae. Further studies should be conducted to compare the antifungal activities 

across a wide range of sodium and magnesium lignosulfonates from different sources. 

Conclusion 

Sodium lignosulfonate was found to be the most antifungal technical lignin due its 

promising fungistatic activity against A. amoenus, M. circinelloides, P. solitum (molds) 

and D. hansenii (yeast) strains isolated from spoiled alfalfa hay. When evaluated using 

hay as substrate, NaL had superior preservation properties measured as decreased DM 

losses, NDF, fungal counts, and increased WSC, OM, DMD, and NDFD. Furthermore, 

its antiproteolytic properties were confirmed with a decrease in hay and ruminal in vitro 

NH3-N. Also, in vitro ruminal VFA concentration was greatly increased by NaL relative to 

all the other ADV tested. However, before its field implementation, NaL preservation 

effects need to be increased 3-fold in order to match all the nutritional benefits obtained 

with PRP hay treatment. Considering the high level of ash and WSC impurities 
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lignosulfonates have and their low cost, it should be cost-effective and feasible to isolate 

the antimicrobial fraction and increase the antifungal activity several fold. 

It is interesting to note that even though MgL did not preserve hay nutritional 

composition as extensively as NaL, it improved DMD and NDFD despite the increase in 

NDF concentration due to unrestricted spoilage. Previous research seems to point out 

lignosulfonate stimulatory effects on NDFD due to its surfactant properties, but more 

research needs to be conducted to the understand the mechanisms behind its 

stimulatory effects on ruminal digestibility. 
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Table 3-1. Chemical composition of technical lignins 

Lignin 

Total soluble 
phenolics1  

DDPH Scavenging 
effect2 

WSC3 Ash4 Magnesium5 Sodium Sulfur 

(mg/g DM) % of DM 

AKL 219.1 -4.8 18.05 61.9 0.02 6.86 4.80 

UW 222.5 40.8 0.045 2.23 0.01 0.777 2.20 

AI 241.9 65.2 0.037 0.69 0.02 0.082 1.49 

HEX 250 265.8 79.9 0.027 0.69 < 0.01 0.009 1.49 

PI 382.6 69.4 0.025 0.022 < 0.01 0.004 1.44 

NaL 184.3 14.2 22.8 61.0 0.05 12.8 8.01 

MgL 142.5 10.5 15.7 15.1 6.21 0.04 8.25 

AMOL 132.9 25.9 24.8 1.95 0.07 0.517 7.93 
Pooled SD 9.14 12.7 0.45 4.5 0.034 0.084 0.142 

1Singleton and Rossi, 1965. 
2Wu et al., 2006 and AOAC 2012.04. 
3Water soluble carbohydrates; Dubois et al., 1956.   
4AOAC, 2000. 
5Beliciu et al., 2012. 
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Table 3-2. Minimal inhibitory concentration (MIC, mg/ml) and minimal fungicidal concentration (MFC, mg/ml) of additives 
against fungi isolated from spoiled hay as a function of media pH1 

  A. amoenus P. solitum M. circinelloides D. hansenii 

ADV pH MIC MFC MIC MFC MIC MFC MIC MFC 

NaL 
4 20.0 ± 02 40.0 ± 0 33.3 ± 5.77 60.0 ± 0 25.0 ± 0 > 60 40.0 ± 0 40.0 ± 0 

6 >60 n.c.3 >60 n.c. > 60 n.c. > 60 n.c. 

MgL 
4 33.3 ± 5.77 40.0 ± 0 46.7 ± 5.77 > 60 36.7 ± 5.77 >60 26.7 ± 2.89 30.0 ± 0 

6 > 60 n.c. > 60 n.c. > 60 n.c. > 60 n.c. 

AKL 
4 > 60 n.c. > 60 n.c. > 60 n.c. > 60 n.c. 

6 > 60 n.c. > 60 n.c. > 60 n.c. > 60 n.c. 

PRP 
4 1.25 ± 0 5.0 ± 0 1.25 ± 0 10.0 ± 0 3.33 ± 1.44 20.0 ± 0 1.25 ± 0 5.0 ± 0 

6 5.0 ± 0 10.0 ± 0 5.0 ± 0 16.7 ± 5.77 10.0 40.0 ± 0 4.17 ± 1.44 15.0 ± 0 
 

1Aspergillus amoenus, Penicillium solitum, Mucor circinelloides (molds), and Debaryomyces hansenii (yeast). NaL= 
Sodium lignosulphonate, MgL= Magnesium lignosulphonate, AKL= Alkali Kraft lignin, PRP= Propionic Acid (positive 
control). 
2Mean ± standard deviation. 
3Not calculated. 
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Table 3-3. Dry matter losses (%), pH, and microbial counts of alfalfa hay as a function of additive (ADV) and dose at d 15 

