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It is commonly observed that there are inequalities found in economic growth, development,

and performance between different regions. Because of this, it is vital for regional planners to have

knowledge to which economic problems are present and to what extent (Armstrong and Taylor,

2000; Martin, 2005). With such knowledge, planners are able to tailor and implement regional

policies in an informed manner that is better suited to address economic problems. Found in this

work are two studies that contextualize separate economic problems which have been extensively

discussed within regional sciences and rural studies.

The first study seeks to assess how a county’s degree of rurality affects its capacity to resist and

rebound from economic shocks. Rurality is a variable that challenging to define, but is nonetheless

important to understand because identifying how regions can be rural provides necessary context

for the justification of policy intervention (Cloke and Edwards, 1986; Beynon et al., 2016). We use

county-level data from a series of federal agencies over the period of 2011 through 2015 to

statistically estimate and visualize an urban-rural landscape of New England. Using this measure,

we further test to see if a county’s degree of rurality had an impact on its relative recovery speed in

employment growth. Over the same period of 2011 to 2015, we test how these counties recovered

from two years and beyond after the Great Recession. The findings suggest overall a county’s



degree of rurality corresponded with slower levels of recovery in terms of employment in

comparison to overall U.S. levels.

The second study seeks to explain how spatial factors such as market access and geographical

remoteness influences a region’s differential economic performance. While the discussion of

factors contributing to economic performance is expansive for large areal units like nations, there is

a need for more understanding on how factors that dampen economic performance at a granular

level can influence the greater region’s performance (Porter, 2003; Agarwal et al., 2009). We use

data from the Census Bureau, National Park Service, and Google Geocoding Service in the

one-year period of 2016 to: (1) estimate economic output as a proxy for performance in a system of

equations, and (2) to see how such performance differentiates across geographic space. To approach

this problem, we use a novel method of extracting and translating geographic data into distance

measures at the census tract level to investigate how spatial factors influence economic performance.

Overall, the findings from our jointly estimated system of equations highlight that larger distances

to market access and remoteness negatively influences economic performance at the census tract

level. Similarly, higher levels in variables such as workplace disability and the old-age dependency

ratio had other dampening impacts.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Regional inequalities in economic growth, wealth, and performance are well-documented

observations. While these disparities typically act as a motivating factor for regional planners to

create effective local and regional policy, they can also be a contentious point of discussion for how

regional policy should be tailored (Armstrong and Taylor, 2000; Martin, 2005). While imbalances

in economic conditions can persist across regions, the overarching goal of tailoring regional policy

to places is to encourage development. Similarly, the view of what development should be is

context and spatial dependent. Perspectives of what economic development may look like are broad

and responsive to fundamental questions such as: What kind of economic development? Who

should economic development serve? (Pike et al., 2006). Responses to these questions questions are

vital to strategies aimed at addressing the persistence of economic inequalities. For example, the

notion that economic development is region-specific, (Local Government Commission, 2004)

distinguishes development and growth:

"One of the biggest myths is that in order to foster economic development, a community

must accept growth. The truth is that growth must be distinguished from development:

growth means to get bigger, development means to get better – an increase in quality

and diversity." ((Pike et. al., 2006); quoting (Local Government Commission, 2004).)

Regional and territorial competition has grown as a consequence to differential economic

development between areas, where regional planners utilize their area’s resources and support

policies to mobilize capital and labor as a means attract more economic activity (Krugman, 1995).

For the regions that are comparatively lesser off economically, planners may consider development

strategies that seek to identify current economic conditions and advantages with the assistance of

local stakeholders and to create local policy that avoids the pitfalls from a top-down approach (Pike

1



et al., 2006; Goetz et al., 2011; Artz et al., 2015). While such an approach does not guarantee the

success of policies, the fundamental principle behind such an approach is the empowerment for

those within the region to identify their economic conditions and address such disparities through

policy.

The crux of this thesis is the acknowledgment that regional inequalities exist. Specifically, this

research seeks to assess the extent at which these economic imbalances are apparent and explain

how other economic and geographic factors influence these imbalances. The common thread that

ties this thesis together is underlying principle that any selection of regional policy necessitates the

knowledge at which an economic problem is present. It is with this commonality between these two

papers where this thesis approaches some of the more overarching problems observed within the

literature.

1.2 Purpose of the Research

An attractive characteristic of this thesis is that it presents two different pieces of research that

highlight disparities in the time of recovery from economic shocks and evaluating the potential

drivers of disparities in economic performance between different localities. The next two thesis

chapters here explain the importance of economic space at different levels and considers how

regional policy may be tailored to confront the pitfalls from a lack of resiliency, and inform

strategies for overcoming the hurdle of geography to better serve rural and remote areas.

The first paper contextualizes economic and sociodemographic differences between

urban and rural counties and underpin the notion on how rurality is along a continuity, and where it

starts and ends can be region-specific. Understanding how rural and urban areas differ, this chapter

tackles the issue of economic resiliency, and specifically explores the speed at which regions

recover from economic shocks. Given this, we seek to answer the research question: "how do

rural counties differ from their urban counterparts with respect to recovery from economic shocks?"

2



The second paper is grounded in the notion that economic differences in output and

performance are largely spatial in nature. Specifically, this chapter seeks to measure the extent to

which disparities between the productivity of workers, employment, and labor market dynamics are

explained by fixed spatial factors. Two unique components of this research are: (1) that we use a

novel method to collect spatial data that would otherwise be a challenge to find and (2) that we

numerically calculate spatial variables at a considerably granular scope. Given these nuances found

within this chapter, we address two research questions: First, what are the significant economic

factors that motivate the differences observed in relative economic performance between census

tracts? Second, what are the spatial determinants of regional economic performance?

1.3 Thesis Organization

The remainder of this thesis is composed of three chapters. First, chapter 2 draws upon previous

work in rural studies and calculates a measure of rurality between the period of 2011 to 2015 for

New England counties. Using this index, we assess how the counties within our study area

recovered from the Great Recession in comparison to the nation, giving special attention to

rural-urban lines. Chapter 3 utilizes a novel method for extracting and calculating spatial variables

and then using these variables to measure the spatial determinants of regional economic

performance. Lastly, chapter 4 concludes this thesis by drawing upon the insights of the previous

chapters and discusses what future research may look like for work related to economic resilience

and performance respectively.
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CHAPTER 2

MEASURING THE IMPACTS OF RURALITY ON ECONOMIC RESILIENCY

2.1 Introduction

Regional variation in responses to economic shocks has long provided valuable insight about

the difference in capacity and vulnerability of economies. A growing literature surrounding

economic resilience has established empirical frameworks to assess regional sensitivity and

variation in the speed of recovery from economic shocks (Simmie and Martin, 2010; Martin, 2012;

Martin and Sunley, 2015). Beyond this scholarship, little discussion has focused on the role of

rurality in regards to economic resiliency.

Rural is defined as something relating to, or a characteristic of, the countryside rather than the

town (Merriam-Webster, 2009). From an analytic perspective however, rurality plays a larger role

than a mere characteristic. Early literature initially established the foundation of rural studies, what

it means for a community to be rural, and how to quantify "rurality" (Cloke, 1977; Cloke and

Edwards, 1986; Hoggart, 1988; Isserman, 2005; Cloke et al., 2006; Waldorf, 2006). Such work has

helped policymakers and researchers understand the significance of rurality and how it affects

economic policy (Halfacree, 1993; Beynon et al., 2016; Li et al., 2015). Beyond this, there has been

an extensive discussion surrounding policy implementation in urban and rural regions. In turn, rural

studies has opened an avenue for non-academic analysis on the design and expected performance of

alternative development strategies at the national and state-wide level (Williams et al., 2013; Tudor,

2015; Office of Economic Development & International Trade, 2016; OECD, 2017; Bay Area

Council Economic Institute, 2017). Some questions about policy implementation and efficacy

nonetheless remain; for example, how can policymakers promote economic policies that are tailored

in a manner to reach rural areas and established hubs of economic activity? How, if at all, is the

impact of economic shocks different between an area with small (yet constant) economic activity
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and areas that suffer from perpetual economic declines? How does geographical isolation impact

economic activity and the recovery from economic shocks? And lastly, do the effects of geographic

isolation on economic activity and recovery to shocks vary systematically between time and space?

To respond to such question, we analyze the linkages between rurality and economic resiliency.

To do this, we synthesize two fields of literature that focus on regional sciences and rural studies

and empirically evaluate the impacts of a multivariate index of rurality on a measurement of

economic resiliency. Drawing upon past work, we use factor analysis to develop a measure of

rurality associated with differences between several geographic, socio-demographic, and economic

variables. Then we evaluate differences in economic resilience with respect to rurality. In sum, our

approach contributes to both the study of rural areas and regional sciences by analyzing the

association of economic resiliency and rurality and providing insight to policymakers interested in

the impacts of policy for rural areas.

2.2 Measuring Rurality

How one measures rurality can vary by academic discipline and specialty. For example, rural

measures can shape the framework used by experts in health-care, education, and community

development. Rural definitions similarly affect eligibility for federal grants and programs, and

levels of federal assistance provided to rural communities (Arnold et al., 2005; Hart et al., 2005;

Coburn et al., 2007; Pateman, 2011).

Among the abundance of rurality measures and the significance they carry, there exist two

well-established definitions of rural produced by two different federal agencies (ie., the U.S. Census

Bureau and the Office of Management of Budget) that are used by researchers and policymakers

across the United States. While these established definitions are used quite frequently, they are not

adequate for understanding different rural systems nor supporting all designs of research. As a

whole, research design for rural-specific questions hold at stake the possibility of misrepresenting
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rural conditions as well as categorically mis-aligning areas as rural or urban which may not reflect

reality (Isserman, 2005; Coburn et al., 2007).

In the coming subsections, there is an extensive discussion of the background and uses of

common definitions of rural established by the Census Bureau and the Office of Management and

Budget. This transitions to how agencies have improved their definitions and how they both have

impacted the work of researchers and policymakers. Through understanding the methodology

behind federal definitions of rurality and why a researcher might construct their own measurement,

we in turn enrich our own empirical framework used to define rural. By carefully producing an end

product that accurately reflects the rural-urban landscape, we substantiate the "rural" in our analysis

of rural-urban differences in economic resilience.

2.2.1 Census Bureau Delineation of Rural

The Census Bureau defines rural as delineation of an area "that which is not urban." This

delineation comes from an established set of socio-demographic and geographical characteristics

for areas across the United States. Although stemming from a pre-defined set of variables, their

definition of rural is by no means static. The Census Bureau has continued to iteratively build upon

their definition to delineate areas "that-are-not rural" because of the complexity that naturally

occurs in such a typological approach (Isserman, 2005; Waldorf, 2006; Ratcliffe et al., 2016). For

example, Census Bureau designations of urban clusters (UC) and urbanized areas (UA) within the

united States changed between 2000 and 2010 among changes in delineations (Table 2.1).
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Table 2.1: Urban Area and Urban Clusters composition of the United States (2000 - 2010)

Area
Number

of Areas

2010

Population

2000

Population

% of 2010

Population

% of 2000

Population

United States 3,573 308,745,538 281,421,906

Urban 249,253,271 222,360,539 80.7% 79.0%

Urban Area 486 219,922,123 192,323,824 71.2% 68.3%

Urban Cluster 3,087 29,331,148 30,036,715 9.5% 10.7%

Rural 59,492,267 59,061,367 19.3% 21.0%

Source: 2010 Census Urban and Rural Classification and Urban Area Criteria, Department of

Commerce

Researchers might employ this definition due to the geographical variation that it describes and

that census data are a resource that is low cost and easily accessed (free and readily available

through federal agencies). In addition, these definitions are used extensively in program funding

decisions relating to rural health and economic development (Isserman, 2005; Ratcliffe et al., 2016).

