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ABSTRACT 

LITHIUM MOLYBDATE-SULFUR BATTERY 

Ruchira Ravinath Dharmasena 

April 25th 2019 

  

        Rechargeable energy storage systems play a vital role in today’s automobile industry 

with the emergence of electric vehicles (EVs). In order to meet the targets set by the 

department of energy (DOE), there is an immediate need of new battery chemistries with 

higher energy density than the current Li- ion technology. Lithium–sulfur (Li–S) batteries 

have attracted enormous attention in the energy-storage, due to their high specific energy 

density of 2600 Wh kg-1 and operational voltage of 2.0 V.  

     Despite the promising electrochemical characteristics, Li-S batteries suffer from serious 

technical challenges such as dissolution of polysulfides Li2Sx ( 3 ≤ � ≤ 8)   in the 

electrolyte and the shuttling of polysulfide between the sulfur cathode and the lithium metal 

anode hindering cycling efficiency and life. There is also an immediate need to replace 

lithium metal (as the anode in Li-S batteries) with a suitable material. 

   To improve the cyclability of Li-S battery, a novel method is described using mesoporous 

TiO2 to prevent the loss of active material from the sulfur cathode. Herein, the surface 

adsorbance of TiO2 for lithium polysulfides is used to prevent the leaking of soluble 

polysulfides into the electrolyte. Hence, cyclability with high specific capacity is achieved. 
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The mesoporous TiO2 (titania) coated carbon-sulfur cathodes exhibit a retention capacity 

of 980 mAhg-1 over 100 cycles at C/3 rate (433 mA g -1) vs lithium metal anode. 

     Further, pre-lithiated α-MoO3 is investigated as a state-of-the art anode material for Li-

S batteries. α-MoO3 demonstrates lithiation potential of ~0.2 V with a specific capacity of 

~1000 mAh g-1. Herein, α-MoO3 are synthesized by two different techniques; direct 

synthesis by Hot Wire CVD (HWCVD) technique and 40% H2/Ar reduction of impure 

MoO3. The initial specific charge capacities of these material are found to be over 1000 

mAh g-1. The α-MoO3 electrodes of different morphologies are then assembled with 

mesoporous TiO2 coated sulfur cathode to make S-Li1.33Mo0.66O2 full cell, achieving initial 

capacity of 905 mAh g-1   at C/10 rate and 635 mAh g-1 at C/3 rate.   Finally, a novel cell 

design is demonstrated, allowing manufacture of high energy density lithium molybdate-

sulfur batteries in one step process.  

 In this dissertation, high energy density cathodes based on mesoporous titania coated 

sulfur and pre-lithiated anodes based on α-MoO3 are developed for Li-S batteries by 

analyzing their electrochemical properties. Finally, these electrode materials are used to 

manufacture commercially viable Li-S pouch cells with >300 Wh kg-1 energy density over 

100 cycles as the outcome of this dissertation. 
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CHAPTER 01 

INTRODUCTION 

1.1 Motivation  

 

 In order to improve the driving range (distances after a recharge) of electric vehicles (EVs), 

better performing rechargeable batteries with higher energy densities than current Li-ion 

technology are needed. More than a quarter century old Li-ion battery technology uses 

graphite anodes and transition metal oxide cathodes with total energy density of around 

250 Wh kg-1 [12]. The high cost and low specific energy density of the electrode materials 

used in Li-ion batteries are among the main challenges of developing battery packs with 

energy density comparable to gasoline. Even though there is some room left to improve 

existing Li-ion technology, it will not be enough to meet future requirements and demands. 

Instead, the battery innovation needs (i) materials-science breakthroughs, (ii) new electrode 

chemistries and architectures, (iii) new electrolytes etc. to achieve safe, economical, and 

long-lasting energy storage systems. 

  In 2012 the governing body of USA at that time, together with the department of energy 

(DOE) launched a program called “EV Everywhere Grand Challenge” to boost the 

production of plug in electric vehicles (PEV) in the United States. DOE has set forth targets 

to reach this set of goals by 2022. These goals include, (i) lowering the battery costs from 

$500/kWh to $125/kWh (ii) eliminate 30% of vehicle weight (iii) reduce the cost of electric 

drive from $30/kW to $8/kW.  Also, United States Advanced Battery Consortium 

(USABC) have published the DOE target for advance battery chemistries for 2019.
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According to them, specific energy density at cell level should be 350 Wh kg-1 at C/3 

discharge rate. The C rate is defined as nC when the battery is fully discharged in 1/n hours. 

Other specifications provided can be found in table 1.1. To achieve these targets, battery 

chemistries beyond Li-ion must be considered. An overview of the technologies and their 

likelihood to achieve the DOE/ U.S DRIVE cost goals are shown in Fig 1.1. 
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Table 1.1: USABC Goals for Advance High-Performance Batteries for Electric Vehicles 

(EV) Applications. Published by USABC 2019 

    

End of Life Characteristics at 30 ˚C     Units System 

Level 
Cell Level 

Peak discharge power denisty 30s pulse W/L 1000 1500 

Peak specific discharge power, 30s pulse W/kg 470 700 

Peak specific regen power, 10s pulse W/kg 200 300 

Useabale energy density @C/3 discharge rate Wh/L 500 750 

Useabale specific energy @C/3 discharge rate Wh/kg 235 350 

Useable energy @C/3 discharge rate kWh 45 N/A 

Calender life Years 15 15 

DST cycle life Cycles 1000 1000 

Cost @ 100K units $/kWh 125 100 

Operating environments ℃ -30 to +52 -30 to +52 

Normal recharge time Hours <7 hours <7 hours 

High rate charge Minutes 80% in 

15min 

80% in 

15min 

Maximum operating voltage V 420 N/A 

Minimum operating voltage V 220 N/A 

Peak current. 30s A 400 400 

Uunassisted operating at low temperature % >70% 

Usable 

energy @ 

C/3 

discharge 

rate at -20 

℃  

>70% 

Usable 

energy @ 

C/3 

discharge 

rate at -20 

℃ 

Surviaval temperature range, 24Hr ℃ -40 to +66 -40 to +66 

Maximum self-discharge %/month <1 <1 
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  According to the information given in Fig. 1.1., Li-S battery chemistry demonstrates 

promise in terms of the cost per kilowatt hour compared to all other battery chemistries, 

due to the attractive energy density of sulfur cathode (2500 Wh kg-1 vs Lithium). However, 

the commercialization of Li-S technology is hampered by technical challenges such as poor 

cycle life, poor rate capabilities, self-discharging issues and unavailability of pre-lithiated 

anode materials with good stability. Much of today’s research on Li-S batteries is focused 

Figure. 1.1 The next generation Li-ion and beyond Li-ion (BLI) cost estimation [14]  
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on understanding of materials, construction and the fundamental scientific understanding 

of cell behavior. The importance of this should not be questioned, but there is a need to 

develop the engineering science and techniques necessary for deployment of Li-S batteries 

in practical applications which is the main motivation of this dissertation.  

1.2 Challenges and limitations of rechargeable battery technologies  

 

1.2.1 Li-ion batteries  

 

 The first Li-ion battery was based on a LiCoO2 cathode and a carbon anode. Upon charging 

the battery, the cathode becomes Li1– xCoO2 by delithiation and the anode converts to LixC6. 

The practical capacity of LiCoO2 anode was found to be 140 mAh g-1 which corresponds 

to x ≈ 0. 5 (i.e., ~50%) of its theoretical value (273 mAh/g). The high possibility of thermal 

runaway caused by overcharge and the high cost of Cobalt, have led to the investigation of 

other cathode materials for Li-ion cells with better capacity and cycle life.  

  Insertion electrodes of Li-ion cells need to have wide compositional range, so that 

maximum lithium can be extracted and reinserted during charging and discharging to 

maximize the energy density. In addition, the electrode host material needs to have good 

transport properties for Li-ion providing high power capability. Carbon in the form of 

graphite has been the source of anode material in Li-ion batteries thus, the required 

properties need to be sought in novel cathode materials.  

  LiNi0.8 Co 0.15Al 0.05O 2 (NCA), spinal electrodes Li 1+ xMn 2– xO4 and LiFePo4 have been 

studied as alternative materials for LiCoO2 cathode material.  Despite of slightly higher 

practical capacity (180 mAh g-1) of NCA cathode material, its thermal instability on de-

lithiation compromises the safety of Li-ion cells. In contrast Spinal LiMn2O4 and LiFePo4 

are significantly more stable but have less capacity of 100-150 mAh g-1 above 3 V.  
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 Recently developed manganese-based cathodes using Li2MnO3 and electrochemically 

active LiMO2 (M=Mn, Ni, Co) have shown that, it can lower the material cost while excess 

lithium boosts the specific capacity to 250 mAh g-1 between 4.6 V and 2.5 V. However, 

their deliverable capacity decreases dramatically when cycled against graphite anodes thus 

these Li-ion cells made of Ni-Mn-Co oxides (NMC) suffer severe energy density loss in 

practical Li-ion cells. Furthermore, these cathode materials have higher operating 

potentials, and thus needs electrolytes that are stable at higher potentials. Novel electrolytes 

have been investigated with higher oxidative stability such as sulfones, nitriles and 

fluorinated solvents. They, however, introduce new problems due to solid electrolyte 

interphase (SEI) formation.  

 

1.2.2 Li-Air batteries  

  The lithium air battery is the closest technology to reach the  gravimetric capacity of fossil 

fuel which is around 13000 Wh kg-1 [15, 16] when free oxygen is not included in the 

calculations. Otherwise, at the cell level, Li-Air batteries give 3623 Wh kg-1 (when 

discharged to form Li2O2 at 3.1 V) or 5200 Wh kg-1 (when discharged to form Li2O at 2.9 

V).  

  A Li-air battery is comprised of a Li metal anode and an O2 cathode. Typically, Oxygen 

is pumped from an external source. Currently, there are three main architectures proposed 

for Li-Air batteries. These include versions with (i) aqueous electrolyte, (ii) a fully aprotic 

liquid electrolyte and (iii) a hybrid structure with cathode immersed in aqueous electrolyte 

and anode immersed in aprotic electrolyte.   
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 Realization of high theoretical capacity and practical application of Li-Air Battery 

technology is limited by low power output and poor cycle-ability. The non-aqueous 

electrolytes used in Li-Air batteries are volatile and unstable at high voltages, causing poor 

cyclability. It is found that, the supplied oxygen can crossover with the electrolyte affecting 

the overall functionality of the cell. This problem obviously mitigates the cycle life of Li-

Air cell. Li2O and Li2O2 depositions on the carbon cathode surface can clog the pores, 

restricting the oxygen flow, leading to poor capacity. Inefficient cathode structures and 

catalysis that can access the oxygen efficiently causes significant charge overpotentials.   

 

1.2.3 Rechargeable magnesium batteries (RMB) 

  Mg metal has more attractive volumetric capacity than lithium metal, i.e., 3832 mAh cm-

3 vs 2061 mAh cm-3 for lithium and it is a less expensive metal than Li, thus cost reduction 

could be a benefit of using Mg as an anode material. However, Mg lacks the gravimetric 

capacity and redox potential compared to Li metal. Mg has a gravimetric capacity of 2205 

mAh g-1 vs 3862 mAh g-1 for Lithium. The redox potential of Mg is -2.4 V compared to -

3.04 V for Li vs. normal hydrogen electrode (NHE). The Mg anode has demonstrated the 

absence of dendrite formation upon reversible plating of Mg.  Batteries with Mg anode 

thus alleviate the dendrite formation issue related to Li metal anodes. Commercializing the 

Mg battery has, however, been a challenge due to the unavailability of practical electrolytes 

which are stable with Mg anodes. Also, the sluggish kinetics of Mg+2 ion limits the energy 

density of Mg to a few hundred watt-hours per kilogram. It has been found that the 

formation of the surface layer as a result of metal-electrolyte interface blocks the Mg+2 ions 

thereby preventing reversible electrochemical reactions. This phenomenon is very different 
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than the SEI (solid-electrolyte interface) formation on Li metal, which protects the Li metal 

from electrolyte while Li+ ions can diffuse though the SEI layer. In order to overcome these 

limitations induced by the Mg metal, insertion type anode materials are proposed. 

However, these electrodes too face with challenges caused by extremely sluggish 

magnesium insertion/extraction kinetics and electrode pulverization due to volume change.  

   There are several proposed cathode materials for Mg rechargeable batteries. Among them 

cobalt, vanadium, molybdenum, and sulfur-based cathodes are considered. The cells made 

with the proposed cathode materials and Mg anode demonstrate poor cyclability, low 

capacity and low operational potential window.  

 1.3 Lithium-Sulfur (Li-S) batteries  

 Li-S battery technology have attracted much more attention than any other battery 

technology due to its ability to penetrate the Li-ion battery technology with higher charge 

capacity (1675 mAh g-1) and reasonable operating potential of 2.0 V. In addition, sulfur is 

an abundant element on earth. Therefore, the material cost per kilowatt hour can be much 

lower compared to the other high energy density battery materials. Considering all these 

advantages, Li-S batteries undoubtedly a promising battery chemistry that can fulfill 

current energy needs, especially in EV’s. 

  Li-S batteries, however, are not closer to industrial readiness mainly due to technical 

challenges. Developing a Li-S battery with high capacity and durability requires, solving 

the issues related to the both sulfur cathode and lithium metal anode.  It has been found 

that, there are three main factors affecting the poor cyclability of sulfur cathode, i.e., (i) 

poor electrical conductivity of sulfur (ii) dissolution of polysulfides in the electrolyte 

during delithiation and lithiation [6] and (iii) polysulfides shuttling between cathode and 
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anode. During the lithiation process, sulfur first reduces to S8
-2 and forms Li2S6 and Li2S4 

thereafter [18, 19] which can lead to active material inaccessible for further electrochemical 

reactions. The dissolved polysulfides can cause polysulfide shuttling [20-23]. The 

polysulfide shuttling occurs by migrating dissolved polysulfides between cathode and 

anode when the battery is charged and discharged. This  phenomenon has been studied 

extensively [20] and it is found that, dissolved polysulfides can be reduced near the anode 

forming solid Li2S2 and Li2S on the lithium metal causing blockage for Li+ ions.  To 

mitigate these problems related to the sulfur cathode, various electrolytes has been 

investigated. Among them, solvents, 1,2-Dimethoxyethane (DME) and 1,3-Dioxolane 

(DOL) based organic electrolytes are preferable due to their bulky anions which can 

effectively reduce polysulfide solubility [24]. Dissolution of sulfur can increase the 

viscosity of the electrolyte thus less viscous electrolytes are selected.  

 Lithium metal anode mitigates the practical applicability of Li-S batteries due to the 

problems such as dendrite formation and fire hazard of lithium. Lithium anode is known to 

build up solid deposits (dendrites) upon charging the Li-S battery causing cathode and 

anode short circuiting. To avoid these problems related to lithium anode, pre-lithiated 

anode materials are investigated such as pre-lithiated Si anodes and Sn (Tin) anodes. But 

they have problems such as high-volume expansion causing electrode degradation. 

Therefore, there is a huge need for addressing these issues related both cathode and anode 

in order to develop high capacity and durable Li-S batteries. 
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1.4 Proposed concepts for a high capacity Li-S battery  

1.4.1 Sulfur Cathode  

  The dissolution of sulfur however is a necessity for proper operation of Li-S batteries [25] 

while it is the problem of making a durable Li-S battery. When designing a sulfur cathode, 

therefore, several factors need to be taken into consideration. 1) the sulfur particles need to 

be encapsulated to minimize the leakage of polysulfides, 2) the electrode material must be 

properly wetted by electrolyte, 3) good electronic conductivity must be maintained within 

the bulk electrode. In addition, there are some reports that indicate gas evolution in Li-S 

cells could also be problematic for their practical applications [26].    

