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 ABSTRACT                                                                                                                               

PLASMA OXIDATION OF LIQUID PRECURSORS FOR COMPLEX METAL 

OXIDES                                                                                                                       

Babajide Patrick Ajayi                                                                                                                  

April 15, 2019 

Clean energy production and storage are two of the most significant challenges in 

the 21st century currently limited by the discovery and development of new and advanced 

materials.  Complex oxides and alloys made using earth-abundant elements will play a 

crucial role in technology development moving forward, however, current preparation 

techniques are limited by their inability to produce complex oxides and alloys with precise 

composition control at fast timescales. 

A concept was proposed to produce mixed metal oxides with composition control 

through the oxidation of liquid precursors via plasma oxidation. It was hypothesized that 

the oxidation process can be completed in fast timescales owing to the rapid heating and 

cooling of the plasma process. 

Even though the rapid timescales for oxidation can be understood through fast 

heating processes during plasma exposure, the mechanisms responsible for composition 

control are not immediately obvious.  So, fundamental experiments were carried out to 

elucidate the nucleation and growth steps responsible for metastable non-stoichiometric 

oxide formation. Interrupted oxidation experiments completed within twenty seconds 

revealed the following steps during plasma exposure of liquid droplets: the nucleation of
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 monometallic oxide phases from an amorphous nutrient, solid-state reaction into 

intermediate mixed oxide phase, and formation of metastable phase. Evidence also 

suggests the fast kinetics of the oxidation process depends on the enormous heat released 

from the recombinative reactions among plasma species present in the plasma. 

The viability of a select set of plasma-synthesized oxides were tested in energy 

conversion and storage technologies. The technique was successfully used to synthesize 

W0.99Ir0.01O3-δ alloy which showed high oxygen evolution reaction (OER) activity and 

stability in acid with an overvoltage reduction in the excess of 500 mV compared to the 

same composition prepared via standard thermal oxidation route. The structural dilution of 

iridium with earth-abundant tungsten will enable the efficient use of scarce iridium 

resources. In alkaline media OER, charge-transfer type double perovskite 

(La0.9Ca0.1Co0.5Ni0.5O3-δ) prepared via the rapid plasma method shows excellent activity 

rivaling best performing complex oxide electrocatalysts. Most importantly, the obtained 

experimental data, combined with density functional theory calculations allows for relating 

the high OER activity to the strong hybridization of the transition metal 3d and oxygen 

2p bands. Again, this technique has been used to fabricate manganese-enriched nickel-

manganese-cobalt (NMC) oxides. The resulting NMC materials were tested as cathodes in 

lithium ion battery and show competitive results compared with NMCs prepared through 

other routes. 

This dissertation presents a concept utilizing plasma oxidation of liquid precursors 

for composition control of complex oxides and alloys. The presented concept could 

expedite the accelerated discovery and development of advanced materials for energy 

conversion and storage. Furthermore, the underlying nucleation and growth mechanistic 
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aspects for forming non-stoichiometric oxide phases will add scientific knowledge to our 

understanding of the synthesis of materials far from equilibrium. 
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  CHAPTER 1 

1. INTRODUCTION 

The production and supply of clean energy using highly efficient, durable and low-

cost materials is perhaps one of the most prominent challenges facing mankind in the 

present time. The availability of technologies for clean energy production and storage 

requires discovery and development of advanced materials made using earth-abundant 

elements that can facilitate efficient energy conversion and storage1-2. In terms of solar 

technologies, one needs to discover materials made using earth-abundant elements that can 

absorb visible and infra-red solar radiation and possess high electron mobility3. Current set 

of known materials with such properties are limited. Also, the discovery of inorganic 

equivalent of halide perovskites with similar light absorption and electronic mobility is 

highly desired3. In electrochemical energy storage, almost all the concepts depend upon 

discovery new materials with high ionic conductivity and high capacities. In the case of 

lithium-ion battery technology, cathode material dictates battery performance and is the 

most expensive of the battery components, accounting for up to 35% of the materials cost4. 

Reducing the cost of the cathode material represents a significant decrease in the cost of 

the battery. The cost of making a cathode depends mostly on raw material and production 

costs, where materials cost accounts for up to 60% of the total cost4. The incumbent cathode 

material manufacturing techniques require many processing steps and produce 

environmentally unfriendly chemical byproducts, adding to cost, and reducing their 
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commercial appeal. This is especially true for solid-solution such as LiNi1/3Mn1/3Co1/3O2 

which are difficult to produce using the traditional approach. Improving energy and power 

density also require discovery of new materials for anode, cathode and solid electrolyte 

used in lithium ion, sodium ion and multi-valent ion intercalation technologies.  

Another way to store solar energy is to store it within chemical bonds5. One of such 

methods is the use of electricity (from solar energy or other renewable source) to split water 

into hydrogen and oxygen. Since it is practicable to convert the stored chemical energy in 

hydrogen into usable electrical energy using the proton exchange membrane fuel cells 

(PEMFCs), PEMFCs will be a key technology in any visualized model of the so-called 

hydrogen economy moving forward.  Water splitting involves two reactions: (1) oxygen 

evolution reaction (OER); which occurs at the anode (2) hydrogen evolution reaction 

(HER), which takes place at the cathode.  OER is the slower of the two, requiring the 

transfer of four electrons across electrodes and so; efficient catalysts are needed to drive it 

to completion at a rapid pace. The state-of-the-art OER electrocatalysts currently in use in 

water electrolyzers are made from noble metals such as iridium and ruthenium oxide 

known as platinum group metals (PGM). Iridium is approximately four-orders-of-

magnitude less abundant than most regular non-noble metal electrocatalysts such as nickel, 

cobalt, iron, manganese.  The 2020-target set by the U.S. Department of Energy for the 

maximal catalyst loading value is 0.125 mg of PGM per 1 cm2 electrode area6, even so, 

there remain questions as to whether these noble metals could be scaled-up to meet the 

world’s energy needs. Some earth-abundant and non-noble metal OER catalysts, including 

nickel-iron oxide, cobalt oxide, manganese oxide, and others, have overpotentials 

comparable to iridium oxide in alkaline conditions, but they are easily digested in the 
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strongly acidic electrolyte. Many of these issues can be addressed by designing complex 

structures involving diverse elements in order to tailor material properties in a way that it 

overcome these limitations7. Complex metal oxides are distinct class of inorganic materials 

which are essential to many industrial chemical and clean energy applications, providing 

inexpensive routes to solving the above energy challenges and for efficient production of 

platform or high-value chemicals5. 

1.1 Need for New Synthesis Methods 

The synthesis of complex metal oxides, which is composed of various elements 

ranging from alkaline-earth, alkali, transition and post-transition metals in multinary 

systems (with more than one metal cations and one oxygen anion) such as ternary, 

quaternary, etc., present an enormous challenge in material processing and property 

screening for efficient end use.  For example, there are about 8,000 and 700,000 possible 

combinations in a ternary and quaternary systems respectively8, so; the non-triviality of the 

challenge in finding best possible candidate from the colossal parameter space is 

immediately apparent, and this challenge becomes even more daunting when one factors 

in solid-solutions and alloys into the equation.  

In the report issued by the Basic Sciences Advisory Committee of the U.S. 

Department of Energy, one of five challenges for science and imagination, and more 

specifically, the fifth challenge is9 “How do we characterize and control matter away - 

especially very far away - from equilibrium?”. This challenge underscores the fact that the 

preferential disposition of both artificial and natural condensed matter is to exist at 

equilibrium conditions, the most stable state of matter, following a natural law motivated 

mostly by the minimization of energy. There is a whole body of knowledge on materials at 
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equilibrium, but the research depth of non-equilibrium matter is superficial at best, given 

the synthesis challenge. There is a growing interest in using non-equilibrium materials such 

as complex metal oxides in solving energy challenges10,  but the incumbent techniques 

employed in the synthesis of multi-element complex oxides require elevated temperatures 

which unfortunately favors strongly the phase segregation into stable equilibrium phases. 

Accordingly, a good number of the solid-solution composition space is not actually 

synthesized, possibly circumventing, sometimes unwittingly, promising energy-harnessing 

materials. Also, these conventional techniques lack the ability to control composition of 

complex oxides directly from the precursor composition, the biggest issue yet in tailoring 

materials property via electronic property modulation, which have implications in 

catalysis, energy storage, superconductivity, magnetism, thermoelectric effect and solar 

conversion.11-15  

The classical route for synthesizing complex oxides is the solid-state chemistry 

which involves the mechanical milling and/or high temperature heat treatment of oxides, 

carbonates or nitrates16. Solid state route is severely limited by its long treatment time and 

elevated processing temperature and pressure17. Also, wet chemical techniques such as sol-

gel18, co-precipitation19 solvothermal techniques20, Pechini21, are other state-of-the-art 

methods. Nonetheless, these approaches require extended heat treatments, making them 

inadequate, owing to equilibrium phases formed at the end of these processes22. In addition, 

they are low-yield methods involving multiple and arduous processing steps.  Furthermore, 

the differences in precipitation rates in the coprecipitation method, and the fact that some 

metal-organic structure can be transformed into different phases before being frozen-in 

inside the organometallic framework in the sol-gel and Pechini methods can seriously limit 
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these syntheses approach in their ability to control final oxide composition from the 

precursor composition. More so, with these methods, it is quite a challenge to control the 

size and composition of mixed metal oxide nanoparticles, a key parameter determining the 

intrinsic properties and performance of these materials.  