2.2.2 Office of Management and Budget’s Delineation

The Office of Management and Budget (OMB) defines rural at the county-scale (Figure 2.1)

and provides standard geographical delineations for statistical purposes. Specifically, the definition

of rural for the OMB falls under a subcategory for their standards that define metropolitan and

metropolitan areas (Office of Management and Budget, 2010). This greater category is denoted as

Core Based Statistical Areas (CBSA). To differentiate between micro- and metropolitan areas, they

define a Metropolitan Statistical Area (MSA) as a CBSA with at least one urbanized area that has a

population of at least 50,000 and comprises the central county and adjacent outlying counties. The

Micropolitan Statistical Area (MiSA) is a CBSA with one urban cluster between 10,000 to 50,000

persons and comprises a central county or outlying counties containing the area. Lastly,

nonmetropolitan CBSAs are "noncore" counties that do not contain an urban area and have

populations less than 10,000.
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Figure 2.1: U.S. County Core Based statistical Area delineations

Federal agencies such as the Economic Research Service of the United States Department of

Agriculture (USDA) and the National Center for Health Statistics of the Center for Disease Control

and Prevention (CDC) use the OMB’s measures for their agency-specific responsibilities. The

Economic Research Service’s popular system for defining rurality stems from the Rural-Urban

Continuum Codes (RUCC), whereas the CDC’s Urban-Rural Schema uses OMB measures and

refine them to capture more variation by adding additional sub-categories. (United States

Department of Agriculture, 1986; Ingram and Franco, 2006).

2.2.3 Statistically Applied Measurements of Rurality

Asking "what is rural" has always been a multifaceted question. When researchers use

statistical estimators to measure rurality, they do so as a means to preserve the important aspects of

rurality through such multivariate analysis. Early work applying such an approach used statistical

estimation techniques to quantify rurality and to tease out the essential underpinnings of what
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makes a region more rural or urban while also allowing for quick replicability to assess how

different rural regions fare over time (Cloke, 1977; Cloke and Edwards, 1986; Harrington and

O’Donoghue, 1998). The older measures of rural contributed to the greater academic discussion

during a time where the greater understanding of rurality was fuzzy (Hoggart, 1988, 1990;

Halfacree, 1993). Over time, the appeal of these statistical approaches has grown for particular

applications; for example, researchers are able to examine dynamic spatio-temporal aspects of

rurality which are made possible with modern day statistical and computational power

(Ocaña-Riola and Sánchez-Cantalejo, 2005; Waldorf, 2006; Prieto-Lara and Ocaña-Riola, 2010; Li

et al., 2015; Beynon et al., 2016).

Similarly, current measures of rurality give policymakers and researchers a broader perspective

beyond a discontinuous view of rural. Through capturing the nuance of rurality along a continuity,

researchers have seized many opportunities to examine economic questions relating to the impact of

rurality that would otherwise be improbable without the use of such calculations (Duenckmann,

2010; Li et al., 2015; Beynon et al., 2016; Dinh et al., 2017). Nonetheless, this form of

measurement has introduced its own trade-offs. For example, we make a trade off from the

limitations contained within a statistically quantified estimate of rurality and how it may or may not

reflect reality alongside contributing to misspecification or violations of statistical assumptions in

econometric analysis (Agarwal et al., 2009; Angrist and Pischke, 2009; Dinh et al., 2017).

2.3 Rural Linkages to Economic Resilience and Short-term Recovery

Economic resiliency has recently become a subject of investigation to understand how regions

respond to shocks (Pendall et al., 2010; Pike et al., 2010; Martin and Sunley, 2015; Faggian et al.,

2018). As a means to understand how regions may resist or be vulnerable to shocks, the evolution

of its analysis has established aspects researchers ought to consider such as: "Resilience of what?

resilience to what? Resilience for whom?" (Briguglio et al., 2006, 2009; Simmie and Martin, 2010;

Dinh et al., 2017; Di Caro and Fratesi, 2018). To evaluate the ways regions have shown resiliency,
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researchers have used a wide range of models such as input-output estimation of region-level

industries (Diodato and Weterings, 2015; Martin et al., 2016; Giannakis and Bruggeman, 2017),

time-series analyses that investigates long-run trends (Fingleton et al., 2012; Cellini and Torrisi,

2014; Di Caro, 2015), multivariate indices and indicators (Masik and Rzyski, 2014; Dinh et al.,

2017), and broad econometric models to estimate levels of impact pre- and post-economic shock

(Angulo et al., 2018; Mazzola et al., 2018; Fratesi and Perucca, 2018; Rizzi et al., 2018).

The bedrock of empirical work acknowledges that resiliency is the capacity of a region to adapt

to various forms of exogenous shocks (Martin, 2012; Martin and Sunley, 2015; Modica and

Reggiani, 2015). Such discussion has also encouraged further empirical work for localized areal

units and how the response to such shocks may differ between rural and urban localities (Fieldsend,

2013); the stock of human and financial capital, economic diversity and accessibility (Dinh et al.,

2017); the examination pre-shock conditions, geographical place, and age structure (Kitsos and

Bishop, 2018); and the role that entrepreneurs play that mitigate and help recover from economic

shocks (Williams et al., 2013).

The contributions of entrepreneurs to the resilience of regions are of greater interest to

researchers and federal agencies. Past discussion of entrepreneurial impacts has investigated

features such as behavioral traits and abilities that help firms adjust to new economic circumstances,

which can enhance the survival of firms and mitigating of industry-specific shock (Davis et al.,

2007; Biggs et al., 2010; Zenka et al., 2017; Moore et al., 2018). Similarly, shocks to a region can

also be offset by entrepreneurs where their prospects become more lucrative in relation to the

decline in wages or employment opportunities (Glaeser et al., 2014); and offering alternative paths

of local and rural development through business tax streams and migratory opportunities (Bosworth

and Atterton, 2012; Baumgartner et al., 2013). Thus, the presence of entrepreneurs and

entrepreneurial opportunities can both be important to rural regions. Entrepreneurial networks in

these localized areas act as vital elements to the establishment of business and learning networks
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(Glover, 2012; Lang and Fink, 2018), drivers of improvement for the development of skills (Richter,

2017), and as transformative drivers in path creation for economic opportunities (Tonts et al., 2014;

Cedric and Spigel, 2017).

2.4 Methodology

2.4.1 Study Area

To evaluate the impacts of rurality on a region’s ability to rebound from economic shocks, we

use county-level data in New England between the period 2011 to 2015. The start of this period

takes place two years after the end of the Great Recession and provides short-run observations as

how counties have fared. The region has a diverse mixture of rural and urban counties and thus

provides an excellent study area to study differences in economic resilience (Figure 2.2).

Figure 2.2: Spatial distribution of population density in New England, 2015 American Community
Survey 5-year averages

Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community

Population Density
4.331656 - 17.914120 (7)

17.914121 - 45.170684 (5)

45.170685 - 65.098271 (10)

65.098272 - 108.795561 (8)

108.795562 - 202.375883 (8)

202.375884 - 370.410638 (8)

370.410639 - 545.472094 (7)

545.472095 - 1220.083276 (6)

1220.083277 - 2035.093528 (7)

2035.093529 - 13057.794220 (1)
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To further contextualize a rural-urban profile of New England, the region is home to two of the

most rural states within the U.S. Under the Census delineation for Urbanized Areas. In 2010, the

percentages of Maine and Vermont’s population that lived outside of an urban area were 61.3

percent and 61.1 percent respectively. This is in stark contrast to more urban states such as

Massachusetts and Connecticut which had 8 and 9.3 percent of their total respective population

residing in a rural area in 2010 (United States Census Bureau, 2012b). The differences between

New England counties do not end only with population density– both economic and demographic

characteristics similarly vary (Table 2.2). While not proxies for rural individually, data such as

income levels, the working age for people, and migration rates can similarly illustrate a richer

depiction of rurality (Beynon et al., 2016).

Table 2.2: Selected characteristics of New England’s least and most densely populated counties
(2015 American Community Survey 5-year averages)

County Pop. Density Med. Income Med. Male Age Net Migration (%)

Least densely populated areas

Piscataquis County, Maine 4.33 37495 46.6 0.2
Essex County, Vermont 9.35 36599 45.7 5.5
Coos County, New Hampshire 17.76 42312 44.8 -8.5
Hancock County, Maine 34.44 47030 43.6 -2
Orleans County, Vermont 39.16 42831 42.8 2.5

Most densely populated areas

Suffolk County, Massachusetts 13057.79 55044 33.5 5.5
Bristol County, Rhode Island 2035.09 72458 42.6 4.8
Essex County, Massachusetts 1546.99 69068 42.1 4.7
Providence County, Rhode Island 1539.56 49743 39.1 -0.9
Fairfield County, Connecticut 1504.34 84233 42.5 -1.7

2.4.2 Calculating an Index of Rurality

To estimate our index of rurality we use data from several primary sources over the period of

2011 through 2015. For each year, we use county-level data from the American Community

Survey’s 5-year averages dataset hosted by the Census Bureau, which are best used to precisely

analyze small geographical units and where there exist small populations (United States Census
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Bureau, 2018), to develop annual estimates of key variables. Rurality is measured through a

selection of key variables data for every year in our period: (1) the median income, (2) population

density, (3) the male and female median working age, (4) percentage of a county’s population with

a bachelor’s degree or higher, (5) percentage of a countys population with a high school degree, (6)

the percentage of a county’s population with no higher than a high school degree, (7) net migratory

patterns, (8) housing availability, (9) the percentage of the population older than sixty-five, (10)

unemployment levels, (11) the change in population in a one-year period, (12) the location quotient

of a county’s industrial composition in agriculture, (13) and access to broadband internet per 1,000

households (Table 2.3).

Table 2.3: Descriptive and summary statistics for rurality in New England counties (2011 - 2015)

Variable Mean
Standard

Description
Deviation

Income 57476.96 12696.44 Median household income. Small Area and poverty
Estimates (SAIPE), 2011-2015.

Internet 786.58 114.9
Residential fixed internet access connections per 1,000
households. Form 477 FCC Data, 2011-2015.

Unemployment Rate 7.49 1.74 Rate of unemployment. Bureau of Labor Statistics, 2011-2015.

Male Median Working
42.71 2.16 Median working age of males. ACS 5-year averages, 2011-2015.

Age
Female Median Working

43.03 2.5 Median working age of females. ACS 5-year averages, 2011-2015.
Age
% of Population with

6.13 1.58
Percentage of adults with less than a high school

no High School Degree degree. ACS 5-year averages, 2011-2015.
% of Population with

31.64 5.87
Percentage of adults with a high school degree. ACS 5-year averages,

High School Degree 2011-2015.
% of Population with

31.86 8.49
Percentage of adults with a bachelor’s degree or higher.

Bachelor’s or Higher ACS 5-year averages, 2011-2015.

Net Migration 0.13 4.6
Total number of persons entering or leaving county.
Population Estimates Program (PEP) 2011-2015.

Housing Stock 95862.01 118426.3 Number of dwelling areas. ACS 5-year averages, 2011-2015.

Population Density 569.21 1576.367
Number of people living per square mile. 2009 ACS
Geographic Indicators and ACS 5-year averages, 2011-2015.

% of Population Age
16.21 2.92

Percentage of people age 65 or older. ACS 5-year averages,
65 or Higher 2011-2015.

Population Change 0.01 0.55
Percentage change of total population. Economic Research
Service (USDA), 2011-2015.

