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ABSTRACT

CLUSTERING HETEROGENEOUS AUTISM SPECTRUM DISORDER DATA

Mariem Boujelbene

April 26, 2019

Autism spectrum disorder (ASD) is a developmental disorder that affects commu-

nication and behavior. Several studies have been conducted in the past years to

develop a better understanding of the disease and therefore a better diagnosis and a

better treatment by analyzing diverse data sets consisting of behavioral surveys and

tests, phenotype description, and brain imagery. However, data analysis is challenged

by the diversity, complexity and heterogeneity of patient cases and by the need for

integrating diverse data sets to reach a better understanding of ASD.

The aim of our study is to mine homogeneous groups of patients from a heteroge-

neous set of data consisting of both ADOS and Behavioral datasets and to interpret

the discovered clusters within the medical context of the affected brain areas using

fMRI data.

We developed an unsupervised machine learning pipeline to mine a heteroge-

nous data set consisting of the Standardized Autism Diagnostic Observation Schedule

(ADOS) scores, which are metrics used to measure the autism severity, phenotypical

and behavioral data. This ADOS data is used to identify behavioral problems for

autistic patients. We also used functional Magnetic Resonance Imaging (fMRI) which

is a technique for measuring and mapping brain activity.

Our Big Data pipeline utilizes different clustering algorithms to partition the

patients into homogeneous groups: hierarchical clustering, spectral clustering and

spectral co-clustering.
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In addition to clustering the data, we present a general framework that adds

explainability to clustering algorithms in a way that assists the end-user in making

sense of the clustering outputs through answering their questions about the results

relative to the input data itself or relative to available external evidence.

Our clustering algorithms were able to discover homogeneous groups of patients

that share similar behavioral and phenotypical characteristics. Furthermore, we gen-

erate an accessible interpretation of clustering results by mapping the discovered

clusters onto the brain structure.

Through our clustering and explanation modules, our unsupervised machine learn-

ing methodology enables the domain experts to perform a powerful analysis on ho-

mogeneous cases, such as discovering hidden associations between the genetic data

of patients belonging to the same cluster in order to have a better understanding of

Autism Spectrum Disorder (ASD) and to pave the way toward data-driven personal-

ized medicine.
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CHAPTER I

INTRODUCTION

According to the Center for Disease Control (CDC) [1], one in 51 children in the US is

diagnosed with Autism Spectrum Disorder (ASD). This disease affects the behavior

of children and it is hard to diagnose.

Machine Learning has proven in the last few years [2] to be a very helpful tool to

doctors that helped them map genes to specific diseases or detect tumors efficiently.

It uses mathematical models in order to detect hidden pattern in a set of hetero-

geneous data and provides estimations and predictions to achieve a predetermined

task. Clustering is a subset of this field that focuses on unlabeled data. It detects

clusters of data based on a predefined similarity measure. Clustering can help doctors

identify similar groups of patients and hence detect common characteristics that can

help identify, study, and understand better ASD.

In this thesis we will use clustering in an attempt to analyze and study ASD. Our

motivations for using clustering for autism data are: (1) discovering clusters of similar

patients makes it easier to discover significant genes associated with certain behavior

phenotypes using genomic analysis; (2) clusters provide a principled methodology

to divide patients into (pure) groups in clinical studies for personalized medicine
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and allow better association with other data modalities (brain structure, genotype,

psychological test results, etc), hence accelerating scientific discovery.

Although clustering is a valuable machine learning tool, clustering algorithms

can generate a significant amount of output results that need to be interpreted and

judged by humans. The interpretation and understanding depends on the format

of the clustering results and the expertise of the end users. These end users can

have varying levels of expertise in machine learning, specifically clustering; in the

application domain (e.g. autism); or both. The outputs of clustering algorithms can

also vary in format. For this reason, we propose a general framework to build an

explainability module for clustering algorithms that assists the end-user in making

sense of the clustering outputs through answering the end user’s generic questions

about the clustering results.

Through our clustering and explanation modules, our unsupervised machine learn-

ing methodology enables the domain experts to perform a powerful analysis on ho-

mogeneous cases, such as discovering hidden associations between the genetic data

of patients belonging to the same cluster in order to have a better understanding of

Autism Spectrum Disorder (ASD) and to pave the way toward data-driven personal-

ized medicine.

1 Objectives

Our research study pursues the following objectives:

• Design an unsupervised machine learning pipeline to perform clustering on dif-

2



ferent types of ASD related data.

• Design a general framework that adds explainability to clustering in a way that

assists the end-user in making sense of the clustering outputs through answering

their questions about the results.

2 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the background

and related work on clustering and an overview of clustering ASD data. Chapter 3

presents our methodology, followed by the experimental results in Chapter 4. Finally,

we make our summary and conclusions in Chapter 5.
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CHAPTER II

LITERATURE REVIEW AND BACKGROUND

In this section, we will first review the clustering techniques used in our work. Second,

we will give a brief review of clustering ADOS and concept data for autism.

1 Clustering Techniques

The clustering techniques used in this work fall into three classes: partitioning clus-

tering techniques, graph clustering techniques, and co-clustering.

Partitioning Clustering

The goal of partitioning clustering methods [3] is to divide a dataset of n data points

into k partitions. Each data point should belong to exactly one partition and each

partition should contain at least one data point. Each partition represents one differ-

ent cluster. The partitioning techniques depend on the objective function used. The

most common partitioning algorithm is k-means [4].

The K-means Algorithm

The K-means algorithm [4] [5] [6] partitions the data into k clusters. The number of

clusters k must be known a priori (chosen by the user). The best number of clusters

4



k is the number leading to the best separation between the different clusters. Each

data point belongs to exactly one cluster. K-means assigns each data point to its

closest mean. The algorithm tries to minimize the intra-distance between clusters.

The k-means objective function to minimize is the sum of square error as shown in

the following equation:

J =
k∑

j=1

n∑
i=1

∥∥∥x(j)
i − cj

∥∥∥ (1)

k is the number of clusters predefined by the user. n is the number of data points. cj is

the centroid for cluster j. x
(j)
i is data point i belonging to cluster j.

K-means algorithm steps are as follows:

1. Divide the data randomly into k clusters. The number of clusters is defined by

the user.

2. Calculate the mean of all data points belonging to the same cluster. This mean

is called the centroid.

3. Assign the data points to the closest calculated centroids according to the eu-

clidean distance.

4. Recompute the centroids of each cluster

5. Repeat step 4 and 5 until the data points do not change in assigned clusters.

The K-means algorithm will stop when it reaches a local minimum of the objective

function J.

5



Hierarchical Clustering

The objective of hierarchical clustering [7] is to find a hierarchical taxonomy within

a database and to use it in order to find clusters. The hierarchy within the data is

represented by a dendrogram. There are two types of hierarchical clustering methods:

Divisive methods and Agglomerative methods [8] [9] (see figure 1 & 2).

Divisive Method

The divisive method [8] is known as a top-down method since the algorithm assigns

all the data to the same cluster as a starting point(see figure 1). The divisive method

follows the steps below:

1. Assign all the data points to the same cluster.

2. Divide the initial cluster into two least similar clusters.

3. Select a cluster and split it into two clusters.

4. Repeat step 3 recursively until each data point in the database is assigned to a

different cluster.