Therefore, there is a staggering need for synthesis techniques that are free from 

bottlenecks common with the conventional methods, including but not limited to multiple 

step processing routes, long synthesis hours, inadequate control of stoichiometry and 

composition, and so on. Combinatorial chemistry, involving automatic and parallel 

generation of multi-component solution-based precursors, has been employed to accelerate 

the process of materials discovery23, but there are little or no evidence to suggest the 

thermal oxidation conversion strategy employed is sufficiently suitable to make 

homogeneous phase oxides with excellent compositional control. As an illustration, if a 

synthesis technique lacks compositional control so much so that a minuscule 0.1% sub-

stoichiometry results from inaccurate control of metal cations ratio, this error is tantamount 

to about ~1019 cm-3.8 

1.2 Proposed Concept 

Here, a concept on oxidation of liquid precursors using atmospheric plasmas is 

proposed for obtaining complex oxide particles with composition control.  Our hypothesis 

is that the use of plasmas with oxygen radicals and rapid heating will yield non-equilibrium 

synthesis conditions with fast timescales. The promise of the concept is that ultrafast 

timescales for energy delivery and oxidation would allow for the synthesis of complex 

oxides far away from equilibrium, with precise composition control. 
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There have been attempts to utilize plasmas for materials processing with ultra-fast 

timescales of reaction.  Earlier studies using plasma oxidation schemes have shown ultra-

fast timescales for both molten metals 24 and metal oxides in the presence of alkali salts. 

Studies involving inductively coupled plasma for droplet-to-particle concept has been 

successful but only shown with single component systems 25-26. Schaefer and co-workers27 

studied the gas phase nucleation and in vacuo deposition of iron oxide nanoparticles from 

ferrocene vapor in a microplasma reactor. The difficulties inherent in vapor phase 

nucleation are lack of precise compositional control in making multi- metal oxides. There 

have been attempts on the use of flame pyrolysis for synthesizing metal oxide 

nanostructures but mostly limited to simple oxides with limited data on composition 

control.  Flame pyrolysis has been commercially used for  production of titania and related 

materials valued at $15b/year 28. Many of the nanoparticles in the current market are 

monometallic oxides such as SiO2, TiO2, Al2O3, but new and emerging markets require 

complex and functional materials such as doped materials and multi-component solid-

solutions used in specialty applications and prepared via methods that support facile 

stoichiometry control.  

While there are few studies on synthesis of mixed metal oxides by plasma oxidation 

of liquid droplets29-30, none to the best of our knowledge, has provided insights into the 

fundamental understanding of plasma-liquid interaction, enough to give a clear pathway 

for the oxidative process. Also, the design and implementation of the plasma approach in 

large-scale manufacturing as a cost-effective method remains an ongoing investigation 

among researchers. 
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1.3 Objectives of Dissertation 

Even though, there are prior attempts at utilizing plasmas and flames for processing 

metal oxide nanostructures, there is no clear demonstration about composition control for 

complex oxides with compositions faraway from equilibrium, furthermore, there were no 

previous work on the fundamental understanding of the process. Thus, there are two broad 

objectives and three specific objectives listed as follows: 

1) Obtain fundamental understanding about how plasma oxidation of solution precursors 

can produce complex oxides with exceptional stoichiometric control with multi-

element composition. The specific objectives under this broad objective are: 

a) Determine the role of recombinative heating of plasma species 

b) Study the mechanistic steps involved in plasma oxidation to obtain non-equilibrium 

composition 

c) Determine whether these steps are different for equilibrium composition 

2) Demonstrate the viability of the plasma-synthesized materials as energy materials in 

energy storage and conversion technologies. The specific objectives are: 

a) Device a new acid-stable mixed noble/non-noble metal oxide electrocatalysts in 

OER using the plasma oxidation method 

b) Obtain a rational activity descriptor for basic media OER using catalysts 

synthesized via plasma method 

c) Obtain data for scalable high-volume manufacturing of complex oxide cathodes 

used in lithium-ion battery 
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1.4 Organization of Dissertation 

This dissertation contains nine distinct chapters organized in a fashion outlined 

below: 

Chapter one presents the materials synthesis challenges as it relates to prohibitive 

factors preventing complex oxides from going mainstream in many commercial 

applications. Also presented here are the energy challenges and why renewables lag behind 

in many industrial processes. Finally, the hypothesis and the roadmap of the dissertation is 

presented. 

Chapter two presents a brief review of complex metal oxides detailing history, 

structure-function relationship and thermodynamics. Also, the challenges and 

opportunities inherent in the state-of-the-art and the plasma-oxidation methods are 

discussed at length, especially as it relates to seamless control of stoichiometry, the 

comparison of the ease of preparation of materials, and the energy-focused applications 

where complex oxides have been deployed in solving energy challenges. Newer concepts 

in materials design such as high entropy alloys are also discussed. 

Chapter three presents an overview of the experimental methods and materials 

adopted in this dissertation, including specifics of materials development and reactors set-

up and design, instruments and data analysis procedures for determination of key surface 

and textural properties including other physicochemical characteristics of the samples. The 

main electroanalytical chemistry tools and techniques for assessing the performance of the 

materials were also discussed. 
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Chapter four presents an antecedent data of results detailing how the plasma-

oxidation methodology display exceptional and firm control of composition of complex 

metal oxides and solid-solutions. 

Chapter five presents a study that elucidates the role played by plasma-liquid 

interactions in this process, investigate the mechanism of formation of complex oxides, 

and study the impact of recombinative heating from radicals or other plasma species. 

Chapter six presents materials testing example of electrocatalysis of oxygen 

evolution reaction in acidic media, using solid-solution of two monometallic oxides 

(tungsten trioxide and iridium oxide). 

Chapter seven display a data of results as it relates to the activity prediction of 

electrocatalysts of the charge-transfer type complex oxide. The DFT predicted activity 

trend for plasma-synthesized perovskite was compared with the experimental oxygen 

evolution activity in basic media. 

Chapter eight presents another material testing example in energy storage 

technology. Manganese-rich NMC were synthesized and their performance as cathodes in 

lithium-ion battery technology were tested and reported. 

Chapter nine presents the conclusions and recommendations of study 
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  CHAPTER 2 

2. BACKGROUND 

2.1 General Remarks and Scope of Review  

This dissertation is centered on the fabrication of complex metal oxides via rapid 

plasma method, and the materials performance data of the plasma-prepared samples in 

renewable energy processes such as water-splitting oxygen evolution reaction and lithium 

ion battery technology. This chapter shall thus focus on the background studies on the state-

of-the-art and conventional methods of synthesis and the electrochemistry behind the 

energy conversion and storage processes employed in the characterization of samples. 

Specifically, this review shall cover history, methods, challenges, and strategies for the 

preparation of complex or mixed metal oxides, and how their structures affect their 

properties in chemical/energy transformation and energy storage processes, with a 

particular focus on mixed metal oxide phase and their solid-solutions, non-stoichiometric 

mixed oxides and solid solution of monometallic oxide phases. Also reviewed is the state-

of-the-art materials in use in several renewable energy technologies. 

2.2 Historical Perspective 

The earliest record of fired clay was dated back to 22000 B.C. in prehistoric 

China31. Other remarkable prehistoric periods in the evolution of ceramic technology 

includes: 8000 B.C.; the first fired earthenware vessels was discovered in the Near East, 

4000 B.C.; the first recorded Egyptian glazed ceramic wares, 1500 B.C; was traced to the 
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first glass manufacturing and 700 B.C.; the first record of green, black and red 

stonewares32. The industrial revolution saw a pronounced improvement in the fabrication 

of soft and hard-paste porcelains, tin-glazed wares, jasperwares and stonewares across 

Europe and United States32.  

As ceramic technology advanced from ornamental and domestic use to a smarter 

functionality as we have in sensors and actuators, catalysts, ferromagnets, superconductors, 

solid-electrolytes, and supercapacitors; synthesis methodology has since evolved from the 

more traditional ceramic processing route known as the high-temperature solid-state 

chemistry approach to more rational soft chemistry approach33. Perhaps the best way to 

capture the essence of the modern-era synthesis approach is to discuss the sol-gel 

technique. Nanotechnology spawned many new techniques, sol-gel being a prominent 

one34. The need for nanosized materials has opened the door to more systemic approach 

rather than the pre-modern-era dependence brute force and extreme synthesis conditions. 