Location Quotient 1.6 1.7 Location quotient for agriculture. Bureau of Labor Statistics, 2011-2015.
of Agriculture
Total observations: 335
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Using this set of variables, we use factor analysis to measure our index of rurality. Factor

analysis is a statistical tool that describes the covariation between these variables in the form of a

factor variable. As opposed to principal component analysis (PCA), a closely related estimator,

factor analysis assumes a statistical model which uses the covariation from a set of variables to

estimate a latent variable which has the unique feature of explaining the covariation in the original

variables in terms of itself. This distinction is a valuable component to our framework because of

the inherent fuzzy nature of rurality, which is something influenced by other observable variables

(Waldorf, 2006). Drawing upon this, we assume a model that estimates rurality as a latent factor

influenced by a set of observable characteristics as:

R = µ +LX+ ε (2.1)

where R is a single latent factor that estimates a "degree of rural" a county is,1 µ as a vector of

means for a given variable x, X as the vector of variables x1 . . .xn used to estimate the index, L

denotes the set of factor loadings for each variable, and ε as the vector for the latent error term.

Using factor analysis satisfies several key threads to our narrative. We have discussed that the

extent to which a region is rural is fuzzy and that non-statistical metrics may lack precision. Factor

analysis offers a solution to this concern by estimating rurality as an output from other relevant

variables available to us. Second, our output contextualizes a temporal aspect where we can see

how counties may persist or develop beyond its rural roots. This is widely attractive for our time

period where across the nation rural employment has yet to return to pre-recession levels and

federal agencies are supporting rural infrastructure for amenities such as broadband internet

(Department of Agriculture, 2017).

To enhance our analysis, we utilize Cronbach’s alpha, the Kaiser-Meyer-Olkin measure of

sampling adequacy (KMO), and Bartlett’s test of spherecity to assess the consistency and validity

of our data for factor analysis. The alpha is a lower-bound coefficient for a researcher’s accepted
1In the context of this analysis we constrain rurality as a single factor from factor analysis. Such constraints

have been relaxed in previous work to see how rural dynamics differentially vary due to other socio-demographic and
economic variables (Beynon et al., 2016).
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level of precision, the KMO for internal data adequacy for factor analysis (Table 2.4), and Bartlett’s

test for how related our variables are and their suitability for factor analysis.2

Table 2.4: Data validation statistics for the use of factor analysis

Cronbach’s Alpha

Cronbach’s Alpha α ≥ .7
Range of interitem correlations .15 ≥ α ≤ 1
Average interitem correlations .15 ≥ α ≤ .5

Kaiser-Meyer Olkin Measure

.91 through 1 Marvelous

.81 through .9 Meritorous

.71 through .8 Middling

.61 through .7 Mediocre

.51 through .6 Miserable
Less than .51 Unacceptable

Beyond the tests for valid output from factor analysis, we use a fixed-effects model to evaluate

changes in our measure across the initial and end-period of our sample. Because our index is

examining a measurement across samples over a five year period, we must ensure that there is a

check against homogeneity within our sample. We follow similar robustness checks from (Dinh

et al., 2017) to check if our index of rurality shows systematic change between our initial period

(2011) and end period (2015) by using a fixed-effects estimation. The use of a fixed-effect model in

this context is adjusted for state-specific and time invariant effects in order to test for regional

changes in rurality:

Rit
{S1...S6}

= αi +βDR + εit (2.2)

Rurality is specified as our outcome variable R for county i in year t for state S. α denotes the

2Interitem correlations examine the extent to which the loading score on one variable is related to scores on all
other variables in a scale. The output of factor analysis denotes a degree of redundancy to the extent which variables on
a scale are assessing the same content (Cohen and Swerdlik, 2005). We supplement our full results of factor analysis
with this in Appendix A.1.

15



time-invariant effect within the fixed effects model, D is a dummy variable equal to zero in 2011

and equal to one in 2015, and ε as our error term. We run this model six times to measure the

change of rurality for every county in each specific state. In these estimations, the change in the

constant term denotes the shift in rurality between these years. If α > 0, this implies that the

change in rurality has increased since 2011 while α < 0 implies a decrease in the degree of rurality

between the initial and end period. We also measure a shift of rurality for all county observations

for our our index alongside a cross-comparison of OMB delineations of micro- and metropolitan

statistical areas.

2.4.3 Measuring the Association of Rurality to Resilience

To investigate the linkage between the potential for regions to recover from economic shocks

and their degree of rurality, we employ data from County Business Patterns that measures the

relative growth of employment since 2009 for the years within in our sample (2011-2015). Our

dependent variable is calculated as the ratio of growth in employment for a county to the growth of

employment nationwide:

EGR =
∆ei2009−t

ei2009

/
∆Er2009−t

Er2009

, (2.3)

where e is the level of employment in county i for each year of t within our sample and E is the

greater level of employment within the United States (denoted as r). While a comparative statistic,

this nonetheless reveals what counties rebounded from a recessionary shock in relation to a greater

whole. Similar ratios have been utilized in regional economic studies that sought to explain

economic resilience in part by a region’s degree of resistance to economic shocks (Martin, 2012;

Faggian et al., 2018).

This ratio represents short-run responses to recessionary shocks. Within the context of this

work, we are interested in the changes in employment after the Great Recession. The year 2009 was

considered to be the end of the Great Recession, which we justify as the initial period in which we

calculate our dependent variable. While some areas across the nation saw growth in employment
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since 2009, there exist counties that have seen little or negative growth. For New England in

particular, employment growth reveals an intuitive pattern where there is high growth in counties

near metropolitan areas such as Boston, Massachusetts; Burlington, Vermont; Providence, Rhode

Island; and Portland, Maine; and areas of high losses in more northern counties or otherwise

peripheral and remote parts of the greater region (Figure 2.3).

Figure 2.3: Cross-sample decomposition of employment growth between 2009-2015 by levels and
standard deviation

Employment Growth
(Natural Breaks)

-5.199925 - -4.456507
-4.456506 - -0.928414
-0.928413 - -0.153364
-0.153363 - 0.383991
0.383992 - 0.910087
0.910088 - 1.478958
1.478959 - 2.260855

Employment Growth 2015
(Standard Deviations)

 < -2.5 Std. Dev.
-2.5 - -1.5 Std. Dev.
-1.5 - -0.50 Std. Dev.
-0.50 - 0.50 Std. Dev.
0.50 - 1.5 Std. Dev.
1.5 - 1.7 Std. Dev.

Alongside our dependent variable, we have identified several key variables to help predict the

relative growth of employment in counties (Table 2.5). First, we control for the annual growth rate

of nonemployer establishments. Nonemployers have been increasingly analyzed with regards to

contribution of lagged establishment growth (Acs et al., 2009). A nonemployer is a business with

no employees, reports at least $1,000 in annual sales receipts, and is subject to federal income taxes.
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Similar to entrepeneurs, the existence of nonemployers creates learning opportunities for future

businesses, flexible work options, and an economic cushion and empowerment for these type of

employers (Acs et al., 2009; Kacher and Weiler, 2017; Moore, 2018). Furthermore, previous

literature highlights nonemployers as a channel to mitigate economic shocks through a flexible

output structure, diversification of a region’s economy, and knowledge spillovers; and influences to

the growth of future employers across rural and metropolitan areas (Fritsch and Noseleit, 2013a,b;

Liang and Goetz, 2016; Moore et al., 2018).

Table 2.5: Summary statistics for the impacts of rurality on economic resilience

All Metro Micro Noncore

Variable Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Employment Growth -1.03 -70.41 11.21 -0.45 -13.10 11.21 -2.87 -70.41 6.33 -0.50 -21.12 6.95
Ratio

Rurality 0.00 -2.39 2.71 -0.54 -2.39 0.85 0.44 -1.79 2.71 0.66 -2.37 2.13

Regional Specialization
0.26 0.10 0.65 0.19 0.10 0.39 0.28 0.18 0.53 0.35 0.23 0.65

Index
Annual Growth rate of

0.44 -6.31 7.70 1.00 -3.94 7.70 -0.15 -6.31 4.98 -0.10 -5.98 6.39
Nonemployer Firms

Log Median Income 10.91 0.96 11.39 11.05 10.68 11.39 10.89 10.48 11.19 10.63 0.96 11.37

Log Unemployment Rate 1.98 1.03 2.43 2.05 1.59 2.42 1.90 1.34 2.43 1.94 1.03 2.42

Log Number of
7.95 4.72 10.68 8.69 5.18 10.68 7.34 4.72 8.50 7.05 6.08 7.71

Establishments

Log Employment Rate 4.10 3.82 4.30 4.12 4.00 4.22 4.11 3.94 4.19 4.05 3.82 4.30

Log Labor Force
4.18 3.93 4.34 4.21 4.09 4.29 4.18 4.04 4.25 4.13 3.93 4.34

Participation

Population Density 569.21 4.33 13057.8 1051.7 45.16 13057.8 93.77 9.35 206.09 52.14 4.33 235.67

Log Median Age 3.76 3.49 3.85 3.73 3.49 3.85 3.78 3.72 3.83 3.78 3.70 3.85

Net Migratory Patterns 0.13 -15.60 30.50 0.86 -12.30 10.60 -0.92 -15.60 30.50 -0.33 -9.60 16.60

Observations: 335 170 79 86

Beyond nonemployers, our analysis include several other key factors: (1) Net migratory

patterns, defined as the difference between the number people moving in and out of the county in a

given year; (2) the median age of the population in a given county; (3) the labor force participation

rate in a county; (4) employment rate; (5) unemployment rate; and (6) the median per-capita

income. We also control for the heterogeneity of industrial composition for different regions by
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adopting a measure of regional specialization in (Moore et al., 2018). This measure is the overall

summation of the differences in county-level industry employment shares to the national average

across all two-digit NAICS industries. With these variables, we estimate the following model to

evaluate the relationship between economic resiliency and rurality:

EGRit = αit + γ0Ruralityit + γ1RSit + γ2NGit + γ3EFit + γ4INCit + γ5URit

+ γ6ERit + γ7LFPRit + γ8PDit + γ9AGEit + γ9MIGit + εit (2.4)

where our dependent variable EGR is the ratio of a county’s growth of employment since 2009 to

United States’s growth, αit as our time and space invariant term, Rurality is the value of rurality

(measured through factor analysis) for county i in year t; RS, is a measure of regional specialization,

where the extent in which county i’s economy is more concentrated in specific industries; NG, is

the annual growth rate of nonemployer establishments; and EF is the number of establishments

across all industries in a given county; INC is the median income for a county, UR is the

unemployment rate, ER is the employment rate; LFPR is the rate of participation in the labor force;

AGE is the median age; MIG is the net migratory pattern in a county during year t; and lastly, ε as

our error term.