Agglomerative method

The agglomerative method [9] [10] [11] is known also as the bottom-top approach. In

fact, the agglomerative approach starts by considering each data point as a separate

cluster on its own, then starts merging the closest clusters together until having all

6



Figure 1. Divisive Approach

the data points into the same cluster (see figure 2). The agglomerative method follows

these steps:

1. Assign each data point to a separate cluster.

2. Compute the proximity matrix (distance between each pair of clusters).

3. Merge the closest two clusters.

4. Recompute the proximity matrix between the new cluster and the original clus-

ters.

5. Repeat step 3 and step 4 until all the data points are assigned to the same

cluster.

A key step for the agglomerative clustering is to compute the proximity matrix

between the different clusters (step 4). The variation of the agglomerative clustering

7



Figure 2. Bottom-up Approach

techniques depends on the approach used to calculate the proximity matrix. The

most common techniques to measure the distance matrix or the proximity matrix

between two clusters are the Single Linkage, the Complete Linkage and the Average

Linkage [9] [10] [11].

Single Linkage

The distance between two clusters using the single linkage method (called also MIN

proximity) is the shortest distance between any two points xi,j and yk,l belonging,

respectively, to cluster Ci and cluster Ck.

d(Ci, Ck) = minxi,j∈Ci,yk,l∈Ck
d(xi,j, yk,l) (2)

Complete Linkage

The distance between two clusters using the complete linkage method [12] (called

8



(a) original data (b) partition found by k-
means

(c) partition found by spec-
tral clustering

Figure 3. Spectral Clustering vs K-means (source: http://scalefreegan.github.
io/Teaching/DataIntegration/practicals/p2.html)

also MAX proximity) is the largest distance between any two data points xi,j and yk,l

belonging, respectively, to cluster Ci and cluster Ck.

d(Ci, Ck) = maxxi,j∈Ci,yk,l∈Ck
d(xi,j, yk,l) (3)

Average Linkage

The distance between two clusters using the average linkage method (called also group

average proximity) is the average distance between each data point in cluster Ci to

every data point in cluster Ck.

d(Ci, Ck) =
1

nCi
nCk

nCi∑
j=1

nCk∑
l=1

d(xi,j, yk,l) (4)

Graph clustering

Spectral clustering [13] [14] [15] is a graph based clustering [16] that tries to assign

data points that are connected to the same cluster even if the distance between the

9
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data points in the same cluster is larger than the data points that belong to the same

cluster. Spectral clustering focuses on the connectivity of the data points, contrary

to k-means that focuses on their compactness (see figure 3). Spectral clustering is

classified as graph partitioning clustering since the data points are considered as graph

nodes. The main steps for spectral clustering are shown below:

1. Compute the similarity graph.

2. Map the data in a lower dimensional space using Laplacian graph.

3. cluster the data in the new space.

Each step is described below.

Similarity Graph

The goal of this step is to transform a set of data points to an undirected graph

G=(V,E) using pairwise similarities si,j or distances di,j between data points. The

set of vertex V=v1, v2,...,vn corresponds respectively to 1, 2,..., n data points. The

most popular construction methods are: the -neighborhood graph, k-nearest neighbor

graphs, the fully connected graph.

The ε-neighborhood graph

All data points that have a pairwise distance less than ε are connected [14]. The ε-

neighborhood graph is considered as an unweighted graph because all the connected

data points have roughly the same scale (at most ε).

10



k-nearest neighbor graphs

In the k-nearest neighbor graphs [17] [18], vertex vi is connected to vertex vj if vi

belongs to the k nearest neighbors of vj. The problem here is that the resulting graph

will be a directed graph. There are two methods to make the constructed graph

undirected. The first method is to ignore the directions. In fact, if vertex vi is among

the k nearest neighbors of vertex vj or if vertex vj is among the k nearest neighbors of

vertex vi, then vi and vj are connected with an undirected edge. The obtained graph

is called the K-nearest neighbor graph.The second method is to connect the vertices

vi and vi only if vi belongs to the K nearest neighbors of vj and vj belongs to the k

nearest neighbors of vi. The obtained graph is called the mutual K-nearest neighbor

graph. The weights of the graph edges in both cases are the similarity values between

the adjacent points.

The fully connected graph

For the fully connected graph, all the data points are connected to each other. The

weight of the graph edges is the similarity si,j. Since the goal of constructing the graph

is to model local neighborhood, this method is used only if the similarity function is

able to encode the local neighborhood such as the Gaussian similarity function.

s(xi, xj) = exp(−‖xi − xj‖
2

2σ2
) (5)

In this case, σ controls the width of the neighborhood similarly to the ε in the ε-

neighborhood graph. To summarize, the output of this step is the similarity graph G

11



which is a positive, undirected, weighted graph.

Dimensionality reduction

After creating the similarity graph G, our goal is to map our data into a lower-

dimensional space. To do so, we compute the graph Laplacian matrix [19]. There

are several graph Laplacians in the literature. In this section we will present the

unnormalized graph Laplacian and the the normalized graph Laplacian.

The unnormalized graph Laplacian

The unnormalized graph Laplacian [20] is defined as:

L = D −W (6)

Where D is the degree matrix of the graph (diagonal matrix) and W is the weighted

adjacency matrix of the graph. The adjacency matrix W=(wi,j)i,j=1,..n models the

weight between the vertices with wi,j >= 0.

di =
n∑

j=1

wi,j (7)

The most important properties of Laplacian graphs that are useful for spectral

clustering are the following:

1. L is symmetric and positive semi-definite.

12



2. L has n non-negative, real-valued eigenvalues 0= λ1 ≤ λ2 ≤ ... ≤ λn

3. If L has k eigenvalues equal to 0 for k different eigenvectors, then the undirected

graph with non-negative weights G has k connected components. For L, the

eigenspace of 0 is spanned by the indicator vectors 1Ai
of those components.

The eigenvalues (λ) are computed using the following equation:

Lv = λv (8)

Where v is the eigenvector of L that corresponds to the eigenvalue λ.

The purpose behind computing the Laplacian matrix is to find the eigenvalues and

eigenvectors for L that will allow working on the data into a lower dimensional space.

Hence, after computing the Laplacian matrix L, we compute its first k eigenvectors

(vi)i=1..k that will form a matrix V ∈ Rn×k (V is a representation of the data into a

lower dimensional space). The last step is to cluster the rows (yi)i=1..n of matrix V

in Rk using k-means into k clusters (ci)i=1..k. The output of this algorithm is clusters

(Ci)i=1..k such as (Ci) = {j|yj ∈ ci}. The spectral clustering in this case is called

unnormalized spectral clustering referring to the use of the unormalized Laplacian

matrix.