Geffcken and Berger first reported the synthesis of single metal oxide coatings about 80 

years ago35, large scale production of rear-view mirrors, anti-reflective coatings on mirrors 

and sunlight attenuating windows containing multicomponent metal oxides were 

completed in 1959, 1964 and 1969 respectively36.  

2.3 Complex Oxides for Energy Conversion and Storage Processes 

Various complex oxides containing diverse and multi-component metals including 

alkali, alkaline, rare-earth, transition, metalloid and noble metals and their applications in 

many renewable energy processes are reviewed in this section. Complex oxides are at the 

heart of several technologies in renewable energy which includes, but not limited to solid-

electrolytes37, rechargeable lithium ion battery38, electrocatalysis39, photocatalysis40, 
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thermoelectricity41, and heterogeneous catalysis42. These materials sometimes contain at 

least one transition metal whose shifting chemical states are essential to many properties 

including redox, electronic, and catalytic properties, or their structure may be tailor-made 

for insertion and deinsertion of charged carriers, or in other cases they may have good 

photo-absorbing properties or may comprise of layers which serve as either electron 

transport path or as phonon scattering region. Also, their refractory properties make them 

interesting choice in high temperature processes such as heterogeneous catalysis, 

thermoelectricity, ionic conductors, etc.   

Table 2.1 gives a summary of the state-of-the-art materials and some selected 

materials still in development, their performances in several energy technologies and the 

preparation routes adopted in their synthesis.  

2.3.1 Thermoelectric device 

Thermoelectricity is a unique way of converting waste heat into electricity, 

conversely, thermoelectricity works as a heat pump in refrigerators. The conversion 

efficiency is determined by the figure of merit, ZT, which by definition is43: 

𝑍𝑇 =
𝛼2𝑇

𝜌𝜅
=

𝑃𝐹

𝜅
=

𝛼2𝑇

𝜌(𝜅1+𝜅2)
                          2.1 

where α is the Seebeck coefficient, κ is the thermal conductivity (κ1 and κe are the lattice 

thermal and carrier thermal conductivities respectively), ρ is electrical resistivity. PF is 

power factor and T is temperature in Kelvin. An efficient thermoelectric material possesses 

small κ and ρ, but large │α│. Even though there is no cap for ZT, a benchmarking protocol 

has set the ZT of viable thermoelectric (TE) device to 1.  Oxides generally have low ZTs 

compared to state-of-the-art TEs, but their refractory properties induce temperature 
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gradients which makes them highly efficient TEs. Also, oxides, through composition 

control can be structurally engineered for optimum conversion efficiencies. Decent ZTs 

 

Table 2.1 Selected complex oxides and their applicability in energy conversion and 

storage 

Energy 

Applica

-tion 

Material Preparation 

route 

Performan

ce 
Remarks Ref 

OER 

anode 

Ba0.5Sr0.5Co0.8Fe0.2O3–

δ 

 

 

 

 

 

 

 

 

Ni0.5Mn0.5Sb1.7Oy 

 

 

 

 

 

Ni0.9Fe0.1Ox 

 

 

 

 

 

 

 

 

SrCoO2.7 

 

Combustion 

 

 

 

 

 

 

 

 

Sputter 

deposition 

 

 

 

 

Solution cast 

 

 

 

 

 

 

 

Co-

precipitation 

η=145 

mV at 
50µAcm-2 

 

 

 

 

 

 

η=672m

V at 
10mAcm-2 

 

 

 

η=336m

V at 
10mAcm-2 

 

 

 

 

 

η=336m

V at 
10mAcm-2 

Basic media OER. 

The perovskite has 

eg close to 1 giving 

it a high covalency 

of metal-oxygen 

bonds. Better 

intrinsic activity 

than iridium oxide 

 

Acid electrolyte. 
Catalyst is solid 

solutions of 

NiSb2O6 with 

MnSb2O6 

 

Activity attributed 

to in situ formation 

of layered 

oxyhydroxide phase 

(Ni0.9Fe0.1OOH). 

Basic media OER 

 

 

Basic media. 

Lattice oxygen 

freed-up by O2 

vacancies was 

attributed to 

activity 

 

39 

 

 

 

 

 

 

 

 
7 

 

 

 

 

 
44 

 

 

 

 

 

 

 
45 
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ORR 

cathode 

MnCo2O4/N-rmGO 

 

 

 

 

 

 

 

CoxMn3-xO4 

Hydrothermal 

 

 

 

 

 

 

 

Reduction of 

amorphous 

MnO2 

0.70 V 

vs. RHE, 

at J= 151 

mAcm-2 

 

 

 

 

80mV vs. 

Ag/AgCl 

at  43.2 

mA mg-1 

Outperforms Pt/C. 

Hybrid of spinel 

oxide and mildly 

reduced nitrogen 

doped graphene 

oxide. Basic media 

ORR 

 

Bifunctional 

catalyst, i.e., also 

active for OER. 

Prepared at room 

temperature 

40 

 

 

 

 

 

 

 
46 

CO2 

photo-

reducti

on 

photo-

catalyst 

 

BaLa4Ti4O15 

 

 

 

 

 

MnCo2O4 

Polymerizable 

complex 

method 

 

 

 

Solvothermal 

Active 

towards 

CO and 

HCOOH 

 

 

Active 

towards 

syngas 

Performs in the 

presence of Ag 

cocatalyst (2 wt. %) 

as a photocatalyst in 

reduction of CO2 

 

Microsphere 

morphology  

47 

 

 

 

 

 
48 

Li-ion 

battery 

electro

de 

LiCoO2 

 

 

 

 

LiNi1/3Mn1/3Co1/3O2 

 

 

 

 

LiMn2O4 

 

 

 

 

 

Li4Ti5O12 

Solid-state 

 

 

 

 

Solid-state 

 

 

 

 

Pechini 

 

 

 

 

 

Controlled 

hydrolysis 

140 mAh 

g-1 max. 

3.8V 

 

 

200mAh 

g-1 in 3.5-

5.0V 

 

 

135mAh 

g-1/ 4.5V 

cut-off 

 

 

 

131 mAh

 g−1 at 

50 C 

Low capacity, low 

voltage, cobalt is 

both expensive and 

toxic. Cathode. 

 

High capacity 

retention at high 

voltage. Low cobalt 

cathode material 

 

Cathode. Good rate 

capability, high 

capacity fading, 

inexpensive 

material. 

 

Hollow 

microsphere. High 

rate capability 

anode material 

49 

 

 

 

 
50 

 

 

 

 
51 

 

 

 

 

 
52 

Solid-

state 

electrol

yte 

Li5La3Nb2O12 

 

 

 

Sol-gel 

 

 

 

 σLi=1×1

0−5 S cm−

1 at 22°C 

 

Stable against 

LiCoO2 and 

LiMn2O4 

cathodes 

53 
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Li0.34La0.56TiO3 

 

Sol-gel 

 

σLi=7×10
−5 S cm−1 

 

Reduction around 

1.5V vs Li/Li+ not 

suitable for graphite 

and lithium anode 

 
54 

Solar 

convers

ion 

PV/PE

C 

photo-

electro

de 

BiVO4 

 

 

 

 

 

CuFeO2 

 

 

 

 

 

CuCrO2 

Electrochemd

eposition and 

solution cast 

 

 

 

Sol-gel 

 

 

 

 

 

Hydrothermal 

0.60 V vs. 

RHE, at 

J= 

2.73mAc

m-2 

 

0.35 V vs. 

RHE, at 

J= 

1.51mAc

m-2 (1 

sun) 
OCV; 102 

mV,  solar 

efficienc

y; 

0.0194% 

Photoanode for 

water splitting. 

FeOOH/NiOOH 

layer helps reduce 

recombination. 

 

Photocathode for 

solar water 

reduction (p-type). 

Low-temp. 

synthesis 

 

Photocathode in dye 

sensitized solar cells 

(p-type) 

55 

 

 

 

 

 
56 

 

 

 

 

 
57 

CH4 

reformi

ng 

catalyst 

La1.95Ca0.05Zr2-

xRhxO7 

 

 

 

 

La0.95Ce0.05NiO3 

 

 

 

 

Ni-Co/ZSM-5 

Pechini 

 

 

 

 

Citrate 

method 

 

 

 

 

Hydrothermal 

XCH4   ̴ 

95% 

H2/CO = 

0.91 

 

XCO2   ̴

62%, 

XCH4   ̴

50% 

 

 

XCH4 = 

XCO2 =   ̴

60% 

Dry reforming. 

x=0.055  

 

 

 

Dry reforming 

 

 

 

 

 

ZSM-5 prepared via 

hydrothermal, Ni-

Co loaded via wet 

impregnation. Dry 

reforming 

58 

 

 

 

 
59 

 

 

 

 

 
60 

Thermo

-

electric 

device 

Ca3Co4O9 

 

 

 

 

Zn0.96Al0.02Ga0.02O 

 

 

Reactive 

solid-phase 

epitaxy 

 

 

Solid-state 

 

 

ZT ̴ 0.3 at 

1000K 

 

 

 

ZT ̴ 0.65 

at 1247K 

 

NaxCO2 was ion 

exchanged to form 

oxide (p-type). 