2.5 Discussion

2.5.1 Estimation Results from Factor Analysis

Table 2.6 shows the factor loadings on our variables for rurality from 2011 to 2015. We

employed a varimax rotation, changing the orthogonal basis to find the rotation which maximizes

the variance between our test variables. Complimenting these results are the results from our

diagnostics. The KMO falls under an acceptable range greater than .7 and Bartlett’s χ2 highlights

our data was acceptable for factor analysis. Due to the high amount of output from our estimation

and diagnostics, Appendix A.1 show in detail the results of factor analysis for individual years.
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Table 2.6: Estimation of rurality for New England counties (2011 - 2015)

Factor Analysis
Method: Principal Factors n = 67
Rotation: Orthogonal Varimax Retained Factors: 1

Factor Loadings

Variable 2011 2012 2013 2014 2015

Median Income 0.783 0.755 0.800 0.795 0.771
Internet 0.702 0.561 0.514 0.404 0.575
Unemployment -0.196 -0.293 -0.292 -0.279 -0.229
Male Median Age -0.638 -0.610 -0.604 -0.628 -0.667
Female Median Age -0.647 -0.595 -0.543 -0.601 -0.654
Less Than High School -0.499 -0.585 -0.594 -0.570 -0.535
High School Degree 0.843 -0.863 -0.899 -0.847 -0.870
Bachelor’s or Higher 0.870 0.858 0.895 0.869 0.860
Total Net Migration 0.469 0.749 0.642 0.331 0.416
Housing 0.583 0.522 0.505 0.521 0.560
% of Pop. 65 or Older -0.656 -0.633 -0.604 -0.668 -0.679
Population Density 0.485 0.438 0.428 0.425 0.470
Population Change 0.724 0.833 0.776 0.759 0.697
LQ of Agriculture -0.446 -0.577 -0.448 -0.497 -0.484

Diagnostics

Eigenvalue 5.634 5.973 5.630 5.256 5.520
% of Variance 0.519 0.544 0.527 0.508 0.526
Overall KMO 0.713 0.765 0.736 0.730 0.725
Bartlett’s χ2 895.88 934.78 871.39 782.81 834.79
p > χ2 0.000 0.000 0.000 0.000 0.000

We expect to see the signs of the factor loadings resemble the expected signs as shown in Table

2.6 because the loadings determine the impact the measure of rurality for a given county.3 We

expect, for example, population density to be positive as a higher concentration of people in a

square-mile area can be associated with a higher degree of economic development. We see that

across most variables in the period of 2011 to 2015 that our variables follow our expected signs.

Median income, internet per 1000 households, net migration, the housing stock in a county,

population density, and population change all have a positive factor loading on the score of rurality

for a county. We also see that variables which should have negative signs such as unemployment,

male and female median working age, the percentage of a county’s population with less than a high

3A positive coefficient indicates that a county is less rural (or more urban) and a negative coefficient indicates a
county is more rural.
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school degree and high school degree, the percentage of the population aged sixty-five or older, and

the location quotient of agriculture have corresponding negative values across years. The sole

exception to this observation is with our high school degree variable which has a positive sign in

2011.

Figure 2.4: Sample-wide composition of rurality in New England counties during 2015

Rurality in 2015
(Natural Breaks)

-2.357241 - -1.473345
-1.473344 - -0.830422
-0.830421 - -0.628275
-0.628274 - -0.295333
-0.295332 - 0.002517
0.002518 - 0.244142
0.244143 - 0.429270
0.429271 - 0.639382
0.639383 - 1.036698
1.036699 - 2.302308

Rurality in 2015
(Standard Deviations)

 < -1.5 Std. Dev.
-1.5 - -0.50 Std. Dev.
-0.50 - 0.50 Std. Dev.
0.50 - 1.5 Std. Dev.
1.5 - 2.4 Std. Dev.

Mapping the results from factor analysis unveils the spatial disparity of rural and urban areas

across New England for 2011 and 2015 (Figure 2.4). A more positive value denotes that an area is

more rural and a negative value will denote the converse. There was little difference in the

magnitude of rurality in New England as a whole, and on a state-by-state basis, there exist a wide

range of change between our initial and end periods. We see that the state of Maine, New

Hampshire, and Vermont become marginally more rural, and the state of Connecticut,

Massachusetts, and Rhode Island become marginally more urban in this short window of time.
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Table 2.7: Fixed effects estimation on the change of rurality between 2011 and 2015

Fixed Effects Estimation n = 134
Group: County t = 2011, 2015

Region DR Noncore (n=34) Micropolitan (n=32) Metropolitan (n=68)

Connecticut -0.478*** - - -0.574***
(0.052) (0.059)

Maine
0.702*** 1.084***

-
-0.014

(0.045) (0.062) (0.066)

Massachusetts
-0.853***

- -
-0.870***

(0.058) (0.033)

New Hampshire
0.158***

-
0.54***

-
(0.022) (0.035)

Rhode Island
-0.342***

- -
-0.342***

(0.026) (0.026)

Vermont
0.332*** 0.377*** 0.664***

-
(0.039) (0.063) (0.068)

New England −4.67e−9 0.724*** 0.417*** -0.559***
(0.011) (0.044) (0.052) (0.025)

Cluster robust standard errors shown in parentheses
*** - p > 0.001; ** - p > 0.05; p * - p > 0.1

Alongside the spatial distribution of our rural index in 2015, Table 2.7 highlights the average

change and significance between our initial and periods through a fixed effects estimator. The

region was segmented in two levels: We assess for changes of rurality first for individual states;

second, by examining New England alone. We supplement the change of our rurality index with the

change of rurality for each county and New England as denoted by OMB delineations. The listed

observations for each column denotes the number of counties in New England that fall under each

OMB classification and any unlisted coefficient is due to an insufficient sample size to measure the

average change. Comparatively, the estimates for our rurality index highlight smaller changes

between the two periods for more rural states.

2.5.2 Fixed Effects Estimates for the Impacts of Rurality on Economic Resilience

Our hypothesis is that after the end of the Great Recession (June 2009), counties that are more

rural will see relatively less employment growth than what was gained across on the nation on

average. To test this, Table 2.8 presents the results of our primary regression. While we cannot

translate our coefficients to direct numbers in employment, the interpretation of coefficients
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indicate a relationship between the degree of rurality and how better or worse the growth of

employment since 2009 was for counties. We also segment our results into two separate columns to

compare between the estimate from ordinary least squares (OLS) with cluster robust standard errors

and with fixed effects to provide insight on how the changes between state and yearly effects

change our rurality variable.

Table 2.8: Regression output for the impacts of rurality on economic resiliency

Dependent variable: Employment Growth Ratio (EGR)

Variable Model 1 Model 2

Rurality -1.847*** -6.473**
(0.645) (1.97)

Regional Specialization Index
-8.469 -8.584

(10.049) (67.279)

Growth Rate of Nonemployer Firms
0.089 0.430

(0.094) (0.282)

Log Median Income
0.295* -0.115
(0.138) (0.061)

Log Unemployment Rate
-2.262 -9.052
(3.402) (10.745)

Log Number of Establishments
-0.364 2.87x10−4

(0.462) (0.001)

Log Employment Rate
-17.803 -3.486
(22.158) (1.981)

Log Labor Force Participation
2.916 2.340

(27.365) (1.9)

Population Density
9.58x10−5 0.001
1.78x10−4 (0.003)

Log Median Age
13.350 3.782*
(8.077) (1.658)

Net Migratory Patterns
0.006 -0.187**

(0.078) (0.071)

Constant 15.896 -86.193
(44.515) (71.036)

ρ - 0.769
Fixed Effects - State
Observations 335 335

Cluster robust standard errors shown in parentheses
*** - p > 0.001; ** - p > 0.05; p * - p > 0.1
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Rurality was coded to be positive for rural areas and negative for urban areas, lending to the

reader a more intuitive reading of our results. Between our two regressions for this analysis we find

that the degree of rurality has a nontrivial relationship to relative growth of employment across

counties. For both models with and without fixed effects, the coefficient gained a higher magnitude

and, while controlling for state and yearly effects, the relationship still holds. Interpreting our

coefficients show that between relative employment growth and rurality that a one-point increase in

our index yields a −1.847 and −6.473 decrease in growth on average for both model estimates.

While a cursory glance would show that such a response is high, the range of values our

observations take on for this variable is between a tight interval (Table 2.5). Thus, a one-unit

increase rurality is an extreme shift to a variable that is relatively homogeneous within our sample.

For both models, few control variables are statistically significant, with some having weak

relationships or losing their significance entirely once controlling for state and yearly effects. We

see that within that model without fixed effects that the log of median income positively

corresponded with the employment growth ratio, where a one-percent increase of the median

income in counties indicated a .295 increase in the relative employment growth on average. Within

our fixed effects regression, both the median age and net migratory patterns become significant with

surprising signs. We find that the higher the median age was in a county, the higher a county saw

relative employment growth on average; and, for net migration patterns, the converse was true.

Some reasons why both net migration and the median age may have these signs is that our fixed

effects is estimating both within-state and yearly effects of our predictors on the ratio of relative

employment growth. As such, these signs may be indicative of a region-specific effect for our

sample, as opposed to something that is representative of the United States.

2.6 Conclusions

Evaluating the relative speed of economic recovery with respect to a county’s degree of rurality

is no easy task because rurality is a variable that rarely changes in short periods of time.
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Nonetheless, there are certain defining characteristics of what makes an area more or less rural that

plays into a county’s level of resilience. As such, stakeholders ought to construct policies that

acknowledge, and ultimately overcome, such differences to help non-urban areas recover. Similarly,

stakeholders must also be made aware of the fuzzy boundaries of rurality and that the methods in

which policy can be reached to rural areas may differ individually. Consistent with (Beynon et al.,

2016) and (Dinh et al., 2017), there is much to be drawn upon in the discussion of rurality’s impact

to a region’s resilience and how an understanding of it can translate into policy-making decisions

that can reach these areas to alleviate economic and social woes.

A goal of this research was to first synthesize regional science research with rural-specific

literature to establish a framework in order to measure the impacts rurality has on economic

resiliency. For researchers interested in rural studies, the first hurdle to pass is to ultimately define

and identify what rural is due to its fuzzy characteristics and how it can differ between regions and

academic disciplines. In light of this, we utilized a reproducible framework of measuring rurality

through the use of factor analysis. With our measure of rurality, we then implemented the measure

in a model to analyze its relationship with a region’s degree of economic resilience. The driving

hypothesis behind evaluating this relationship is that rural counties will have a lower degree of

resiliency to economic shocks on average and we uncovered estimates which suggest just that.

Utilizing past work such as (Martin, 2012) and (Faggian et al., 2018) to measure economic

resiliency, we employed the ratio of employment growth in counties to nation-level employment

growth since 2009. Consistent with past work, we found differing degrees of recovery in relative

employment growth between rural and urban counties. Rather than interpreting this ratio’s margins,

the direction of coefficients informs us the relative speed at which rural and urban counties

recovered on average. It is important to highlight that a key aspect to this paper is that its

framework is context-specific to the Great Recession. Our results reflect the relative speed at which

rural and urban regions rebounded from economic shocks as it relates specifically to this shock.
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Taken altogether, we believe this work can act as a stepping stone for future research and provide

insight to policymakers on how economic policy can further target rural areas. Knowing why some

regions may recover faster than others is vital for social and economic well-being, and learning how

rurality may dampen recovery provides to policymakers a deeper understanding of other variables

that impact the efficacy of policy.
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CHAPTER 3

MEASURING AND UNDERSTANDING THE SPATIAL DETERMINANTS OF

RELATIVE ECONOMIC PERFORMANCE IN MAINE

3.1 Introduction

Measuring regional economic performance is a multidimensional process. Regional disparities

in wages, employment levels, and labor market conditions can impact the performance of regions

(Hanson, 2001; Porter, 2003; Martin, 2003; Agarwal et al., 2009; Delgado et al., 2014). However,

when one tries to estimate a region’s level of performance they may overlook the issues of

simultaneity within their model. To illustrate, changes in employment may cause wages to

systematically respond and feed back into the variation of employment. Similarly, spatial aspects

such as the measurable distance to market and the proximity to economic centers highlight a

systematic pattern of regional inequality where peripheral areas feature slow growth and

development, contrasting regions near or within economic centers (Roos, 2001; Niebuhr, 2003;

Hering and Poncet, 2006; Rice et al., 2006; Agarwal et al., 2009).