   Many techniques have been attempted to prevent dissolution of polysulfide from sulfur 

cathode into the electrolyte. Lin Ma et al. [27] has published an excellent review of these 

techniques. One of the ideas for improving the cyclability of sulfur cathode is entrapping 

of sulfur to limit the chain during the lithiation of the cathode. Entrapping of sulfur in 

micro/meso pores appear to serve this idea  [28-33], but the batteries still tend to show 

continuous decay of capacity. These micro-pores can be made using a silicon template  

[34]. Meso-porosity can serve as good electrolyte channeling medium as well. Metal-

organic framework has also been investigated as a sulfur hosting medium in Li-S batteries 

[35]. Sulfur has also been stored in nano-cages and nano-space carbon structures elsewhere 

[36-38]. 

    Sulfur nanoparticles also can be coated with polymers and then carbonized to make the 

electrode electrically conductive [39-44]. Such coatings are however prone to crack while 

sulfur is lithiating to longer polysulfides. To avoid such cracking, core shell type coatings 

were studied [45, 46].  The ability encapsulate sulfur using graphene has been 
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demonstrated [47-50]. Carbon-nanotubes can also be used to trap sulfur, with the advantage 

of acting as a barrier to trap polysulfides [51-56].  Carbon nano-fiber interlayer and 

graphene layers can also be used as a barrier for dissolved polysulfides [57, 58]. The above 

techniques are all based on physical trapping of polysulfides in the carbon structure thus 

continuous decay of capacity is expected. Improvement of sulfur cathode cyclability has 

been attempted trough chemical methods as well [59, 60]. Chemically bonded sulfur 

however does not seem to participate in lithiation reaction while non-bonded sulfur is found 

to be electrochemically active. Soluble polysulfides trapping by chemisorption of Amine-

functionalized carbon has been reported [61] with a significant capacity retention. In 

addition to the above modifications of cathode electrodes, the use of solid state electrolytes 

and gel polymer electrolytes are being investigated [62, 63] to alleviate the sulfur 

dissolution problem. 

  Anatase TiO2 has surface defect sites which show adsorbance properties for lithium 

polysulfides. In addition, TiO2 shows a good ionic conductivity for Li+. Thus, TiO2 mixed 

with carbon and sulfur have been investigated by many other researchers to trap soluble 

polysulfides. Here, a concept of using mesoporous coating comprised of anatase TiO2 

particles on a sulfur/carbon cathode is investigated to prevent migration of polysulfides 

and enable lithium diffusion. The semiconducting nature of TiO2 coating introduces 

technical challenges to obtain a high charge capacity, thus this issue must also be addressed 

to gain high capacity with good durability.   

   Synthesizing electrode material for high capacity and durable Li-S battery is approached 

by four main methods as mentioned above. Those are (i) sulfur encapsulation in 

micro/meso porous structures (ii) entrapping sulfur by carbon coating and (iii) polysulfide 
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trapping in carbon fibers or in graphene and (iv) by chemically bonding sulfur with carbon. 

In all these methods, carbon is the medium for improving electrical conductivity. In this 

work, it is intended to synthesize low cost carbon structures to host sulfur and then use 

TiO2 as a polysulfide trapping barrier. 

1.4.2 Pre-lithiated anode  
 

  Development of an anode electrode (other than Li metal) for Li-S battery is more 

challenging than developing cathodes. The reason being the unavailability of many anode 

materials that need to be pre-lithiated and stable over many cycles. When developing the 

Li-ion battery, graphite was found to be very popular for the Li-ion batteries. Typically, 

carbon anode has a gravimetric capacity around 372 mAh g-1, which is large enough for 

Li-ion battery technology as most of the cathode materials do not exceed the capacity of 

more than 250 mAh g-1. For high energy density batteries, finding a suitable anode becomes 

much more challenging. When selecting the anode material, the cathodic and anodic 

potential as well as capacity matching need to be considered very carefully. In addition to 

graphite, Si and Sn, especially in nanostructure forms have been studied as anodes for Li-

ion batteries [64, 65]. Germanium (Ge) has also been tested as an anode material [66], but 

the high lithiation potential of 1.0 V for Ge is a disadvantage for Li-ion batteries and its 

high material cost makes it not suitable to use as an anode material. Graphite is obviously 

not a good anode material for Li-S batteries, because of its poor capacity [67] compared to 

the high cathode capacity of sulfur. Si and Sn have been widely investigated as high charge 

capacity anode materials. They have charge capacities 3570 mAh g-1  [67]  and 991 mAh 

g-1 [68] respectively. Both Si and Sn are known for their high-volume expansion upon 

lithiation; Si expands about 300% [69, 70]and Sn expands by >250%.  This volume 



13 
 

expansion causes pulverization and cracking [69] of the electrode. However, Silicon nano 

particles and nanowires have proven to be withstand the expansion during lithiation [71]. 

Cui et al. has shown that silicon nanowire anode architecture can improve the capacity 

retention while maintaining the structural integrity of the anode [72]. Transverse expansion 

of silicon nanowires is believed to be the main reason for withstanding the stress upon 

lithiation. SiO2 nanowires have also been investigated in Ref [73] as an anode material in 

Li batteries.  

   Based on lithiation/de-lithiation characteristics, anode materials of the batteries can be 

grouped into three classes; (i) intercalation materials (ii) single-phase conversion material 

(alloying material) and (iii) multi-phase conversion materials.  Graphite and titanium oxide 

are among the most investigated intercalation type anode materials. Intercalation type 

anode materials demonstrate minimal structural changes during the lithiation/de-lithiation 

process, e.g., Li4Ti5O12 demonstrates comparatively smaller volume changes, thus its 

stability during the lithiation/de-lithiation is far superior to that of its counterparts. Low 

gravimetric and volumetric capacity are the main drawbacks of intercalation type materials 

due to the low number of lithium ions that can be stored per host atom. The single-phase 

conversion anode materials are the ones with both, reactants and products, are single-phase 

materials. Silicon can be considered as a single-phase anode material as it can lithiate 

forming Li22Si5.  In the scientific world, this type of single-phase reactions is called 

alloying. The multi-phase conversions on the contrary are comprised of two or more 

reactants or products. Unlike intercalation materials, both single-phase and multi-phase 

conversion materials undergo significant structural changes during the lithiation and 

delithiation. Most of the alloying materials are the metals and semi-metals from group IIIa, 
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IVa an Va of the periodic table. Silicon is the most investigated alloying materials. At room 

temperature it can react with 3.75 lithium ions per Si atom, giving 3570 mAh g-1.  Si 

demonstrates slightly higher delithiation potential (0.4 V) compared to graphite (0.1 V). 

Tin (Sn) is also a widely investigated anode material with less volume expansion compared 

to Si and with a delithiation potential of 1 V. Aluminum and Gallium have also been 

investigated for possible anode materials, but they show a delithiation potential of 1 V, like 

Tin (Sn). Black phosphorus has also been found as a potential anode material with 

delithiation potential of 1 V and a specific capacity of 2600 mAh g-1 which is only inferior 

to lithium metal and silicon.  

   The reaction of multi-phase conversion materials with lithium can be expressed in a 

general chemical equation as follows;  

                                       𝑀𝑎𝑋𝑏 + (𝑏𝑡)𝐿𝑖 ↔ 𝑎𝑀 + 𝑏𝐿𝑖𝑡𝑋  

Where M=transition metal, X=anion and t=oxidation state of X.  

 These types of materials typically exhibit theoretical capacities in the range of 650 -1000 

mAh g-1 due their ability to transfer more than one electron per atom and exhibit lower 

volume expansion compared to alloying anode materials. These kinds of materials 

demonstrate higher delithiation potentials (1-2.2 V) and poor electronic conductivity and 

ionic conductivity. In addition, poor cycle life caused by complete structural re-

organization during the conversion reaction. Fig. 1.2 shows a good comparison of anode 

potentials at lithiated state and Fig. 1.3 shows the relationship between delithiation 

potential vs specific capacity of the most investigated anode materials.   
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Figure 1.2 Experimental gravimetric and volumetric capacity of anode materials for the 

lithiated state as a function of their half-cell potential. Dotted lines are the target lines 

for both energy densities in respect to three different classes of cathodes: reference 

layered (middle line), high-voltage (lower line) and conversion (upper line) cathode 

material. [10] 
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 The second concept of this dissertation is to investigate α-MoO3 as a state-of-the art pre-

lithiated anode material for Li-S battery to replace the Li metal anode. This approach 

improves the safety of Li-S batteries.  α-MoO3 demonstrates a charge capacity of ~1000 

mAh g-1 and a lithiation potential at 0.2 V vs Li and moderately wide potential hysteresis 

loop with a de-lithiation potential which gives a reasonable ~ 1.7 V to 1.4 V operation 

discharge potential plateau, when assemble with the sulfur cathode. In addition, lithiation 

of α-MoO3 undergo multi-phase conversion reaction which demonstrate smaller volume 

change than in alloying materials such as Si and Sn. However, pre-lithiation of α-MoO3 is 

the major technical challenge of this work. Thus, newer approaches need to be investigated 

to synthesize pre-lithiated α-MoO3 with high yield.  

 

Figure 1.3 Delithiation voltage profiles of selected anode materials with possible 

upper cut-off voltage of the anodes [10] 
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 1.5 Dissertation objectives 

  The main goal of this work is to demonstrate a commercially viable Li-S battery with high 

capacity and durability. The following are dissertation objectives in addressing challenges 

associated with both anode and cathodes.  

(i) Sulfur cathode development: The main challenges for developing a durable 

sulfur cathode are polysulfide dissolution in liquid electrolyte, polysulfide 

shuttle causing a blockage for Li+ ions at the Li anode and poor electrical 

conductivity of sulfur. 

(ii) Pre-lithiated anode development: lithium metal anode has problems such as 

dendrite formation at the anode and high reactivity of lithium with air which 

poses a fire hazard.  Therefore, it is important to find a pre-lithiated anode or a 

way to pre-lithiate anode materials. There are no known pre-lithiated anode 

materials that could be made easily.  

   The overall objective of this work is to demonstrate a high energy density Li-S pouch 

cell using the mesoporous TiO2 coated sulfur cathode and pre-lithated α-MoO3 anode. To 

approach this goal, special cell design is investigated which simplifies the pouch cell 

formation towards a commercially viable battery technology.  

   The dissertation is organized as follows. Chapter 2 provides the background of the known 

high energy density rechargeable batteries is discussed including their advantages and 

disadvantages. Chapter 3 details the experimental procedures implemented for cathode and 

anode development and electrochemical techniques used for testing cells. Chapter 4 is 

mainly focused on developing a pre-lithiated α-MoO3 as a novel anode material and its 

implementation in making Li-S full cells.  Chapter 5 includes material quality 
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improvements and technical details of assembling a high energy density lithium 

molybdate-sulfur pouch cell.  
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CHAPTER 02 

BACKGROUND 

2.1 Scope  

This chapter is focusing on outlining the chemistry of Li-ion batteries, Li-Air batteries, 

Magnesium sulfur batteries and Lithium-sulfur batteries. The chemistry of Li-S battery is 

described with a detailed description of polysulfide dissolution mechanism and polysulfide 

shuttling phenomena. A brief review of electrolytes of Li-S batteries is also given. In 

addition, an outline of electrochemical and material characterization techniques which 

were used in this dissertation is given at the end of this chapter.   

 

2.2 Chemistry of rechargeable batteries  

2.2.1 Li-ion batteries (LIB) 

  Li-ion batteries sometimes recognized as rocking chair batteries due to its characteristic 

Li-ion mass transport between the two electrodes. In a typical Li-ion battery, cathode is a 

pre-lithiated oxide (LixMOy, M=Fe, Mn or Co etc.) and the anode is mostly graphite. Fig. 

2.1 shows a schematic of a typical lithium ion battery. 
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The half cell reactions can be written as follows for the cell chemistry shown in the Fig. 

2.1 

𝑥𝐿𝑖+ + 𝑥𝑒− + 6𝐶 ⇌ 𝐿𝑖𝑥𝐶6  (𝑎𝑡 𝑡ℎ𝑒 𝑎𝑛𝑜𝑑𝑒)                                   (1.2) 

𝐿𝑖𝐶𝑜𝑂2 ⇌ 𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒−  (𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)              (1.3) 

The overall reaction can be written as   

                                     𝐿𝑖𝐶𝑜𝑂2 + 6𝐶 ⇌  𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝐿𝑖𝑥𝐶6                          (1.4) 

   In these equations, the upper arrow shows the charging process, while the lower arrow 

shows the discharging process. The electrolyte used in these batteries are typically 

consisted of alkyl carbonate with LiPF6 (lithium hexaflurophosphate salt) to provide Li ion 

Figure 2.1.   Schematic of a typical Li-ion battery [8] 
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conduction. Most popular LlB batteries and their properties are shown in the following 

table 2.1. 

Table 2.1 popular Li-ion battery chemistries and their properties [2] 

   The idea of Li ions movement between the cathode and the anode was first formulated 

by Armon et al. in the first part of 1970’s [74]. Then this idea was further developed by 

Lazzari an Scrosati using a lithiated tungsten dioxide electrode and a titanium disulfide 

electrode. However, its voltage was limited to 2.2 V. Then the Goodenough laboratory 

discovered the reversibility of lithiation and delithiation properties of NaFeO2 structure, 

and later LiCoO2 was patented as the cathode material of the Sony’s first ever commercial 

lithium ion battery. After that, J.C Hunter from Eveready laboratories discovered the 

similar characteristics in MnO2. 

 

 

Acronym Cathode Anode Cell Voltage 

(V) 

Energy 

density (Wh 

kg-1) 

LCO LiCoO2 Graphite 3.7-3.9 140 

LNO LiNiO2 Graphite 3.6 150 

NCA LiNi0.8Co0.15Al0.05O2 Graphite 3.65 130 

NMC LiNixMnyCo1-x-yO2 Graphite 3.8-4.0 170 

LMO LiMn2O4 Graphite 4.0 120 

LNM LiNi1/2Mn3/2O4 Graphite 4.8 140 

LFP LiFePO4 Li4Ti5O12 2.3-2.5 100 
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2.2.2 Li-Air batteries  

   Fig. 2.2 shows the operation of a Li-Air cell. During the discharge of the Li-Air cell, Li 

is oxidized to Li+ at the metallic anode. An electrolyte composed of Li salt and non-aqueous 

solvent provides Li+ conductance and reacts with O2 on the cathode composed of carbon 

and a catalyst. Depending on the electrolyte, the reactions can be written as follows:  

in an aprotic electrolyte which gives a cell potential of 3.0 V,  

                                         2𝐿𝑖 + 𝑂2 → 𝐿𝑖2𝑂2                                          (1.5)                     

 In an aqueous electrolyte, the fundamental reactions are  

                                      2𝐿𝑖 + (
1

2
) 𝑂2 + 2𝐻+ → 2𝐿𝑖+ + 𝐻2𝑂           (1.6)   (acidic media)           

                                      2𝐿𝑖 + (
1

2
) 𝑂2 + 𝐻2𝑂 → 2𝐿𝑖𝑂𝐻                       (1.7)  (alkaline media) 
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Figure 2.2 Diagram of a non-aqueous Li-Air battery [8] 

2.2.3 Magnesium-sulfur batteries  

    Mg metal as anode material with a redox potential of -2.4 V and the specific capacity of 

~2200 mAh g-1, allows the cathode materials with high gravimetric capacities to assemble 

electrochemical cells with acceptable discharge potential and capacities. Sulfur is a good 

candidate to make such a cell with a practical discharge potential of ~1.7 V and ~ 800 mAh 



24 
 

g-1 as demonstrated in the Ref. [75].  However, electrolyte instability with Mg metal anode 

presents a challenge to make Mg-S cells with good cyclability. Zhirong Zhao-kroger  et al. 

[75] have demonstrated such a Mg-S cell and its chemistry and operation are shown in Fig. 

2.3.  It is interesting to see that Mg-S and Li-S cell share common features like, polysulfide 

formation.  