 

 

Inert synthesis 

atmosphere (n-type) 

 

61 

 

 

 

 
62 
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BiCuSeO Solid-state 

and spark 

plasma 

sintering 

ZT ̴ 0.70 

at 773K 

ZT is close to 

performance 

benchmark of 1 (p-

type). 
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have been found in p-type bulk oxide semiconductors such as NaxCoO2
63, Ca3Co4O9

64, and 

Bi2Sr2Co2O9 
65and perovskites such as La0.95Sr0.05CoO3

66, and Bi0.78Sr0.4RhO3+δ
67. Among 

oxide TEs reported, Zn0.96Al0.02Ga0.02O
62 and BiCuSeO11 are some of the best performing 

with ZTs of 0.65 (at 1247K) and 0.70 (at 773K) respectively.  

2.3.2 Solid-state electrolytes.  

While lithium ion battery plays a crucial role in energy storage especially in 

consumer electronics and electric vehicles, the commercial lithium ion battery contains 

liquid-phase electrolytes that are environmentally unfriendly which also raises some safety 

concerns due to their flammability. There are accelerated efforts to replace liquid-phase 

electrolytes with solid-phase electrolytes that possess high Li conductivity, which are 

called Li-ion conductors. Li-ion conductors are expected to lead the revolution to “all-

solid-state-rechargeable-batteries” and to a large extent solid oxide fuel cell (SOFC) 

technology. The benchmark for viability of solid electrolytes for their implementation is 

the ionic conductivity, which should exceed 1 x 10−3 S cm−1 at room temperature54, 68. To 

that end, two class of materials are being looked at in the current literature: oxides and 

sulfides, but to date, the better ionic conductivity achieved with some sulfides 

(Li10GeP2S12 :1 x 10−2 S cm−1)69 have put them ahead of oxides with significantly lower 

ionic conductivity. However, oxides have commercial appeal due to their low-cost, ease of 

preparation and facile ability to enhance their performance through structural engineering. 
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The oxides that are good candidates for solid electrolytes are garnets70, perovskite54, and 

Ruddlesden-Popper phase71, LISICON (from the acronym: LIthium Super Ionic 

CONductors)72.  Table 2.1 displays the highest ionic conductivities (σLi) recorded till date, 

garnet and perovskite with conductivities of 1×10−5 S cm−1 and 7×10−5 S cm−1 

respectively, being the prominent ones. Oxides like LISICON can be structurally enhanced 

to improve ionic conductivities, for example, Li2+2xFe1−xSiO4 (with 0 ≤ x ≤ 0.3) has a slow 

kinetics at the stoichiometric composition (x=0), however lithium-rich composition saw an 

improvement in the Li+ diffusivity by at least two orders of magnitude73. This improvement 

was attributed to Li+ occupying the octahedral sites interstitially.  

2.3.3 Electrocatalysts in oxygen evolution and oxygen reduction reactions  

Water splitting reaction (splitting of water into hydrogen and oxygen) is an 

important component of a promising energy infrastructure5. The incumbent route of 

producing hydrogen is via methane reforming reaction, but this method is energy 

demanding and lacks carbon neutrality. Electrocatalytic water splitting takes place in a 

device called electrolyzers, and it offers a clean and efficient means of producing hydrogen, 

a source of clean fuel. The liberation of oxygen is called oxygen evolution reaction (OER), 

whereas, the release of hydrogen is known as hydrogen evolution reaction (HER). The 

reverse process, i.e., oxygen reduction reaction (ORR) and hydrogen oxidation reaction 

(HOR) takes place in fuel cells and generates electricity. Besides its usefulness in clean 

energy, the other product of water splitting, oxygen, is generated onboard submarines and 

space shuttles/stations employing electrolysis taking place within stacks of PEM (Proton 

Exchange Membrane) cells known as cell stacks. Personnel onboard these submarines and 

space-shuttles utilizes generated oxygen for respiratory needs. Inside the cell stack is a sub-
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component known as the Membrane Electrode Assembly (MEA) and it is within this MEA 

that electrocatalysts are employed to drive both the oxidation and reduction processes. 

PGM catalysts are the electrocatalysts in use, but they add a significant cost to the 

submarine electrolysis cell stack valued at $1 million each74. 

 OER is a kinetically sluggish half-reaction of water splitting, requiring the transfer 

of four electrons across electrodes (as against two electrons for HER), and so; efficient 

catalysts are needed to drive it completion at a rapid rate. The electrolyte media could be 

alkaline (or base) or acid. In water electrolyzers, the basic media reactions and the 

equilibrium potential (E0) are: 

4OH- → O2 + 2H2O + 4e- (E0
anode = 1.23 V vs RHE, OER)       2.2 

2H2O + 2e- → H2 + 2OH- (E0
cathode = 0.0V vs RHE, HER)         2.3 

and in acid, the equations, and the equilibrium potentials are: 

2H2O → O2 + 4H+ + 4e- (E0
anode = 1.23V vs RHE, OER)          2.4 

2H+ + 2e- → H2
 (E0

cathode = 0.0V vs RHE, HER)                        2.5 

In fuel cells, basic reactions are:  

O2 + 2H2O + 4e- → 4OH- (E0
cathode = -1.23 V vs RHE, ORR)    2.6 

H2 + 2OH- →2H2O + 2e- (E0
anode = 0.0V vs RHE, HOR)           2.7 

In acid: 

O2 + 4H+ + 4e- →2H2O (E0
cathode = -1.23V vs RHE, ORR)        2.8 

H2 → 2H+ + 2e- (E0
anode = 0.0V vs RHE, HOR)                          2.9 
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A summary of these acid-based reactions can be found in Figure 2-1(a)75. Due to 

its slow kinetics, the equilibrium potential in OER is 1.23V, however, an excess potential 

 

Figure 2-1| (a) Polarization curves of OER, ORR, HER and HOR in acid. Adapted 

from Ref. 75 (b) Overpotentials of selected catalysts in both acid and basic media OER 

and HER at 10mA cm-2 at 2h stability testing. Adapted from Ref.76 (c) Illustration of the 

formation of a chemical bond between an adsorbate valence level and the s and d states 

of a transition-metal surface. Adapted from Ref. 80 (d) Volcano plot of potentials vs RHE 

@ 50µA cm-2 against the filling of the eg states. Error bars are according to standard 

deviation of three data sets. Adapted from Ref. 39 
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above this value (called overpotential, η, in Table 2.1) is required to have appreciable 

current densities. Consequently, the large anodic overpotential required for this process 

seriously limits the water splitting reaction. Figure 2-1(b)76 is based on a benchmarking 

protocol that assumes the overpotential necessary to achieve a current density of 10 mA 

cm–2 after 2h of testing, the estimated current density anticipated for a solar-to-fuels 

conversion efficiency of 10 %  under 1 sun illumination. From the figure, in the basic media 

OER, there are lots of choice catalysts with η under 400mV, whereas, in the acid media, 

only two catalysts, all noble metals (iridium and ruthenium oxides) have η under 400mV 

after 2h of testing. Apart from the noble metals, most metals are digestible in strongly 

acidic solutions, placing a significant stability roadblock in acid-based OER besides the 

slow kinetics issue. There have been efforts to apply non-noble metals in acid-based OER, 

but the overpotentials are significantly high (Table 2.1)7, other efforts are geared towards 

mixed oxides containing noble metals and non-noble metals, but noble metal 

concentrations in these solid-solutions can reach up to 40 mol.%  for substantial OER 

activity77-78. 

Studies on OER electrocatalysis (especially basic media OER) have been focusing 

on predicting activity trends using either molecular orbital theory39 or density functional 

theory (DFT)45, 79. Either of these predictive analyses have leveraged on the d-band model80 

which describes bond formation at a transition-metal surface, as shown in Figure 2-1(c), 

and the interaction between adsorbate valence states and the s and d states of a transition-

metal surface. The strength of the interaction is defined by the level to which the 

antibonding state between the adsorbate state and the surface of the metal d states is 

occupied. The more the d states are in energy relative to the Fermi level, the emptier the 
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antibonding states and the stronger the surface-adsorbate interaction. A sweet spot of 

surface-adsorbate interaction is crucial for high OER activity39, 79, 81, which is a catalysis 

concept first explained by the Sabatier principle82.    Suntivich et al39 found that, for a σ*-

orbital (eg) occupation, an eg-filling close to 1 could be correlated to the highest activity. 