This work seeks to evaluate the spatial determinants of economic performance and highlight

how the degree of market access and remoteness can impact a region’s level of output. To this end,

we first discuss past research in economy geography, contextualize the role of market access and

remoteness in regards to how regions perform, and highlight other driving factors that contribute to

economic performance. Second, we specify a model with simultaneous equations using data

available from the U.S. Census alongside geographic data from the National Park Service and

Google’s Geocoding Service to help explain potential spatial differences in performance. Overall,

our findings suggest there exist spatial inequalities of economic performance at the census tract

level. We also find other economic factors impacting overall performance such as an aging

workforce, workplace disability, and the level of human capital.
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3.2 Past Discussions and Research

3.2.1 Measuring Regional Economic Performance

A large vein of research within regional sciences emphasizes the characterization of economic

development and performance to be largely unequal between regions. Seminal work theorized that

observable regional economic inequalities may be a characteristic of the broader force of

agglomeration and how the spillovers and externalities thereof dissipates across economic space

(Marshall, 1920; Hoover, 1948; Harris, 1954). From this, the theory of New Economic Geography

(NEG) was proposed and established a framework for the occurrence of regional divergence and

spatial agglomeration. Generally, as more linkages between industries in a region are established,

the costs between transportation and trade steadily decreases until an optimal threshold where costs

become sufficiently low, thus triggering more development within a core area (Krugman, 1991;

Fujita et al., 1999; Fujita and Thisse, 2002; Baldwin and Martin, 2003). Relating to regional

economic performance, the framework of NEG highlights a period of initial growth and decline. As

the degree of interconnectedness between industries in a region rise from agglomerating forces,

economic growth rises until a point of urban congestion and slows economic growth thereafter

(Rauch, 1993; Dumais and Ellison, 1997). Simultaneously, as this process occurs, regional

divergence occurs and reinforces an economic "core" where industries are tightly linked with

minimized costs, and a "periphery" where the spillovers of agglomeration diminish outwards

(Krugman, 1991, 1996a; Martin, 2008).

While the framework NEG solidified itself within regional sciences, there was a large need for

empirical validation when numerical methods struggled with computational solutions and being

applicable to regional policy (Black and Henderson, 1999). To date, there have been numerous of

NEG-specific analyses that measure the impacts of spatial agglomeration. Such work includes

evaluating the impacts of agglomeration through many dimensions, such as showing that high

degrees of industrial localization can spur an increase in the birth of firms and increases in foreign

investment (Wheeler and Mody, 1992; Rosenthal and Strange, 2003); the distance at which spatial
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spillover from agglomeration economies decay varies between industry type (Dekle and Eaton,

1999; Lo Cascio et al., 2019); and lastly, variation in trade patterns have been extensively discussed

as a measurable variable of regional divergence (Ottaviano et al., 2002; Behrens, 2005a,b; Brunow

and Grunwald, 2014; Hanlon and Miscio, 2017). Original NEG papers established how the

externalities of agglomeration contributes to economic growth (Krugman, 1996b); however, there

has been mixed empirical results between different studies that test the relationship between higher

national growth and the degree of agglomeration (Martin, 2005, 2008; Lees, 2007).

Understanding the linkage between agglomerating forces and economic performance was

largely motivated by the observation that regions were largely unequal in terms of output. A similar

vein of literature sought to explain this feature through the clustering of firms in regions. Clusters

are a group of tightly linked industries and have become an attractive measure for policymakers to

utilize when they seek to reinforce economic development and performance (Delgado et al., 2016;

Slaper et al., 2018). Such studies that focus on clusters assert that the initial conditions, economic

structure, and inter-firm networking within a region also contribute to regional differences in

economic growth (Porter, 1990, 2003; Audretsch and Fritsch, 2002). Similarly, the work of

(Delgado et al., 2014) suggests that the strength of regional clusters matter for the growth of

employment, corroborating similar empirical studies further promoting policy approaches that

encourages reinforcing pre-established comparative advantages within a region’s economy

(Overman and Puga, 1999; Fujita and Thisse, 2002; Porter and Ketels, 2003; Hausmann and

Klinger, 2007; Nathan and Overman, 2013).

In pursuit of the gains in economic growth and development, policymakers must remain

cognizant of their region’s current economic conditions and industrial composition. More recent

studies discuss a sense of favoritism among regional planners giving priority to seemingly lucrative

industries without identifying the current industries that have a higher degree of relative

concentration (Martin and Sunley, 2003; Crawley and Munday, 2017). Ultimately, while clusters
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have been identified positively with growth and higher levels of performance they also have the

potential to fall short of their image as a wonder growth strategy due to a lack of proper knowledge

and fail to yield any benefit to regional performance (Asheim et al., 2009; Spencer et al., 2010).

3.2.2 Market Access and Peripherality

Between many discussions within regional economic literature, the significance of market

access has been a reoccurring variable for explaining regional inequalities of economic

development, growth, and performance. Pertinent to both NEG and cluster theory, "market access"

highlights the potential of localities to engage in markets and how the degree of engagement can

vary across geographic space. In relation to spatial agglomeration, localities within a core economic

area face smaller costs to trade and transportation comparatively to regions outside the core as the

externalities to agglomeration decay spatially outward (Krugman, 1991; Niebuhr, 2004). Thus,

areas that are closer with market potential may systematically yield higher levels of performance in

comparison to areas that are not. In such a manner, the capacity for regions to actualize the gains

from having access to markets is ultimately spatial in nature.

Related to empirical observation of market access and its impact on regional performance, how

one measures market access is relative to the form of analysis undertaken. Market access has been

measured in terms of impacts to, or levels of, trade flows between regions (de Sousa et al., 2012);

average levels of transportation costs (Combes et al., 2012); geography and the distance between

separate points (Redding and Venables, 2004; Dijkstra and Poelman, 2008; Agarwal et al., 2009;

Barbero et al., 2018; Verstraten et al., 2019); in terms of commuting times and patterns (Rice et al.,

2006; Agarwal et al., 2009; Kimbrough III, 2016); and as a function of the degree of trade

integration between regions (Hanson, 2001).

Ultimately, agglomeration places an emphasis on the capacity in which areas can access

markets because of regional variation in factor prices across economic space. This variation can
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similarly be observed in other regional hierarchies across different fields of literature. Akin to the

core-periphery model, the framework for an urban hierarchy compliments similar theories of

economic geography to see how regional inequality of economic development persist across

rural-urban space (Tabuchi and Thisse, 2006; Fallah and Partridge, 2007; Partridge et al., 2008).

While spatial agglomeration strengthens economic cores through the minimization of costs between

industries, how this may apply across a spectrum of urban-rural space can in part be dampened by

the degree of remoteness. Remoteness has been a variable researchers have used to explain why

spatial inequalities may persist along a rural and urban spectrum. Previous studies have utilized

degrees of remoteness in such a manner to assess how agglomeration effects impacted population

dynamics in regions surrounding economic centers (Renkow and Hoover, 2000; Khan et al., 2001;

Partridge et al., 2007); and as a contributing factor of wage disparities from systematic differences

in levels of human capital accumulation between core and peripheral regions (Redding and Schott,

2003; Arnold et al., 2005; Breinlich, 2006; Fally et al., 2010).

In response to the disparities between peripheral and core regions across the urban hierarchy,

researchers have sought to underline alternatives paths of growth for rural and remote areas.

Drawing parallels to the use of industrial clusters by planners to promote growth, recent work

highlights the usage of natural amenities as a growth strategy within rural areas (Courtney et al.,

2006; Partridge et al., 2008; Irwin et al., 2009). Similarly, more recent empirical studies have found

measurable spatial spillovers within region and its geographic and economic neighbors due to

natural attraction related tourism and related industries (Yang and Fik, 2014; Ma et al., 2015;

Naranpanawa et al., 2019). The importance of amenities for rural economic development is

two-fold: Within the urban-rural space, the location of firms along a rural-urban axis may face

geographically-dependent hurdles where, on average, those within a rural area may face unique

barriers to growth (Fieldsend, 2010; Lee and Cowling, 2015; Ferreira et al., 2016). Second, among

rural areas, the capacity in which those areas may utilize their amenities can attract growth in

comparison to remote areas that may lack such opportunities (Gorton, 1999; Phillipson et al., 2018).
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Thus, while separate from the previous discussion of NEG and cluster theory, market access and

remoteness are similarly vital to understanding why some regions perform better than others as well

as understanding the challenges to economic growth among remote areas in particular.

3.2.3 Identifying Variables Contributing to Economic Performance

There has been an extensive search in understanding the determinants of economic performance

within regional science literature. A metric such as performance hinges on what indicators are

chosen to measure to it. Such variables that try to reflect economic performance have varied across

studies such as examining performance through productivity of workers, firms, and region-level

data (Rice et al., 2006; Porter et al., 2004; Curry and Webber, 2012; Patacchini and Rice, 2007).

Similarly, the variation within industry-specific employment trends and growth have been utilized

(Porter, 2003; Delgado et al., 2014; Jones and Henley, 2008); as well as with labor force

participation rates, highlighting supply-side dynamics within labor markets and its impacts on

region-wide output (Porter et al., 2004).

While measuring performance is complex and has been largely investigated, the body of

research surrounding economic performance specific towards rural areas is comparatively new

(Agarwal et al., 2009; Wang et al., 2015). Between rural communities in particular, the

determinants of economic performance may be uniquely impacted by population dynamics and the

accumulation of economic and human capital (Sørensen, 2018). Similarly, other tangible forms of

rural capital such as economic diversification, the access to services, stock of natural resources, and

management of local development have been identified as other factors of stability and drivers of

performance (Svendsen and Sørensen, 2007; Sánchez-Zamora et al., 2014).

As opposed to being a metric of regional economic performance, there have been a series of

explanatory variables highlighting why regions perform better than others. Factors such as
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workplace disability and age of a region’s workforce may dampen of performance in comparison to

areas whose working population are much younger and healthier (Weil, 2006; Aiyar and Ebeke,

2007; Börsch-Supan, 2001; Kapteyn and Smith, 2007; Agarwal et al., 2009; Styczyska and Zaman,

2013; Pekarek, 2018). As opposed to strict age measures, the use of a dependency ratio between the

number of workers to retirees has also been similarly to measure the effects of age (Jones and

Henley, 2008; Vicens-Feliberty and Reyes, 2015). As previously discussed with regards to market

access and remoteness, commuting patterns have consistently been used to explain for variation in

region-wide productivity (Renkow and Hoover, 2000; Patacchini, 2008). Akin to industrial clusters,

economic structure, firm-level linkages, and the concentration of industries have been examined

(Courtney et al., 2006; Delgado et al., 2014; Rupasingha, 2017; Spencer et al., 2010); the number of

entrepreneurs (Audretsch and Keilbach, 2004; Valliere and Peterson, 2009; Acs et al., 2012;

Baumgartner et al., 2013); population density (Partridge et al., 2008; Agarwal et al., 2009); and

lastly, the presence and efficacy of state and local governments (Agarwal et al., 2009; Pike et al.,

2010; Lee and Cowling, 2015).

3.3 Data

3.3.1 Study Area

To measure the spatial determinants of relative economic performance and how other economic

variables affect it, we employ a series of data from the 2016 American Community Survey 5-year

averages for every census tract within Maine. Census tracts are defined as a relatively permanent

subdivision of counties or similar geographical entities whose primary purpose is to provide a stable

set of geographical units for the presentation of statistical data. These areal units are delineated by

the number of inhabitants where the average population lies close to 4,000 and may see a minimum

and maximum value of 1,200 and 8,000 respectively (United States Census Bureau, 2012a).