 Dose (%, w/w)  P-value  

Item 0 0.5 1 3 Mean SEM ADV Dose 
ADV × 
Dose 

Contrast1 

DM loss, %           

  MgL2 14.9a 13.8A,a 10.5A,b 0.368c 9.87A 0.773 <0.001 <0.001 <0.001 L** 

  NaL3 14.9a 15.2A,a 3.39B,b 0.428b 8.49B     CU** 

  PRP4 14.9a 0.808B,b 0.944B,b 0.47b 4.28C     CU** 

  Mean 14.9a 9.93b 4.93c 0.422d       

Hay pH           

  MgL 7.99ab 8.24A,a 7.39A,b 5.37c 7.25A 0.156 <0.001 <0.001 <0.001 L** 

  NaL 7.99a 8.47A,a 6.52B,b 5.24c 7.05A     CU** 

  PRP 7.99a 5.25B,b 5.14C,b 4.80b 5.79B     CU** 

  Mean 7.99a 7.32b 6.35c 5.14d       

D. hansenii, log cfu/fresh g        

  MgL 7.0 6.12 3.5 2.06 4.67A 0.914 0.006 <0.001 0.1 L* 

  NaL 7.0 2.6 2.83 1.74 3.54A     L* 

  PRP 7.0 0.34 0.5 0.0 1.96B     CU** 

  Mean 7.0a 3.02b 2.28b 1.27b       

Molds, log cfu/fresh g      

  MgL 7.76 7.6A 7.52A 5.42 7.08A 0.549 <0.001 <0.001 0.007 L* 

  NaL 7.76a 7.4A,a 7.18A,a 3.92b 6.57A     L** 

  PRP 7.76a 3.94Bb 4.2Bb 3.5b 4.85B     CU** 

  Mean 7.76a 6.31b 6.3b 4.28c       

A. amoenus, log cfu/fresh g      

  MgL 7.64 7.42A 7.04A 6.51A 7.15A 0.265 <0.001 <0.001 <0.001 L** 

  NaL 7.64a 7.28 A,a 6.86A,a 4.21B,b 6.50B     L** 

  PRP 7.64a 3.86Bb 4.06Bb 3.4Bb 4.74C     CU** 

  Mean 7.64a 6.19b 5.99b 4.71c       
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Table 3-3. Continued 

M. circinelloides, log cfu/fresh g       

MgL 6.92a 6.12A,a 2.12b 2.12b 4.32A 0.701 0.003 <0.001 <0.001 QU* 

NaL 6.92a 6.26A,a 0.0b 0.52b 3.42AB     CU** 

PRP 6.92a 1.42B,b 1.08b 0.0b 2.36B     CU** 

Mean 6.92a 4.60b 1.07c 0.88c       

P. solitum, log cfu/fresh g       

MgL 6.66 7.0A 7.22A 6.01A 6.72A 0.485 <0.001 <0.001 <0.001 L** 

NaL 6.66a 6.56A,a 6.96A,a 2.82B,b 5.75B     QU** 

PRP 6.66a 2.62B,b 3.34B,b 2.52B,b 3.79C     CU** 

Mean 6.66a 5.39ab 5.84b 3.78c       
A,B,CMeans with different uppercase superscripts within a column are significantly different (P ≤ 0.05).    
a,b,cMeans with different lowercase superscripts within a row are significantly different (P ≤ 0.05). 
1Linear (L), quadratic (QU) and cubic (CU) effect (P < 0.05). *P < 0.05; **P < 0.01. 
2Magnesium lignosulfonate. 
3Sodium lignosulfonate. 
4Propionic acid. 
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Table 3-4. Nutritional composition of alfalfa hay as a function of additive (ADV) and dose at d 15 

 Dose (%, w/w)  P-value  

Item 0 0.5 1 3 Mean SEM ADV Dose ADV × Dose Contrast1 

DM, %           

  MgL2 62.4c 62.4A,bc 64.8B,b 69.1a 64.7C 0.491 <0.001 <0.001 <0.001 L** 

  NaL3 62.4b 62.5A,b 68.7A,a 69.5a 65.8B     CU** 

  PRP4 62.4b 69.2B,a 69.2A,a 69.0a 67.4A     CU** 

  Mean 62.4d 64.7c 67.6b 69.2a       

OM, % of DM           

  MgL 90.3c 91.0B,bc 91.2ab 91.6a 91.0B 0.174 <0.001 <0.001 0.009 QU* 

  NaL 90.3c  90.6B,bc 91.6a 91.1ab 90.9B     QU** 

  PRP 90.3b 91.8A,a 91.9a 91.9a 91.5A     CU* 

  Mean 90.3c 91.1b 91.5a 91.6a       

CP, % of DM           

  MgL 16.8 18.1 17.7 16.6 17.3 0.497 0.460 0.137 0.790 NS 

  NaL 16.8  17.5 17.3 17.1 17.2     NS 

  PRP 16.8 17.4 16.5 16.7 16.9     NS 

  Mean 16.8 17.6 17.2 16.8       

NH3-N, % of DM         

  MgL 0.249a 0.238A,a 0.174A,b 0.062A,c 0.159A 0.007 <0.001 <0.001 <0.001 CU* 

  NaL 0.249a 0.071B,b 0.063B,b 0.043AB,c 0.083B     CU** 

  PRP 0.249a 0.061B,b 0.062B,b 0.013B,b 0.059C     CU** 

  Mean 0.249a 0.101b 0.088c 0.033d       

WSC, % of DM         

  MgL 7.99b 7.73B,b 8.86B,b 10.3a 8.73B 0.283 <0.001 <0.001 <0.001 L** 

  NaL 7.99b 8.07B,b 8.93B,ab 10.1a 8.78B     L** 

  PRP 7.99b 10.5A,a 10.9A,a 10.8a 10.0A     CU* 

  Mean 7.99d 8.77c 9.56b 10.4a       
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Table 3-4. Continued 
NDF, % of DM          

  MgL 49.7 49.8A 50.5A 49.01A 49.8A 0.663 <0.001 <0.001 <0.001 NS 

  NaL 49.7a  51.9A,a 49.8A,a 45.9AB,b 49.3A     CU* 

  PRP 49.7a 45.05B,b 44.0B,b 44.6B,b 45.8B     QU** 

  Mean 49.7a 48.9ab 48.1b 46.5c       

ADF, % of DM         

  MgL 35.9 36.7 37.7 34.0 36.09A 1.06 0.047 0.021 0.07 NS 

  NaL 35.9 37.6 36.3 33.2 35.8AB     L* 

  PRP 35.9 34.6 32.9 34.4 34.4B     NS 

  Mean 35.9ab 36.3a 35.6ab 33.9b       

Hemicellulose, % of DM        

  MgL 13.8 13.1 12.8 15.0 13.7B 0.818 0.004 0.223 0.121 NS 

  NaL 13.8 14.3 13.5 12.7 13.6B     NS 

  PRP 13.8 10.5 11.1 12.0 11.8A     NS 

  Mean 13.8 12.6 12.5 13.2       
A,B,CMeans with different uppercase superscripts within a column are significantly different (P ≤ 0.05).    
a,b,cMeans with different lowercase superscripts within a row are significantly different (P ≤ 0.05). 
1Linear (L), quadratic (QU) and cubic (CU) effect (P < 0.05). *P < 0.05; **P < 0.01. 
2Magnesium lignosulfonate. 
3Sodium lignosulfonate. 
4Propionic acid. 
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Table 3-5. Microbial counts, nutritional composition, and 24 h in vitro digestibility and rumen fermentation parameters of 
alfalfa hay at d 0 