These results are summarized in a volcano plot illustrated in Figure 2-1(d). The optimum 

eg-filling of ~1 was found for Ba0.5Sr0.5Co0.8Fe0.2O3-δ, while perovskites such as LaNiO3 

and LaCoO3 with eg filling less than 1 shows some weak activity, whereas; catalysts such 

as La0.5Ca0.5CoO3-δ and LaMn0.5Ni0.5O3 with eg filling above 1 are not sufficiently active 

towards OER. These poor activities on either side of the volcano summit were attributed 

to the too strong (for eg < 1) or too weak (for eg > 1) transition metal−oxygen covalent 

bonding, suggesting that a peak activity is achieved at a balanced (neither too strong nor 

too weak) bond strength. The tracking of the position of the O-2p band  relative to the 

Fermi level using DFT has been reported as the basis of OER activity79, where high activity 

and stability was rationalized as having the O-2p band center neither in close proximity nor 

too distant from the Fermi level. 

Pt has been the most studied ORR electrode and is still the most active one. In fact, 

the commercially used electrocatalysts in fuel cells are Pt nanoparticles supported on a 

conductive carbon black. As is with OER, efforts are ongoing to reduce the dependence on 

noble metals such as Pt. Aside this, the surface of Pt NPs may become deactivated in the 

operating conditions of fuel cell83. As a result, Pt has been alloyed or being made to form 

intermetallic compounds with other metals such as Ni84, Cr85, and Ag86. Non-noble metal 

containing complex oxides such as spinels and perovskites have garnered traction as of 
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late46, 87-88, with many of these catalysts performing with dual functionality in both OER 

and ORR electrocatalysis (Table 2.1).  

2.3.4 Lithium ion battery electrodes 

 Rechargeable lithium ion battery (LIB) technology has theoretical gravimetric 

energy density up to 1725 Wh/kg and the practical energy density of a packaged battery 

system is estimated to about 500 Wh/kg89 for automotive or power grid applications. 

Historically, LIB came into the commercial scene through the effort of Sony Corp. in 1991, 

and it is basically the exchange of Li+ ion between graphitic anode and LiCoO2 cathode, 

producing specific energy up to 180 Wh kg-1, and averaging a voltage of 3.8 V 90(Table 

2.1). However, further advancements are essential for LIBs to remain competitive for an 

extended period. To consolidate the gains from LIB research, lower cost, safe operation, 

and further improvement in energy and power densities77 are some of the most prominent 

challenges that need urgent attention.  As a result, goals were set in many countries, and 

most notably, the United States Department of Energy (DOE) initiative91, which entrusted 

to a group of researchers clearly defined aims of tripling the specific energy from 180 Wh 

kg-1 to at least 500 Wh kg-1 while maintaining 1000 charge-discharge cycles.  

LiMn2O4 spinel are interesting cathode materials owing to its abundance and low-

cost, environmental benignancy, and offers even better safety to end-users. The most 

significant drawbacks are their low theoretical capacity (148 mAh g-1)92, poor specific 

energy (154.3 Wh kg-1) and relatively inferior capacity retention owing to dissolution of 

Mn2+ ions and Jahn-Teller distortions. The dissolution of Mn2+ from the spinel electrodes 

is made possible via a disproportionation reaction (2Mn3+ → Mn2+ + Mn 4+) in the presence 

of acidic impurities in the electrolyte. LiMn2O4 is spinel phase with a cubic structure which 
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has a space group 𝐹𝑑3̅𝑚 (Figure 2-2(a)) and consists of the LiO4 tetrahedron and MnO6 

octahedron sublattices. Typically, Li occupies 8a, Mn occupies16d and O occupies the 32e 

sites of the space group respectively. In a structure with formula LixMn2O4, Li+ fills the 

octahedral sites in the composition range 0 ≤ 𝑥 ≤ 1 and the tetrahedral sites in the range 

1 ≤ 𝑥 ≤ 2. The [Mn2]O4 framework that make up the host structure contains a network of 

channels created via the face-shared tetrahedral lithium (8a) sites and empty octahedral 16c 

sites which allows Li+ transportation in 3D. Occasionally, the empty octahedral 16c sites 

and interstitial sites are available to Li ion during excessive lithiation to form Li1+xMn2O4, 

where 0 ≤ 𝑥 ≤ 0.1 is cubic, 0.1 ≤ 𝑥 ≤ 0.8 is a region having mixed cubic-tetragonal 

phase, and a fully tetragonal phase at 0.8 ≤ 𝑥 ≤ 1.25. 93 An example of such tetragonal 

phase is Li2Mn2O4 shown in Figure 2-2(b), and it comes with an associated unit cell volume 

expansion of up to 6.5%. This first-order phase transition is made possible by the 

cooperative Jahn-Teller distortion which may lead to permanent loss in capacity as a result 

of the strain induced on the structures93-95. The degree of distortion is monitored by the 

ratio of the lattice parameters (tetragonal, c/a >1 and cubic c/a =1).  Many have proposed 

an ordered lithium insertion as the plausible explanation for the two-plateau profile of the 

charge-discharge curve of LixMn2O4. It is reported that that Li+ ions are positioned at 

available 8a sites and are ordered in Li0.5Mn2O4. The voltage profile consists of two 

plateaus: upper and lower plateaus, the upper plateau region of discharge represents a two-

phase region, an equilibrium between λ-MnO2 and Li0.5Mn2O4, and in the second plateau, 

Li0.5Mn2O4 and LiMn2O4 co-exists in equilibrium12, where λ-MnO2/Li0.5Mn2O4 transitions 

occur at voltage of 4.1 V (vs. Li/Li+) and Li0.5Mn2O4 /LiMn2O4 transition at 3.9 V (vs. 

Li/Li+)96 
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Materials with formula LiMO2 (M = transition metals) are called layered oxides 

and are one of the first materials tested as cathodes.  LiCoO2, aside its low specific energy 

and low voltage, is also toxic, thermally unstable and expensive. Materials designer have 

tried to replace LiCoO2 with LiNiO2, while LiNiO2 is even more unstable thermally, it is 

inexpensive and has a higher energy density relative to LiCoO2 with a theoretical specific 

capacity of 275 mAh g-1. Another major disadvantage with LiNiO2 structure is the 

occupation of Ni3+ ion in the Li site obstructing the pathway for Li+ diffusion. Since Mn is 

the least expensive, and most stable of Co, Ni and Mn, LiMnO2 seem an interesting 

alternative. However, the structural changes that occur during cycling when Mn3+ forms 

Mn(aq)
2+ and Mn4+ in a reaction called disproportionation, results in its poor cycling. 

 

 

Figure 2-2| (a) Crystal structure of lithium manganese oxide phases where MnO6 

octahedra is represented by the pink octahedron shape and the Li+ is the green ball for a 

(a) cubic spinel structure of LiMn2O4 (space group: 𝐹𝑑3̅𝑚) (b) tetragonal spinel structure 

Li2Mn2O4 with space group I41/amd and (c) monoclinic structure of Li2MnO3 phase with 

space group C2/m. 
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Mn(aq)
2+ dissolves in the electrolyte and this affects the stability of the solid-electrolyte 

interphase (SEI) layer. Solid-solution such as LiNi0.5Mn0.5O2 while having similar energy 

density as LiCoO2 and synthesized with a fraction of the cost, the migration of Ni3+ to the 

Li-site has remained a prohibitive issue. Synthesizing a solid-solution involving all three 

(Ni, Mn, Co, or NMC), LiNixMnyMn1-x-yO2, has proven an excellent way of circumventing 

most of the problems arising from the standalone lithium-transition-metal layered oxide 

cathodes. For example, NMC with formula LiNi1/3Mn1/3Mn1/3O2 has higher specific 

capacity than LiCoO2 while utilizing 67 % less the amount of cobalt. It is already a 

commercial success, but market competition will require a more cost-effective production 

route than the present laborious and multistep co-precipitation method used in product 

manufacturing. Variations of the NMCs are the lithium-rich NMCs, nickel-rich NMCs and 

manganese-rich NMCs, each with its distinctive features. For example, xLi2MnO3.(1-

x)LiNi1/3Mn1/3Mn1/3O2 is sometimes called Li2MnO3 stabilized LiNi1/3Mn1/3Mn1/3O2, is a 

formulation that goes under the Li-rich NMC category. There is an ongoing debate whether 

Li2MnO3 and LiNi1/3Mn1/3Mn1/3O2 are solid-solutions or composites97. Li2MnO3 is 

monoclinic (Figure 2-2(c)) and has lithium ions occupying part of the transition metal-site 

to form LiMn6 units, therefore the Li2MnO3 phase can be also written as Li[Li1/3Mn2/3]O2, 

where one-third of the Mn sites are occupied by Li+. The cathode material, xLi2MnO3.(1-

x)LiNi1/3Mn1/3Mn1/3O2, can achieve above 200mAhg-1 at high operational potential due to 

Li2MnO3  being activated above 4.5 V vs Li+/Li. Nickel-rich lithium metal Li[Ni1-xMx]O2 

(M = transition metal, x≤0.4) is the most favorable cathode material in rechargeable 

lithium ion battery because of their low-cost and high capacity delivering up to 200 mAh/g. 