 

 

Figure 2.3 Diagram of a Mg-S battery [75] 

 

2.2.4 Lithium-Sulfur batteries (Li-S) 

 

   Lithium-sulfur batteries are expected to be one of the viable candidates that can fulfil the 

energy requirements in the modern world. Further, it is the subject of the topic our research 

work is based on. Sulfur has a gravimetric capacity of 1672 mAh g-1 versus lithium [13]. 

It also has an open circuit voltage of 2.53 V versus Li/Li+. Lithium-sulfur battery consists 

of sulfur/carbon composite cathode and lithium anode. Fig. 2.4 shows the schematic of a 

lithium sulfur battery.  
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   A lithium sulfur battery produces electricity through the electrochemical reaction 

involving sulfur and lithium forming lithium sulfide (Li2S) as shown in the Fig. 2.5. 

𝐿𝑖 + 𝑆 → 𝐿𝑖2𝑆                    (1.8) 

       

       

     However, before the Li2S formation, lithium and sulfur forms intermediate long chain 

polysulfide as well. The polysulfides Li2SX (3 ≤ 𝑋 ≤ 8)   have been a major issue with 

Figure 2.5. Charge and Discharge curves a typical Lithium sulfur battery [6]  

Figure 2.4. Schematic of a Li-S battery [13] 
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Li-S batteries as they tend to dissolve in the electrolytes which cause substantial capacity 

degradation during cycling. Intermediate polysulfide formation while discharging is 

depicted in Fig 2.5. The discharging curve has two plateaus. The voltage plateau at 2.4 V 

is belong to the formation of Li2S8 while plateau at 2.0 V belongs to formation of Li2S.  

Polysulfide formation can be shown in equations as follows.  

 

8𝑆(𝑠) ⇌ 𝑆8                  (1.9) 

𝑆8 + 4𝑒− ⇌ 2𝑆4
2−                (2.0)            

 𝑆4
2− + 6𝑒− ⇌ 4𝑆2−                (2.1)              

𝑆2− + 2𝐿𝑖+ ⇋ 𝐿𝑖2𝑆(𝑠)                    (2.2)                      

 

2.3 Proposed electrolytes for Li-S batteries 

 

    The challenges inhibiting the commercialization of Li-S batteries due to their well-

known problems such as polysulfide dissolution, shuttling effect and self-discharge have 

already been addressed by many different approaches including use of meso-porous carbon 

structures to trap dissolved poly sulfides. Moreover, the electrolytes used in Li-S batteries 

are equally responsible for the development of high-performance Li-S batteries that can 

cycle much longer. Since the sulfur and its reduced products are non-conductive, the 

reduction process can only take place at the Carbon-Sulfur interface. Dissolution of 

polysulfides leads to exposure of unreacted sulfur to carbon so that reaction process can 

move forward. Therefore, dissolution of polysulfides is seen as a necessary process for 

proper operation of the Li-S battery [6].  
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  The primary function of an electrolyte of the Li-S battery as in any other battery, is to 

transport ions between electrodes. High ionic conductivity > 10-4 S cm-1 is required over a 

wide temperature range of operation [76]. Electrolytes used in Li-S cells are composed of 

several different chemical components, namely solvents, salts and additives. Each 

component serves a different function to improve the durability of Li-S battery. It is 

important to understand each component for its function. Fig. 2.6 shows an overall picture 

of the electrolyte in a Li-S cell. 

 

 

 

   

 

 

 

 

 

  Electrolytes for Li-S batteries are mainly divided into two main groups; non-aqueous- 

liquid electrolytes and ionic electrolytes. Liquid electrolytes can be composed of single or 

binary solvents. The single solvents can be either glymes, sulphones or carbonates. For 

High stability and ionic conductivity, binary organic solvents are predominantly used in 

Li-S batteries. The main motivation of using binary solvents is to obtain low viscosity, 

Figure 2.6. Schematic of a Li-S battery showing the actions of solvent, salt and additive [7]  
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wide temperature range and good stability with Li metal. The (9:1 v/v) of DIOX: TMF has 

been found to support ionic conductivity 7 times higher than LiClO4 electrolyte.   

 

 

   Lithium salts are used as the source of Li+ for the electrolyte with selected solvents. The 

most commonly used lithium salts in Li-S batteries are LITFSI (lithium 

bis(trifluoromethanesulfonylimide) and LiTFS (Lithium trifluoromethanesulfonate) [77, 

78] due to the high thermal stability,  good compatibility with ether based solvents [79, 80] 

and high dissociation ability [81].  LiPF6 and LiClO4 electrolytes have been found not 

Figure 2.7. Chemical structure of solvents used in electrolytes for Li-S batteries [7] 
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suitable due to Lewis acid formation and safety reasons [82]. Fig. 2.8 shows the chemical 

structures of commonly used salts. 

 

     

   The Main purpose of using additives in Li-S cells is to form a stable SEI layer on the 

Lithium anode so the cell can cycle longer. LiNO3 is the most prominent type of additive 

used in DIOX electrolytes to stabilize the Li metal surface [83]. The functionality of LiNO3  

has been investigated in [84] by ex-situ experiments. However, use of LiNO3 affects the 

potential window of Li-S battery, because it has been found that under 1.5 V, LiNO3 can 

participate in an electrochemical reaction irreversibly. It has also been found that, 

Polysulfide itself can also play the role of an additive in Li-S batteries [79, 85, 86]. By 

adding polysulfides 5 % or less into the electrolyte, it has been found that, leaking of 

Figure 2.8. Chemical structure of salts used in electrolytes for Li-S batteries [7] 
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polysulfides from the cathode can be mitigated. Fig. 2.9 demonstrates the function of 

additives in Li-S cells on forming the SEI layer.  

 

 

 

 

  

 

 

 

 

 

    Ionic electrolytes attracted the researcher’s attention due to their non-volatile and non-

flammable nature. Use of ionic liquids as the electrolyte will be safer than liquid 

electrolytes which pose problems such as leaking and degassing. Ionic electrolyte provides 

high ion conductivity, large electrochemical stability window and good solubility. 

However, the problem with ionic electrolytes is their high viscosity which poses problems 

when used in Li-S batteries in addition to their higher cost.    

 

 

Figure 2.9.  Schematic of polysulfide dissolution, SEI formation [7]  
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2.4 Challenges associated with developing a high capacity sulfur cathode  

 

     Despite the promising electrochemical characteristic of Li-S cells, producing a 

commercial Li-S cell is still a challenge. Those problems have been well understood by the 

scientific community and studied. Among them, lithium polysulfide dissolution in the 

electrolytes is the main cause of capacity degradation in substantial cycles. Lithium 

polysulfides Li2Sx  (8 ≤ 𝑥 ≤ 3) intermediate long chain products which can dissolve in 

the liquid electrolytes known to use to fabricate Li-S batteries. During the discharging 

process, insoluble Li2S2 and Li2S are formed at the end of the redox reaction in the cathode. 

Poor electrical conducting properties of sulfur and its intermediates formed along with the 

structural changes lead to sluggishness for the reaction kinetics, therefore demonstrate poor 

rate capabilities in a practical Li-S battery. Fig 2.10 shows a mechanism of polysulfide 

formation when discharging the Li-S battery.   
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   The dissolved polysulfides are then participate in a phenomenon known as polysulfide 

shuttling which is a process of migrating dissolved polysulfide chains between cathode 

and anode during the discharge and charge cycles. Fig. 2.11 depicts the polysulfide 

shuttling process schematically. The shuttling of polysulfides allows side reactions on the 

Li anode and it can lead to low utilization of Li in substantial cycles, hence poor cycle 

life.   

 

 

Figure 2.10 Schematics of a Li-S cell and its electrochemical reactions [8] 
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The third main reason for limited cycle-ability of Li-S battery with metal lithium metal is 

due to the non-uniform Li-deposition on the anode. These depositions are in two different 

types. First one is due to the dendrite formation and second is due to the formation of 

lithium crystals. Dendrites are responsible for short circuiting the cathode and anode 

while Li-crystal can chemically active with electrolyte due to their high surface area. Fig. 

2.12 depicts the dendrite formation process. 

 

 

 

 

 

 

Figure 2.11 Illustration of the shuttle mechanism of a Li-S battery [13] 
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2.5 State of the art α-MoO3 anode material for high capacity Li-S batteries 

 

  When Li-S full cells are considered for EV applications, voltage window becomes a major 

factor in addition to the high charge density as it demands light weight, high energy density 

battery packs. Si, Sn and graphite have the delithiation potential of 0.5 V, 0.3 V and 0.05 

V respectively vs Li+/Li  [67, 87, 88] . α-MoO3 demonstrate 0.2 V lithiation voltage [89] 

which would give very good open circuit voltage when assembled with sulfur in a Li-S 

battery. The layered structure of α-MoO3 shows the promise to be used in energy storage 

systems. Some of the recent work on MoO3 related to energy storage are discussed in Ref 

[9, 90]. In [91], α-MoO3 is synthesized via vapor transport technique and in [92] 1-D α-

MoO3 is synthesized with aqueous solution process starting with (Na2MoO4.2H2O). MoO3 

can also show pseudo-capacitive nature in thin films. In Ref [93], they have shown that the 

Figure 2.12 Illustration of dendrite formation process (a) lithium dissolution 

(b) lithium deposition [2] 

b a 
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crystalline MoO3 has higher gravimetric capacitance compared to amorphous MoO3. The 

low expansion of α-MoO3 upon lithiation makes it more suitable for Li-S full cell. Further, 

it eliminates any safety issue associated with Li batteries. One of the major issues with 

MoO3 is its poor electrical conductivity. The electrical conductivity of MoO3 can be 

improved by mixing with carbon. Ref [94] has demonstrated a carbon-MoO3 electrode with 

electrical conductivity enhancements. Nanowire morphology of MoO3 also is also believed 

to improve the charge capacity retention. Vertically grown nanowire electrode architecture 

has been investigated by [95] for MoO(3-x). In their work, the stable capacity of MoO(3-x) 

structure as an anode in Li-ion cell has been shown due to its accommodation for Li+ with 

low volume expansion. Li2MoO4 has been tested as a pre-lithiated anode material for Li-

ion batteries. But Li2MoO4 is not suitable for Li-S batteries due to its Mo (+6) oxidation 

state [96].   

  The α-MoO3 yield from above methods of however, is very small, to be able to make 

high energy density which requires high mass loading. Thus, research must be focused on 

improving the α-MoO3 amount as well as ways of pre-lithiating it.  
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    The work done in this dissertation uses α-MoO3 which were synthesized using hot wire 

CVD technique (HWCVD) to be electrochemically pre-lithiated and assembled with 

optimized sulfur cathode for making Li-S full cell. Further, the yield of α-MoO3 synthesis 

is further improved by introducing novel method to synthesis α-MoO3 using H2 reduction 

technique with similar material characteristics as in α-MoO3 from HWCVD technique, but 

with improved electrochemical performance in a practical Li-S full cell.    

2.6 Instruments of material and electrochemical characterization 

2.6.1 Material characterization  

2.6.1.1 X-ray diffraction (XRD) technique   

  X-ray Diffractometer (Bruker D8) was used to analyze crystalline structure MoO3. The 

XRD spectrum was measured with in the 2Ɵ range of 10˚-80˚. Copper is target material 

for single-crystal diffraction, with CuKα radiation = 1.5418 Å. These X-rays are collimated 

and directed onto the sample. The XRD analysis was performed in both insitu and exsitu 

Figure 2.13. (a)Thermodynamically stable orthorhombic α-MoO3 

 (b) meta stable β-MoO3 [11]  
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techniques. In-situ XRD cell was used for obtaining the XRD spectrum while 

electrochemically lithiating α-MoO3. Ex-situ XRD analysis was done using powder 

technique to observe the crystalline structure of synthesized MoO3.  

2.6.1.2 Scanning electron microscope (SEM) imaging 

 

TESCAN thermionic emission scanning microscope was used to image the surface and 

cross sections of sulfur cathode. Field emission scanning microscope was used for 

mapping the material composition of TiO2 coated sulfur cathodes using X-ray dispersive 

spectroscopy (EDAX). Semiconducting materials such as TiO2 was sputtered with thin 

layer of gold for better image quality under the SEM.  

2.6.1.3 X-ray photo electron spectroscopy (XPS) analysis 

In this work, XPS analysis was done to investigate the bonding nature of polysulfides 

trapped in the TiO2 particle barrier on the sulfur cathode. XPS spectrometer which used 

was VG Scientific MultiLab 3000 which Al/Mg has a X-ray twin source (1253.6 eV 

(MgKa), 1486.6 eV (AlKa) 

2.6.1.4 Thermogravimetric analysis (TGA) 

The mass loading of cathode and anode was measured and calculated using Q600 scanning 

differential thermogravimetry (SDT) analyzer. The Q600 SDT analyzer has a maximum 

temperature of 1500 ̊ C. Sulfur mass loading was calculated using Q600 SDT analyzer with 

Air supply. Sulfur is evaporated as SO2 in the temperature range of 200 ˚C - 400 ˚C, hence 

the mass loading can be calculated by the weight loss.   
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2.6.2 Electrochemical characterization  

 

2.6.2.1 Galvanostatic electrochemical characterization 

 

   In galvanostatic electrochemical analysis, the voltage is measured while keeping the 

current constant. Typically, capacity is measured using galvanostats. In this work, Arbin 

16 channel battery tester was used for capacity measurements, C-rate measurements and 

cell cycling. The Arbin battery tester is programmable for the different voltage and 

current requirements within 5 V and 10 A limits. All experiments were carried out in 

room temperature at 25 ˚C. 

2.6.2.2 Potentiostatic electrochemical characterization 

 

   Potentiostats are one of the key instruments used in electrochemical analysis. In a 

potentiostat, voltage is the controlled variable, while current is the measured variable. In 

this work, biologic SP200 potentiostat was used to perform cyclic voltammetry (CV) and 

Figure 2.14. Cross section of TGA instrument   
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electrochemical impedance spectroscopy (EIS) analysis. The cyclic voltammetry was 

performed in the range of 2.8 V- 1.5 V for the cathode and 2.8 V – 0 V for the anode. The 

frequency range used for EIS was 1 GHz – 1 mHz.  
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CHAPTER 03 

                        MESO-POROUS TiO2 COATED SULFUR CATHODE   

 3.1 Scope 

 The problems associated with sulfur cathode and the mechanism of polysulfide dissolution 

has been mentioned in Chapter 1. Also, a body of research done elsewhere on developing 

sulfur cathodes has also been mentioned in Chapter 1. Therefore, this chapter is structured 

in such a way that, the application of anatase TiO2 coating on sulfur cathode to trap soluble 

polysulfides is discussed at the beginning. Then methods of fabricating carbon electrodes 

are described to improve the electrical conductivity of sulfur cathode. Finally, the 

electrochemical and materials analysis of anatase titania coated sulfur cathodes are 

presented. 

3.2 Introduction  

    The use of TiO2 has been successfully utilized in sulfur cathodes by other researches to 

improve the performance of Li-S batteries. In the first method, sulfur cathodes were made 

by simply mixing titania particles with sulfur/carbon composites [97-99]. In the second 

method, sulfur was first coated with titania followed by carbonization [46, 53, 100]. In the 

third method, titania nanoparticles 



41 
 

have been coated on a polymer separator, forming an effective polysulfide adsorbing 

barrier [101]. All these methods have one common feature of mixing titania with carbon   

to enhance the electrical conductivity of the bulk electrodes. However, the capacity 

retention in any of these methods is not very attractive.  

3.3 Mesoporous TiO2 coating as a polysulfide adsorbing agent 

  TiO2 has two main structures; rutile and anatase. TiO2 has drawn the attention of many 

research fields such as optics, semiconductors and energy storage etc.  TiO2 has three 

naturally occurring crystal structures Rutile (tetragonal, a=b=4.584 Å, c=2.953 Å), 

brookite (rhombohedral, a=5.436 Å, b=1.166 Å, c=5.135 Å) and anatase (tetrahedral 

a=b=3.782 Å). TiO2 is mainly a semiconducting material and it has different applications 

as catalyst, photoelectrochemical material, bio medical treatments and in energy storages. 