Item Value (mean ±  standard deviation) 

Microbial counts, log cfu/fresh g 

Total mold counts 5.4 ± 0.1 

Debaromyces hansenii counts 4.8  ± 0.2 

Aspergillus amoenus counts 4.9  ± 0.19 

Mucor circinelloides counts 4.9 ± 0.36 

Penicillium solitum counts 4.7 ± 0.34 

Nutritional value 

DM, % 69.3  ± 0.6 

Hay pH 5.52  ± 0.2 

OM, % DM 92.4  ± 0.6 

NDF, % DM 47.8  ± 1.2 
ADF, % DM 34.8 ± 1.5 

CP, % DM 16.7  ± 0.81 

Hay ammonia nitrogen (NH3-N), % DM 0.065  ± 0.005 

WSC (water soluble carbohydrates), % DM 11.1  ± 0.59 
In vitro digestibility and rumen fermentation parameters 

24 h IVDMD, % 66.2  ± 1.5 

24 h NDFD, % DM 30.0 ± 1.2 

Total VFA, mM 96.8 ± 0.9 

Acetate, mM 52.7 ± 0.6 

Propionate, mM 22.5 ± 0.4 

Butyrate, mM 12.5 ± 0.4 

Isobutyrate, mM 1.5 ± 0.2 

Isovalerate, mM 3.13 ±0.3 

Valerate, mM 5.45 ± 0.4 

Acetate to propionate ratio 2.34 ± 0.03 

Ruminal pH  6.59 ± 0.05 

Ruminal NH3-N, mg/dL 54.96  ± 4.11 
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Table 3-6. 24 h In vitro DM (DMD), NDF digestibility (NDFD), and rumen fermentation parameters of alfalfa hay as a 
function of additive (ADV) and dose at d 15 

 Dose (%, w/w)  P-value  

Item 0 0.5 1 3 Mean SEM ADV Dose ADV × Dose Contrast1 

DMD, %           

  MgL2 61.8b 65.4A,ab 67.0AB,a 66.6a 65.2B 0.771 <0.001 <0.001 <0.001 QU** 

  NaL3 61.8bc 61.1B,c 65.5B,ab 67.5a 64.0B     CU** 

  PRP4 61.8b 68.5A,a 69.4A,a 68.3a 67.0A     CU* 

  Mean 61.8c 65.0b 67.3a 67.5a       

NDFD, % of DM           

  MgL 23.3b 30.5A,a 34.7a 32.0a 30.1A 1.09 <0.001 <0.001 0.043 QU** 

  NaL 23.3c 25.0B,bc 30.7a 29.1ab 27.0B     CU* 

  PRP 23.3b 30.1AB,a 30.4a 28.9a 28.2B     QU** 

  Mean 23.3c 28.6b 31.9a 30.0ab       

pH           

  MgL 6.79 6.79 6.77 6.71 6.77 0.021 0.192 0.036 0.1 L* 

  NaL 6.79 6.75 6.76 6.77 6.77     NS 

  PRP 6.79 6.71 6.72 6.75 6.74     QU* 

  Mean 6.79a 6.75ab 6.75ab 6.74b       

NH3-N, mg/dL           

  MgL 58.2 53.7 56.7 53.5AB 55.5 1.50 0.120 0.005 0.009 NS 

  NaL 58.2a 55.8ab 54.5ab 49.6B,b 56.8     L** 

  PRP 58.2 53.1 56.4 59.3A 54.5     NS 

  Mean 58.2a 54.2b 55.9ab 54.1b       

TVFA, mM           

  MgL 86.7a 78.0C,b 83.2B,ab 88.1B,a 83.5C 1.30 <0.001 <0.001 <0.001 CU** 

  NaL 86.7c 91.8A,b 96.0A,b 111.9A,a 96.1A     L** 

  PRP 86.7 85.0B 87.9B 89.9B 86.9B     L** 

  Mean 86.7c 85.0c 89.0b 96.7a       
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Table 3-6. Continued 
Acetate, mM           