The normalized graph Laplacian

There are two normalized graph Laplacian matrices in the literature denoted Lsym

(because the matrix is symmetric) and Lrw (because the matrix is closely connected

13



to a random walk). The matrices are defined respectively as follows:

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2 (9)

Lrw = D−1L = I −D−1L (10)

Where D is the degree matrix of the graph (diagonal matrix) and W is the

weighted adjacency matrix of the graph. The adjacency matrix W=(wi,j)i,j=1,..n

models the weight between the vertices with wi,j >= 0. L is the unnormalized graph

Laplacian computed as mentioned in the previous section.

di =
n∑

j=1

wi,j (11)

The purpose behind computing the normalized Laplacian matrix is to find the eigen-

values and eigenvectors for Lsym or Lrw that will allow the mapping of the data into

a lower dimensional space.

The most important properties of Lsym and Lrw that are useful for spectral clus-

tering are the following:

1. Lsym and Lrw are positive semi-definite and have n non-negative, real-valued

eigenvalues 0= λ1 ≤ λ2 ≤ ... ≤ λn.

2. λ is an eigenvalue of Lrw with eigenvector v if and only if λ is an eigenvalue of

14



Lsym with eigenvector w = D−1/2v.

3. λ is an eigenvalue of Lrw with eigenvector v if and only if λ and v solve the

generalized eigenproblem Lv = λDv.

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an

eigenvalue of Lsym with eigenvector D−1/2
1.

5. If Lrw and Lsym have k eigenvalues equal 0 for k different eigenvectors, then

the undirected graph with non-negative weights G has k connected components.

For Lrw, the eigenspace of 0 is spanned by the indicator vectors 1Ai
of those

components. For Lsym, the eigenspace of 0 is spanned by the vectors D1/2
1Ai

.

There are two different methods to work the data into a lower dimensional space

depending on the method used to compute the normalized graph Laplacian used Lsym

or Lrw.

1. Using Lsym: After computing the normalized Laplacian matrix Lsym, we com-

pute its first k eigenvectors (vi)i=1..k that will form a matrix V ∈ Rn×k (V is

a mapping of the data into a lower dimensional space). After that, we will

normalize the matrix V to have row sums equal to norm 1. Let U be the nor-

malized version of V with ui,j = vi,j/(
∑

k v
2
i,k)1/2. The last step is to cluster the

rows (yi)i=1..n of matrix U in Rk using k-means into k clusters (ci)i=1..k. The

output of this algorithm is clusters (Ci)i=1..k such as (Ci) = {j|yj ∈ ci}.

2. Using Lrw: First we compute the unnormalized Laplacian matrix L. Then,

we compute its first k eigenvectors (vi)i=1..k of the generalized eigenproblem
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Lv = λDv that will form a matrix V ∈ Rn×k. Based on the property 3 of the

normalized Laplacian matrix, the eigenvectors found are the eigenvalues of the

matrix Lrw. The last step is to cluster the rows (yi)i=1..n of matrix V in Rk

using k-means into k clusters (ci)i=1..k. The output of this algorithm is clusters

(Ci)i=1..k such as (Ci) = {j|yj ∈ ci}.

The spectral clustering in both cases is called normalized spectral clustering referring

to the use of normalized Laplacian matrices.

Biclustering

Biclustering is a clustering technique that clusters simultaneously both rows and

columns of a data matrix [21]. The difference between clustering and biclustering is

the following:

1. Biclustering identifies groups of rows with similar/coherent values under a spe-

cific subset of features.

2. Clustering identifies groups of rows (or features) that show similar values under

all the features.

In this section, we will review two popular biclustering algorithms that have been

widely used for biological data analysis and document clustering: Spectral Co-Clustering

and Spectral Biclustering.
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Spectral Co-Clustering

The spectral co-clustering algorithm [22] assumes that the data has an exclusive row

and column bicluster structure. In other words, each row and each column belong

to exactly one bicluster. The algorithm finds biclusters along the diagonal that have

increasing values. The Spectral Co-Clustering algorithm treats the input data matrix

as a bipartite graph: the rows and columns of the matrix correspond to the two sets

of vertices, and each entry corresponds to an edge between a row and a column. It

approximates the normalized cut of this graph to find heavy subgraphs. Spectral

Co-Clustering follows the following steps:

1. Preprocess the input matrix A as follows:

An = R−1/2A C−1/2 (12)

Where R is is the diagonal matrix with entry i equal to
∑

j Ai,j, C is the

diagonal matrix with entry j equal to
∑

iAi,j.

2. Compute the singular vectors of the matrix An

An = UΣV T (13)

3. Cluster the rows of Z using k-means where Z is:

Z =

R−1/2U
′

C−1/2V
′

 (14)
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Where U ′ = [u2, .., ul + 1] is a subset of the singular vectors forming and V ′ =

[u2, .., ul + 1] is a subset of the singular vectors. U ′ provides the row partitions

and V ′ provides the the column partitions. l = dlog2(k)e with k the number of

biclusters.

Spectral Biclustering

Spectral biclustering [23] assumes that the data has a checkerboard structure. Spec-

tral biclustering follows the following steps:

1. Normalize the input matrix A using one of the following methods: independent

row and column normalization, bistochastization or log normalization.

2. Compute the singular vectors of the matrix A as explained in spectral co-

clustering section.

3. Approximate each singular vector found in step 2 by a piecewise-constant vector

using one dimensional k-means.

4. Rank the singular vectors found in step 2 based on the results of the approx-

imations found in step 3. The closer the singular vector approximation to a

piecewise-constant vector to higher the ranking is. The Euclidean distance is

used to rank the vectors.

5. Similarly to the spectral co-clustering, U ′ and V ′ are the matrices composed

respectively of the best left singular vectors and the best right singular vectors

chosen based on the ranking found in step 4. The partition of the rows is
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obtained by running k-means on the matrix resulting from working the rows of

A to a q-dimensional space using V ′. The partition of the columns is obtained

in the same way as the rows using the best left singular vectors U ′.

2 Overview of clustering ADOS and Behavioral autism data in the liter-

ature

Cluster analyses of behavior, cognitive, and sensory issues are rare in the ASD liter-

ature and very limited. Most of the studies are about classifying the fMRI data in

order to predict whether the subject is ASD or Control [24] [25] [26], which is not the

aim of our research. Concerning ADOS data, most studies identified 2-5 major ASD

subgroups [27]. In general, the studies do not compare multiple clustering techniques.

Instead a few clustering techniques are usually used, such as k-means, hierarchical

clustering [28], network analysis [29], and k-dimensional subspace clustering algorithm

[30].
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CHAPTER III

MACHINE LEARNING PIPELINE

1 Clustering Pipeline

We analyzed the ASD data using clustering techniques adapted from the field of doc-

ument classification and we also mapped phenotypes to neuroimaging. We developed

an unsupervised machine learning pipeline as shown is Figure 4 to mine heterogeneous

data sets consisting of ADOS data, concept data, and fMRI prediction data. First,

we pre-processed and cleaned the data. After that, we explored the data using several

similarity measures to find the ones that capture the differences between the subjects

the best. Different clustering techniques were used to find groups of subjects that

share similar phenotypes and similar cognitive severity scores. After clustering the

data, we evaluated our clusters using both internal and external evaluation metrics.

For the external evaluation, we used the fMRI data predictions in order to map our

clusters to regions in the brain. In addition to that we used ADOS totals to validate

our clusters.