In this work, the anatase phase of TiO2 is used for trapping soluble polysulfides. The 

Anatase titania has a crystal structure of 3D network formed by the stacking of 1D zigzag 

chains consisting of distorted edge sharing TiO2 [102]. Rutile and Anatase has been 

extensively studied in their application as they have studied in their surface science 

techniques. The main object of this sub section is to describe the properties of Anatase 

surface which is being used in our work to trap soluble polysulfides.  Defect of the TiO2 

can be line defect or point defect. The point defects on TiO2 surface has been researched 

by many researchers. Their occurrence can be due to Ti-O bond dissociation on the surface 

and thermal effect.  

  TiO2 surface has been studied extensively for adsorption of different elements. In this 

work however, we are interested in adsorption of sulfur or polysulfides links to oxygen 

defect sites. Elemental sulfur (Sn, n≥2) adsorption has been studied by [4]. Bechtold and 
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co-worker [103] has investigated the polysulfide adsorption by dosing sulfur 

electrochemically. In their finding polysulfides adsorbed at fivefold coordinated Ti atoms 

(Fig. 3.3). This is shown in Fig. 3.1 where sulfur atoms are visible as large, white spots 

situated along the bright rows of empty-states of STM image. The adsorption of 

Polysulfides onto oxygen vacancies are confirmed by the disappearance of the defect-

related band gap state in valance band photoemission spectra [104]. The adsorption 

properties for Sn (n≥2) is the motivation for us to use TiO2 as a polysulfide trapping barrier 

via surface adsorptions of polysulfides. 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 3.1. STM image of sulfur adsorbed on TiO2 (110). S atoms are located at the bright 

spots [4]   

Figure 3.2. Unit cell of Rutile TiO2  [4]   
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3.4 Material synthesis for sulfur/carbon electrodes 

   In this work, we attempted to fabricate sulfur cathodes using two different carbon 

matrices. In one method we used carbonized micro fiber network to host sulfur. Second 

method used activated carbon as sulfur hosting matrix. Both methods will be discussed in 

detail below.  

3.4.1 Carbonized microfiber (CMF) based sulfur cathode  

          Micro fiber synthesis using electro-spin technique has been very well established in 

numerous fields. Electro-spin technique is commonly used in fields such as textile industry. 

In our electro-spin technique, Poly-acrylonitrile is used as the polymer for synthesizing the 

fibers. Fibers were extruded from a syringe needle using an electric potential of 15 kV. The 

distance from anode to cathode was maintained at ~30 cm. When synthesizing the fibers, 

the flow rate was maintained between 0.7 ml min-1 to 1 ml min-1. Fibers were collected 

Figure 3.3. Unit cell of Anatase phase [4] 
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onto a negatively charged rotating drum which made of disposed laser printer cartridge as 

shown in Fig. 3.4a.  The diagram of the experimental setup is shown in Fig. 3.5.  

 

 

 

 

 

 

 

 

 

Figure 3.4. (a) fiber collector drum (b) synthesized poly-acrylonitrile fiber mat 

a b 

Figure 3.5. Electrospinning setup  
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   The electro-spun fibers are deposited as a free-standing cloth (Fig 3.4b). The non-

conducting cloth however needs to be carbonized in order to make it electrically 

conductive. The carbonization process is done in a nitrogen environment. In the first stage 

of the process, the fiber mat was stabilized just by heating at 200 ℃ in the normal 

atmosphere for about 3 hours to break-down the OH bonds in the carbon structure. Next, 

the dehydrated fiber structure is fully burned at 900 ℃ in a nitrogen environment. This 

process is maintained for about 2 hours. The temperature must be ramped slowly to prevent 

shrinking and warping of the fiber mat.   

 

 

 

 

 

 

Figure 3.6. SEM images of the carbonized microfibers  
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  After carbonization of the fibers, the fiber mat was cut into 1 𝑐𝑚 × 1𝑐𝑚 square pieces 

and 3- 4 mg of sulfur was thermally infused into the fiber network. The low melting 

temperature of sulfur (115 ℃) was beneficial in this process. The fiber network was found 

to show obvious capillary action. Simply, a known mass of sulfur was first melted, and the 

carbonized mat was dipped in the molten sulfur so that sulfur can easily infuse into the 

carbon network. This allowed the establishment of an excellent electrical conductivity of 

the sulfur-carbon electrode. Finally, the entire sulfur/carbon fiber electrode was dip coated 

in titania in ethanol to coat TiO2.  

 

 

 

Figure 3.7. SEM image of the sulfur diffused carbonized fiber electrode 
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3.4.2 Activated carbon (ACP) based sulfur cathode 

   

  

  The electrode is prepared by ball milling ACP (derived from agricultural waste) with 10 

ml of 60% PVDF (Polyvinylidene fluoride) in NMP (N-Methyl-2-pyrrolidone) solvent for 

12 hours. Then the ACP slurry is poured onto a clean glass surface to and let it dry at room 

temperature to form a free-standing ACP sheet Fig. 3.8. After that, sulfur (3-4 mg) is melted 

on a hotplate at 130 °C and is impregnated into ACP free standing carbon structures by 

pressing them onto the melted sulfur. In the third step, ACP electrodes are coated with 200 

nm titania paste by dipping the electrodes in titania suspension in ethanol, followed by air 

drying for 24 hours. A part of the back surface of the titania coating is scratched-off to 

expose the interior of the carbon/sulfur electrode (bridging) in order to make better 

electrical contact with the current collector.  

3.5 Coin cell assembling for electrochemical testing 

  Titania coated sulfur electrodes made of either CMF or ACP are pressed against a carbon 

black pellet forming the electrical bridge. The carbon black pellet is made by mixing 20 

 Figure 3.8. Free standing electrode made of activated carbon     
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mg of acetylene carbon black and 20 ml of PTFE (Polytetrafluoroethylene). Next, it is 

placed on a stainless-steel mesh with a diameter of 15 mm and pressed under ~300 kg of 

pressure (using a hydraulic press) to mount the entire assembly on the current collector. 

The thickness of the carbon black pellet is reduced to about 0.1-0.2 mm after pressing. 

Then they were assembled in a CR2032 coin cell with pure lithium metal as the anode, 

inside an argon-filled glove box. Celgard 3401 polymer separator (~30 µm thick) is placed 

between the electrodes. The composition of the electrolyte used in this work is 1:1 ratio of 

1,2-Dimethoxyethane (DME Sigma Aldrich) and 1,3-Dioxolane (DOL Sigma Aldrich) in 

1 M Bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) and 1% wt of LiNO3 for a total 

of 0.5 ml of electrolyte. The ionic conductivity of the electrolyte is ~14.7 mS/cm at 25 ℃. 

LiNO3 is widely used as an additive in the electrolyte to form a protective film on the 

lithium anode. Fig. 3.9 represents the side view of the cell including the SEM image of the 

titania coating, and the pore width distribution for anatase titania powder measured by BET 

technique. The mean pore width is found to be 40 nm which is mesoporous. The size of 

titania particles used in this experiment is around 200 nm. When the electrode is fabricated, 

we found that the particle coating maintains the meso-porosity. 
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Figure 3.9. Schematic diagram of the titania coated electrode (a) without electrical contact (b) 

with electrical contact for ACP supported sulfur cathode in a Li-S cell. The SEM images of the 

sulfur support and the titania coating and (c) pore width distribution (d) N2 adsorption–desorption 

isotherms for anatase titania powder are also shown 
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3.6 Electrochemical and structural analysis 

     The cells were cycled between 1.5 and 2.8 V versus Li/Li+ in galvanostatic mode using 

16 channel Arbin battery test system. Cyclic voltammetry (CV) was performed at a scan 

rate of 0.3 V in the range of 1.5 to 2.8 V using the biologic sp-200 electrochemical system. 

AC impedance (EIS) of the cell was measured using the same electrochemical system over 

the 1 mHz to 1 MHz range. Both CV and EIS measurements were conducted using two- 

electrode configuration with lithium as both the counter electrode and the reference 

electrode. All performances were carried out at 25 °C.  

Characterization: The ionic conductivity was measured by a biologic sp-200 system.  The 

electrode surface morphology before and after cycling was characterized by a TESCAN 

thermionic emission scanning electron microscope. X-ray photoelectron spectroscopy (VG 

scientific-MultiLab 3000) was employed to detect the chemical composition of the 

cathode. All XPS spectra were fitted with Gaussian−Lorentzian functions and a shirley and 

linear type background. 2P3/2 2P1/2 peaks were fitted using Lorentzian function. The binding 

energy values were all calibrated using Carbon 1S 284.5 eV. Samples for SEM and XPS 

characterization were prepared by disassembling cells and rinsing with 1,2-

Dimethoxyethane, 1,3-Dioxolane. TGA studies were done by Thermogravimetric analyzer 

TA 2050 
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 3.7 Results and discussion 

     Performance of the sulfur cathode is tested against lithium metal as the anode in a coin 

cell configuration over the voltage range of 2.8–1.5 V using an Arbin battery tester. The 

sulfur cathodes made of CMF demonstrated poorer electrochemical performances 

compared to the sulfur cathodes made of ACP. The electrochemical performances of CMF 

based sulfur cathodes are shown in the Appendix 1.  

  The electrochemical performances of an uncoated sulfur cathode and a mesoporous titania 

coated cathode made using ACP are shown in Fig. 3.10. The areal sulfur loading is 2.65 

mg-cm-2 and mass of titania coating is approximately 1.5 mg-cm-2. In all cases of Fig 3.10b, 

discharge curves showed two discharge plateaus at 2.4 and 2.0 V. The sudden drop of 

voltage in Fig. 3.10a from 2.6 V to 2.4 V is due to the polarization and IR drop of electrodes 

and electrolyte. The plateau at 2.4 V is believed to be due to the reduction of S8 to high-

order soluble lithium polysulfides (e.g. Li2S4), and the plateau at 2.0 V is due to further 

reduction of Li2S4 into insoluble Li2S. The uncoated sulfur electrode shows rapid decay of 

gravimetric discharge capacity within the first 20 cycles (Fig. 3.10a). There, titania coated 

electrode shown in purple color however, exhibited stable discharge capacity in excess of 

900 mAh   g-1 even after the 100th cycle.  
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Figure 3.10. Gravimetric capacity results of ACP based sulfur electrodes; (a) potential vs. 

specific capacity curves of optimized ACP based titania coated sulfur cathode, (b) 

comparison of the discharge capacity of various ACP based cathodes; (i) titania coated 

sulfur cathode with (purple) and without (blue) improved electrical connection to the 

current collector and (ii) uncoated electrodes (red); left axis represent the discharge 

capacity and the right axis represents the coulombic efficiency for the optimized sulfur 

cathode (c) rate capability performances of ACP based titania coated sulfur electrode with 

improved electrical connection. 
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   The influence of proper electrical connection to the conductive matrix of the electrode is 

investigated by comparing three different activated carbon electrode systems: (i) uncoated, 

(ii) titania coated with poor electrical connectivity, and (iii) titania coated with improved 

electrical connectivity (electrical bridging) as shown in Fig. 3.11. Experiments were carried 

out at C/3 discharge and charge rate. Synthesis of activated carbon is described in the 

supplementary document. A properly working sulfur electrode has two voltage plateaus at 

~2.4 V (formation of Li2Sx polysulfides) and ~2.0 V (formation of Li2S and Li2S2). This is 

an indication that Li+ transport has not been mitigated by the titania particle barrier. A stable 

discharge capacity of about 980 mAh g-1 for 100 cycles has been achieved for the titania 

coated ACP supported sulfur electrode with improved electrical conductivity. In contrast, 

the titania coated ACP supported sulfur electrode with poor electrical connectivity shows 

lower discharge capacity of ~700 mAh g-1 after 100 cycles while the ACP supported sulfur 

electrode without a coating layer shows discharge capacity of only 265 mAh g-1 at 100th 

cycle. The idea of coating the back side of the electrode with mesoporous titania is to 

prevent any leak of soluble polysulfides into the electrolytes when the battery is at idle 

between cycles.  

    In this work the electrical conductivity between current collector and active material is 

established through an electrical bridging technique (Fig. 3.11c). Its effect is further 

analyzed by 2- probe impedance tests as shown in Fig. 3.11. The electrical contacts were 

made to the current collector and the titania coating layer on the other side. It is found that 

the dc resistance for the electrically bridged cathode is 127.88 𝛺 in comparison to the dc 

resistance value of  1283.63 𝛺 for the electrode with titania coating on both sides. This is 
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a significant improvement in the net electrical resistance due to the electrical bridging 

leading to a high discharge capacity as seen in Fig. 3.10b.  



55 
 

   

 

 

Figure 3.11. Electrical conductivity measurements of the cathode material: Nyquist 

plots for titania coated sulfur electrode (a) with part of the backside uncoated (exposed) 

(b) both sides coated with titania. The inserts show the equivalent circuit network 

utilized for impedance analysis. (c) and (d) show the side view of the titania coated 

electrode with provisions for electrical bridging and the electrode with both sides 

completely coated with titania respectively. 
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  In order to investigate high-power performance of the titania coated sulfur electrode with 

proper electrical contact, rate capability was studied in the voltage range of 2.8–1.5 V with 

different current densities as shown in Fig. 3.10c. Five initial formation cycles have been 

shown at 130 mAg-1 current density followed by 5 cycles each at 260 mAg-1, 650 mAg-1, 

and 1.3 Ag-1 current densities. It shows that discharge capacities at 130 mAg-1, 260 mAg-1, 

650 mAg-1, and 1.3 Ag-1 are approximately 1000, 800, 700, and 450 mAh g−1, respectively. 

When the current density is reduced back to 130 mAg-1 after the rate performance testing, 

the sulfur cathode can retain the discharge capacity close to the formerly measured value 

of 900 mAh g−1, indicating its good reversibility and high rate capability and demonstrating 

the recovery of the titania coated sulfur cathode after subjecting it to different charge-

discharge rates.  

 

 

Figure 3.12. Cyclic voltammetry measurement of (a) uncoated sulfur electrode (b) titania 

coated sulfur electrode (ACP based) at the voltage range 2.8-1.5 V at scan rate of 0.3 mVs-1 
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    Next, cyclic voltammetry (CV) was carried out for the ACP based sulfur impregnated 

electrodes without and with titania coating as shown in Fig. 3.12 within 2.8 V and 1.5 V 

range at 0.3 mV s-1 rate. The lower end potential is chosen to be 1.5 V since LiNO3 additive 

tends to be reduced irreversibly at the voltages below 1.5 V [105]. CV measurements are 

carried out for up to 5 cycles and both electrodes showed the complete two step redox 

reactions with two reduction peaks appearing at around 2.3 and 2.0 V and one oxidation 

peak at ~2.4 V. The peak at ~2.3 V is ascribed to the reduction of sulfur to form the higher 

order lithium polysulfides (Li2Sn, n>4), and the peak at ~ 2.0 V corresponds to further 

reduction of these lithium polysulfides to lower order lithium polysulfides (Li2Sn, n < 4) 

including Li2S2 and Li2S. The oxidation peak at ~ 2.4 V can be attributed to the oxidation 

of lithium polysulfides (Li2Sn, n < 4) back to higher order lithium polysulfides (Li2Sn, n>4). 