  MgL 48.0ab 45.3B,b 48.0B,ab 50.1B,a 47.8C 0.805 <0.001 <0.001 <0.001 CU* 

  NaL 48.0c 52.2A,b 54.8A,b 64.1A,a 54.8A     L** 

  PRP 48.0 49.1A 50.0AB 50.6B 49.5B     L** 

  Mean 48.0c 48.9c 51.0b 54.9a       

Propionate, mM           

  MgL 18.0bc 16.5B,c 18.5B,b 20.6B,a 18.4C 0.352 <0.001 <0.001 <0.001 CU** 

  NaL 18.0c 19.3A,c 21.8A,b 24.5A,a 20.9A     QU** 

  PRP 18.0b 19.4A,ab 20.5A,a 20.8B,a 19.7B     QU** 

  Mean 18.0c 18.4c 20.3b 22.0a       

A:P ratio5           

  MgL 2.67a 2.68a 2.63ab 2.44b 2.61A 0.046 <0.001 <0.001 0.031 L** 

  NaL 2.67 2.70 2.59 2.62 2.65A     NS 

  PRP 2.67a 2.54ab 2.44b 2.43b 2.52B     QU** 

  Mean 2.67a 2.64ab 2.55bc 2.50c       

Butyrate, mM           

  MgL 10.9a 8.79B,b 8.43B,b 8.84B,b 9.24B 0.418 <0.001 <0.001 <0.001 QU** 

  NaL 10.9b 12.1A,ab 11.1A,b 13.5A,a 11.9A     L** 

  PRP 10.9a 8.32B,b 8.80B,b 9.30B,ab 9.33B     CU** 

  Mean 10.9a 9.74b 9.45b 10.6a       

(A+B):P ratio6           

  MgL 3.27a 3.20AB,a 3.11ab 2.87B,b 3.11B 0.061 <0.001 <0.001 0.004 L** 

  NaL 3.27 3.33A 3.06 3.18A 3.21A     CU* 

  PRP 3.27a 2.97B,b 2.87b 2.88B,b 3.00C     QU** 

  Mean 3.27a 3.17a 3.01b 2.97b       
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Table 3-7. Continued 
Isobutyrate, mM           

  MgL 1.47 1.33B 1.25B 1.29B 1.33B 0.063 <0.001 0.862 0.003 QU** 

  NaL 1.47 1.71A 1.68A 1.66A 1.63A     NS 

  PRP 1.47 1.31B 1.36B 1.43AB 1.39B     QU* 

  Mean 1.47 1.45 1.43 1.46       

Isovalerate, mM           

  MgL 3.03 3.55 3.52 3.61 3.42A 0.145 0.034 0.003 0.605 QU* 

  NaL 3.03 3.36 3.08 3.19 3.16B     NS 

  PRP 3.03 3.42 3.54 3.51 3.38AB     QU** 

  Mean 3.03b 3.44a 3.38a 3.43a       

Valerate, mM           

  MgL 3.23ab 2.55B,b 3.23ab 3.72B,a 3.18B 0.174 <0.001 <0.001 0.004 CU** 

  NaL 3.23bc 3.04AB,c 4.03b 4.93A,a 3.81A     CU* 

  PRP 3.23b 3.55A,ab 3.62ab 4.26AB,a 3.66A     L** 

  Mean 3.23c 3.05c 3.63b 4.30a       
A,B,CMeans with different uppercase superscripts within a column are significantly different (P ≤ 0.05).    
a,b,cMeans with different lowercase superscripts within a row are significantly different (P ≤ 0.05). 
1Linear (L), quadratic (QU) and cubic (CU) effect (P < 0.05). *P < 0.05; **P < 0.01. 
 2Magnesium lignosulfonate. 
3Sodium lignosulfonate. 
4Propionic acid. 
5A = acetic acid; P = propionic acid. 
6A = acetic acid; P = propionic acid; B = butyric acid. 
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Figure 3-1. Flowchart for the in vitro evaluation method of hay spoilage. 
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Figure 3-5. Antifungal activity of technical lignins on D. hansenii. 
SEM: 2.77; P ≤ 0.05. 

Figure 3-2. Antifungal activity of technical lignins on A. 
amoenus. SEM: 2.77; P ≤ 0.05. 

Figure 3-3. Antifungal activity of technical lignins on M. 
circinelloides. SEM: 2.77; P ≤ 0.05. 

Figure 3-4. Antifungal activity of technical lignins on P. solitum. 
SEM: 2.77; P ≤ 0.05. 
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APPENDIX A 

Table A-1. Effects of organic acids on hay quality, preservation, and animal performance measurements. 

Source ADV1 

App. 
rate 
(%)2

 

Bale3 M (%)4 

 Relative Effect5 

DM 
loss6 

High 
T.7 

Visual 
spoil.8 WSC9 CP10 NDF11 ADF12 DMD13 DMI14 

Knapp et 
al. (1976)  

Propionic 
acid 

0.0198 S 32.4 10.6 3.92 33.3 -8.82 3.85 n.a. n.a. 2.15 n.a. 

Propionic 
acid 

0.198 S 32.4 -12.6 -9.80 -33.3 14.7 3.85 n.a. n.a. 2.81 n.a. 

Propionic 
acid 

0.495 S 32.4 -22.5 -21.6 -66.7 20.6 3.85 n.a. n.a. 0.83 n.a. 

Propionic 
acid 

0.99 S 32.4 -49.7 -43.2 -100 91.2 3.85 n.a. n.a. 7.44 n.a. 

Nash and 
Easson 
(1977) 

Propionic 
acid 

0.99 n.a.15 25 0 -37.8 -66.7 n.a. n.a. n.a. n.a. 4.61 n.a. 

Propionic 
acid 

1.98 n.a. 25 -36.5 -48.9 -100 n.a. n.a. n.a. n.a. 6.09 n.a. 

Propionic 
acid 

2.97 n.a. 25 -86.5 -48.9 -100 n.a. n.a. n.a. n.a. 6.91 n.a. 

Propionic 
acid 

3.96 n.a. 25 -51.4 -48.9 -100 n.a. n.a. n.a. n.a. 9.21 n.a. 

Propionic 
acid 

0.99 n.a. 35 -36.7 -14.5 -29.4 n.a. n.a. n.a. n.a. 6.64 n.a. 

Propionic 
acid 

1.98 n.a. 35 -10.8 -47.3 -58.8 n.a. n.a. n.a. n.a. 11.8 n.a. 

Propionic 
acid 

2.97 n.a. 35 -37.4 -45.5 -76.5 n.a. n.a. n.a. n.a. 5.79 n.a. 

Propionic 
acid 

3.96 n.a. 35 -81.3 -47.3 -76.5 n.a. n.a. n.a. n.a. 4.94 n.a. 

Propionic 
acid 

0.99 n.a. 45 -17.6 -29.2 -35 n.a. n.a. n.a. n.a. 3.72 n.a. 

Propionic 
acid 

1.98 n.a. 45 -40.9 -23.1 -40 n.a. n.a. n.a. n.a. 5.84 n.a. 