2 Data Description

The data consists of medical records of patients that have been diagnosed for autism.

We have three modalities of data: Behavioral data (called also concept data), Autism
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Figure 4. Clustering ASD Data Pipeline

Diagnostic Observation Schedule data (ADOS), and Functional magnetic resonance

imaging or functional MRI (fMRI) prediction data.

Autism Diagnostic Observation Schedule data (ADOS data)

The Autism Diagnostic Observation Schedule (ADOS) is a semi-structured assess-

ment of communication, social interaction, and play (or imaginative use of materials)

for individuals suspected of having autism or other pervasive developmental disorders.

The ADOS is composed of 5 modules depending on the age and the developmental

level of the subjects. The modules are: module t, module 1, module 2, module 3

and module 4. The ADOS consists of standardized activities that allow the examiner
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to observe the occurrence or non-occurrence of behaviors that have been identified

as important to the diagnosis of autism and other pervasive developmental disorders

[31]. The examiner assigns scores to the test activities and questions in order to de-

scribe the severity of the disorder. Hence, the data consists of severity scores assigned

by the examiner to the subject based on the subjects answers and reactions. For a

better understanding, we present an example of one feature from the ADOS data:

• Example: ’ueye’ stands for ’Unusual Eye Contact’. The scores assigned by the

examiner could be 0, 1, 2, 3 and 9. The score 0 means that the subject has an

appropriate gaze with subtle changes meshed with other communication. The

score 1 means that the subject has a definite direct gaze with some modulation;

however, it is not consistent and/or it is without subtle changes meshed with

other communication. The score 2 means that the subject uses poorly mod-

ulated eye contact to initiate, terminate, or regulate social interaction. The

score 3 means that the subject uses poorly modulated eye contact to initiate,

terminate, or regulate social interaction AND frequently actively avoids eye

contact (e.g., by turning away, pushing away, closing eyes). The score 9 means

that the corresponding activity cannot be rated for some reason other than that

listed above, such as if an examiner makes an error and does not administer a

particular ADOS-2 activity.
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Behavioral data (concept data)

Behavioral data (also called concept data) presents the phenotype of each subject

that has been diagnosed for autism. NDAR [32] distills these phenotypes into a con-

cept vocabulary called the Autism Spectrum Disorder Phenotype Ontology. Autism

Spectrum Disorder (ASD) Phenotype Ontology encapsulates the Autism Spectrum

Disorder behavioral phenotype, informed by the standard ASD assessment instru-

ments and the currently known characteristics of this disorder. The concepts are

distributed across three high-level classes, Personal Traits, Social Competence, and

Medical History. Here are three examples of concepts and their hierarchies in the

ontology:

• Example 1: Verbal IQ is a phenotype existing under the concept hierarchy

’//Personal Traits//Cognitive Ability//IQ//Verbal IQ’ in the ontology, taking

values ’High’, ’Average’, or ’Low’. Hence the resulting concept for the patient

will be either ’High Verbal IQ’, ’Average Verbal IQ’, or ’Low Verbal IQ’.

• Example 2: Awareness of Social Cues is a phenotype existing under the concept

hierarchy ’//Social Competence//Recognition of Social Norms//Awareness of

Social Cues’ in the ontology, taking values ’Good Awareness of Social Cues’, or

’Poor Awareness of Social Cues’. Hence the resulting concept for the patient

will be either ’Good Awareness of Social Cues’, or ’Good Awareness of Social

Cues’.

• Example 3: Hearing Loss is a phenotype existing under the concept hierarchy
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’//Medical History//Comorbidities//Ear Diseases//Hearing Loss’ in the ontol-

ogy, taking values ’No Hearing Loss/Deafness’, or ’Known Hearing Loss/Deaf-

ness’. Hence the resulting concept for the patient will be either ’No Hearing

Loss/Deafness’, or ’Known Hearing Loss/Deafness’.

Functional magnetic resonance imaging or functional MRI Prediction Data

(fMRI Prediction data)

The fMRI [33] prediction data consists of predictions [34] that indicate the affected

brain areas for subjects that have been diagnosed for ASD. In this thesis we use this

data only for explanation purposes.

3 Data Representation

The data will be represented by feature vectors, binary, real valued vectors or adja-

cency matrix (similarity matrix).

ADOS data

The severity scores in the ADOS data range between 0 and 9. The scores between 0

and 4 relate to the severity of the case. The higher the score is the more severe the

case is. The score 9 refers to missing values. The scores that range between 5 and 8

do not have a specific meaning, it depends on the test activity or the test question.

Hence, the scores between 5 and 8 are treated case by case based the ADOS data

dictionary. Regarding the scores that range between 0 and 4, after discussing with

the domain experts, we decided to encode the scores as follows:
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• The score 0 means that the subject does not have a disorder for the correspond-

ing activity.

• The score 1 means that the subject has a disorder for the corresponding activity

but the disorder is not extremely severe.

• The scores 2 and higher mean that the subject has an extremely severe disorder

for the corresponding activity.

The ADOS data was represented by two different ways depending on the clustering

technique used:

• First representation: the data is represented by real valued vectors that indicate

the severity scores assigned by the examiner to the different subjects.

• Second representation: the data is represented by adjacency matrix that indi-

cates the distance between pairwise subjects. The higher the distance between

two patients the more different they are.

Concept data

The concept data was processed using the one hot encoding method. The data was

represented by two different ways depending on the clustering technique used:

• First representation: the data is represented as a binary matrix that indicates

the behavioral phenotypes for each subject.
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• Second representation: the data is represented by an adjacency matrix that in-

dicates the distance between pairwise subjects. The higher the distance between

two patients the more different they are.

4 Distance Measures

The success of the majority of clustering techniques depends on the distance measure

used. In fact, the distance measures are a tool to quantify the differences between the

subjects. The distance measures tested on both data sets (ADOS and concept data)

are: Euclidean distance, Manhattan distance, Cosine distance, Jaccard distance and

Generalized Jaccard distance. Given two n-vectors X = (xi)i∈[1..n] and Y = (yi)i∈[1..n],

the distance between X and Y can be defined as:

Euclidean distance(X, Y ) =

√√√√ n∑
i=1

(xi − yj)2 (15)

Manhattan distance(X, Y ) =
n∑

i=1

|xi − yj| (16)

Cosine distance(X, Y ) = 1−
∑n

i=1 xiyi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

(17)

Jaccard distance(X, Y ) = 1− |X
⋂
Y |

|X
⋃
Y |

(18)

26



Generalized Jaccard distance(X, Y ) = 1−
∑n

i=1min(xi, yi)∑n
i=1min(xi, yi)

(19)

5 Clustering Algorithms

In this work, we investigated a variety of clustering algorithms reviewed in Chapter

2, namely:

1. The K-Means algorithm [4] [5] [6]

2. Hierarchical Agglomerative Clustering: we varied the linkage method among

Single, Complete and Average. We also tested different distance measures (Eu-

clidean, Cosine, Generalized Jaccard) [9] [10] [11]

3. Spectral Clustering using a variety of kernels (RBF, Linear, Polynomial, Eu-

clidean, Cosine) [14]

4. Spectral Co-clustering [22]

5. Spectral Bi-clustering [23]

6 Evaluation Methodology

Before presenting our clustering results, it is important to present the metrics used

to validate our clusters. Clustering evaluation metrics can be categorized into two

classes: internal clustering evaluation metrics and external clustering evaluation met-

rics [35]. The main difference between both classes is that external clustering evalu-

ation metrics use external data.
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Internal Clustering Evaluation Metrics

Internal clustering evaluation metrics do not rely on any additional external data.