In theory two oxidation peaks are expected at the sulfur cathode, but in our case, these to 

peaks appear to merge into a single composite peak. We believe that, the resolution of the 

oxidation peaks in Li-S battery depend on the charge transfer resistance in the sulfur 

electrode. Sulfur cathode with better charge transfer properties, will allow all the 

polysulfide species to oxidize in parallel reactions, causing the peaks to merge in to a single 

peak. The charge transfer resistance depends on the electronic conductivity, porosity, and 

the surface area of the conductive material of the sulfur cathode. The work in [19] has 

reported cyclic voltammetry with two oxidation peaks for Li-S battery. They have reported 

cyclic voltammetry results for three different electrode architectures made of carbonized 

polyacrylonitrile (NPCNFs), CO2 activated carbonized PAN (ACNFs), and carbonized 

PAN–Nafion nano-fibers (MCNFs). They show that as the surface area increases (MCNF 

> ACNF > NPCNF in that order), the corresponding oxidation peaks in the cyclic 
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voltammetry curves become less resolved and merge into a single peak as the surface area 

increases, presumably due to better charge transfer properties.  The CV curve shown in 

Fig. 3.12b and discharge curves of Fig. 3.10b for a titania coated sulfur cathode shows 

remarkable durability over the cycles. This is an indication of the reformation of sulfur 

within the bulk electrode and minimal leakage of polysulfides into the electrolyte. In 

contrast, the uncoated sulfur electrode shows significant irreversibility in the CV diagram 

with shifting of peak positions and changes in current levels implying dissolution of 

polysulfides into the electrolyte. In this work, titania is expected to trap the polysulfides 

and the CV curves should not show a considerable current at the 2.8 V vertex as in Fig. 

3.12b. This reasoning is confirmed by comparing the CV cycles of the uncoated sulfur 

electrode shown in Fig. 3.12a. It is noticeable that at 2.8 V vertex of Fig. 3.12a, there is a 

cathodic current ~2 mA, implying existence of dissolved polysulfides in the electrolyte still 

undergoing oxidation.  
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Figure 3.13. (a) Raman spectra of titania coated sulfur electrodes (ACP based) before and 

after discharge (b) XPS surface analysis for titania coating (c) XRD spectra of titania 

coated sulfur electrodes before and after discharge, spectra for Li2S and TiO2 powders are 

also shown for comparison. The * represents the signature of the polymer bag and the 

dotted vertical lines represent the aluminum substrate. 
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Raman and X-ray photo electron (XPS) analysis were carried out to further confirm the 

trapping of polysulfides in titania layer. In Raman spectrum analysis, we investigated 

titania coated electrode before and after discharge as shown in Fig. 3.13a. Both spectra 

show 3 clear peaks characteristic of crystalline anatase titania. An additional weak peak 

appearing at ~742 cm-1 for the discharged electrode can be interpreted as due to the 

polysulfide links (Sx
-2, x=4-8) [106].  

Fig. 3.13b shows the sulfur 2P peak (S2P) with 2 distinct peaks at 164.7 and 162.8 eV 

corresponding to bridging sulfur and terminating sulfur respectively [40]. This is possible 

due to the efficient trapping of higher order soluble polysulfides in the mesoporous TiO2 

layer. 

The electrode which used in this analysis are washed with the 1:1 ratio of 1,2-

Dimethoxyethane (DME Sigma Aldrich) and 1,3-Dioxiolane (DOL Sigma Aldrich) to 

remove any dissolved polysulfide from the surface of titania coating which might not have 

adhered to the titania surface. Thus, it is reasonable to conclude that the polysulfides 

detected by Raman and XPS are from the polysulfides which were adhered on tiatania 

particles. Fig. 3.13c compares XRD spectra for titania coated sulfur cathode before and 

after discharge. XRD spectra for pristine titania and Li2S are also shown for comparison. 

It shows clear evidence of the presence of solid Li2S after the first cycle discharge. 

    In the uncoated sulfur electrode, soluble polysulfides are expected to dissolve into the 

electrolyte. In the case of meso-porous titania coating, the dissolved polysulfide ions 

adsorb on titania surfaces and never reach bulk electrolyte beyond titania barrier. In the 

schematic diagram in Fig. 3.14, the processes of a Li-S battery with uncoated and titania 

coated cathodes have been categorized into several regions where key reactions take place.  
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  EIS was used to determine impedances within coated and uncoated sulfur cathodes during 

cycling. Based on the Nyquist plots, an equivalent circuit has been proposed as presented 

in Fig. 3.14. Here, Re represents the electrolyte resistance as a single series resistance in 

the network. The loops in the Nyquist plot consisting of superposition of multiple 

semicircles are each represented by a combination of a resistance and a constant phase 

element (CPE) in parallel. A similar equivalent circuit modeling and electrochemical 

impedance analysis can be found in the supporting materials of the wok reported by Lin 

ma et al [29].     

 

Figure 3.14. Schematics of the chemical processes in (a) uncoated and (b) titania coated 

sulfur electrode in Li-S battery. 

a 

b 
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  a b 

c  d 

  e   f 

Figure 3.15. Fitting parameters of EIS data for ACP based sulfur cathode to an equivalent 

electrical circuit model: Each plot contains charge transfer resistance at cathode (Rcct), 

charge transfer resistance at anode (Ract), electrolyte resistance (Re), and interface 

resistance (Rint). Plots (a) and (b) represent results for titania coated and uncoated samples 

respectively against DOD; plots (c) and (d) represent results for coated and uncoated 

samples respectively against DOC. Plots (e) and (f) represent results for titania coated and 

uncoated samples respectively against cycle number.   
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  The choice of a CPE instead of a capacitor is due to the non-ideal behavior of the 

electrodes. Each semicircle represents (i) charge transfer at the cathode (Rcct||CPEcct) (ii) 

charge transfer at the anode (Ract||CPEact), and (iii) contact interphase at the cathode 

(Rint||CPEint) which is present in the bulk of the cathode representing the charge conduction 

between the cathode current collector and the redox sites in the cathode.  The variation of 

Rint in the case of titania coating is expected to be significant. The contribution of the anode 

impedance is neglected because the anode impedance in an electrolyte with polysulfides is 

small. Fig. 3.15 shows the relevant impedance parameters extracted by fitting the EIS data 

with the proposed equivalent circuit during (i) discharging, (ii) charging, and (iii) cycling 

processes.  

      The discharge curve has been categorized into three zones according to the key actions 

taking place in the cell. In zone 1, both electrodes are polarized, and solid sulfur starts to 

dissolve in the electrolyte. In zone 2, longer polysulfide chains are shortened via further 

reduction (in the presence or absence of titania). In zone 3, solid Li2S and Li2S2 are formed.  

These solid products are more ionic in nature. In Fig. 3.15a and 3.15b, fitting parameters 

corresponding to charge transfer resistance (Rcct) and interphase resistance (Rint) at cathode 

for titania coated and uncoated sulfur electrode respectively during discharge are shown at 

various depth of discharge (DOD). 

     The behavior of the charge transfer resistance, Rcct at the cathode is similar in both cases. 

They both show initial decrease of Rcct reaching a minimum ~ 40% DOD followed by a 

slow increase. The initial decrease of Rcct can be interpreted as due to the improved 

electrochemical accessibility of solid sulfur (insulating) to undergo polysulfide formation. 

The following increase in Rcct is due to the formation of insulating and insoluble Li2S and 
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Li2S2. For both coated and uncoated sulfur electrodes this charge transfer process is similar. 

However, Rint shows distinctly different behaviors for coated and uncoated cathodes. In the 

case of titania coated cathodes, Rint value is seen to increase in zone 1, presumably due to 

the adsorption of dissolved polysulfides at the defect sites of titania. It is interesting to 

observe that the interphase resistance drops in zone 2, where longer polysulfides are 

reduced to shorter polysulfides.  

      During the charging of the cell, solid Li2S and Li2S2 should eventually oxidize back to 

elemental sulfur through intermediate polysulfide formation. The analysis of the variation 

of the Rint during the charging process provides useful information about the underlying 

mechanism of the titania coated electrode as shown in Fig. 3.15c. Once Li2S starts to 

oxidize to intermediate polysulfide chains, the interphase resistance, Rint is expected to 

decrease as the conductivity improves for the titania coated electrode (Fig. 3.15c).  In 

contrast, the Rint of the uncoated sulfur electrode is seen to increase as charging progresses 

(Fig 3.15d). It is reasonable to assume that this conversion (Li2S/Li2S2 to intermediate 

polysulfides) may take place at the electrode matrix-electrolyte interface since there are 

considerable amounts of dissolved polysulfides remaining in the electrolyte. As the sulfur 

growth takes place on the surface, the interphase resistance, Rint continues to increase (Fig. 

3.15d). It is also noted that, the effect on electrolyte resistance due to the dissolved 

polysulfide is considerably small (Fig. 3,15e) in the case of titania coated cathode.   

      Dissolution of polysulfides increases the viscosity of the electrolyte causing an increase 

in electrolyte resistance (Re) noticeable in Fig. 3.15e and 3.15f in different magnitudes. 

Titania coated sulfur electrodes show a stabilized Re, however, due to the adsorption 

activity of titania layer. It is evident from the relative magnitudes of the changes in Re that 
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coating of the sulfur electrode with titania has significantly limited the polysulfide 

dissolution into the electrolyte. Finally, variation of, Ract during cycling is presented in Fig. 

3.15e and 3.15f for both coated and uncoated cathodes as evidence for polysulfide shuttling 

and Li2S and Li2S2 formation on the anode surface. Li2S and Li2S2 are known to be formed 

on the anode by reducing the dissolved polysulfides (from cathode) in the electrolyte after 

shuttling to anode. For the uncoated sulfur cathode, Ract increases almost linearly until 20th 

cycle and then shows an abrupt rise confirming the continuous formation of Li2S/Li2S2 on 

the anode. On the contrary, the titania coated cathode shows saturation of Ract after the 20th 

cycle implying limited formation of Li2S/Li2S2 as a result of encapsulation of soluble 

polysulfide within the titania coating.  

3.8 Conclusions  

Titania coating of the sulfur electrode with proper electrical contact with the current 

collector has proven to be effective to enhance the cyclability of Li-S batteries by retaining 

a stable capacity of 980 mAh g-1 discharge profile over 100 cycles. The performance of 

mesoporous titania coated sulfur was compared with that of uncoated sulfur electrodes 

using EIS and CV techniques.  The mechanism of trapping dissolved polysulfide within 

the titania layer was verified by investigating in-situ impedance measurements. Ract of the 

cell with titania coated sulfur electrode was stabilized at 20 Ω while Ract for uncoated sulfur 

electrode continued to rise beyond 20 Ω during charging and discharging. Such increase in 

charge transfer resistance at the anode in uncoated sulfur cathode is due to deposition of 

solid Li2S on lithium metal anode. The electrical bridging technique to improve the 

electrical conductance between the interior of the sulfur/carbon composite and the current 

collector is proven to contribute significantly for the superior performance of titania coated 
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sulfur electrodes. Otherwise, the role of titania to improve the cyclability of sulfur electrode 

with high discharge capacity will be undermined due to the poor electrical conductance 

between the interior of the electrode and the current collector. In addition, Raman and XPS 

analysis confirm the effective polysulfide trapping by the mesoporous titania coating even 

though the isolation of different polysulfide species was difficult. Finally, the XRD 

analysis concludes non-existence of any phase changes in titania confirming that the 

polysulfide is trapped only by adsorption onto titania.   
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CHAPTER 04 

ANODE DEVELOPMENT USING α-MoO3 FOR HIGH CAPACITY Li-S BATTERIES  

4.1 Scope 

 This chapter is mainly focused on using pre-lithiated α-MoO3 as an anode material in Li-

S batteries to eliminate the Li metal anode. This goal is reached by synthesizing α-MoO3 

by HWCVD technique and proposing a novel method to pre-lithiate α-MoO3. The 

application of pre-lithiated α-MoO3 as an anode material with sulfur cathode is discussed 

and its electrochemical performances are also presented.  

4.2 Introduction     

  When sulfur electrodes are tested against lithium metal as the anode (half-cell), the 

electrochemical performance suffers from lithium metal related phenomena such as 

dendrite formation [107] and SEI layer [108] etc. In order to construct full Li-S cells, the 

candidate materials for anode must be carefully chosen by considering their cathodic and 

anodic potential and capacity matching. Graphite, Si and Sn etc. fulfill the above 

requirements and have been studied as anodes in Li-ion full cells  

     The anode which we discussed here has been adopted from the work reported in Ref 

[9]. They have demonstrated α-MoO3 to be a good anode material for Li-ion batteries 

with initial discharging capacity of 1043 mAhg-1. This discharging capacity as an anode 

material is a good match for sulfur cathode to be used in a Li-S full cell. MoO3 is known 
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to have several phases. α-MoO3 and β-MoO3 were found to coexist in their material 

synthesized by Hot Wire CVD technique.   In a typical Li-S half-cell, two distinct plateaus 

can be observed in the potential-capacity curves at two different potentials. These plateaus 

are prominent partly due to the high electrical conductivity of Li metal. Li-S full cells made 

of silicon anode also show the two step discharge plateaus due to the better charge transfer 

processes as a result of their high electrical conductivity. Several researches have attempted 

fabricating Li-S full cells using silicon anodes. Ref [109], discusses a method of fabricating 

a silicon nanowire anode mixed with carbon and three dimensionally deposited Au 

nanoparticles. Another group [110] has fabricated Li-S full cell using Li2S-C cathode and 

Si/C anode. A Li-S full cell, starting from Li2S cathode and silicon nanowire anode has 

been investigated in [111]. In each case similar performances have been observed with 

continuous degradation of discharge capacity. The reason for such degradation is due to 

the use of poorly encapsulated sulfur in the cathode and degradation of Si upon continuous 

cycling. However, in this work we are using an optimized mesoporous TiO2 coated sulfur 

electrode which we have investigated recently[112]. Therefore, we believe that, the 

electrochemical characteristics of pre-lithiated α-MoO3 can be isolated and observed in a 

Li-S full cell. In [9], it has been found that, high capacity with good stability can be 

achieved by adding small amount of Si nanoparticles to Hot Wire CVD deposited α-MoO3. 

To our knowledge, this is the only work on Li-S full cell using pre-lithiated α-MoO3 

(Li1.33Mo0.66O2) anode. Therefore, we believe that the work discussed in this dissertation 

can lead to valuable finding on Li-S battery technology.  
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4.3 α-MoO3 synthesis and S-Li@MoO3 full cell assembling in coin cell format 

   The sulfur cathode is prepared using activated carbon according to the method described 

in Chapter 3 by coating a sulfur/activated carbon electrode with mesoporous TiO2.   

     In order to synthesize α-MoO3 for the anode, first the method described in [9] was 

followed using a hot wire CVD technique. The material was deposited on the inner wall of 

quartz glass tube using a co-centric Mo wire. The synthesis process was carried out for 

about 72 hours to collect ample amount of MoO3 and scraped off the reactor in powder 

form. The resulting MoO3 was analyzed by XRD and confirmed to be α-MoO3. The color 

of as synthesized α-MoO3 was found to be blue, which is typical for α-MoO3.  In order to 

reproduce the results reported in [9], Si nanoparticles suspended in ethanol is added to α-

MoO3 in micro gram quantity. Then, 5 mg of Silicon decorated α-MoO3 is mixed with 7 

mg of teflonized carbon binder (mixture of Polytetrafluoroethylene (PTFE) and acetylene 

black). This enables easy processing of electrode material to form circular pellets (0.7 mm 

in diameter and 0.5 mm thick) which can be easily pressed on to a stainless-steel mesh 

(Alpha Aesar- 80 mesh) current collector fitting in CR2032 coin cells. Before the assembly 

of full cell, it is important to ensure proper quantities of the anode and cathode materials. 