Contrarily, its inferior thermal stability has limited their commercial usefulness. The 
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delithiated form of the host material Li1-δ[Ni1-xMx]O2 is highly reactive, participating in 

side reactions such as oxygen evolution reaction where oxygen is released, the gas-phase 

oxygen combines with electrolyte leading to runaway reactions. Other side reactions 

include the formation of rock-salt LixNi1-xO, which have been known to lead to poor 

cyclability. Several groups have made concerted efforts to ameliorate this safety concern 

by coating the surface of host structure with Al2O3, AlPO4, AlF3.
98 In most cases, the 

thickness of the coating material is less than 10 nm, and thus offers less than adequate 

protective shell around the host structure. In similar vein, core-shell architectures such as 

Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2] O2 and Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2, have been 

developed with the core having great capacity while the shell Li[Ni0.5Mn0.5]O2 offered 

thermal stability99. However, the sharp contrast in composition at the interface could be a 

barrier to Li+ diffusion. Concentration-gradient core-shell architectures100 prepared by co-

precipitation have been developed to overcome Li+ diffusion issues, however; making 

generic concentration-gradient core shell oxide materials could be a daunting challenge.   

2.3.5 Methane reforming catalysts  

       Dry reforming of methane (DRM) has garnered much awareness because of 

the increasing concern to utilize two of the most noxious greenhouse gases in making 

chemical building blocks of hydrogen and carbon monoxide, according to the reaction: 

CO2 + CH4 → 2H2 + 2CO (ΔH298K = +247 kJ mol−1) 

Syngas, a mixture of hydrogen and carbon monoxide can be employed to make synthetic 

fuel via the Fischer-Tropsch synthesis or Mobil’s methanol-to-gasoline process. It is also 

a useful intermediate in variety of hydrocarbon compounds synthesis. A major issue with 

dry reforming of methane is catalyst deactivation which has been attributed to either 
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sintering of the active metal or coke formation on active sites of the catalyst. Dry reforming 

reactions usually takes place at elevated temperatures (900-1000˚C), at this temperature, 

sintering of particles may be favored. The other aspect of catalyst deactivation (coke 

formation) occurs due to the disproportionation of carbon monoxide to give coke, 

according to the reversible Boudouard reaction: 

2CO(g)  ↔ C(s) + CO2(g) 

or sometimes due to the thermal decomposition of methane: 

CH4 → C(s) + 2H2(g) 

The grand challenge in DRM is designing a catalyst that is thermally stable and 

resistant to coke using less complicated methods. While nickel supported catalysts are 

favorable because of their efficient activity, low-cost and availability, unfortunately, they 

are susceptible to coke and hence prone to surface active sites deactivation; whereas, noble 

metal-based catalyst though expensive are resistant to coke. Complex oxides are generally 

not active towards DRM, but the structural engineering by way of substituting some of its 

lattice with an active noble metal and/or aliovalent cation in order to induce crystal point 

defects such as oxygen vacancies in its structure have been recorded to be the reason behind 

improved activity towards DRM58, 101-102. Oxygen vacancies promotes lattice mobility 

which can help reduce coking issues102. Another advantage of complex oxide is its thermal 

stability at the DRM reaction temperature (900 – 1000 °C) ensuring catalyst sintering is 

minimized. Complex oxides that have been used as catalysts in DRM includes perovskites, 

pyrochlores, fluorites and zeolites58-60, 101, and some of their performance result can be 

found in Table 2.1 
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2.3.6 Photocatalysis and solar energy conversion 

Complex oxides are also key materials in photoconversion processes whether in 

thermochemical splitting of water and carbon dioxide with concentrated solar energy into 

liquid fuels103 or the photocatalytic reduction of carbon dioxide into fuel intermediates like 

syngas48 or formic acid47 or photoelectrochemically splitting water into hydrogen56 or in 

photovoltaic applications57. Some performance data of these oxides can be found in Table 

2.1 

 

2.4 Structure and Property Relationship of Complex Metal Oxides 

    The key to understanding the properties of complex oxides which makes them 

interesting materials in many energy applications is the knowledge of their crystal 

chemistry. So, this section shall cover the crystal structures of common mixed oxide phase 

discussing their innate properties and modification carried out by materials engineer to 

enhance their properties. 

2.4.1 Perovskite 

2.4.1.1 Normal perovskite [ABO3]  

 Structures of the type ABO3 called perovskite, crystallizes in atmospheric 

conditions as different structures or may not crystallize at all if certain conditions are not 

met. Dense structures such as cubic-perovskites are usually precipitated at higher than 

atmospheric pressures but are stable at atmospheric conditions. Perovskites, with formula 

ABO3, are class of complex oxides with relatively larger A-cation ionic radius compared 
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with B-cation. The most common polymorphs available in these structures are cubic and 

hexagonal. Stacking configuration of closed-pack AO3 layer defines the structure-type, 

where B-cation sits in a space between the layers in the O-ion octahedra. The phase 

obtained whether cubic or hexagonal is characterized by the type of stacking. BO6 

octahedra share only corners if the stacking is cubic, however, if hexagonal, BO6 octahedra 

form unique c-axis sequence of face-shared octahedra. Since the size of the A-site 

tetrahedra is finite, there is a limitation on the size of the A-cation acceptable within the 

sub-lattice without causing a deformation on the structure. If the A-cation size is out of 

these acceptable range, the energetics of the entire system will be such that other structures 

may become more feasible to crystallize. A tolerance limit, t,  proposed by Goldsmidt104 

defines the limit on the ionic radius of A (rA) relative to B (rB) and O (rO): 

                                        t = (rA+ rB)/21/2(rB+ rO)            2.1 

The idealized scenario is to have a cubic structure with t = 1. Under atmospheric conditions, 

perovskites must have of tolerance in the range 0.75 < t < 1.0, and since A and B are have 

twelve-fold and six-fold coordination respectively, more criteria need to be defined. This 

coordination chemistries put a lower limit of the ionic radii as: rA > 0.90 Å and rB > 

0.51Å105. For cases where rA is less than 0.90 Å at atmospheric pressures, other structures 

like corundum, pyroxene, garnet and ilmenite, may become possible. In many of the 

applications deploying perovskite-type compounds as catalysts, two things are clear: (1) 

the distortion of the structures may in some cases, lead to catalyst active sites106 (2) The A-

site, constituted by rare-earth and alkaline-earth metals, is directly passive to catalyst 

activation107, but may indirectly instigate activation by the aliovalent substitution of cations 

to induce oxygen vacancies. The B-site on the other hand, comprising of transition metals, 
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is the epicenter of catalyst activation sites, this is especially true when the d-orbitals of the 

B-cations overlap with p-orbitals of the oxygen anion. This overlap or as is more 

appropriately termed as hybridization creates a pathway for the mobility of charged carriers 

and is thus responsible for electronic conductivity. Further properties of the perovskite-

type structure can be found in several monographs105, 108 

2.4.1.2 Double perovskites [A2BB´O6]  

Similar to the perovskite structure but with a mixed transition element in the B-site. 

There are reports that the B and B´ atoms ordering with the cubic structure are such that 

nearest neighbors are unidentical atoms, i.e., fully disordered. 

2.4.2 Garnet [A3B2(XO4)3] 

 Garnet structure is the generic form of all complex metal oxides derivable from the 

ideal garnet structure with the general formula A3B2(XO4)3, a typical example of such is 

Sr3Al2(TiO4)3 (cubic unit cell and space group Ia3̅d, space group number 230). A-sites are 

8-fold coordinated (antiprismatic sites), B-sites are 6- fold coordinated (octahedral sites), 

and X-sites are 4-fold coordinated (tetrahedral sites). Complex oxides such as 

Nd3Te2(LiO4)3 which is a lithium-constituted garnet structure, where lithium occupies the 

X-site or tetrahedral sites,  have wide use as a solid-electrolyte in all-solid-state lithium ion 

battery, however, such use is severely limited by low lithium-ion conductivity. A way 

around this is to have lithium-ion occupying the A- or B-site, as well as the tetrahedral sites 

in order to have oxides with high concentration of Li-ions to increase Li conductivity54. 