Since the goal of clustering is to assign the data points that are similar to same

cluster and the data points that are different to separate clusters, internal evaluation

metrics try to measure the compactness and the separation of the clusters. The

compactness (or cohesion) is how close are the data points within the same cluster:

how similar are the data points belonging to the same cluster. The separation is how

distinct the different clusters are from each others. The majority of the evaluation

metrics consider both compactness and separation. The evaluation metrics used to

evaluate the clustering techniques used are the Silhouette index (S) [36] and the

Davies-Bouldin index (DB) [37].

The Silhouette index (S)

The silhouette index (S) [36] measures how similar is a data point is to its own cluster

(compactness) compared to other clusters (separation) by calculating the mean intra-

cluster distance and the mean nearest-cluster distance for each data point. The

equation is the following:

S =
1

NC

∑
i

(
1

ni

∑
x∈Ci

b(x)− a(x)

max(a(x), b(x))
) (20)

Where NC is the number of clusters, Ci is ith cluster, ni is the number of data points

in Ci, d(x,y) is the distance between two data points x and y, a(x) is the mean intra-
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cluster distance for cluster Ci, and b(x) is the mean nearest-cluster distance for the

data point x. a(x) and b(x) are defined as follows:

a(x) =
1

ni − 1

∑
y∈Ci,y 6=x

d(x, y) (21)

b(x) = minj,j 6=i[
1

nj

∑
y∈Cj

d(x, y)] (22)

The Silhouette index (S) ranges between -1 and 1, S ∈ [−1, 1]. The clustering is

considered good when the Silhouette index is close to 1. When the silhouette index

yields negative values that generally indicates that there are data points that have

been assigned to the wrong cluster which is considered as bad clustering results.

When the silhouette index yields values that are close to 0, that indicates that there

are overlapping clusters.

The Davies-Bouldin index (DB)

The Davies-Bouldin index [37] (DB) measures how similar is a data point is to its own

cluster (compactness) compared to other clusters (separation). The score is defined

as the average similarity measure of each cluster with its most similar cluster, where

similarity is the ratio of within-cluster distances to between-cluster distances.

DB =
1

NC

∑
i

maxj,j 6=i([
1

ni

∑
x∈Ci

d(x, ci) +
1

nj

∑
x∈Cj

d(x, cj)]/d(ci, cj)) (23)
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Where NC is the number of clusters, Ci is ith cluster, ci is the center of the ith cluster,

ni is the number of data points in Ci, and d(x,y) is the distance between two data

points x and y. The Davies-Bouldin index (DB) ranges between 0 and 1, S ∈ [0, 1].

The clustering is considered good when the Davies-Bouldin index is close to 0, since

it means that the clusters are the most distinct from each others. One drawback of

the Davies-Bouldin index (DB) is that a good value reported by this method does

not imply the best information retrieval. In the other hand, the time complexity of

the the Davies-Bouldin index computation is less than the time complexity of the

Silhouette index.

External Clustering Evaluation Metrics

While internal evaluation methods uses only the internal data and do not need ground

truth, external evaluation methods require the presence of labeled data in order to

evaluate the quality of the clustering. In fact, the external evaluation methods mea-

sures the extent of homogeneous classes in one cluster. In this work, we worked with

purity [38] as our external evaluation metric.

Purity

Purity [38] [39] measures how pure are the obtained clusters. In fact, it quantifies the

homogeneity in the cluster. If in a given cluster the data is from the same class the

the purity is maximized.

Purity =
1

N

∑
m∈M

max
d∈D
|m ∩ d| (24)
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M is the number of cluster, D is the set of classed and N is the dataset size that

we are using.

7 Methodology for Explaining Clustering Results

Clustering algorithms can generate a significant amount of output results that need to

be interpreted and judged by humans. The interpretation and understanding depends

on the format of the clustering results and the expertise of the end users. These end

users can have varying levels of expertise in machine learning, specifically clustering;

in the application domain (e.g. autism); or both. The outputs of clustering algorithms

can vary in format. Examples of clustering outputs include:

1. O1: A set of cluster representatives such as a cluster centroid (a vector where

each dimension is the average of one of the features of the data assigned to that

cluster) or a cluster medoid (an actual data instance assigned to that cluster).

2. O2: The list of data records that are assigned to each cluster.

3. O3: Various visualizations of the clusters, such as heatmaps of the feature

values of the data assigned to each cluster.

With time, the end user can gain enough expertise in both the application domain

and some machine learning to be able to interpret the results. Our aim is to provide a

methodology to allow the end user to interrogate the clustering algorithms to explain

or justify its results. Specifically the end user may desire to know the answers to the

following questions:
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1. Q1: What distinguishes Cluster A from others

2. Q2: What distinguishes Cluster A from Cluster B

3. Q3: What distinguishes all the clusters from one another

4. Q4: Relate the clusters to an external source of evidence about the input data

Each of the above questions can be answered by reference to the available evidence:

1. E1: The data space in which the clustering was performed.

2. E2: A different modality or external source of evidence

The right kind of answer to the above questions depends on the nature of the

output (O), question (Q), and evidence (E) - see Table 1.

For this reason, we propose a general framework to build an explainability module

for clustering algorithms that adheres to the methodology that is summarized in

Table 1. For instance we can use a transparent supervised model trained on the

actual instances in the original feature space in order to answer a question of type

Q2 with reference to Evidence E1 using only an output of type O1. In this case,

a transparent supervised model (such as a decision tree or rules) will be learned by

analysing the most important features that can divide the original data records into

the groups that are defined by Cluster A and Cluster B. Such an explanation can help

the end user judge the meaning of Cluster A and Cluster B and even to validate the

goodness of these two clusters. In this thesis, we rely on decision trees as the white

box supervised model. A decision tree is a classification model consisting of nodes
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Output
O1

(representatives)

O2
(list of data records

per cluster)

O3
(visualiz-

ation)
Evidence E1 E2 E1 E2 E1 E2
Question

Q1

Relationship
between
features that
are different in
Cluster A vs.
other clusters in
original feature
space

Relationship
between
features that
are different in
Cluster A vs.
other clusters in
external data space

White box binary
supervised model
trained on original data
(Cluster A against all)

White box binary
supervised model
trained on external data
(Cluster A against all)

TBD TBD

Q2

Relationship
between
features that
are different in
Cluster A vs.
Cluster B in
original feature
space

Relationship
between
features that are
different in Cluster A
vs. Cluster B in
external data space

White box binary
trained on original data
supervised model
(Cluster A against B)