Propionic 
acid 

2.97 n.a. 45 -55.7 -38.5 -50 n.a. n.a. n.a. n.a. 1.95 n.a. 
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Table A-1. Continued 
 Propionic 

acid 
3.96 n.a. 45 -49.4 -33.9 -65 n.a. n.a. n.a. n.a. 5.84 n.a. 

Propionic 
acid 

1.98 n.a. 30 -43.2 -19.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

2.97 n.a. 30 -58.1 -19.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

4.95 n.a. 30 -100 -15.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Easson 
and Nash 
(1978) 

Propionic 
acid 

0.99 S 41 -41.7 n.a. -33.4 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.485 S 41 -98.7 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.98 S 41 -96.7 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

2.48 S 41 -92.7 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

2.97 S 41 -97.4 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

0.495 S 32 -12.6 n.a. -33.4 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

0.99 S 32 -70.1 n.a. -66.7 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.49 S 32 -99.1 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.98 S 32 -68.7 n.a. -100 n.a. n.a. n.a. n.a. n.a. n.a. 

Davies 
and 
Warboys 
(1978) 

Propionic 
acid 

3.47 n.a. 35.9 -31.7 -33.3 n.a. n.a. n.a. n.a. n.a. 7.93 n.a. 

Propionic 
acid 

2.08 n.a. 26.1 -4.65 -21.6 n.a. n.a. n.a. n.a. n.a. -0.95 n.a. 

Nehrir et 
al. (1978) 

Acetic acid 0.8 R 29 74.4 n.a. n.a. n.a. 5.80 n.a. 2.86 0.49 n.a. 

Acetic acid 1.3 R 30 2.6 n.a. n.a. n.a. 7.25 n.a. 1.19 1.97 n.a. 

Propionic 
acid 

0.99 R 31 21.4 n.a. n.a. n.a. 5.80 n.a. 2.86 0.49 n.a. 
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Table A-1. Continued 
 Propionic 

acid 
1.39 R 30 -28.6 n.a. n.a. n.a. 7.25 n.a. 1.19 1.97 n.a. 

Lacey et 
al. (1978) 

Propionic 
acid 

0.99 R 41 112 -20.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.98 R 41 106 -32.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

0.99 R 28 -96.3 -23.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.98 R 28 -85.2 -39.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

2.97 R 28 -32.1 -45.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

0.99 R 26 -100 -26.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

1.98 R 26 -100 -38.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

2.97 R 26 3.2 -28.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Davies 
and 
Warboys 
(1982) 

Propionic 
acid 

4.65 n.a. 43.4 n.a. n.a. n.a. n.a. 0 n.a. n.a. n.a. 4.18 

Propionic 
acid 

4.26 n.a. 34.9 n.a. n.a. n.a. n.a. -8.3 n.a. n.a. n.a. -5.1 

Propionic 
acid 

3.47 n.a. 35.9 n.a. n.a. n.a. n.a. 2.56 n.a. n.a. n.a. 21.0 

Walgenb
ach and 
Massengi
ll (1986) 

Sodium 
Propionate 

0.223 R 23 n.a. -2.27 0 n.a. n.a. n.a. n.a. n.a. n.a. 

Sodium 
Propionate 

0.454 R 24 n.a. 0 6.90 n.a. n.a. n.a. n.a. n.a. n.a. 

Sodium 
Propionate 

0.68 R 21 n.a. 0 -3.45 n.a. n.a. n.a. n.a. n.a. n.a. 

Propionic 
acid 

0.36 R 21 n.a. -12.3 -60 
n.a. n.a. 

n.a. n.a. n.a. n.a. 

Atwal 
and Erfle 
(1988) 

Propionic 
acid 

0.297 Ro 17.8 -20.9 -7.72 n.a. n.a. n.a. -12.1 -11.3 9.2 n.a. 
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Table A-1. Continued 
 Propionic 

acid 
0.297 Ro 23.6 -9.30 -13.2 n.a. n.a. n.a. -6.16 -5.96 2.78 n.a. 

Propionic 
acid 

0.03 Ro 25 37.2 2.12 n.a. n.a. n.a. -1 2.19 -0.52 n.a. 

Baron 
and 
Greer 
(1988) 

Propionic 
acid 

0.075 n.a. 15 n.a. -0.87 0 n.a. n.a. n.a. 2.79 -1.84 n.a. 

Propionic 
acid 

0.057 n.a. 15 n.a. -0.87 0 n.a. n.a. n.a. 2.44 -1.07 n.a. 

Propionic 
acid 

0.075 n.a. 25 n.a. -11.2 17.5 n.a. n.a. n.a. -12.5 5.25 n.a. 

Propionic 
acid 

0.057 n.a. 25 n.a. 4.13 -12.3 n.a. n.a. n.a. -6.8 3.39 n.a. 

Propionic 
acid 

0.075 n.a. 35 n.a. 0.955 10 n.a. n.a. n.a. -10.6 10.5 n.a. 

Propionic 
acid 

0.057 n.a. 35 n.a. 0.234 0 n.a. n.a. n.a. -6.42 10.5 n.a. 

Propionic 
acid 

0.075 n.a. 30 -13.1 4.19 -42.1 n.a. 0 n.a. 1.43 n.a. n.a. 

Propionic 
acid 

0.057 n.a. 30 -15.9 4.19 -7.02 n.a. 6.25 n.a. -2.62 n.a. n.a. 

Rotz et 
al. (1988) 

Propionic 
acid 

1.17 n.a. 21 -25 0 91.3 n.a. 0.93 n.a. -8.81 n.a. n.a. 

Propionic 
acid 

0.754 n.a. 17 n.a. 0 48.39 n.a. 4.38 n.a. 0.49 n.a. n.a. 

Propionic 
acid 

1.40 n.a. 22 n.a. -30.0 -10.8 n.a. -0.61 n.a. 2.91 n.a. n.a. 