In the half-cell assembly, metallic Li acts as a reservoir for Li-ions, whereas in the full cell 

configuration, the lithiated anode materials is the only source of Li-ions (in addition to 

electrolyte). Therefore, capacity balancing is necessary to ensure the availability of active 

material during cycling. Simple calculation of such capacity matching of sulfur cathode 

and Li1.33 Mo0.66O2 anode yields that ~5 mg of α-MoO3 is required with 2 mg of sulfur. A 

detailed description about the calculation considering the mass balancing of the full cell is 

included in the supporting material.  First, α-MoO3 and Lithium metal electrodes were 
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assembled in the coin cell format in a dry argon glove box as the initial step towards the 

Li-S full cell fabrication process. The electrolyte used in this cell is 1:1 ratio of 1,2-

Dimethoxyethane (DME Sigma Aldrich) and 1,3-Dioxialane (DOL Sigma Aldrich) and 

1M of Bis(trifluoromethanesulfonimide) lithium salt (LiTFSI) and 1% wt of LiNO3. The 

assembled coin cell was connected to a battery tester (Arbin-16 cannels) and α-MoO3 was 

galvanostatically lithiated with a constant current of 0.14 mA (C/10) to form Li1.33 

Mo0.66O2. In this electrochemical lithiation process, α-MoO3 electrode functions as a 

cathode.  After α-MoO3 is fully lithiated, the coin cell was dissembled inside the glove box 

and Li1.33Mo0.66O2 electrode was carefully and assembled as the anode in a fresh coin cell 

against afore mentioned sulfur electrode with fresh electrolyte which is same as in the 

lithiation process. Then the new S- Li1.33Mo0.66O2 full cell was connected to the battery 

tester to perform the galvanostatic electrochemical testing. 

  The electrochemical activity of the S- Li1.33 Mo0.66O2 full cell is further investigated using 

cyclic voltammetry and electro-chemical impedance techniques using a three-electrodes 

Swagelok cell. The three electrodes Swagelok cell consisting of active cathode (sulfur) and 

anode (Li1.33Mo0.66O2) as the working and counter electrodes with a platinum wire as the 

reference electrode. 
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4.4 Electrochemical and structural analysis 

     The full cells were cycled between 0.5 V and 2.8 V in galvanostatic mode using 16 

channel Arbin battery test system. Cyclic voltammetry (CV) was performed at a scan rate 

of 0.3 mV/s in the range of 1.5 to 2.8 V (in a three electrode Swagelok cell configuration) 

using a biologic sp-200 electrochemical system. AC electrochemical impedance 

spectroscopy (EIS) of the cell was also studied in the three electrodes configuration using 

the same electrochemical system over the frequency range of 1 mHz to 1 MHz.  All the 

measurements were carried out at 25 °C.  

4.5 Characterization 

     The morphology of the electrode surface was characterized by a TESCAN scanning 

electron microscope (SEM). X-ray Diffractometer (Bruker D8) employed to analyze the 

MoO3. 

 

Figure 4.1. Synthesis process of α-MoO3 using Hot Wire CVD technique [9]  
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4.6 Results and discussion  

       In the beginning, similar to the work reported in [9], α-MoO3 was directly deposited 

on a stainless steel substrate using hot filament CVD and used in half cell configuration 

against Li in a coin cell. After full lithaition, the cell was disassembled and the binder free 

anode material (Li1.33Mo0.66O2) was tested in a Li-S full cell against sulfur cathode. 

However, they appear to degrade the capacity very quickly presumably due to delamination 

of anode material. Therefore, to eliminate delamination problem α-MoO3 is synthesized by 

Hot Wire CVD and scraped into a powder form and then mixed with carbon and binder in 

such a way that, mAh charge capacity (vs Li/ Li+) is matched with the sulfur electrode. To 

confirm the electrochemical activity of Si decorated MoO3 in carbon/binder matrix, in-situ 

XRD test is carried while the α-MoO3 is being lithiated. Fig. 4.2 shows in-situ XRD spectra 

during lithiation (including the spectrum of the as prepared material) of Hot Wire CVD 

deposited MoO3 powder in teflonized acetylene black carbon binder electrode. The XRD 

results confirm that the pre-lithiation process  in our sample is similar to that of directly 

deposited α-MoO3 on stainless steel reported in [9].  The diffraction pattern of the as 

prepared Si@MoO3 (red curve) is consistent with α-MoO3 (JCPDS 00-005-0508) having 

an orthorhombic crystal structure and cell parameters a= 3.962 Å, b= 13.858 Å, c= 3.697 

Å. The XRD spectra at the discharge voltages of 1.5 V, 1 V, and 0.2 V (black curves) show 

peaks corresponding to Li2Si2O5 (004 and 111 reflections) and Li1.33Mo0.66 O2 (311 and 400 

reflections) (JCPDS 01–073-2300). Interestingly, 311 peak downshifts as the lithiation 

progresses implying increase of d spacing during lithiation. 
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Figure 4.2. In-situ XRD analysis for pre-lithiation of Hot Wire CVD deposited MoO3 

powder in teflonyzed acetylene black carbon binder electrode. α-MoO3 [00-005-0508], 

Li1.33Mo0.66O2 [01-073-2300] and Li2Si2O5 [00-015-0637] 

   The discharge characteristics of the S-Li1.33Mo0.66O2 full cell assembled in coin cell 

configuration are presented in Fig. 4.3a and 4.3b during cycling at C/10 rate. Initial 

capacity of 905 mAhg-1   is seen to retain at 400 mAhg-1 (with respect to sulfur weight) after 

50th cycle at C/10 rate. The full cell is designed in such a way that the capacity is limited 

by the cathode. The cell has an open cell potential of around 2.3 V. The IR drop of the 

voltage-capacity curve is higher compared to a Li -S half-cell. The specific capacity is seen 

to fade steadily with the cycle number. One reason could be due to the Li+ loss at the solid 

electrolyte interface. To improve the stability of the gravimetric capacity retention, we may 

have to investigate different stable electrolytes which broaden the scope of this research.  

This assumption is validated by the near 100 % coulomb efficiency indicating that at each 

cycle there is a loss of Li+ ions at the SEI layer. Degradation of sulfur electrode may also 
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contribute for such capacity loss, but it may be small according to the CV (Fig .4.4a to be 

discussed later) 

   Full cells are assembled in three electrodes Swagelok cell configuration for cyclic 

voltammetry and electrochemical impedance measurements. These techniques can shed 

light on further understanding of S-Li1.33Mo0.66O2 full cell electrochemistry.   Fig. 4.4a 

shows the cyclic voltammetry (CV) curve of S-Li1.33Mo0.66O2 full cell. Three electrodes 

Swagelok test cell  
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Figure 4.3.  (a) Potential vs discharge curve of S-Li1.33 Mo0.66O2 full cell, at C/10 

rate (b), (c) and (d) capacity vs cycle number and coulomb capacity of 

Li1.33Mo0.66O2-S full cell at C/10, C/3 and 1 C. 
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(schematically shown in Fig.4.4b) was used for the CV by keeping lithium as the reference 

electrode, Li1.33Mo0.66O2 anode as the counter and sulfur cathode as the working electrode. 

Potential is measured in the range of 2.8 -1.5 V between working and reference electrodes 

while the current is applied between working and counter electrodes. As can be seen from 

the CV curves shown in Fig. 4.4a, the oxidation and reduction electrochemical activity in 

the sulfur (working) electrode is compatible with Li-S half-cell electrochemical activity 

[112]. The reduction peak at 2.4 V is known to occur when soluble Li2S8 forms. Further 

reduction of longer poly sulfide chains to shorter poly sulfide chains first forming soluble 

Li2S6 and Li2S4 and finally converting to solid forms of Li2S2 and Li2S is represented by a 

second reduction peak at 1.9 V.  The presence of oxidation peak at 2.5 V, confirms the 

reversibility of the S-Li1.33Mo0.66O2 full cell which requires enough Li ions (available from 

the counter electrode) during the cell cycling 

 

 

 

 

 

 

 

 

 

Figure 4.4. (a) Cyclic voltammetry curve of S-Li1.33Mo0.66O2 (working electrode vs 

reference electrode) (b) Schematic of three electrode Swagelok test cell which used for 

CV. 
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 Finally, the electrochemical impedance analysis (EIS) is carried out in the T-Swagelok 

cell, (schematically shown in Fig. 4.4b) but with a platinum wire as the reference electrode. 

The sulfur electrode is used as the working electrode while Li1.33Mo0.66O2 electrode is used 

as the counter electrode. For EIS studies, a platinum wire used as the reference electrode 

due to its ability to work alone as a reference electrode [113] and to minimize the influence 

on EIS data. Further, the reference electrode is positioned in the middle of two glass-fiber 

separators of equal thickness (1 mm).  

  The impedance was measured in the A/C frequency range of 1MHz to 1mHz at potential 

values of 1 V, 0.7 V and 0.5 V and 0.2 V (100% DoD) during the discharge and at 1 V, 1.5 

V, 2 V and 2.8 V (100% DoC) during the charging as shown in Fig. 4.5a and 4.5b. 

     

Figure 4.5. (a) discharging and (b) charging curves for impedance analysis.  DoD % 

(percent depth of dischrge), DoC % (percent depth of charge). Sharp peaks on 

discharge and charge curves indicate the points at which the impedance was measured.  
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   Fig. 4.6c and 4.6d show the Nyquist plots for pristine full cell (0 % discharge) while Fig. 

4.6e and 4.6f show the Nyquist pots at 100 % (2.8 V) charge. Equivalent circuit in Fig. 

4.6a was used to fit the Nyquist pots of cathode and equivalent circuit in Fig. 4.6b used to 

fit Nyquist plots of anode. Nyquist plots were fitted using EIS fitting software (EC-LAB).  

A constant phase element and a resister in parallel represent a semi-circle of Nyquist plots. 

Two convoluted semi-circles were identified in each Nyquist plot. Resistance values were 

identified for the electrolyte resistance (Re), Charge transfer resistance (Rcct and Ract) and 

interface resistance (Rint) by fitting with appropriate network models. It is clearly noted 

that, in the Nyquist plot for the working electrode, the Warburg diffusion behavior is not 

present because Li2S is a conversion reaction, which minimizes diffusion contribution.  

However, the Warburg contribution due to the diffusion is clearly present in the Nyquist 

plot of the counter electrode which is due to the intercalation of Li+ in the anode.   
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Figure 4.6. (a) equivalent circuit for the working electrode and (f) equivalent circuit for 

counter electrode Nyquist plots of c) working (sulfur) electrode at discharge. d) counter 

(Li1.33Mo0.66O2) electrode at discharge e) working electrode at charging, f) counter 

electrode at charging  
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Figure 4.7. Fitted resistance values at depth of discharge (DoD) and depth of charge 

(DoC) for (a) and (b) working electrode and counter electrode at discharge, (c) and 

(d) working electrode and counter electrode at charge 
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    Fig. 4.7a-d show the fitted resistance values, R(e), R(cct), and R(int). The increment of 

electrolyte resistance, R(e) in Fig. 4.7a (cathode) indicates that lithium polysulfides are 

formed and hence electrolyte resistance increases from the initial value of 40 Ω up to about 

70 Ω at 100 % discharge. As the electrochemical reaction progresses in the sulfur electrode, 

charge transfer resistance, R(cct) decreases since electrically insulating elemental sulfur is 

converted into ionic Li2S. In the same time, solid electrolyte interface on sulfur electrode, 

R(int) increases from the initial value of 10 Ω to the final value of 30 Ω. This could be due 

to the solid Li2S formation which could influence in electrode-electrolyte interactions.  The 

electrolyte resistance R(e) near anode electrode, however, shows a decrease by few ohms 

while the interface resistance rises on the anode as well (Fig. 4.7b). Charge transfer 

resistance of counter electrode, R(act) at discharge however is comparatively stable. Thus, 

we can assume that, Carbon/ Li1.33Mo0.66O2 electrode integrity is intact while discharging. 

When the full cell is charged (Fig. 4.7c), it is noticeable that, R(e) near the sulfur electrode 

is decreased as the polysulfide concentration is lowered due the oxidation of S-2 to S. charge 

transfer resistance R(cct) is increased as the cathode accumulates sulfur introducing poor 

electronic conductivity of the cathode. It is an interesting phenomenon to observe that, R(int) 

at cathode drops as the cell is re-charged which is the expected result when Li2S dissociate 

in Li an S. Anode (Fig. 4.7d) on the other hand shows an increase of R(e) and R(act). This 

can be explained as due to the shuttling of any dissolve polysulfides towards the anode. 

Migration of dissolved polysulfides is believed to increase the electrolyte resistance (R(e)).  

Increase of R(act) could be due to the lattice expansion of Li1.33Mo0.66O2 upon recharge, 

hence Carbon/ Li1.33Mo0.66O2 contact loss.  
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 4.7 Conclusions  

    In this work, it has been proven that Li1.33Mo0.66O2 is a potential candidate as an anode 

material in Li-S batteries. Cyclic voltammetry curves indicate that redox reactions in the 

sulfur electrode performed similar to in Li-S half-cell. In addition, α-MoO3 can be 

synthesized in high quantities using H2 /Ar so that α-MoO3 can be used in powder form to 

scale up the Li-S full cell fabrication.  
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CHAPTER 05 

HIGH ENERGY DENSITY LITHIUM MOLYBDATE-SULFUR POUCH CELL 

FORMATION 

5.1 Scope 

  In this Chapter, methods for improving the α-MoO3 yield and the material quality are 

described. First, synthesis of α-MoO3 by hydrogenation of impure MoO3 is discussed. 

Then, a novel three electrode pouch cell design is presented which facilitates the Li-S 

pouch cell formation in one step process. Then, the performance of assembled pouch cell 

will be improved using α-MoO3 nanowire structures. Finally, the technical details of 

making a high energy density pouch cell is described.   

5.2 Material preparation  

    After preliminary investigation of S- Li1.33Mo0.66O2 full cell in coin cell configuration, 

it was necessary to scale up the α-MoO3 production to enable the fabrication of high energy 

Li-S cells. The amount of α-MoO3 synthesized using hot wire CVD technique described 

above is very low (20 mg in 72 hours). In order to scale up the α-MoO3 synthesis, a novel 

and cost-effective method was investigated. First, synthesis of pre-lithiated MoO3 using 

solvo-thermal technique was attempted using LiOH and MoO2, but only resulted in 

Li2MoO4, which for obvious reasons is not a good reversible anode material for Li-S full 

cell applications. Since Mo in Li2MoO4 is at its highest oxidation state (+6), when 
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assembled against a sulfur electrode, it cannot oxidize any further via delithiation and 

cannot generate any open circuit voltage. Further, it was found to be difficult to directly 

intercalate lithium into layered MoO3 using chemical or solvo-thermal techniques. 

      It was necessary to synthesize α-MoO3 in bulk quantity and to develop a technique to 

assemble a Li-S full cell using a single step process, which eliminates the cumbersome 

process of dissembling the cell after initial lithiation and re-assembling as we did for Li-S 

full cell in coin cell format. In order to synthesize α-MoO3 in bulk quantity, Mo was 

oxidized by heating Mo powder at 500 ℃ in air for two hours.  The as prepared MoO3        

(white powder) was found to be monoclinic but converted to orthorhombic α-MoO3 after 

the reduction by heating in a flow of 40% H2/Ar (50 sccm) at 150 ℃. After 10 hours of  

processing, the initial white power turned blue and the final product was found to be 

predominantly α-MoO3 as evidenced by XRD. 
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Fig. 5.1 (a) and (b) show the SEM images of as prepared MoO3 (by direct oxidation of Mo 

powder) and after reduction in a flow of Ar/H2 respectively. The as prepared MoO3 sample 

consists of planar platelets co-existing with other irregular particles smaller than 5 µm as 

seen by the SEM image in Fig 5.1 (a). It appears that the initial oxidation of Mo results in 

Figure 5.1. (a) as prepared MoO3 after oxidizing at 500 ℃ (b) α-MoO3 after reduction in 40 

% H2/Ar at 150 ℃ (c) XRD spectrums of as prepared MoO3 and α-MoO3 after reduction in 

40 % H2/Ar.    
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mixed α/β-MoO3 phases. After reduction in H2/Ar, the morphology of the particles has 

been changed primarily to larger planar platelets of α-MoO3 as evidenced by the SEM 

image in Fig. 5.1b.  Fig. 5.1c shows the XRD spectra of MoO3 sample before and after 

reduction. The XRD spectrum for the sample before reduction is consistent with α-MoO3 

(JCPDS 00-005-0508) having an orthorhombic crystal structure and cell parameters a= 

3.962 Å, b= 13.858 Å, c= 3.697 Å and additional peaks located at 2θ = 23.95° and 28.73° 

which were assigned to the characteristic reflections from (020) and (112) planes of β-

MoO3 (JCPDS 01-084-1360), respectively.  The XRD pattern for the sample after 

reduction mostly consists of α-MoO3. 