White box binary
trained on external data
supervised model
(Cluster A against B)

TBD TBD

Q3

Relationship
between features
that
are different in
each cluster vs.
each other
cluster in
original feature
space

Relationship
between
features that are
different in
each cluster vs.
each other cluster in
external data space

White box multi-class
trained on original data
supervised model
(Class = Cluster label)

White box multi-class
trained on external data
supervised model
(Class = Cluster label)

TBD TBD

Q4 TBD

Medoid only:
data record in
external evidence
that corresponds
to the medoid instance

TBD

Association
(e.g. correlation)
between data in
Cluster A and
corresponding data
in external source

TBD TBD

Table 1. Cluster Explainability Framework. The right kind of answer to the an
explanation questions depends on the nature of the output (O), question (Q), and
evidence (E)

that test features of the data in such a way that the data gets recursively partitioned

into pure groups based on a group purity measure such as entropy. Furthermore, the

decision tree model can be easily translated into a rule-based model and hence it can

be used to explain the results.
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CHAPTER IV

EXPERIMENTAL RESULTS

1 Experimental protocol

In order to find the best partition for our data sets, we followed the following steps:

• Step 1: Compute the adjacency matrix using the distance measure that captures

the differences between subjects the best.

• Step 2: Run different clustering algorithms on each data set.

• Step 3: Try different combinations of parameters for each clustering algorithm

tested in step 2.

• Step 4: Compute the internal and external validity metrics for each clustering

result obtained from step 2 and step 3.

• Step 5: Choose the best clusters based on the results of step 4.

• Step 6: Provide different visualizations to analyze and explain the found clus-

ters.

34



Figure 5. Data Types

Figure 6. Data set overlap
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Figure 7. Frequency of the number of concepts per subject

2 Data Exploration

Our experiments are based on three data sets: ADOS data, Concept data and fMRI

data. The fMRI data was used only for the validation process in order to map the

found clusters to the affected areas of the brain. Figure 5 summarizes the sizes of the

data sets used in our research work. The different data sets overlap as described in

figure 6. All data sets include both autistic (ASD) and control (non ASD) patients.

• ADOS data comprises 478 subjects: 395 subjects are autistic (ASD) and 83

subjects are non autistic (control).

• Concept data comprises 666 subjects: 400 subjects are autistic (ASD) and

266 subjects are non autistic (control). The data was encoded using one hot
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encoding, resulting in binary data set composed from subject keys as rows and

concepts as features. The concept data comprises 400 concepts. The resulting

data is a sparse data as illustrated in figure 7. Figure 7 presents the distribution

of the number of concepts per subject.

• fMRI prediction data: comprises 177 subjects: 62 subjects are autistic (ASD),

89 subjects are non autistic (control), and 26 subjects are unknown..

3 Similarity measure selection

Computing distance measures

Measuring the differences between subjects is a key step toward a successful clustering.

Our goal is to find the distance measure that can quantify how different the subjects

are from each other. Since the performance of the distance measure depends on the

data, we evaluate the performance of the distance measures separately for the ADOS

data and the concept data.

Selection of distance measure for the ADOS data

For the ADOS data, we tried the following distance measures: Euclidean distance,

Cosine distance, Manhattan distance, Jaccard distance, and Generalized Jaccard dis-

tance. Given 3 subjects that have severity scores equal to 0, 1 and 2, respectively

for a given test activity such that S1 = [0, .., 0], S2 = [1, ..., 0], S3 = [2, ..., 0]. Ac-

cording to the domain experts, a good distance measure should encode the following

information:
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Figure 8. Selection of distance measure for the ADOS data

• The distance between subject 1 and subject 2 should be smaller than the dis-

tance between subject 1 and subject 3. In other words, d(S1, S2) ≤ d(S1, S3).

• The distance between subject 2 and subject 3 should be smaller than the dis-

tance between subject 1 and subject 2 and the distance between subject 1 and

subject 3. In other words, d(S2, S3) < d(S1, S2) < d(S1, S3).

After running our experiments, we found that the Generalized Jaccard distance is

the distance measure that best captures the differences between the subjects for the

ADOS data as shown in figure 8.
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Figure 9. Variation of Silhouette Coefficient with the number of clusters for ADOS
data

4 Clustering Evaluation

The clustering of both ADOS and Concept data was evaluated by several cluster-

ing techniques including K-means algorithm, Agglomerative Hierarchical clustering,

spectral clustering, and biclustering.

ADOS Data

First, we evaluated several clustering algorithms while varying the number of clus-

ters. We computed the silhouette coefficient and the Davies Bouldin index internal

evaluation metrics. Figure 9 shows the silhouette score for the different clustering

algorithms used. For the silhouette score, the higher the score the better the parti-
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Figure 10. Variation of Davies Bouldin Index with the number of clusters for ADOS
data

tion. Figure 10 shows the Davies Bouldin index for the different clustering algorithm

results. For the Davies Bouldin index, the lower the score the better the partition.

Based on our experiments Agglomerative hierarchical clustering and Spectral biclus-

tering provide the best results for the ADOS data.

Agglomerative Clustering Analysis for ADOS Data

After selecting the best clustering algorithms, we will show several data visualizations

to analyze our clustering results. Figure 11 shows the clustering quality. The diagonal

of the heatmap shows similar pattern detected by the algorithm. The Figure shows
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Figure 11. Agglomerative Clustering for ADOS data: Cluster the rows (patients)
Input data: Generalized Jaccard distance, k = 8 optimal (validated) clusters

four good clusters (see red circles) with high internal cohesion and good inter-cluster

separation and 1 large cluster (yellow circle) with many nested smaller clusters.

We have the cluster labels of ASD patients and control patients. The purity metric

will inform us about the clustering performance. Agglomerative clustering returned

a score of 0.91. This shows that the algorithm gave good clusters.

Biclustering Clustering Analysis for ADOS Data

Figure 12 shows the raw data before and after the biclustering. Spectral Biclustering

discovers clusters in both rows (patients) and columns (ADOS survey questions). The
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Figure 12. Spectral BiClustering on ADOS data: Cluster the rows (patients) and
the columns (autism test questions) simultaneously Input data: raw data; : k = (9,5)
validated clusters
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Figure 13. Variation of Silhouette Coefficient with the number of clusters for Con-
cept Data

figure shows that the clusters are more meaningful and pure.

Finally to externally validate the purity of the algorithms, we also calculated the

purity of the Spectral Biclustering clusters. The purity was 0.90 which confirms the

quality of the clustering.

Concept Data

Now we are going to perform the same experimental protocol we implemented in the

previous section for the Concept Data. First, we evaluate several clustering algorithms

in order to identify the best algorithm based on the internal validity metric.

According to Figure 13 Spectral Biclustering and K-means are outperforming
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Figure 14. Variation of Davies Bouldin Index with the number of clusters for
Concept Data

other algorithms. However K-means has a higher a higher variance because of the

random initialization. Furthermore, the Davies Bouldin evaluation in Figure 14 shows

a superior performance for Agglomerative clustering. However a low DB score does

not necessarily mean a good clustering performance. For this reason, we will choose

to work with Spectral Biclustering.