Propionic 
acid 

0.718 n.a. 20 10.3 28.9 -3.23 n.a. 8.12 n.a. -6.41 n.a. n.a. 

Propionic 
acid 

1.31 n.a. 27 3.26 -22.0 -10.2 n.a. -1.46 n.a. -4.59 n.a. n.a. 

Propionic 
acid 

0.683 n.a. 24 -70.6 -31.0 -33.3 n.a. -13.6 n.a. 5.84 n.a. n.a. 

Propionic 
acid 

1.13 n.a. n.a. -27.6 -36.6 -32.3 n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A-1. Continued 
Baron 
and 
Mathison 
(1990) 

Propionate 
salt 

1.25 n.a. 19.5 -23.5 -7.64 n.a. n.a. n.a. -5.46 -5.44 n.a. n.a. 

Khalilian 
et al. 
(1990) 

Propionic 
acid 

0.396 R 20 n.a. 6.42 0 n.a. 2.06 -1.64 -2.66 n.a. 
n.a. 

Propionic 
acid 

0.792 R 20 n.a. 2.75 0 n.a. -7.59 -0.21 n.a. n.a. 
n.a. 

Propionic 
acid 

0.371 R 25 -11.8 3.35 -43.5 n.a. -1.85 -5.31 -4.69 n.a. 
n.a. 

Propionic 
acid 

0.347 R 30 -12.5 -13.6 -11.5 n.a. 18.7 -0.65 -1.63 n.a. 
n.a. 

Propionic 
acid 

0.347 R 30 -15.6 -7.87 -13.0 n.a. -5.15 4.65 8.12 n.a. 
n.a. 

Propionic 
acid 

0.693 R 30 -55.6 -28.1 -43.5 n.a. -16.9 11.8 6.02 n.a. 
n.a. 

Rotz et 
al. (1990) 

Propionic 
acid 

0.368 R 26.5 -25.9 n.a. -14.3 n.a. 0.518 n.a. -1.52 n.a. 
n.a. 

Propionic 
acid 

0.362 R 27.6 -27.5 n.a. -26.7 n.a. -2.19 n.a. 5.67 n.a. 
n.a. 

Propionic 
acid 

0.73 R 27 -4.8 n.a. 12 n.a. 2.47 n.a. -6.84 n.a. 
n.a. 

Baron et 
al. (1991) 

Propionate 
salt 

1 n.a. 24.1 -66.9 -46.6 150 n.a. n.a. -23.8 -14.5 6.17 
n.a. 

Propionate 
salt 

1.25 n.a. 24.1 -66.1 -43.1 150 n.a. n.a. -17.4 -7.47 5.29 
n.a. 

Propionate 
salt 

1 n.a. 28.3 -68.5 -45.7 n.a. n.a. n.a. -19.5 -11.3 10.6 
n.a. 

Propionate 
salt 

1.25 n.a. 28.3 -68.5 -43.2 n.a. n.a. n.a. -16.2 -8.50 9.17 
n.a. 

Wittenber
g (1991) 

Buffered 
Propionic 
acid 

8.78 R 27.5 n.a. -12.1 -38.9 n.a. n.a. n.a. -2.4 n.a. n.a. 
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Table A-1. Continued  
Buffered 
Propionic 
acid 

6.82 R 22.5 n.a. 4.22 0 n.a. n.a. n.a. 1.70 n.a. n.a. 

Shinners 
(2000) 

Propionic 
acid 

0.495 S 16.3 -6.67 n.a. n.a. n.a. -1.29 -0.70 0.29 n.a. n.a. 

Propionic 
acid 

0.495 S 14.2 48 n.a. n.a. n.a. -2.20 -1.12 -1.42 n.a. n.a. 

Propionic 
acid 

0.297 S 15.8 2.63 n.a. n.a. n.a. 0.60 -1.52 -1.6 n.a. n.a. 

Propionic 
acid 

0.792 S 27.6 9.02 n.a. n.a. n.a. -2.68 -5.57 -7.02 n.a. n.a. 

Reboux 
et al. 
(2002) 

Buffered 
Propionic 
acid 

0.189 Ro 20 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Baah et 
al. (2005) 

Buffered 
Propionic 
acid 

8.22 Ro 17 n.a. n.a. n.a. -46.3 16.6 -10.1 -11.3 n.a. n.a. 

Buffered 
Propionic 
acid 

8.02 Ro 19 n.a. n.a. n.a. 23.6 0 -5.48 3.90 n.a. n.a. 

Buffered 
Propionic 
acid 

7.92 Ro 20 n.a. n.a. n.a. 65.9 -1.02 -8.31 -7.49 n.a. n.a. 

Buffered 
Propionic 
acid 

8.22 Ro 17 n.a. n.a. n.a. 19.0 5.26 -4.39 -1.15 n.a. n.a. 

Coblentz 
et al. 
(2012) 

Propionic 
acid 

0.294 Ro 30 10.4 -0.75 n.a. n.a. 2.1 -0.21 0.28 n.a. n.a. 

Propionic 
acid 

0.315 Ro 25 2.63 -10.1 n.a. n.a. -0.82 -2.23 -3.80 n.a. n.a. 

Coblentz 
et al. 
(2013) 

Propionic 
acid 

0.36 R 27.4 n.a. -12.3 n.a. n.a. 6.18 -3.03 -1.84 -1.13 -3.0 

Propionic 
acid 

0.6 R 27.4 n.a. -21.2 n.a. n.a. 2.81 -5.58 -3.45 -2.26 -49 
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Table A-1. Continued 
 Propionic 

acid 
0.36 R 23.8 n.a. -27.2 n.a. n.a. -4.30 -7.94 -14.8 3.44 0 

Propionic 
acid 

0.6 R 23.8 n.a. -25.6 n.a. n.a. -0.54 -6.48 -8.45 9.92 1.49 

Propionic 
acid 

0.36 R 19.6 n.a. -23.2 n.a. n.a. -4.3 -2.87 -3.32 3.66 0 

Propionic 
acid 

0.6 R 19.6 n.a. -20.8 n.a. n.a. 1.08 -1.18 3.08 -0.55 0 

Jin et al. 
(2018) 