 

31 

 

2.4.3 Layered Oxides  

2.3.3.1 Ruddlesden-Popper phase [(AO)nABO3] 

 If the A/B and A/O ratio changes in a perovskite, a Ruddlesden-Popper structure 

may result. Excess A-cation in such a structure can lead to, for example, a structure like 

Ca3Ti2O7 (n = 2) comprising of layers of CaO rocksalt sandwiched between n layers of 

CaTiO3 perovskite. If the rocksalt in the space within the interlayer is made from metal 

with low Z number, such as lithium, these layered compounds are very important material 

for several energy storage technologies, and given the large gap between the interlayers, it 

is reasonable to speculate that the interlayer spaces could be a pathway for ionic 

transportation. So, we can expect to have a  high ionic conductivity due to Li mobility and 

high diffusion rate from the lattice71, 109. This is the main idea behind solid-state lithium-

ion conductors popularized in recent years71, 109-110,and it has been the focus of intensive 

research on the development of solid electrolytes for lithium ion batteries110. Besides 

energy storage applications, Ruddlesden-Popper phases have found wide applications in 

CO2 capture111, photocatalysis112 and ion-exchange.113 

2.4.3.2 Delafossite [ABO2]  

The delafossite group are a class of complex oxides that crystallizes as ABO2. A 

could be alkaline earth or alkali metals, while B are mostly transition metals or group III 

metals. This group is also a layered oxide and is formed when linearly coordinated A-cation 

is stacked with the layers of edge-sharing BO6 octahedra. There are some notable polytypes 

within this group: hexagonal 2H (space group of P63/mmc) types occur when two A-layers 

are stacked with each later rotated half-a-revolution in with respect to each other, however, 

if the stacking were done in identical direction to each layer we will have a rhombohedral 
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3R type (space group R3̅m)114. There are several applications of these complex oxides 

ranging from transparent conductive oxides115, to cathode materials for lithium-ion 

batteries116 to photocatalysis117, to photovoltaics57, to photoelectrochemistry56. 

2.4.4 Spinel [AB2O4]  

Majority of the spinels have a cubic structure assigned to the Fd3̅m space group 

where he tetrahedral cation (A) and the octahedral cations (B) occupies a fixed position at 

points 8a and 16d respectively. This structure usually crystallizes as closed-pack 

alternating between one tetrahedron and an octahedron in which the lattice is occupied by 

the tetrahedral and octahedral sites in a 2:1 ratio118. There are two distributions between 

the A- and B-cation: normal and inverse distribution. In the normal distribution, written as 

A[B2]O4, where the entity in parenthesis indicate octahedral sites , the A-site is completely 

located in the tetrahedral position whereas, the B-site is positioned at the octahedral sites.  

On the other hand, for inverse distribution written as B[AB]O4, the A-cation is completely 

positioned in the octahedral site, leaving one-half of the B-cation in octahedral site, and the 

other one-half in the tetrahedral site. Intermediate distribution could also be actualized and 

is represented as A1-xBx[AxB2-x]O4, where x is termed as the degree of inversion. 

Several reports have indicated that the inversion phenomenon could be a strategy 

for activation of spinel oxides in catalysis119-121. Specifically, as reported by Wu et al121, 

an inverse spinel Co[CoFe]O4 produces even a better oxygen reduction reaction activity 

than the well-known Pt/C catalyst by 42mV. This reason adduced for this unusually good 

activity performance from a spinel is the dissimilarity effect of unidentical Co and Fe 

occupying the octahedral site conferring interesting qualities to the adsorption energy of 

oxygen and expanding O-O bond length in relation to the normal spinel. Although Li- and 
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Mn occupy two different sublattices connected in three-dimensions, the migration of Li+ 

from vacant tetrahedral sites to the interstitial sites of the octahedra in LiMn2O4 has been 

attributed to the high rate capable of the spinel as cathode material in lithium ion batteries51.  

2.4.5 Pyrochlore [A2B2O6O´]  

The   structural formula   of     pyrochlore oxide   is   written   as A2B2O6O´or more 

generally as A2B2O7. The space group is Fd3̅m, with the atoms occupying following 

Wyckoff positions A: 16c, B: 16d, O: 48f and O´: 8a. Pyrochlores can be viewed in many 

ways, but the distorted fluorite is the most common one. Rather than write the structure as 

(A, B)4X8, it is written as A2B2O7, with the eight anion missing, modifying the structure 

considerably. 122 

2.5 Thermodynamic Concepts 

2.5.1 Thermodynamics of metastable phases 

In the rational design of materials, fundamentals of crystal chemistry, 

thermodynamics as well as the structure-function relationships, catalytic, optical and 

electronic properties should be well understood from the conceptual stage of design17, 123. 

They are two steps to achieving this: (1) predicting the crystal phase and chemical 

composition that will most likely give the expected properties (2) identify the best methods 

to synthesize such materials 33. The best performing materials such as low-temperature 

polymorphs, pillared or layered oxides, alloys, doped materials, solid-solutions and 

intercalation compounds are all thermodynamically metastable phases33, and examples of 

these superior performance can be found in photovoltaics124, photocatalysis125 and ionic 

conductivity126. The metastable composition space is usually overlooked during conceptual 

design of new materials, and if this trend continues, materials engineer face the danger of 
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overlooking potentially beneficial materials in the search for next-generation energy 

materials 127.  The traditional synthesis routes require solid-solid reaction at temperatures 

close to 1000 °C, the problem with this is that at such high temperatures, stable phases are 

most likely to be formed. From the synthesis standpoint, mild conditions of temperature 

and pressure are required to make metastable compounds, as a result, a new field of 

materials synthesis termed soft chemistry or chimie douce was birthed between 1950s and 

1960s to take up this challenge17, 33. Wilhelm Ostwald128-130 formulated the step rule which 

states that a phase that is nucleated from a solution or melt need not be the most stable 

thermodynamically. When there are many thermodynamically allowable phases when 

crystallizing a solid from a solution, sometimes the phase farthest away from equilibrium 

may be the most favored kinetically rather than the most stable phase. The process 

parameters material engineers are looking to optimize to favor metastable crystals are 

processing time and/or processing conditions such as temperature or pressure. In essence, 

short times and low-temperature and low-pressure non-equilibrium process conditions may 

favor metastability if Ostwald’s step rule applies.  This, along with non-equilibrium 

thermodynamics is the central philosophy behind the chimie douce movement. Perhaps, it 

is best to clarify the types of metastabilities and describe the focus of this dissertation at 

this juncture. In general, metastable phases possess a higher free-energy than the 

corresponding stable phases, but higher free-energy can be achieved in more ways than 

one, hence, the differences in the type of metastability. Compositionally-metastable 

compounds derive their metastability from the frozen-in disorder enhancing entropy and 

free-energy.  Doped materials, solid-solutions, alloys, high entropy alloys and metallic 

glasses are good examples of this 131. Topologically-metastable compounds on the other 
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hand derive metastability from a pot pourri of structures arising from the flexibility of 

bonds and bond-angles or high free-energy arising from particle size or shape. Examples 

are zeolites, porous compounds and nanomaterials. The scope of this dissertation is the 

compositionally-metastable complex oxides. 

 

2.5.2 Entropy and enthalpy of solid-solutions vs. stable phases 

The best way to predict the formation of phases is the minimization of Gibbs free 

energy equation. The integral molar Gibbs energy for phase ɸ is: 

𝐺𝑚
Φ = ∑ 𝑥𝑖(𝐺𝑖

Φ) + 𝐺𝑚(𝑚𝑖𝑥)
𝑖𝑑𝑒𝑎𝑙 + 𝑖 𝐺𝑚 (𝑒𝑥𝑐𝑒𝑠𝑠)

Φ      2.2 

The index i represents the elemental constituents, 𝐺𝑚(𝑚𝑖𝑥)
𝑖𝑑𝑒𝑎𝑙  is the ideal molar Gibbs energy 

of mixing, and 𝐺𝑚 (𝑒𝑥𝑐𝑒𝑠𝑠)
Φ  is the excess molar Gibbs energy. 𝐺𝑚(𝑚𝑖𝑥)

𝑖𝑑𝑒𝑎𝑙 contains molar 

enthalpy of mixing (𝐻𝑚(𝑚𝑖𝑥)
𝑖𝑑𝑒𝑎𝑙 )and molar configurational entropy of mixing(𝑆𝑚(𝑚𝑖𝑥)

𝑖𝑑𝑒𝑎𝑙 ), we 

take 𝐻𝑚(𝑚𝑖𝑥)
𝑖𝑑𝑒𝑎𝑙 = 0 and 𝑆𝑚(𝑚𝑖𝑥)

𝑖𝑑𝑒𝑎𝑙 = −𝑅 ∑ 𝑥𝑖𝑙𝑛(𝑥𝑖)𝑖 , R is the gas constant. Also, 𝑆𝑚
Φ =

𝑆𝑚(𝑚𝑖𝑥)
Φ + 𝑆𝑚(𝑒𝑥𝑐𝑒𝑠𝑠)