Similarly, the 5-year averages from the Census Bureau compliments the granularity of the data we

analyze. As opposed to the 3- and 1-year averages, these estimates have a higher level of precision

and are used for analyses surrounding small geographical units and smaller populations (United
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Table 3.1: Descriptive and summary statistics of Maine census tracts

Variable Name Parameter Definition Mean Standard Deviation Minimum Maximum

Dependant Variables
Productivity Yp Median Earnings per 28721.99 6548.42 4602.00 51769.00

Worker
Employment Rate Ye Proportion of people aged 93.55 3.38 73.70 99.40

16-74 years that are
employed

Labor Participation Yr The proportion of the people 62.11 7.88 40.40 82.40
Rate aged 16-74 that are in the

labor force.
Explanatory Variables
Number of Financial S1 Number of financial sector 5.34 3.07 1.00 16.80
Institutions related firms in census tract
Education S2 Percentage of adults 23- 28.18 13.72 8.20 73.10

74 who have a bachelor’s
degree or higher

Enterprise S3 Percentage of working 9.14 4.98 1.00 36.50
population that are self
employed

Distance to Closest D1 Distance from closest 30.10 34.40 0.38 173.62
Market market (miles)
Distance from State or D2 Distance from closest 13.78 8.61 0.20 45.31
National Park state or national park

(miles)
Economic Structure E Proportion of industries 96.66 4.15 70.00 100.00

that are non-Agriculture
Government Structure G Percentage of employment 14.17 5.44 1.90 34.5

as government workers
Population Density P Ratio of total population 958.80 2541.57 0.16 23363.94

to square miles (land)
Household Size H Average household size 2.29 0.25 1.43 3.17

between owner and renter
occupied size

Time to Work M Time to travel to work 23.56 6.23 8.50 44.40
(minutes)

Occupational Health O Percentage of those 0.94 0.03 0.81 1.00
employed that have a
disability

Old-Age Dependency A Ratio of working age 31.10 12.01 2.20 85.70
Ratio population to retirees
Observations: 351
Years: 1

States Census Bureau, 2018). The list of variables used for this analysis is available in Table 3.1.

Maine offers several unique factors that gives weight to it as a proper area for analyzing the

spatial impacts to economic performance. Maine is currently the subject of serious focus with

regards to initiatives that alleviate poor economic conditions such as a lack of broadband, rising

costs to health care, and the need for a state-wide economic strategy (Headwaters Economics, 2012;

Maine Development Foundation, 2017; Investment Consulting Associates, 2018). Relevant to our

work is the issue of geography which is commonly viewed as a mitigating factor to the efficacy of
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policy and overall economic performance. The state has a geographical area of 35,385 square miles,

with a total width and length of 205 and 320 miles respectively. A prominent share of the state’s

population and economic activity taking place in southern and central counties, while also featuring

61.3 percent of the total population living in non-urban parts of the state (United States Census

Bureau, 2012b). Thus, we can utilize Maine’s sociodemographic and geographical features to

evaluate the spatial and economic impacts to the region’s level of performance.

3.3.2 Defining Spatial Variables

To analyze the spatial determinants of economic performance, we include two specific variables

that: (1) measures the distance between census tract i to major market m and (2) a remoteness

variable that measures the distance between census tract i to the nearest State or National Park p.

With Python, we take advantage of several application programming interfaces (API) from the

Census Bureau to collect the coordinates for Maine’s census tracts; Google’s Geocoding Service’s

for the centroids of Portland, Lewiston, Augusta, and Bangor, Maine; and lastly, the National Park

Service’s for the coordinate data to all State and National Parks within a fifty-mile buffer zone

surrounding the state. For market access, we use the Vincenty formula that translates the latitude

and longitude for two locations and calculates the geodesic distance between the two points. For all

census tracts we calculated the distance between these each census tract and market and retained

the distance between a given census tract and the closest city in miles (Figure 3.1).

While market access measures the geodesic distance between a census tract to its closest major

market, we also wish to control for remoteness in a similar fashion. While some census tracts may

be further away from a major market, they may still have some form tangible capital such as natural

amenities or rural tourism. While perhaps they perform slower on average compared to census tract

within an economic core, having a high stock of natural attractions or being neighbors to census

tracts that do may also gain spatial and economic spillovers thus able to perform relatively higher

than those that do not (Yang and Fik, 2014; Ma et al., 2015; Naranpanawa et al., 2019). To control
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for this, we similarly calculate distance for each census tract between each state and national park

within the area and return back the distance to closest park.1 The State of Maine has a non-trivial

share of recreation-based tourism within outlying areas and thus we may exploit the distances to

state and national parks as means to control for a census tract’s degree of remoteness (Roper et al.,

2006; Outdoor Industry Association, 2017).

For both market access and remoteness, a benefit from using geodesic measurements come

from closely accounting the heterogeneity of the road network within the State. Specifically, the

Figure 3.1: Distance between census tracts and nearest markets

Distance to Closest Market (Miles)
0.381011 - 4.039872
4.039873 - 8.112818
8.112819 - 13.819653
13.819654 - 20.019760
20.019761 - 28.313956
28.313957 - 38.866266
38.866267 - 53.474441
53.474442 - 71.225142
71.225143 - 113.392317
113.392318 - 173.616424

1In the spirit of transparency, the python code written to collect the data, calculate the distances, and retain the pair
that had the shortest distance can be found in Appendix B
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central and southern parts are more dense in comparison to the north and far-west and eastern parts

of Maine which may systematically change the impact of market access through geography.

Generally with geodesic distances, calculations across smaller distances are comparatively smaller

than euclidean and larger for greater distances. A similar approach was undertaken in the past to

analyze the empirical relevance of NEG and the impacts of city location by controlling for the

density of road across the United States in such a manner (Ioannides and Overman, 2004; Fujita

and Mori, 2005).

3.3.3 Empirical Model

A system of equations were used to measure how economic and spatial variables impact

economic performance. Following (Dunnell, 2009) and (Agarwal et al., 2009), economic output

was decomposed into three separate equations to measure the spatial determinants on productivity,

employment, and labor force participation rates simultaneously. Similarly, we control for

endogenous co-variation between each dependent variable within our system. Endogeneity is a

large concern for this analysis as each of our individual components of economic output

(productivity, employment, and labor force participation) may systematically respond to the change

of another one and would thus limit the causal inference of our estimates.

Following the steps in (Agarwal et al., 2009), we use three-stage least squares to jointly

estimate the impacts of several spatial variables on economic performance as defined by our

decomposition of economic output. Given our model specification, each decomposed variable will

still be normally interpreted as any left-sided variable but because they are taken to be endogenous

we similarly measure each dependent variable’s impact on the other. Equations (3.1), (3.2), and

(3.3) detail our system of equations:
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lnYp = Φ0 +Φ1 lnYe +δi

3

∑
i=1

lnSpi + γ j

2

∑
j=1

Dp j

+Φ2 lnEp +Φ3 lnGp +Φ3 lnPp + εp (3.1)

lnYe = χ0 +χ1 lnYp +δi

3

∑
i=1

lnSei + γ j

2

∑
j=1

De j

+χ2 lnEe +χ3 lnGe +χ4 lnOe

+χ5 lnAe + εe (3.2)

lnYr = β0 +β1 lnYe +δi

3

∑
i=1

lnSri + γr

2

∑
j=1

Dr j

+β2 lnHr +β3 lnOr +β4 lnPr

+β5 lnMr +β6 lnAr + εr (3.3)

Where Yp is defined as productivity of workers in a census tract, Ye is the employment level, and

Yr is the given labor participation rate. Definitions to our explanatory variables and their designated

parameters are given within Table 3.1. Similarly, we use the Hausman test of model specification to

test if three-stage least squares is more efficient in estimating the coefficient for each model in

comparison to two-stage least squares. Similarly, because we use a system of equation we test for

the rank and order conditions necessary for proper model identification.

3.4 Discussion

The R2 calculated during two-stage least squares indicates that our statistical model fit the data

well. Similarly, results of the Hausman test for model selection reveal that the estimates from
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Table 3.2: Primary regression output from jointly-estimated three stage least squares

Joint Estimation using Three Stage Least Squares

Productivity Employment Labor Force Participation
Variables Model Model Rate Model

Constant 10.537*** 1.163 2.644**
(1.305) (0.792) (0.444)

Endogenous covariates

Earnings -
0.079 0.169***

(0.073) (0.054)

Employment -0.186 - -
(0.2919)

Number of Financial Institutions
0.164*** 0.006 -
(0.025) (0.014)

College Education
0.153*** 0.016*** 0.064***
(0.057) (0.006) (0.002)

Government Infrastructure
0.011 -0.01

-
(0.044) (0.008)

Economic Structure
-0.211 0.052)

-
(0.276) (0.057)

Share of Self-Employed Workers
0.037 -0.004

-
(0.031) (0.003)

Housing Availability - -
0.168***
(0.027)

Occupational Health -
0.509*** 0.188
(0.187) (0.156)

Population Density
-0.036*** -0.010*** -0.0006

(0.010) (0.004) (0.004)

Commuting Patterns - -
-0.003
(0.023)

Old-Age Dependency Ratio -
-0.125*** -0.147

(0.016) (0.014)

Distance to Major Market
-0.0009** -0.0002 -0.0004**
(0.0005) (0.002) (0.0002)

Distance to State/National Park
-0.001 -0.002*** -0.002***
(0.002) (0.0006) (0.0006)

R2 from 2SLS 0.21 0.57 0.65
Hausman Test for Model Selection 2.19
Choice: Accept 3SLS
(K − ki)−mi (4-1) (3-1) (4-1)
Observations: 351 351 351

Robust standard errors shown in parentheses
*** - p > 0.001; ** - p > 0.05; p * - p > 0.1

three-stage least square are more efficient (Table 3.2). Because our model uses simultaneous

equations we must satisfy both rank and order condition. Our model selection shows that between

our three models there are more omitted exogenous variables the the number of endogenous

variables in each equation thus illustrating the model is not overidentified.

Beyond this, we discuss the marginal effects from our spatial variables on productivity,

employment, and labor force participation; expand upon our results by discussing the impacts of
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other control variables within each individual equation, and lastly, discuss briefly the validation for

identification of our system with regards to the necessary and sufficient condition of full rank.

3.4.1 Spatial Determinants of Economic Performance

Our research question sought to uncover what impacts, if any, spatial variables such as the

access to local and majors markets had on a region’s economic performance. We hypothesized that

there was negative relationship between distance to a market and economic output. To this end, our

variables were coded to return distance in miles to easily interpret the margins from our regression.

Overall we find that our results corroborate such a hypothesis.

For productivity, the distance to major market variable was significant, yielding an average

decrease of .0009 to median earnings across census tracts; and for our peripherality variable, we

found no such relationship. Within the employment in particular, the proximity to local markets had

prevailing impact over our other market access variable. Specifically, we found that a one-mile

increase in the distance from a State or National Park yielded, on average, a −0.0002 percent

decrease to the employment rate. Lastly, both the distance from a major market and to a state or

national park had a significant relationship to the variation in labor force participation rates for

census tracts. On average, a one-mile increase away a census tract was to a nearby major market

and to a park corresponded with a percentage decrease of −0.0004 and −0.002 in labor force

participation rates respectively.

At first glance, the coefficients for our spatial variables may seem peculiarly small. Although

we must be cautious with conflating statistical significance with the magnitude of coefficients in

empirical research (Kennedy, 2002), we should similarly expect the magnitude of these parameters

to be small given the scale of our study area. Because Maine is three-hundred twenty miles long,

the impacts from a lack of market access become more apparent across longer distances. Akin to
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Tobler’s first law of geography,2 the impacts of these spatial variables ought to be more

pronounced for census tracts that are much more further away from Maine’s major markets.