    Electrochemical characteristics of half-cell prepared by the α-MoO3 cathode and Li 

anode can be found in Appendix 1, Fig. 3. In order to assemble high energy Li-S cells, 

electrodes were assembled in a pouch cell configuration. The main goal of this Li-S 

prototype is to fabricate a Lithium sulfur cell in a single step. In practice, direct synthesis 

of prelithiated α-MoO3 was found to be difficult. When α-MoO3 is electrochemically 

prelithiated, Li+ intercalate between the α-MoO3 layers. (intercalation effectively takes 

place only in layered structures.)  Therefore, it was necessary to adopt a special design as 

shown in Fig. 5.2 to fabricate a Li-S full cell starting with α-MoO3 (before lithiation) and 

sulfur cathode using a single step process. The schematic diagram in Fig. 5.2 of the pouch 

cell shows (a) before lithiation of α-MoO3 (b) after lithiation of α-MoO3. Red dashed lines 

show the separator completely covering both electrodes. Middle inter layer in green color 

is the lithium foil supported on a stainless-steel mesh. 

 Both cathode (sulfur) and anode (α-MoO3 prior to lithiation) were synthesized in the 

ambient environment and Aluminum and Nickel tabs were spot-welded to the cathode and 
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anode respectively as the battery terminals. A Polypropylene separator (25 µm) was then 

wrapped around each electrode. The pouch was fabricated using laminated aluminum 

sheets (MTI battery corporation). When designing the pouch cell prototype, target capacity 

was determined to be 5 mAh, Mass loading, electrode size and pouch size were decided 

according to the mAh capacity of the pouch cell. Pouch and electrodes were dried in 

vacuum at 80 ℃ and then loaded into an Argon glove box for final assembly of the pouch 

cell. In this special pouch cell design, an additional thin lithium metal foil (80 µm) is 

sandwiched with two electrodes which are already wrapped with separators. The Lithium 

foil serves as a sacrificial layer which is only utilized to lithiate the α-MoO3 anode. After 

loading the components in to the pouch, 0.5 ml of electrolyte consisting of 1:1 ratio of 1,2-

Dimethoxyethane (DME Sigma Aldrich) and 1,3-Dioxialane (DOL Sigma Aldrich) and 

1M of Bis(trifluoromethanesulfonimide) lithium salt (LiTFSI) and 1% wt. of LiNO3 was 

filled. Pouch cell is then sealed using a pouch cell sealer inside the glove box.  In this initial 

lithiation process, terminal “L” (Lithium metal) and the terminal “M” (α-MoO3) are 

connected to the battery tester as the counter electrode and the working electrode 

respectively. After α-MoO3 is fully lithiated, terminal “M” and terminal “S” (Sulfur) are 

connected to the battery tester as the counter electrode and the working electrode 

respectively for full cell cycling. When the full cell is designed, balancing of the electrodes 

masses is carefully done considering the sulfur cathode as the capacity limiting electrode. 
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Figure 5.2.   Schematic diagram of the pouch cell (a) before lithiation of α-MoO3 (b) 

after lithiation of α-MoO3. Red dashed lines show the separator completely covering 

both electrodes. Middle inter layer in green color is the lithium foil supported on a 

stainless-steel mesh. 
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5.3 Electrochemical measurements of lithium molybdate-sulfur pouch cells 

 Fig. 5.3 shows the half-cell electrochemical performance of sulfur cathode (sulfur mixed 

with activated carbon and coated with mesoporous TiO2)  [112]  and α-MoO3 anode each 

against Li/Li+. The cathode shows capacity as high as 900 mAh/g even after 100 cycles at 

C/3 rate, but the anode capacity fades to ~300 mAh/g after 50 cycles.  Sulfur cathode has 

Figure 5.3. (a) Potential vs specific capacity curve of sulfur-Li half cell (first cycle) (b) 

Capacity retention and coulombic efficiency of sulfur-Li half cell (c) Potential vs 

specific capacity of α-MoO3-Li half cell, (d) Capacity retention and coulombic efficiency 

of α-MoO3-Li half-cell. (Half cells were cycled at C/3 current rate)  

 

c d 
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a potential of 2.4 V and fully lithiated α-MoO3 (Li1.33Mo0.66O2) has a potential of ~0.2 V, 

both versus Li/Li+. Therefore, a combination of these two electrodes will give an open 

circuit voltage of ~2.3 V.   

   High energy density pouch cell was also tested using Arbin battery tester. Fig. 5.4b and 

5.4c show the performance of the pouch cell assembled from the respective cathode and 

anodes after the initial lithiation process. The pouch cell has a gravimetric capacity of 1500 

mAh g-1 at the first cycle and about 380 mAh g-1 at the 50th cycle at C/3 rate. By looking at 

the specific capacity, it is apparent that, the Li-S battery with sulfur/carbon cathode and α-

MoO3 anode in the proposed pouch cell design renders a specific capacity greater than the 

available Li-ion technologies. The sulfur cathode which we used in this full cell was 

fabricated according to the same procedure described in Chapter 3 which shows a stable 

specific capacity over 900 mAh g-1 over 100 cycles. However, the specific capacity of the 

full cell started to degrade and finally stabilized at 300 mAh g-1.  The reason for such 

capacity degradation could be due to the poor performances of the Li1.33Mo0.66O2 anode 

which tend to stabilize ~ 300 mAh g-1 as shown in Fig. 5.3d.   
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5.4 Capacity matching of cathode and anode 

  In half-cell evaluations, the capacity of the electrode of interest is calculated with respect 

to the reference electrode. For example, in Li-S batteries, the capacity of sulfur is calculated 

w.r.t lithium metal. In half-cells, capacity is limited by the maximum usable potential 

window between the cathode and the anode. However, the capacity matching determines 

the usable potential window. In laboratory, the electrode of interest is screened against a 

reference electrode which has excess of material. In this work Li metal serves as the 

Figure 5.4. (a) lithium molybdate-sulfur pouch cell (b). Discharge capacity vs Cycle index 

(c) Potential vs specific capacity of S-Li1.33Mo0.66O2 (c) Potential vs specific capacity curve 

for lithiating the α-MoO3 (d) Specific capacity retention curve for α-MoO3 vs Li/Li+ 
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reference electrode. William R. Bennett  [1] has published an article describing the capacity 

matching in full cells with details.  Figure 5.5 shows a first three cycles of a typical Li-ion 

battery given in Ref[1].  

 

  

 

     

 

 

 

 

 

 

 

   According to Fig 5.5, during de-lithiation, positive electrode becomes more electro 

positive while negative electrode and become electro-negative by accepting electrons. This 

process will be reversed on discharge. In a typical Li-ion cell, the first charge capacity is 

noticeably higher than the first discharge capacity. The difference between the first 

charging capacity and the first discharging capacity is called the irreversible capacity. The 

capacity loss in the irreversible region is due to various factors such as phase transitions in 

electrode materials, absorbance at solid electrolyte interface layer etc. The reversible 

capacity is the capacity available for the load after the cell is charged.  

a b 

Figure 5.5. (a) charge capacity of positive electrode (b) charge capacity of negative 

electrode [1] 

a 
b 
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 As per Fig.  5.5, following simple calculations show a total capacity of 183 mAh/g in the 

first cycle and a reversible capacity of 153 mAh/g, yielding a loss of 30 mAh/g in the 

irreversible region which amounts to about 19.7 % (30/153) of the reversible capacity.  

 Table 5.1 Specific capacity of electrodes in mAhg-1 with reference to the capacity curves 

shown in figure 5.1 [1]                                                                         

                Positive               Negative  

Irreversibility               30.1                 25.8  

Reversibility             152.9              334.5 

Total            183.0               360.3 

Irreversibility             19.7%                7.7% 

   

    When a full cell is designed, capacities of apposing electrodes must be matched. Usually, 

electrodes need to have equal surface area and must exchange same capacity. In the above 

example of Li-ion full cell, the positive electrode is the Li+ source and the anode supposed 

to absorb the Li+ to surpass the irreversible capacity in SEI layer and for reversible capacity.        

Typically, Positive/negative ratio (P/N) is kept slightly lower than 1. By doing so, cell 

capacity is limited by the positive electrode and it will prevent lithium plating on the anode. 

When performing the capacity matching, gravimetric capacity of each electrode is 

irrelevant. What is important is Ah capacity of each electrode.  

For the example given here, when mAhg-1 capacity of given capacity is converted to Ah, 

the positive reversible capacity is 35 Ah. According the calculations, positive irreversible 

capacity is equal to 19.7 % of reversible capacity 19.7% × 35 𝐴ℎ = 6.90 𝐴ℎ . Then the 



94 
 

total positive capacity needed in the positive electrode is 41.90 Ah. To limit the cell by 

positive electrode, 10% of extra capacity can be added to the negative electrode with P/N 

ratio becoming 0.909. Thus, negative electrode capacity will become 46.09 Ah. But there 

is an irreversible capacity of 7.7% in the negative electrodes too. Thus, effective reversible 

capacity will be 42.79 Ah. Table 5.2 and Fig. 5.6 summarizes the above calculations.   

 Table 5.2 Capacity values for baseline 35 Ah cell  [1] 

 

 

 

 

Capacity in Ah             Positive            Negative 

Irreversible            6.90              3.30 

Reversibility           35.00             42.79 

Total           41.90             46.09 

Irreversibility (% of rev)          19.7%               7.7% 
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   However, the capacity matching limits the usable potential window of the full cell. For 

example, the usable window of operation of the negative electrode is limited to 35 Ah 

according to the given example above. Thus, the negative electrode neither fully lithiates 

nor fully discharges.  

The maximum state of charge for the anode; 
6.90+35−3.30

42.79
= 90.2% 

Minimum state of charge for the anode; 
6.90−3.30

42.79
= 8.4%   

Thus, the effective potential range for the anode is shown in Fig. 5.7   

 

 

Figure 5.6.  Capacity balancing in a hypothetical 35 Ah cell [1] 
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   After the capacity matching is calculated in Ah, the mass loading of each electrode can 

be calculated by dividing it by its specific capacity. Fig. 5.8 demonstrates the required mass 

loading given by the above example.  

      

 

 

 

 

Figure 5.7. Effective potential range of the negative electrode [1] 

Figure 5.8. Ah capacity matching of positive electrode and negative electrode  [1] 
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Table 5.3 Required mass loading calculation for the given example[1] 

 

5.5 Capacity retention and voltage profile improvement using MoO3 nano-wires in 

anode formation 

   S-Li@MoO3 full cells made using MoO3 powder (particle size of 3 – 5 µm) show poor 

voltage stability and capacity loss. The root of the cause is perceived as due to the poor 

electrical conductivity of H2 reduced MoO3 powder. To improve the electronic properties 

of MoO3, we proceeded to use α-MoO3 nanowires. 1-dimensional semiconducting 

nanowire structures (metal oxides) typically demonstrate good electrical conductivity 

along their axes. The α-MoO3 nanowires were synthesized by starting with thoroughly 

mixing MoO2 and KCl (5:1 ratio). The mixture was then oxidized in air at 500 ℃ for 5 

hours and then the sample was acid washed to remove any remaining potassium. The same 

conditions were applied during the subsequent H2 reduction process as in α-MoO3 powder 

preparation. The galvanometric capacity data of half-cells made of α-MoO3 nanowire 

cathode and Li anode is shown in Fig. 5.9. Full cells are assembled in pouch cell format 

using the same technique for a targeted reversible capacity of 3 mAh. The cells were 

discharged and charged at the rate of C/10. 

            Positive                Negative 

Reversible capacity (Ah)                35.00                42.79 

Specific capacity (mAh/g)              152.85              334.50 

Active material (g)              229.00              127.90 
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Figure 5.9. (a) charge/ discharge curves of α-MoO3 nano-wire cathode and Li anode half 

cell (b) Potential vs specific capacity curves of α-MoO3(nano-wire)- Li half-cell. Testing 

were done at C/10 rate 
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Figure 5.11. Capacity retention curves of S-Li@α-MoO3 (nanowire) full cell (a) mAh 

capacity vs cycle index (b) Energy density vs cycle index (discharged at C/10) 
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   Use of MoO3 nanowire has significantly improved the capacity retention and voltage 

stabilization over 50 cycles (Fig. 5.11). The capacity retention reached a value above 400 

Whkg-1 after 50th cycle which is quite promising. The stable capacity at 1.8 V at first cycle 

and 1.5 V after second cycle (Fig 5.10), makes this Li-S full cell technology is applicable 

in the electronic market where non-rechargeable 1.5 V alkaline batteries are commonly 

used.   

5.6 Scale-up of sulfur cathode and α-MoO3 anode formation  

   In Chapters 3 and 4, material synthesis for cathode and anode was described. Here, it is 

intended to describe a methodology to adapt previously described lab scale Li-S battery 

research into a large-scale Li-S battery fabrication process.  The electrochemical 

performances were analyzed in laboratory scale and introduced simplified cathode and 

anode synthesis process to fabricate sulfur cathode and MoO3 anode.  

  In Chapter 3, the methodology for fabricating mesoporous coated carbon/sulfur cathode 

was discussed. Specifically, the sulfur cathode electrode was dip-coated, mounted on a 

stainless-steel mesh and assembled in CR2032-coin cells. Scaling up of this method to 

fabricate high capacity pouch cell has couple of hurdles. First, sulfur/carbon composite 

electrode material must be modified so that carbon/sulfur composite can be coated on an 

Aluminum current collector. Secondly, the method of coating the mesoporous titania 

coating needs to be modified because the dip coating used is only applicable for smaller 

electrodes.  

   When synthesizing and fabricating the α-MoO3 anode, 40% H2/Ar was used to reduce 

the as prepared MoO3. The purity of α-MoO3 is needed to be improved in order to scale-up 
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the α-MoO3 electrode fabrication process. The yield of pure α-MoO3 material synthesis can 

be improved my using a mechanical vibrating method to thoroughly mix and homogenize 

MoO3 (contained in a quartz boat) during the annealing process in the quartz reactor. Figure 

5.12a shows a motor attached to the quartz tube to vibrate the MoO3 sample uniformly. The 

synthesized material was further sonicated in de-ionized water to delaminate the layered 

α-MoO3. This allowed the selective separation of orthorhombic α-MoO3 and other non-

layered MoO3 phases.  
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a 

b 

c 

Figure 5.12. (a) vibrator attached to the sample holder to shake the sample for efficient 

reduction (b) Two samples after decanting (c) XRD spectrum comparison of two 

different MoO3 samples separated by sonication and XRD of pure α- MoO3 sample (red 

line) 
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5.7 Electrode formation and assembling of high energy density 1.5 V, 700 mAh Li-S 

pouch cell 

 A 700 mAh Li-S pouch cell is designed so that the capacity is limited by the sulfur cathode. 

The mass loading and the capacity matching is carefully done according to the following 

calculations based on the cathode and anode capacity curves shown in Fig. 5.13. Cathode 

being the limiting factor, calculations for electrode design must be started with the cathode 

mass loading.  