Spectral Biclustering for Concept Data

Figure 15 shows the raw data before and after applying the biclustering algorithm.

We can clearly see the apparent blocks of the similar subjects.
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Figure 15. Spectral BiClusteringon Concept data: Cluster the rows (patients) and
the columns (autism test questions) simultaneously Input data: raw data; : k = (9,5)
validated clusters
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5 Clustering Explainability

In this section we present the results of our expainability module. The outputs of

clustering algorithms can vary in format. Our clustering outputs include:

1. O2: The list of data records that are assigned to each cluster.

2. O3: Various visualizations of the clusters, such as heatmaps of the feature

values of the data assigned to each cluster.

The end user may desire to know the answers to the following questions:

1. Q1: What distinguishes Cluster A from others

2. Q2: What distinguishes Cluster A from Cluster B

3. Q3: What distinguishes all the clusters from one another

4. Q4: Relate the clusters to an external source of evidence about the input data

Each of the above questions can be answered by reference to the available evidence:

1. E1: The data space in which the clustering was performed which can be in our

case either the ADOS data or the Concept data.

2. E2: A different modality or external source of evidence. In our case, this is

either the ADOS Total scores, The ADOS modules or the fMRI data.

For convenience, we duplicate our Clustering Expainability framework table in

Table 2.
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Output
O1

(representatives)

O2
(list of data records

per cluster)

O3
(visualiz-

ation)
Evidence E1 E2 E1 E2 E1 E2
Question

Q1

Relationship
between
features that
are different in
Cluster A vs.
other clusters in
original feature
space

Relationship
between
features that
are different in
Cluster A vs.
other clusters in
external data space

White box binary
supervised model
trained on original data
(Cluster A against all)

White box binary
supervised model
trained on external data
(Cluster A against all)

TBD TBD

Q2

Relationship
between
features that
are different in
Cluster A vs.
Cluster B in
original feature
space

Relationship
between
features that are
different in Cluster A
vs. Cluster B in
external data space

White box binary
trained on original data
supervised model
(Cluster A against B)

White box binary
trained on external data
supervised model
(Cluster A against B)

TBD TBD

Q3

Relationship
between features
that
are different in
each cluster vs.
each other
cluster in
original feature
space

Relationship
between
features that are
different in
each cluster vs.
each other cluster in
external data space

White box multi-class
trained on original data
supervised model
(Class = Cluster label)

White box multi-class
trained on external data
supervised model
(Class = Cluster label)

TBD TBD

Q4 TBD

Medoid only:
data record in
external evidence
that corresponds
to the medoid instance

TBD

Association
(e.g. correlation)
between data in
Cluster A and
corresponding data
in external source

TBD TBD

Table 2. Cluster Explainability Framework. The right kind of answer to the an
explanation questions depends on the nature of the output (O), question (Q), and
evidence (E)

Below we show our results for each of a select set of possible questions for each

clustering result presented in the previous section.

Q2: What distinguishes Cluster A from cluster B?

We trained a transparent supervised model on the actual instances in the original

feature space in order to answer a question of type Q2 with reference to Evidence E1

using only an output of type O1. In this case, we learned a decision tree by analyzing

the most important features that can divide the original data records into the groups
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Figure 16. Example of Decision tree used in an explanation of type Q2-E1 for an
output O2 resulting from clustering ADOS data using Agglomerative results, com-
paring cluster 0 to cluster 2 (accuracy=92.7%)

that are defined by Cluster A and Cluster B. The decision tree model can be easily

translated into a rule-based model and hence it can be used to explain the results

in human understandable format. Such an explanation can help the end user judge

the meaning of Cluster A and Cluster B and even to validate the goodness of these

two clusters. Although our long term goal is to convey these explanations in natural

language, at the time being, we will show results based on rules and tree-based model

visualization.

ADOS Data Explanation Results

Concept Data Explanation Results

Q3: What distinguishes all the clusters from one another?

We followed the same strategy as the first question by training a decision tree model.

We presented the results for both the ADOS data and the Concept data.
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Figure 17. Example of Decision tree used in an explanation of type Q2-E1 for an
output O2 resulting from clustering Concept data using Spectral bi-clustering results,
comparing cluster 2 to cluster 7 (accuracy=98%). The existence of Migraine Disorder
is distinguishing the clusters

ADOS Data Explanation Results

To explain the results of the biclustering algorithm, we trained a Decision tree model.

Figure 18 shows the decision tree obtained with an accuracy of 86%. The path of

the tree can be translated to rule-based explanations that can explain why a given

instance is included in a given cluster. For instance, Figure 18 shows that the ”empth”

feature is the most important one that divides the clusters followed by ”ssmle” and

”spabn”.

Concept Data Explanation Results

To explain the results of the biclustering algorithm, we trained a Decision tree model.

The resulting tree in Figure 19 will help us find out the most important features that

were used to differentiate each cluster. The classification result we obtained has a

90 % accuracy. Figure 19 shows that the features imaginative/creative, Good Social

Interest and No OCD are the most important features used in order to create the

clusters.
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Cluster
Label

Number
of subject

Communication
+

Social Interaction
Total

Restricted and
Repetitive Behavior

Total

0 268 0 0.253
1 16 -0.337 -0.286
2 52 -0.438 -0.259
3 36 -0.332 -0.195
4 59 0.335 0.438
5 1
6 32 0.3 0.152
7 4
8 10 -0.211 -0.155

Table 3. The correlation between the clusters and the ADOS totals for the Agglom-
erative Clustering. Only significant correlations are shown (p− value < 0.05)

Q4: Relate the clusters to an external source of evidence about the input

data

We computed the Pearson correlation between the data in Cluster A and the corre-

sponding data in external sources which are the ADOS totals, the ADOS modules

and the fMRI data. In this section, we are answering Q4 under evidence type E2 for

output type O2 -see Table 2. The explanation results in this section are organized

by the type of external data used as part of Evidence Type 2. For each external data

used, we will present our explanation for the best clustering results found for the

ADOS data and the Concept data.

Explanation results using ADOS Totals

ADOS Data explanation results

We calculated the Pearson correlation between the clusters and the ADOS totals:

’abtotal’ stands for Communication + Social Interaction Total, ’adtotal’ stands for
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Cluster
Label

Number
of subject

Communication
+

Social Interaction
Total

Restricted and
Repetitive Behavior

Total

0 74 0.3 0.185
1 53 0.352 0.421
2 34 -0.341 -0.205
3 16 -0.337 -0.286
4 50 -0.4 -0.257
5 77 0.224
6 16 -0.17
7 124 -0.171
8 34 0.292 0.153

Table 4. The correlation between the clusters and the ADOS totals for the Spectral
BiClustering of the ADOS data. Only significant correlations are shown (p−value <
0.05)

Restricted and Repetitive Behavior Total. Our goal is to find the correlation between

the subjects within the same cluster and the type of the disorders. Table 3 shows that

subjects in cluster 0 have communication and social interaction disorder. We show

only the significant correlations that have p-value less than 0.05 (p− value < 0.05).

Table 4 shows that subjects belonging to cluster five, six, and seven have Com-

munication and Social interaction disorders.