3.4.2 The Impacts of Other Control Variables on Productivity, Employment, and Labor

Force Participation

We find several prominent impacts within our productivity model. Consistent with previous

work, variables such as: the number of financial institutions, the percentage of a census tract’s

population with a bachelor’s degree or higher, and population density yielded a 0.164, 0.153, and

−0.036 percent change in the median earnings on average. Alongside this, we found no effect from

our endogenous variable employment.

Similar to our previous model, we find no impacts to employment from median earnings. Other

controls such as college education, occupational health, and the old-age dependency ratio did have

an effect on the level employment across census tracts. College education had a modest impact

compared to the productivity model where a one-percent increase in the population with a

bachelor’s degree or higher increased the employment rate by 0.016 percent on average. Consistent

with similar work that analyzed work force dynamics, a one-percent increase in the workforce

without a disability yielded a 0.509 percent increase to employment; and lastly, a one-percent

increase to dependency ratio corresponded with a −0.125 percent change to employment on

average.

With our labor force participation model we find that earning, our endogenous variable, was

significant and where a one-percent increase in median earnings corresponded with a 0.169 percent

increase in participation rates. Like the past two models, college education had a similar, positive

impact to the participation rates. Specifically, a one-percent increase in the number of persons with

2"Everything is related to everything else, but near things are more related than distant things." (Tobler, 1970)
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a bachelor’s degree had an increase of 0.064 percent on average. Last, we found a positive

relationship with the number of dwelling stocks where a one-percent increase in the availability of

housing for a census tract corresponded with a 0.168 percent increase in the labor force

participation rates on average for a given census tract.

3.4.3 Identification of the Model

Identification is a problem related to system of equations where whether an equation within that

system can be uniquely identified and estimated. Should our system contain similarly valued

parameters from a same underlying distribution, two or more equations within the system will have

observational equivalence and thus lack identification (Wooldridge, 2010; Greene, 2012). To show

that our model is adequately identified we must surpass both rank and order conditions.3 The rank

condition for identification is satisfied when there is exactly one solution from our reduced-form

equations (full rank), and order is satisfied if we show that the number of exogenous variables

omitted from each equation is at least the same as the number of endogenous variables included.

While we show that each equation in our system had more omitted exogenous variables than

endogenous ones (Table 3.2), we have yet to validate if our system has full rank.4 At the time of

this analysis, Stata’s reg3 command does not have a built in function that checks if the system of

equations satisfies the rank condition for identification, and to circumvent this hurdle we used we

used the checkreg3 command to verify that our estimates for three-stage least squares are

meaningful by satisfying this condition (Baum, 2007). Given this, Table 3.3 highlights this test and

shows that we have satisfied both rank and order conditions for identification.

3Rank and order conditions follow the specific logical categories of necessity and sufficiency. The rank condition is
the necessary and sufficient condition for a set of equations within a system to show identification and order is merely a
necessary condition.

4While it is uncommon for a system of equations to fail the rank condition if the order condition is satisfied, it
would be more alarming and indicative of misspecification should we fail the rank condition (Greene, 2012).
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Table 3.3: Rank condition test for system identification

Endogenous coefficients matrix
Variable Earnings Employment LPart

Earnings -1
Employment 0 -1
Lpart 0 0 -1

Exogenous coefficients matrix
EQ Earnings Employment Investment Education Gov’t Spending Economic Mix Self-Employment Pop. Density

Yp - 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Ye 0.5 - 0.5 0.5 0.5 0.5 0.5 -
Yr 0.5 - - 0.5 - - - 0.5

Housing Stock ∆Market ∆Park Disability Old-Age Dependency Part-time Time to Work

Yp 0.5 0.5 0.5 - - - -
Ye 0.5 0.5 0.5 0.5 0.5 - -
Yr 0.5 0.5 0.5 0.5 0.5 - 0.5

Eq 1 is identified
Eq 2 is identified
Eq 3 is identified

System is identified

3.5 Conclusions

Economic performance can be identified and measured through many methods. Specifically,

this work sought to measure the impacts of space on economic performance by first identifying

economic output as a system of individual components that can be estimated simultaneously. After

identifying our model we calculated the spatial determinants of economic performance through

geographic distance to markets and the degree of remoteness. The use of spatial variables within

our system was a considerable feat due to the fact that calculating their impacts across economic

space is not a simple task. Beyond such hurdles, there is much to draw upon. We believe that this

work can uniquely contribute insight to to such stakeholders through offering a novel framework

that measures the impacts that market access has on a region’s economic performance.

Although much value is present in this research, there lie certain limitations to note. While we

controlled for endogenous variation in our dependent variables by using three-stage least squares,

there may be alternative methods to tease out causal impacts directly related to market access and

remoteness. Novel use of natural experiments in the past have quantified the role of market access

and how it contributes to economic activity (Redding and Sturm, 2008; Machikita and Okazaki,

2017). Thus, future opportunities may arise to expand the knowledge surrounding the spatial
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determinants of economic performance on a similar level as this work. Our second concern involves

future work needing to consider temporal dynamics that are present across economies. This paper

does not focus on such factors and thus we cannot make any inferences as how the impact from

these variables change with respect to time. While there is value in time-series analyses that exploit

time and geographic variables to measure the impacts on future output, they are beyond the scope

of this work. Understanding these limitations, the main findings this research nonetheless provide

several highlights for policymakers and future research.

First, we successfully illustrated a statistical relationship between primary and secondary

markets with economic output through our spatial variables. For our productivity model in

particular, there existed a negative association between a larger distance to the State’s primary

markets and the level of earnings. This did not hold for our peripherality variable where we

expected a similar relationship with distance to parks. Surrounding these parks are smaller,

localized economies centered closely towards recreation and accommodations to tourists (Roper

et al., 2006; Yang and Fik, 2014; Ma et al., 2015). Thus, while some census tracts were not close to

our primary markets, the census tracts that were closer to these secondaries markets would have

still performed marginally better than those completely remote from any markets. Such an

explanation can be validated through our the signs coefficients in employment and labor force

participation models which showed that a one-mile increase away a census tract was from these

parks yielded −0.0002 under both models.

Second this research reinforces past literature which underlined a multidimensional perspective

to regional economic performance. Decomposing economic output into several defining parts

(productivity, employment, labor market participation) illustrated how spatial and economic

variables may impact individual components of regional output. Similarly, this work was conducted

on a level that has only recently begun to see attention. In doing so, we reveal several relationships

which may secondarily highlight a need for policy intervention for certain aspects for Maine’s
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economy. Variables such as workplace health (defined through the percentage of a census tract’s

workforce without a disability) and the old-age dependency ratio revealed a negative association

between the level of economic performance at the census tract level. Stakeholders within the State

have investigated the impacts of an aging work force, and we reinforce these findings and a need

policies that focus on addressing similar issues (Colgan, 2006; Breece et al., 2015; Maine

Department of Labor, 2016).

And lastly, our work sought to underline that space does matter. To that end, we established a

framework which was able to highlight several relationships between the dimensions of economic

output and geographic space. While were successful in the pursuit, the relationship between

economic output and space, as well as how the impacts of space transform between different scopes,

have yet to be fully uncovered. Like past research, this piece is one of many that further expands

the knowledge of economic geography and how it may better serve local and regional policy with

regards to both rural and urban areas.
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CHAPTER 4

CONCLUSIONS

This research focused on two different regional economic issues with respect to a rural-urban

dimension. While there exists many classifications of region-type, it is nonetheless important to

understand how economic differences within a region will influence the outcome of policies.

Ultimately, the purpose of this thesis was to find evidence of such an observation. Between both of

our papers we find evidence to suggest that economic space is a factor that is ever present and has

an influence on a region’s capacity to resist and rebound from economic shocks and its overall

performance.

The first study in this thesis sought to answer (1) how can we robustly estimate an index of

rurality that circumvents the limitations found in other discontinuous measures used in other studies

and (2) how, if at all, does a region’s degree of rurality impact its capacity to rebound from

economic shocks. Through the use of factor analysis we estimated a measurement of rurality that

satisfies a series of robustness checks and displays variation in rurality between time and space.

With this measure, we had also found that rural counties tend to be slower in recovery on average as

it relates to our case study’s background. The ramifications of our results are also nuanced with how

economic resilience was measured. While it is a topic that has gained serious attention within

regional sciences, there exist many ways to estimate it. Our dependent variable was a ratio of

employment growth for a given county to the nation-level growth. While it has been used by

prominent regional economists, this alone cannot directly illustrate how much slower rural counties

were. Given that rurality is relatively homogeneous in a short time period, future research may want

to go beyond this study by looking at long-run patterns of recovery.

Given the nuances of our study, there are nonetheless still some implications of this analysis

that will be of interest to policymakers and regional planners. Fundamentally, policymakers must
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understand the fuzzy boundaries of rurality and how a county’s degree of rural will influence its

capacity to respond to economic shocks. This chapter succeeded in illustrating just that. We

uncovered a relationship highlighting differential levels of recovery between counties along an

urban-rural continuum. Understanding how rurality may impact the speed of recovery from

economic shock better informs policymakers and the tailoring of economic policy to address such

issues.

Our second paper sought to analyze a problem separate from economic resiliency. Instead, this

paper was focused on: (1) identifying a method in which we may assess the relative economic

performance of Maine at the census tract level; (2) utilize the novel idea of using multiple APIs to

collect coordinate data as a means to calculate spatial variables and see how they impact

productivity, employment and labor force participation. With these research objectives and

referring to past research, we estimated relative performance as a decomposition of economic

output through the use of three-stage least squares. In the interest of inferring a causal relationship,

we treated each model’s dependent variable as endogenous and similarly provide robustness checks

to highlight the validity of our work.

With such a model, we found a several interesting results: both distance to major markets and

the degree of remoteness (which we defined as the distance to a state or national park) had

statistical significance in explaining the spatial heterogeneity in productivity, employment, and

labor force participation between regions. Beyond our spatial variables, other factors such as the

percentage of the population with a college degree, the percentage of workers without a disability,

and the old-age dependency ratio were also significant. As it relates to the spatial determinants of

regional economic performance, we find a general trend where census tracts that are further away

from major markets will be less productive and have lower labor participation rates on average.

Similarly, census tracts that are further away from smaller markets that utilize natural amenities

through recreation and tourism see a similar pattern of lower rates of employment and labor force
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participation on average. While different from market access, these impacts of remoteness similarly

bolster the findings of previous regional economic literature that highlight the spatial disparity

between regions with and without natural amenities and how they utilize their resources to promote

economic development.