Propionic 
acid 

0.272 Ro 25 n.a. n.a. n.a. -11.9 10.5 6.23 13.4 n.a. n.a. 

Propionic 
acid 

0.272 Ro 25 n.a. n.a. n.a. 24.7 35.5 6.23 13.4 n.a. n.a. 

Propionic 
acid 

0.272 Ro 25 n.a. n.a. n.a. -65.6 23.5 6.23 13.4 n.a. n.a. 

Average 27.9 -32.2 -19.0 -18.9 8.89 2.42 -5.77 -2.79 3.99 -1.96 
1Additive; 2Application rate (% w/w fresh basis); 3Bale type (S, squared; R, rectangular; RO, round); 4Moisture 
concentration (%); 5Effect or relative difference expressed as % calculated as treatment mean - untreated mean/treatment 
mean × 100; 6Dry matter (DM) loss; 7Maximum internal bale temperature; 8Visible spoilage; 9Water soluble carbohydrates; 
10Crude protein; 11Neutral detergent fiber; 12Acid detergent fiber; 13DM digestibility; 14DM intake; 15Not available. 
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Table A-2. Effects of anhydrous ammonia on hay quality, preservation, and animal performance measurements. 

Source 
App. rate 

(%)1 Bale2 M (%)3 

Relative Effect4 

DM 
loss5 

High 
T.6 

Visual 
spoil.7 CP8 NDF9 ADF10 DMD11 DMI12 

Weiss et al. (1982) 1.3 R 32 n.a. n.a. n.a. 26.6 4.65 -1.05 n.a. -2.56 

Thorlacius and 
Robertson (1984) 

1.0 R 35 n.a. n.a. n.a. 16.0 -7.97 -5.63 n.a. n.a. 

2.0 R 35 n.a. n.a. -100 32.9 -18.0 -7.50 13.8 n.a. 

1.0 R 35 n.a. n.a. -68.1 0.00 2.69 0.81 1.60 n.a. 

2.0 R 35 n.a. n.a. -100.0 3.73 5.55 -1.08 -3.39 n.a. 

Woolford and Tetlow 
(1984) 

1.6 R 20 n.a. n.a. n.a. n.a. -6.10 1.84 n.a. n.a. 

3.2 R 20 n.a. n.a. n.a. n.a. -8.85 0.79 n.a. n.a. 

6.4 R 20 n.a. n.a. n.a. n.a. -10.6 5.25 n.a. n.a. 

1.2 R 40 n.a. n.a. n.a. n.a. -7.59 -8.78 n.a. n.a. 

2.4 R 40 n.a. n.a. n.a. n.a. -9.31 -10.4 n.a. n.a. 

4.8 R 40 n.a. n.a. n.a. n.a. -13.5 -15.2 n.a. n.a. 

Grotheer et al. (1985) 2.4 Ro 19.8 n.a. n.a. n.a. 76.9 -11.5 3.17 25.0 n.a. 

2.0 Ro 32.5 n.a. n.a. n.a. 56.0 -10.9 4.37 19.7 n.a. 

L. Jones et al. (1985) 0.2 Ro 19 -26.5 n.a. n.a. n.a. n.a. n.a. 48.4 37.7 

G. Koegel et al. (1985) 1.8 R 25.8 n.a. -36.6 n.a. 16.1 n.a. n.a. n.a. n.a. 

1.3 R 27.5 n.a. -14.6 n.a. 27.5 n.a. n.a. n.a. n.a. 

1.2 R 27.2 n.a. -19.5 n.a. 25.0 n.a. n.a. n.a. n.a. 

1.0 R 25.6 n.a. -41.5 n.a. 21.50 n.a. n.a. n.a. n.a. 

1.4 R 25 n.a. 0.00 n.a. 32.7 n.a. n.a. n.a. n.a. 

1.2 R 19.9 n.a. -15.6 n.a. 31.2 n.a. n.a. n.a. n.a. 

1.4 R 25.1 n.a. 28.6 n.a. 17.7 n.a. n.a. n.a. n.a. 

2.2 Ro 30.9 -91.5 -8.77 n.a. n.a. n.a. n.a. n.a. n.a. 

2.3 Ro 33.8 -83.8 1.75 n.a. n.a. n.a. n.a. n.a. n.a. 

1.6 Ro 33.8 -100 -14 n.a. n.a. n.a. n.a. n.a. n.a. 

1.3 Ro 30.8 -51.4 3.51 n.a. n.a. n.a. n.a. n.a. n.a. 
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Table A-2. Continued 
 1.9 Ro 28 -78.9 -14 n.a. n.a. n.a. n.a. n.a. n.a. 

1.7 Ro 22.9 n.a. -2.63 n.a. n.a. n.a. n.a. n.a. n.a. 

2.0 Ro 31.1 91.8 2.17 n.a. n.a. n.a. n.a. n.a. n.a. 

1.8 Ro 34.1 -80.8 6.52 n.a. n.a. n.a. n.a. n.a. n.a. 

2.3 Ro 30.3 60.3 -15.2 n.a. n.a. n.a. n.a. n.a. n.a. 

1.7 Ro 29.7 24.7 15.2 n.a. n.a. n.a. n.a. n.a. n.a. 

van de Riet et al. 
(1988) 

3.0 n.a.13 
30 n.a. n.a. n.a. 96.9 n.a. n.a. 10.3 n.a. 

3.0 n.a. 15 n.a. n.a. n.a. 81.2 n.a. n.a. 12.4 n.a. 

Wylie and Steen (1988) 1.4 R 30.1 n.a. n.a. n.a. n.a. -6.69 2.15 n.a. n.a. 