Concept Data explanation results

Table 5 shows that the subjects belonging to cluster 6 have Communication and

Social interaction disorders. The subjects belonging to cluster 2 and cluster 5 have

restricted and repetitive behavior disorders. Subjects belonging to cluster 7 have

both communication and social interaction disorders, and restricted and repetitive
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Cluster
Label

Number
of subject

Communication
+

Social Interaction
Total

Restricted and
Repetitive Behavior

Total

0 52
1 75
2 142 -0.104
3 104
4 36
5 25 -0.097
6 83 0.23
7 136 -0.159 -0.134
8 13

Table 5. The correlation between the clusters and the ADOS totals for the Spectral
BiClustering of the Concept data, Only significant correlations are shown (p−value <
0.05)

Cluster
Label

Number of
Subjects

Module t Module 1 Module 2 Module 3 Module 4

0 268 0 0 0 183 85
1 16 16 0 0 0 0
2 52 0 0 0 22 30
3 36 0 0 36 0 0
4 59 0 59 0 0 0
5 1 0 0 0 1 0
6 32 0 0 32 0 0
7 4 0 0 2 1 1
8 10 0 10 0 0 0

Table 6. The distribution of clusters across the different ADOS modules using
Agglomerative Clustering Algorithm

behavior disorders.

Explanation results using ADOS Modules

ADOS Data explanation results

Table 6 shows the distribution of each module in each cluster generated by the

Agglomerative clustering algorithm. Table 6 shows that subjects belonging to module

54



Cluster
Label

Number of
Subjects

Module t Module 1 Module 2 Module 3 Module 4

0 74 0 0 0 54 20
1 53 0 53 0 0 0
2 34 0 0 34 0 0
3 16 16 0 0 0 0
4 50 0 0 2 25 23
5 77 0 0 0 24 53
6 16 0 16 0 0 0
7 124 0 0 0 104 20
8 34 0 0 34 0 0

Table 7. The distribution of clusters across the different modules using Spectral
Biclustering algorithm

t are assigned to the same cluster. The subjects belonging to module 1 are assigned

to two different clusters. The subjects belonging the module 2 are mainly assigned to

two different clusters. Cluster 0 and cluster 2 include subjects that belong to module

3 and subjects that belong to module 4.

Table 7 shows the distribution of each module in each cluster generated by the

Spectral biclustering algorithm. The distribution of the modules across the clusters

is similar to the results found using the agglomerative clustering. In fact, we have

clusters that include subjects belonging only to module t (cluster 3), module 1 (cluster

1 and 6), or module 2 (cluster 2 and 8). Clusters 1, 5 and 7 include subjects belonging

to module 3 and module 4 in the same cluster. Cluster 4 include subjects belonging

to module 2, 3, and 4. It is the only cluster that includes more than two modules at

the same time.
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Cluster
Label

Brain Region
Pearson

Correlation
0 lh isthmuscingulate area 0.3

lh pericalcarine area 0.3
rh caudalanteriorcingulate area 0.3

2 lh isthmuscingulate area -0.3
lh pericalcarine area -0.3

rh caudalanteriorcingulate area -0.3

Table 8. Mapping the clusters resulting from Hierarchical Agglomerative Clustering
to the brain regions using fMRI data. Only significant correlations are shown (p −
value < 0.05)

Explanation results using fMRI data

ADOS Data explanation results

In order to map our clusters to the brain regions, we used the brain fMRI data.

We considered the overlap of the ADOS data and the fMRI data and calculated

the correlation between the clusters and the brain region predictions. Significant

correlations (p− value < 0.05) are shown in Table 8.

Table 9 shows the mapping to the brain regions for the obtained clusters.

Concept Data explanation results

Table 10 shows the mapping to the brain regions for the obtained clusters resulting

from the spectral biclustering algorithm.
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Cluster
Label

Brain Region
Pearson

Correlation
0 lh bankssts area -0.267

rh entorhinal area -0.311
4 lh inferiorparietal area -0.488

lh isthmuscingulate area -0.568
lh medialorbitofrontal area -0.433

lh parsorbitalis area -0.488
rh caudalanteriorcingulate area -0.568

rh paracentral area -0.391
rh postcentral area -0.359

rh rostralmiddlefrontal area -0.488
5 lh parahippocampal area -0.488

rh fusiform area -0.324
7 rh entorhinal area 0.265

rh postcentral area 0.258
rh rostralmiddlefrontal area 0.265

Table 9. Mapping the clusters resulting from the Spectral Biclustering to the brain
regions using fMRI data for ADOS. Only significant correlations are shown (p −
value < 0.05)
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Cluster
Label

Brain Region
Pearson

Correlation
0 lh insula area -0.204

rh entorhinal area -0.196
rh parsorbitalis area -0.216
rh precentral area -0.169

rh rostralmiddlefrontal area -0.196
rh transversetemporal area -0.23

1 lh rostralanteriorcingulate area -0.196
2 rh paracentral area -0.188

rh insula area -0.183
4 lh inferiortemporal area -0.204

rh lateralorbitofrontal area -0.273
rh middletemporal area -0.204

rh superiortemporal area -0.204
6 lh caudalanteriorcingulate area -0.235

lh entorhinal area -0.218
lh parahippocampal area -0.177

lh paracentral area -0.214
lh postcentral area -0.177

lh supramarginal area -0.479
lh temporalpole area -0.177

rh bankssts area -0.177
rh fusiform area -0.177

rh supramarginal area -0.273
7 rh precentral area 0.171

rh precuneus area -0.194

Table 10. Mapping the clusters resulting from the Spectral Biclustering to the brain
regions using fMRI data for Concept data. Only significant correlations are shown
(p− value < 0.05)
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CHAPTER V

CONCLUSIONS

In this thesis, we investigated different clustering algorithms to find homogeneous

groups of patients that share similar ASD symptoms.

In addition, we presented a general framework to build an explainability module

for clustering algorithms that assists the end-user in making sense of the cluster-

ing outputs through answering the end user’s generic questions about the clustering

results.

Through our clustering and explanation modules, our unsupervised machine learn-

ing methodology enables the domain experts to perform a powerful analysis on ho-

mogeneous cases, such as discovering hidden associations between the genetic data

of patients belonging to the same cluster in order to have a better understanding of

Autism Spectrum Disorder (ASD) and to pave the way toward data-driven personal-

ized medicine.

Our results showed that Agglomerative clustering and bi-clustering had better

performance in terms of their results for the ADOS data.

Our methods and findings may help doctors perform an early diagnosis of the

disease and help them assign more specific treatments. Machine Learning is a powerful

tool that enables the detection of hidden pattern and similarities beyond human

59



understanding. For this reason, it can be a very helpful tool to facilitate discovery

and disease analysis.

Our work has several limitations, such as the narrow choice of distance metrics

despite the complexity and rich variety of data modalities. In ongoing and future

work, we are developing semantic similarity measures to capture the meaning of

the hierarchical ASD phenotype Concept data, and discover meaningful clusters. In

addition, we plan to investigate the performance of additional clustering methods,

such as deep clustering techniques.
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