 

  

 

  

 

 

 

   

 

 

 

   Data presented in Fig. 5.13 is extracted from half-cell charge-discharge curves of sulfur 

cathode (presented in Fig. 3.11b) and α-MoO3 nanowire anode half-cell data (presented in 

Figure 5.13. Capacity curves of sulfur cathode and α-MoO3 anode 
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Fig. 5.9b). Sulfur electrode has an irreversible capacity of 400 mAhg-1 and reversible 

capacity around 900 mAhg-1. On the contrary, MoO3 shows an irreversible capacity ~ 600 

mAhg-1 and a reversible capacity of ~ 400 mAhg-1. Fig. 5.14a shows the comparison of 

reversible/irreversible capacities of cathode and anode in mAh g-1. The mass loading is 

then calculated for the desired 0.7 Ah full cell by loading the anode material in such a way 

the positive (cathode) to negative (anode) mass ratio, P/N is 0.9. By doing so, cathode has 

less material compared to the anode, thus the cell capacity is limited by the cathode. Fig. 

5.14b shows the Ah capacity matching which can eventually be able to convert to mass 

according to the table 5.4.  

 

 

 

 

 

 

 

 

 

 

Fig 5.14. (a) Comparison of reversible and irreversible capacities of cathode and anode, 

(b) capacity matching for S-Li@MoO3 full cell. (black line shows the capacity of MoO3 

required to have in the anode) 
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Table 5.4 Capacity matching and required mass loading for 700 mAh S-MoO3 full cell  

 

Cathode fabrication: 2 g of sulfur powder (3 µm- Sigma Aldrich) and 2 g of activated 

carbon (surface area ~ 1300 m2/g) are mixed for Sulfur content to become 50 %. The 

sulfur/carbon mixture is blended with 5% PVDF/NMP binder in such a way that the solid 

content percentage becomes 40 %. The slurry is prepared by mechanically mixing the 

sulfur/carbon and polymer mixture and filtering through a 100-mesh filter. The slurry is 

then coated on a 100 µm battery grade Aluminum foil (35 µm). A mesoporous titania 

coating is used as the polysulfide trapping agent. Anatase titania powder (3 – 5 µm) is 

homogenously sprinkled over the wet sulfur/carbon coating so that a thin layer of titania 

particles adhere on the coating while extra titania particles can be re-used. Then the 

titania/sulfur/carbon composite cathode is dried at 90 ℃ and calendared to achieve a 70 

µm particle coating.  

Anode formation: 1.5 g of α-MoO3 is mixed with 70 mg of 3 – 5 µm silicon (Sigma 

Aldrich) and 135 mg of carbon. The final carbon composition was maintained to be ~ 10 

%. The powder mixture is then mechanically mixed with 5% PVDF/NMP binder in such a 

way that the solid content percentage becomes 40 %. A copper foil is used as the anode 

        Positive electrode     Negative electrode 

Reversible capacity (Ah)                0.7                  0.8 

Specific capacity (mAhg-1)                700                 400 

Active material (g)                1.00                  2.00  

Required mass loading 

(including irreversible 

capacity) (g) 

               1.00                  3.50 
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current collector and the slurry is coated to a thickness of 100 µm and subsequently 

calendared to achieve the thickness ~ 80 µm. 

 

  Cathode coating is designed to carry 4.2 mg cm-2 which will give ~4 mAh, if 1000 mAhg-

1 is the first cycle capacity. However, eventually the capacity of the cathode will drop to 

2.8 mAh as the reversible capacity according to the capacity matching data shown in Fig.  

5.14a and 5.14b. Then to make 700 mAh full cell, cathode material needs to be coated in 

an area of 175 cm-2 (700 mAh / 4 mAh cm-2= 175 cm2).  

 

 

 

 

 

Figure 5.16. Schematics of cathode electrode 

Figure 5.15. (a) Cathode coating on Aluminum (b) Anode coating on Copper 

a

a 

b

b 
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  The α-MoO3 coated copper foil must be coated to 5.6 mg cm-2 to compensate the capacity 

of sulfur cathode including the irreversible capacity.  Anode is coated with equal area of 

sulfur cathode.  

 

 

 

 

   The Li-S full cell architecture consists of a lithium layer pressed onto a copper mesh to 

initiate the lithiation of the anode. In the intended 700 mAh pouch cell, 100 mesh coper 

cloth with wire diameter of 0.0045 inch was used with the lithium coating of ~ 2.00 mg 

cm-2. The required lithium mass per area can be calculated by considering the amount of 

lithium required to compensate the irreversible capacity of MoO3. Therefore, total lithium 

mass needed for 700 mAh battery is 1400 𝑚𝐴ℎ ÷ 3860 𝑚𝐴ℎ 𝑔 −1 = 0.362 𝑔. This 

requires a coating of ~ 0.362 g on a 175 cm2 copper mesh resulting ~2.00 mg cm-2. These 

three components are separated by polypropylene 25 µm celgard separator as shown in the 

pouch cell inside schematic and shown in Fig. 5.18a. Battery terminals are attached to the 

electrode by ultra-sonic spot welder. Al tab is spot welded to the cathode and Ni tab is spot 

welded to the anode and copper mesh before plating lithium.  Then the assembling of the 

pouch cell is done in the Ar glove box. The assembling sequence include lithium plating 

on copper, electrode wrapping, inserting to laminated pouch, electrolyte filling and finally 

the sealing of pouch. 2 ml of 1 M LiTFSI (1:1 ratio of DOX:DME) is used as the electrolyte.  

 

Figure 5.17. Schematic of anode electrode 
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5.8 Conclusions  

   The major challenge of fabricating a Lithium metal free Li-S full cell using sulfur cathode 

and MoO3 anode is the pre-lithiation process of MoO3. The attempted chemical and solvo-

thermal based techniques led to the final product of Li2MoO4 which is unsuitable to be 

a 

b 
c 

Figure 5.18. (a) internal schematic of Li- S pouch cell (b) external appearance of Li-S 

pouch cell (c) finished pouch cell after L terminal removed after lithiation 



109 
 

used as the anode material in Li-S batteries since Mo is already at its highest oxidation state 

(+6). In contrary, electrochemical lithiation of α-MoO3 produces Li1.33Mo0.66O2. However, 

despite many attempts, we were unable to produce Li1.33Mo0.66O2 using chemical or solvo-

thermal methods. Our understanding is that formation of Li1.33Mo0.66O2 requires an 

intercalation process which can be readily accomplished in an electrochemical process. 

Therefore, a novel cell design was introduced so that a Li-S battery could make in a single-

step process. This is a unique and novel method that could potentially open the opportunity 

for scaling up of the production of lithium metal free Li-S batteries using sulfur cathode 

and pre-lithiated α-MoO3 anode. S-Li@MoO3 full cells were made using the α-MoO3 

micro-particles and nano-wires.  α-MoO3 nanowire-based Li-S were found to perform the 

best. Finally, it was able to fabricate S-Li@MoO3 full cells with stable energy density 

exceeding 300 Wh kg-1 over 100 cycles. Table 5.5 summarizes the specific energy densities 

of lithium molybdate-sulfur batteries made with α-MoO3 anodes from different methods 

which were investigated in this dissertation. The specific energy density of state of-the-art 

Li-ion battery made by Tesla (2170) is also included in the table for comparison.  

Table 5.5 Specific energy densities of lithium molybdate-sulfur batteries made with pre-

lithiated α-MoO3 from different synthesis techniques.  

   α-MoO3 powder  

     (H2 reduction) 

    α-MoO3 powder 

       (HWCVD) 

α-MoO3 nano-wires    

    (H2 reduction) 

Li-ion Battery  

  (Tesla 2170) 

   720 Wh kg-1 

    (1st cycle) 

       540 Wh kg-1 

        (1st cycle) 

      650 Wh kg-1 

       (1st cycle) 

        ____ 

   180 Wh kg-1  

   (at 50th cycle) 

   240 Wh kg-1 

   (at 50th cycle) 

    400 Wh kg-1 

   (at 50th cycle) 

   250 Wh kg-1 
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APPENDICES 

 

Appendix 1: 

A1 Half-cell electrochemical characteristics of CMF based sulfur cathode 

  

Figure 1.  (a) Discharge capacity retention of sulfur cathode made of 

carbonized microfiber (b) potential vs specific capacity curves of the same 

sulfur cathode 

a 

b 
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Appendix 2: 

A2.1 Half-cell electrochemical characteristics of HWCVD deposited α-MoO3 vs 

Lithium  
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Figure 2 (a) Specific capacity vs cycle index (b) Discharge curve of electrochemically 

lithiated α-MoO3 synthesized by HFCVD technique 
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A2.2 Half-cell electrochemical characteristics α-MoO3 powder vs Lithium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000

1500

1000

500

0

P
o

te
n

ti
al

 V
 (

L
i/

L
i+

)

5040302010

Cycle Index

90

80

70

60

50

40

E
fficien

cy
 %

a 

b 

Figure 3 (a) charge/ discharge curves of α-MoO3 micro particles cathode and Li anode 

half cell (b) Potential vs specific capacity curves of α-MoO3- Li half-cell. Testing were 

done at C/10 rate.  
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Appendix 3: 

A3.1 Electronic and optical properties of MoO3 

   MoO3 is known to be a n type semiconductor with a band gap of ~3.1 eV. The influence 

of α-MoO3 subjected to controlled reduction in 40% H2/Ar at 400 0C was significantly 

apparent as seen in the electrochemical performance described previously. Therefore, it is 

important to understand, how the electronic properties change in as prepared MoO3 

(mixture of α-MoO3 and β-MoO3) and after being reduced to α-MoO3. The electrical and 

optical properties of pristine MoO3 and final α-MoO3 were studied using two different 

techniques; ex-situ UV-absorption and in-situ four probe conductivity measurement 

technique.  

A3.2 Optical Properties of MoO3 using UV absorption technique 

    MoO3 is known for its n type semiconductor properties with a band gap of ~3.1 eV. In 

this work however, it was important to understand the optical properties, e.g., dependence 

of the band gap of the as prepared MoO3 after reduction (presumably converting to α-

MoO3). The absorption spectra (Fig. 4) were obtained by Perkin-Elmer 

Lambda 950 UV- VIS spectrometer. To prepare the samples for optical measurements, a 

small portion of (i) MoO3 material from as prepared MoO3 powder, (ii) reduced α-MoO3, 

(iii) as prepared MoO3 nanowire and (iv) reduced α-MoO3 were dissolved in ethanol and 

coated on glass slides. The spectrum was obtained from 200 nm to 800 nm visible 

range. Then (𝛼ℎʋ)1/2 was plotted as a function of photon energy ℎʋ (Tauc plot). Then the 

optical bad gap 𝐸𝑔was determined using the linear range near the absorption edge, i.e., α > 

10-4 cm-1 (5). By extrapolating linearly to  (𝛼ℎʋ)1/2 = 0 , 𝐸𝑔 was estimated as the x-axis 

intercept.   
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   The results obtained from the Tauc plots indicates a small increase in the optical band 

gap  𝐸𝑔  of as prepared MoO3 after reduction. The increase is however insignificant as 

shown in Fig. 6. Interestingly, α-MoO3 synthesized via HWCVD technique having an 

energy band gap of 3.05 eV shows a small decrease down to 2.9 eV after H2 reduction, still 

an insignificant change.  

 

 

 

 

 

 

Figure 6. Comparison of band gap of different MoO3 samples  
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Appendix 4 

A4.1 Electronic properties of α-MoO3 using four probes technique 

  The transition from β-MoO3 to layered α-MoO3 seems to have a significant influence on 

the lithiation capacity of MoO3. However, it is uncertain whether the electronic properties 

of layered structures influence more in improving the capacity of MoO3. To understand 

this phenomenon, change in electronic properties were investigated using in-situ, four 

probes electrical conductivity testing.  

  MoO3 particles and nanowires were subjected controlled reduction causing them to 

undergo transformation from β-MoO3 to α-MoO3. First, 20 mg of each material was 

pressed to form a thin 7 mm diameter circular pellet. The pellets were then mounted on the 

sample mount of an electrical measurement probe which will be placed inside a quarts tube 

as shown in Fig. 7c. The quarts reactor has the provisions for evacuation, purging with 40 

% H2/Ar and heated in a tube furnace as shown in Fig. 7c. 
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a b 

Figure 7. (a)  as prepared β-MoO3 pellet mounted on a chip carrier (b) After the pellet 

has been reduced to α-MoO3 (c) Heating system for α-MoO3 setup  

c 
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   In order to measure the electronic properties in-situ, technique, four contacts were made 

on the pellet using silver epoxy as shown in Fig. 8. The current and voltage was measure 

using a Keithley 2182 picoammeter while the temperature was measured using a 

thermocouple monitored using Fluke 8842A multimeter. First, the quartz chamber which 

hoses the probe containing the sample was vacuumed down to 75 mtorr. Next, the 

temperature was increased from room temperature to 300 ℃, while monitoring the 

resistance with the temperature. When the system reached 300 ℃, 40% H2/Ar is introduced 

to a pressure of 300 mtorr and kept the pressure and temperature constant for 2 hours while 

monitoring the time dependence of the resistance. Then the system was cooled down to 

room temperature still monitoring the resistance as a function of temperature. Fig. 9 shows 

time dependence of the resistance (left axis) and the temperature (right axis) for MoO3 

particle and nanowire pellets. 

Figure 8. Schematic of contacts for 4 probes conductivity testing 
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Figure 9. Dependence of resistance on temperature and H2 reduction (a) Resistance of 

MoO3 particles (b) Resistance of MoO3 nanowire  
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  The resistance drop with temperature is similar in both case as shown in Fig. 9a and 9b. 

The resistance drop with temperature is expected for a semiconductor as more electrons 

are available in the conduction band as the temperature rises. However, the observation of 

resistance change during the phase change is the goal of this experiment. It was found that, 

the resistance increases at the instance of the H2 introduction. At this point the temperature 

was maintained at 300 ℃. After the system was cooled down, an order of magnitude (102-

103 ohms) change of the resistance was observed, which is a significant improvement of 

the electrical conductivity due to the reduction process 
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Appendix 5 

A5.1 Effect of the lithiation on the Charge Transfer Resistance of α-MoO3    

 In this section, the influence of lithiation (Li doping instead of hydrogen) on the electronic 

properties is investigated using the electrochemical impedance technique (EIS). The 

experiment was carried out using a three electrodes cell, keeping α-MoO3 as the working 

electrode, lithium as the counter electrode as well as the reference electrode. Biologic SP-

200 potentiostat was used to study the EIS in the range of 1 MHz to 1 mHz.  

  

 

 

 

  

      

 

Figure 10. (a) three electrode Swagelok cell prepared impedance measurements (b) 

custom made reference electrode  

a b 
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Figure 11. (a)  Discharge curve of α-MoO3. Cell was disconnected at 2.3 V, 1.5 V 

and 0.2 V for impedance testing (b) Nyquist plots at different depth of discharge   
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Table 1.  Fitted resistor values of Nyquist plots shown in Fig. 11b.  R1 is electrolyte 

resistance, R2 is charge transfer resistance and R3 is the interface resistance. 

 

 

 

 

 

 

 

 

 

  

   EIS testing was carried out at three different potentials along the discharging curve shown 

in Fig. 11a. In the Nyquist plots there is a clear drop of charge transfer resistance at 0.2 V, 

where it is lithiated to Li1.33Mo0.66O2. The Nyquist plots were fitted using equivalent circuit 

model shown in Fig. 11b inset.  In addition, two probe EIS was conducted on α-MoO3 

synthesized from hot wire CVD technique before and after reduction with 40% H2/Ar. Fig. 

12 shows the a/c impedance carried for all three samples. It is apparent that, α-MoO3 

synthesized by hot wire technique has higher conductivity. 

 

 

 

 

 

 

Potential  R1 (Ω) R2 (Ω) R3 (Ω) 

2.3 V 5.87 7.078 10.14 

1.5 V 5.99 8.98 10.54 

0.2 V 6.55 2.99 × 10−8 10.02 
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Figure 12. Nyquist plots of two probes ac impedance measurements for as prepared 

MoO3, H2 reduced MoO3 and HWCVD synthesized MoO3. Nyquist plots were 

obtained using the frequency range 1GHz to 1MHz ac frequency range    
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