The results from our second chapter provide considerable policy insights. First, we corroborate

the concerns of policymakers and analysts within the state surrounding the challenge of effective

policy implementation across a wide geographic space. Through calculating our spatial variables in

terms of measurable distance, the margins to our spatial variables suggest that remote areas which

are further away from economic centers are characterized by relatively poorer performance

compared to areas that are closer. Second, this study supports policymakers in their challenge of

resolving economic troubles in Maine such as the aging workforce and workplace health by

validating their statistical significance within an econometric model.
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APPENDIX A

FULL OUTPUT FROM FACTOR ANALYSIS

Table A.1: Mean averages of factor variables (2011 - 2015)

Mean

Variable 2011 2012 2013 2014 2015

Median Income 56847.930 57162.720 57325.000 57781.420 58267.730

Internet 726.866 765.672 780.597 810.448 849.254

Unemployment 7.266 7.649 7.955 7.634 6.946

Male Median Age 42.496 42.681 42.821 42.791 42.740

Female Median Age 42.760 42.988 43.088 43.149 43.160

Less Than High School 6.519 6.342 6.097 5.936 5.757

High School Degree 31.836 31.531 31.230 32.819 30.788

Bachelor’s or Higher 31.118 31.312 31.831 32.290 32.760

Total Net Migration 0.163 -0.409 0.604 1.013 -0.709

Household Size 95471.870 95666.610 95793.280 96067.000 96311.300

% of Pop. 65 or Older 15.287 15.684 16.163 16.666 17.226

Population Density 561.369 565.210 568.938 573.375 577.155

Population Change 0.008 -0.016 0.100 0.007 -0.072

LQ of Agriculture 1.647 1.627 1.602 1.569 1.567
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Table A.2: Standard deviations of factor variables (2011 - 2015)

Standard Deviation

Variable 2011 2012 2013 2014 2015

Median Income 12772.110 12636.670 12650.400 12869.460 12885.840

Internet 114.920 112.212 110.425 106.079 94.345

Unemployment 1.649 1.705 1.821 1.745 1.655

Male Median Age 2.086 2.131 2.149 2.209 2.250

Female Median Age 2.382 2.459 2.499 2.576 2.652

Less Than High School 1.630 1.567 1.569 1.549 1.484

High School Degree 5.845 5.792 5.714 6.302 5.660

Bachelor’s or Higher 8.414 8.491 8.505 8.570 8.650

Total Net Migration 4.039 4.397 4.140 5.911 4.151

Household Size 118677.40 118865.50 119031.80 119370.60 119759.00

% of Pop. 65 or Older 2.651 2.716 2.831 2.962 3.080

Population Density 1539.060 1562.067 1584.732 1609.715 1632.110

Population Change 0.424 0.579 0.563 0.621 0.542

LQ of Agriculture 1.971 1.881 1.742 1.518 1.555
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Table A.3: Minimum values of factor variables (2011 - 2015)

Minimum Values

Variable 2011 2012 2013 2014 2015

Median Income 35123 36486 35916 35567 36599

Internet 500 500 500 500 500

Unemployment 2.800 3.100 3.200 3.200 3.000

Male Median Age 33.200 33.100 33.300 33.300 33.500

Female Median Age 32.600 32.500 32.600 32.600 32.700

Less Than High School 3.200 3.500 2.800 3.100 3.400

High School Degree 22.100 21.900 21.500 21.700 20.600

Bachelor’s or Higher 15.200 14.800 14.700 14.100 15.400

Total Net Migration -10.000 -15.600 -7.400 -11.000 -12.300

Household Size 5015 5020 5020 5022 5025

% of Pop. 65 or Older 10.479 10.500 10.623 10.700 10.803

Population Density 4.423 4.401 4.379 4.361 4.332

Population Change -0.840 -1.552 -1.030 -1.167 -1.625

LQ of Agriculture 0 0 0 0 0
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Table A.4: Maximum values of factor variables (2011 - 2015)

Maximum Values

Variable 2011 2012 2013 2014 2015

Median Income 84979 84087 85478 86529 88262

Internet 900 900 900 900 900

Unemployment 10.9 10.9 11.4 11 10.5

Male Median Age 46 46.8 46.6 46.7 46.7

Female Median Age 46.5 46.8 47 46.8 46.9

Less Than High School 10.8 10.4 10.1 10 9.5

High School Degree 44.3 44.6 45 46.6 45.6

Bachelor’s or Higher 49.8 50.2 50.7 51.3 52

Total Net Migration 8.8 10.6 19.4 30.5 7.7

Household Size 610063 611338 612535 614879 617089

% of Pop. 65 or Older 24.651 25.100 25.755 26.400 27.060

Population Density 12269.250 12465.620 12658.310 12868.690 13057.790

Population Change 1.162 1.648 2.521 2.766 1.095

LQ of Agriculture 12.506 12.001 10.403 8.809 8.397
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Table A.5: Cronbach’s Alpha (2011 - 2015)

Cronbach’s Alpha

Variable Sign 2011 2012 2013 2014 2015

Median Income + 0.8632 0.8798 0.8629 0.845 0.8609
(0.3268) (0.3603) (0.3262) (0.2954) (0.3226)

Internet + 0.8673 0.8875 0.8764 0.8636 0.8683
(0.3346) (0.3777) (0.3529) (0.3276) (0.3365)

Unemployment - 0.8902 0.9002 0.8873 0.8711 0.8859
(0.3841) (0.4095) (0.3772) (0.3421) (0.374)

Male Median Age - 0.8715 0.8867 0.872 0.8551 (0.8671)
(0.3429) (0.3757) (0.3438) (0.3123) (0.3343)

Female Median Age - 0.8709 0.8874 0.8753 0.8571 0.8681
(0.3417) (0.3775) (0.3507) (0.3158) (0.3361)

Less Than High School - 0.876 0.8876 0.8732 0.8563 0.872
(0.352) (0.3778) (0.3463) (0.3144) (0.3439)

High School Degree - 0.8581 0.8746 0.8573 0.8417 0.8554
(0.3175) (0.3492) (0.316) (0.2902) (0.3128)

Bachelor’s or Higher + 0.859 0.8747 0.8573 0.8396 0.8555
(0.319) (0.3494) (0.3161) (0.287) (0.3129)

Total Net Migration + 0.8781 0.88 0.8711 0.8674 0.8776
(0.3565) (0.3607) (0.3419) (0.3347) (0.3555)

Housing Stock + 0.8733 0.8904 0.8771 0.8606 0.872
(0.3464) (0.3846) (0.3544) (0.3221) (0.3439)

% of Pop. 65 or Older - 0.8689 0.8849 0.8715 0.8521 0.8661
(0.3377) (0.3717) (0.3428) (0.3072) (0.3322)

Population Density + 0.8775 0.8933 0.8797 0.8645 0.875
(0.3552) (0.3918) (0.3601) (0.3293) (0.35)

Population Change + 0.864 0.8754 0.8634 0.8429 0.8629
(0.3282) (0.3508) (0.3271) (0.2922) (0.3262)

LQ of Agriculture - 0.8773 0.8866 0.8774 0.8608 0.8734
(0.3548) (0.3756) (0.355) (0.3224) (0.3467)

Total 0.8795 0.8925 0.8799 0.8649 0.8795
(0.3427) (0.3723) (0.3436) (0.3138) (0.3377)

Average Interitem Correlation in Parathenses
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Table A.6: Factor loadings of variables (2011 - 2015)

Factor Analysis/Correlation
Method: Principal Factors n = 67
Rotation: Orthogonal Varimax Retained Factors: 1

Factor Loadings

Variable 2011 2012 2013 2014 2015

Median Income 0.783 0.755 0.800 0.795 0.771
(0.3869) (0.4306) (0.3595) (0.3678) (0.4051)

Internet 0.702 0.561 0.514 0.404 0.575
(0.5071) (0.6849) (0.7356) (0.8365) (0.6693)

Unemployment -0.196 -0.293 -0.292 -0.279 -0.229
(0.9616) (0.9144) (0.9146) (0.9224) (0.9474)

Male Median Age -0.638 -0.610 -0.604 -0.628 -0.667
(0.5924) (0.6279) (0.635) (0.6059) (0.5555)

Female Median Age -0.647 -0.595 -0.543 -0.601 -0.654
(0.5813) (0.6457) (0.7056) (0.639) (0.5722)

Less Than High School -0.499 -0.585 -0.594 -0.570 -0.535
(0.7515) (0.6579) (0.6478) (0.6749) (0.7138)

High School Degree 0.843 -0.863 -0.899 -0.847 -0.870
(0.2431) (0.2551) (0.1914) (0.2828) (0.2424)

Bachelor’s or Higher -0.870 0.858 0.895 0.869 0.860
(0.2887) (0.2635) (0.1985) (0.2449) (0.2609)

Total Net Migration 0.469 0.749 0.642 0.331 0.416
(0.7801) (0.4389) (0.5873) (0.8906) (0.8266)

Housing Stock 0.583 0.522 0.505 0.521 0.560
(0.6604) (0.7273) (0.7452) (0.7288) (0.6868)

% of Pop. 65 or Older -0.656 -0.633 -0.604 -0.668 -0.679
(0.5703) (0.5992) (0.6348) (0.5533) (0.5393)

Population Density 0.485 0.438 0.428 0.425 0.470
(0.7648) (0.8084) (0.8168) (0.8198) (0.7794)

Population Change 0.724 0.833 0.776 0.759 0.697
(0.4761) (0.3058) (0.3982) (0.4245) (0.5149)

LQ of Agriculture -0.446 -0.577 -0.448 -0.497 -0.484
(0.8014) (0.6674) (0.7993) (0.7527) (0.7663)

Eigenvalue 5.634 5.973 5.630 5.256 5.520
% of Variance 0.519 0.544 0.527 0.508 0.526
Overall KMO 0.713 0.765 0.736 0.730 0.725
Bartlett’s χ2 895.883 934.788 871.397 782.817 834.796
p-value 0.000 0.000 0.000 0.000 0.000

Uniqueness of Variance in Parentheses
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APPENDIX B

PYTHON CODE

Figure B.1: Python code: getAllParks, getZipCoords

import requests, json, pandas as pd, geopy, time, xmltodict

from geopy.geocoders import Nominatim

from geopy.distance import vincenty

def getAllParks():

key =

base = 'https://developer.nps.gov/api/v1'

endpoint = '/parks?'

name = '/parkCode'

auth = '&limit=600&api_key=%s'%key

resp = json.loads(requests.get(base+endpoint+name+auth).text)

cols = list(resp['data'][0].keys())

df = pd.DataFrame(index = [], columns = cols)

for i in range(len(resp['data'])):

for col in cols:

df.loc[i, col] = resp['data'][i][col]

df.to_csv('nps.csv')

def getZipCoords(ZIP):

geolocator = Nominatim()

location = geolocator.geocode(ZIP)

return (location.latitude, location.longitude)
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Figure B.2: Python code: getParkCoords

def getParkCoords(park):

key =

base = 'https://developer.nps.gov/api/v1'

endpoint = '/parks?'

name = 'parkCode=%s'%park

auth = '&limit=600&api_key=%s'%key

resp = json.loads(requests.get(base+endpoint+name+auth).text)

latLong = resp['data'][0]['latLong']

try:

lat = float(latLong.split('lat:')[1].split(',')[0])

long = float(latLong.split('long:')[1])

except IndexError:

print('API did not return coordinates for %s'%park)

return 0

return (lat, long)

71



Figure B.3: Python code: distanceToPark, distanceToNearestPark

def distanceToPark(ZIP, park, zipCoords = None):

parkCoords = getParkCoords(park)

if zipCoords == None:

zipCoords = getZipCoords(ZIP)

if parkCoords != 0:

return vincenty(parkCoords, zipCoords).miles

else:

return 99999

def distanceToNearestPark(ZIP):

zipCoords = getZipCoords(ZIP)

parkCodes = list(pd.read_csv('nps.csv')['parkCode'])

shortestDistance = 99999

i = 0

startTime = time.time()

for park in parkCodes:

distance = distanceToPark(ZIP,park, zipCoords = zipCoords)

if distance < shortestDistance:

shortestDistance = distance

closestPark = park

i += 1

now = time.time()

timePerIteration = (now-startTime)/i

remainingIterations = len(parkCodes) - i

timeRemaining = timePerIteration*remainingIterations/60

percentDone = i/len(parkCodes)*100

print('%f%% done; estimated time remaining:

%f minutes'%(percentDone, timeRemaining))

return closestPark, shortestDistance
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