2.1 R 30.1 n.a. n.a. n.a. n.a. -6.69 3.59 n.a. n.a. 

1.7 R 16.5 n.a. n.a. n.a. n.a. -4.65 -1.79 n.a. n.a. 

2.5 R 16.5 n.a. n.a. n.a. n.a. -1.94 1.56 n.a. n.a. 

3.3 R 16.5 n.a. n.a. n.a. n.a. -8.13 -1.34 n.a. n.a. 

Wittenberg (1991) 2.3 R 22.5 n.a. -3.59 n.a. 22.3 16.5 9.73 n.a. n.a. 

2.0 R 27.5 n.a. -7.48 n.a. n.a. n.a. 2.40 n.a. n.a. 

1.9 R 22.5 n.a. 26.2 40 n.a. n.a. -0.85 n.a. n.a. 

Mir et al. (1991) 2.0 Ro 19.5 -55.2 n.a. n.a. 32.2 4.77 4.12 2.64 -4.40 

2.0 Ro 29.1 110 n.a. n.a. 40.1 -6.36 0.55 3.16 -11.0 

2.0 Ro 18.1 -58.1 n.a. n.a. 50 2.12 2.92 0.81 1.20 

2.0 Ro 30.9 -22.6 n.a. n.a. 63.8 1.79 14.3 -4.38 6.02 

de Freitas et al. (2002) 0.8 R 25 n.a. n.a. n.a. 2.01 2.66 1.42 n.a. n.a. 

Average 27.1 -25.8 0.50 -54.2 35.1 -4.08 0.21 10.4 4.49 
1Application rate (CFU/ fresh g); 2Bale type (S, squared; R, rectangular; RO, round); 3Moisture concentration (%); 4Effect 
or relative difference expressed as % calculated as treatment mean - untreated mean/treatment mean × 100; 5Dry matter 
(DM) loss; 6Maximum internal bale temperature; 7Visible spoilage; 8Crude protein; 9Neutral detergent fiber; 10Acid 
detergent fiber; 11DM digestibility; 12DM intake; 13Not available. 

  



 

120 

Table A-3. Effects of microbial inoculants on hay quality, preservation, and animal performance measurements. 

Source 
App. rate (log 
CFU/fresh g)1 Bale2 M (%)3 

Relative Effect4 

DM 
loss5 

High 
T.6 

Visual 
spoil.7 CP8 NDF9 ADF10 DMD11 DMI12 

Rotz et al. (1988)  5.0 n.a.13 21 -5.80 1.18 43 -10.2 n.a. 7.44 n.a. n.a. 

5.0 n.a. 21 -48.6 -10.1 43 -0.51 n.a. -14.9 n.a. n.a. 

Nelson et al. 
(1989) 

5.05 S 43.4 3.27 n.a. n.a. -1.77 5.95 -2.09 3.16 -13.6 

5.17 S 26.5 4.44 n.a. n.a. 7.14 -1.01 -0.96 -0.14 -8.5 

5.11 Ro 35.7 -12.9 n.a. n.a. -3.03 3.35 3.0 0.50 0 

Wittenberg (1991) 5.42 R 22.5 n.a. 1.20 n.a. 17.8 13.8 2.79 0.469 -2.38 

5.38 R 27.5 n.a. 88.2 n.a. -1.54 16.5 4.93 n.a. n.a. 

5.65 R 27.5 n.a. -1.43 56 n.a. n.a. -1.87 n.a. n.a. 

5.65 R 22.5 n.a. -6.44 10 n.a. n.a. -1.13 n.a. n.a. 

5.45 R 27.5 n.a. -6.69 48 n.a. n.a. 1.87 n.a. n.a. 

5.51 R 22.5 n.a. -1.78 16 n.a. n.a. -5.09 n.a. n.a. 

4.57 R 22.5 16.7 n.a. 20 3.29 n.a. -6.07 8.11 -1.88 

6.07 R 22.5 66.7 n.a. 22 0.43 1.90 3.66 n.a. n.a. 

Shinners (2000) 4.92 S 15.8 -10.5 n.a. n.a. -1.81 0.65 1.87 n.a. n.a. 

4.86 S 27.6 -10.7 n.a. n.a. -1.34 -3.48 -2.63 n.a. n.a. 

Bass et al. 2(012) 7.4 R 17.4 n.a. -5.07 n.a. n.a. -0.84 1.48 n.a. -13.7 

7.4 R 26.7 n.a. -12.9 n.a. n.a. 0.54 -0.28 n.a. -13.2 

Caldwell et al. 
(2013) 

8.3 R 16.3 n.a. -2.78 n.a. -3.54 -0.59 2.16 n.a. 34.1 

8.3 R 25.1 n.a. -7.41 n.a. 11.6 -2.63 -2.48 n.a. -3.56 

Average 24.8 0.28 2.99 32.25 1.27 2.85 -0.44 2.42 -2.5 
1Application rate (CFU/ fresh g); 2Bale type (S, squared; R, rectangular; RO, round); 3Moisture concentration (%); 4Effect 
or relative difference expressed as % calculated as treatment mean - untreated mean/treatment mean × 100; 5Dry matter 
(DM) loss; 6Maximum internal bale temperature; 7Visible spoilage; 8Crude protein; 9Neutral detergent fiber; 10Acid 
detergent fiber; 11DM digestibility; 12DM intake; 13Not available. 
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Table A-4. Dry matter (DM), DM losses, pH, and fungal counts of alfalfa hay as a function of fungi at d 0 

Item A. amoenus D. Hansenii M. Circinelloides P. Solitum Pooled SD 

DM, % 64.9 70.2 70.0 68.3 1.55 
DM loss, % 12.3 2.36 2.77 7.04 1.52 
Hay pH 7.65 5.02 5.1 7.02 1.24 
Counts, log cfu/fresh g 8.5 7.3 7.2 8.3 0.18 
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