Φ  and 𝐺𝑚 (𝑒𝑥𝑐𝑒𝑠𝑠)
Φ = 𝐻𝑚 (𝑒𝑥𝑐𝑒𝑠𝑠)

Φ − 𝑇(𝑆𝑚 (𝑒𝑥𝑐𝑒𝑠𝑠)
Φ ), combining all these 

equations lead to: 

𝐺𝑚
Φ = 𝐻𝑚

Φ − 𝑇(𝑆𝑚
Φ)        2.3 

Phase (ɸ) here signifies liquid, gas or solid, but the phase of interest is the solid-solutions 

(SS) or stable phases (SP). So, Equation 2.3 is modified to represent Gibb’s free energy of 

SS as: 

𝐺𝑆𝑆 = 𝐻𝑆𝑆 − 𝑇(𝑆𝑆𝑆)     2.4 
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As before, in ideal case, 𝐻𝑆𝑆 = 0 and 𝑆𝑖𝑑𝑒𝑎𝑙
𝑆𝑆 = −𝑅 ∑ 𝑥𝑖𝑙𝑛(𝑥𝑖)𝑖  and in non-ideal 

sub-regular and regular solution, 𝐻𝑆𝑆 ≠ 0. Atomic ordering in ideal case is a perfect 

randomization scenario and so phase separation is possible when either of 𝐻𝑆𝑆 > 0 or 

𝐻𝑆𝑆 < 0 occur. Models have been limited to configurational entropy of ideal solutions 

only, other entropy contributors such as vibrational, magnetic and electronic influences are 

ignored.  

Stable phases have ordered arrangements of the different atom types on the sub-

lattices. The lattice type is different from that of the matrix material(s) of SS - which is 

more randomized, whereas the stable phases are characterized by long-range order. As 

before, the Gibb’s free-energy of the stable phase is: 

𝐺𝑆𝑃 = 𝐻𝑆𝑃 − 𝑇(𝑆𝑆𝑃)     2.5 

where 𝐻𝑆𝑃and 𝑆𝑆𝑃are molar formation enthalpy and entropy of stable phases respectively. 

Usually, 𝑆𝑆𝑃 is insignificant enough to be ignored but in cases of complex oxides where 

more than one atom occupies or share a sub-lattice, 𝑆𝑆𝑃 can no longer be ignored. The ideal 

configurational entropy, estimated from sub-lattice model is132: 

𝑆𝑖𝑑𝑒𝑎𝑙
𝑆𝑃 =

−𝑅{∑ 𝑎𝑦𝑦
𝑦=1 ∑ 𝑞𝑖

𝑦
𝑙𝑛(𝑞𝑖

𝑦
)𝑀

𝑖=1 }

∑ 𝑎𝑦𝑦
𝑦=1

      2.6 

where the total number of element species, i, is M; ay is the number of sites on the y sub-

lattice and 𝑞𝑖
𝑦

 is the fraction of element species i randomly distributed on the y sub-lattice. 

The enthalpies of SS and SP are different due to the dissimilarities in atomic ordering 

patterns, and central to understanding the determination of HSP is the bond enthalpies 
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between  i and j first-neighbor atoms, 𝜁𝑖𝑗; and the type of first-neighbor atoms, 𝑛𝑖𝑗. The 

enthalpy of a solid is computed by adding up the products of all the terms as: 

𝐻 = ∑ (𝑛𝑖𝑗𝜁𝑖𝑗)𝑖𝑗           2.7 

In this equation, while SP and SS with the same composition may have the same value of 

𝜁𝑖𝑗, the 𝑛𝑖𝑗 values would be unidentical due to ordering differences. All of these concepts 

are based on same-size atoms, for different-sized atoms, uncertainties regarding the 

position or location of the atoms might introduce additional term called excess 

configurational entropy.  Further discussions about the subject can be found in the review 

article of Ref.133. 

 

2.6 Challenges and Opportunities in Complex Metal Oxide Synthesis. 

The greatest challenge in materials manufacturing is fabricating a homogeneous 

composition in multicomponent-based materials. This issue is even more important when 

one considers the fact that only in a homogenous multicomponent material can electronic 

structure be altered, which can confer interesting properties in many materials employed 

as a catalyst134-135, photocatalysts136, ferromagnets137, thermoelectric138 and energy storage 

materials139. Other desirable but elusive attributes material designers are looking to have a 

firm grip on is the control of grain and/or particle size32 morphology and microstructures140. 

Besides this challenge, the dream of every materials scientist is to have their lab-

synthesized materials put to industry-wide use, but the multiple steps and long processing 

hours associated with most lab-scale techniques could be a hindrance towards scalability. 
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In the following sub-sections, an expanded discussion of the challenges and opportunities 

in complex oxide synthesis shall be itemized. 

2.6.1 Scalability  

Scalability in general, describes a production unit or system whose capacity can 

change on demand without necessarily compromising reliability, performance, 

functionality, and cost efficiency.  Specifically, in commercial-scale production, the 

bottom-line objective would be increased production at minimal cost and at rapid 

production rates. There are many articles with the word scalable in their title and keywords 

but only a handful of those can indeed satisfy the requirements for scalability. Perhaps it is 

important to start off by defining the standard dichotomous processes currently employed 

in product manufacturing: Batch (or discrete) and continuous processing, within the 

context of scalability in high-volume manufacturing. Batch process is a stage-wise 

technique used in manufacturing which requires prolonged treatments, and therefore slow 

and not cost efficient due to high energy consumption. Batch processes are also low-yield 

methods as they involve multiple steps and laborious processes, each bearing a risk of 

introducing impurities into the final product, creating batch-wise inconsistencies in the 

process. Most noteworthy is the fact that the scale-up of these techniques can be difficult 

due to the long reaction times and multiple steps required. However, low initial cost outlay 

and low production risk (defective batch can easily be identified and disposed of) are some 

of the advantages of batch process. The batch processes currently in place for complex 

oxide preparation are solvothermal 141, sol-gel142, polyol143-144,  solid-state reaction145. In 

stark contrast, however, starting materials pass through unit operation/unit process in a 

repeated and uninterrupted manner in continuous processing. This is possible because 
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usually only one process step is involved, and that single step should be both rapid and 

facile for continuous processing to be achievable. The initial outlay cost may be huge, but 

it offers some advantages: not only is it the best approach for large-scale manufacturing, it 

is also a tractable method that can also handle small volume production without sacrificing 

product quality, also, it is more cost-effective in the long term, with a high degree of 

reliability in functionality and performance of products. At the moment, the 

commercialized complex oxides are produced via batch processes driving up cost and 

jeopardizing the commercial attractiveness of the technologies they were utilized in. So, 

there is a lot of interest in devising an alternative production route that will facilitate the 

continuous processing of complex oxides and alloys. 

2.6.2 Composition controllability 

The conventional synthesis routes of soft-chemistry and solid-state reaction have 

recorded a lot of success, but there are certain applications that requires compositional 

homogeneity of final complex oxide which is a difficult task with these well-known 

techniques.  Liquid-phase nucleation routes such as sol-gel, coprecipitation and Pechini 

have been developed for multinary metal oxide synthesis with either particulate gels, 

alkoxide and citrate gels or hydroxides. The methods are based on hydrolyzing metal 

precursors into metal alkoxide and other salts and thermolyzing these into multicomponent 

metal oxides. It is generally claimed that the cations are well mixed at the molecular level 

in a three-dimensionally coordinated network of space, in a way that shortens the diffusion 

distance during thermolysis and hence ensures a homogenous cationic distribution146. In 

reality, gels do not always precipitate into the intended crystal phase147-148.  The 

homogeneity of the solution phase does not necessarily translate to a homogenous solid 
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phase, because, according to Delattre et al149, the metal-organic structures may have 

transformed into separate phases before been frozen-in into a solid network. The 

controllability of the phase, stoichiometry, composition and microstructure of the resulting 

product in the coprecipitation method is somewhat satisfactory, but the differences in 

precipitation rates among intermediate precipitates could lead to uneven distribution of 

ions/atoms in some cases150. Solid-state chemistry sometimes require temperatures in the 

excess of 1000 °C , and such harsh condition can unfortunately create abnormal grain 

growth and give less than adequate homogeneity151. In summary, the conventional methods 

have some nagging issues as it relates to the control of composition, so the search for a new 

technique have been largely based on either modifying the existing methods or looking for 

alternative routes. 

2.6.3 High entropy alloys (HEAs) 

This is an emerging field in materials science and engineering with the pioneering 

works published around 15 years ago152-154. Conventional alloys consist of one or two 

prominent metals with a low amount of other metals. In HEAs, however, the alloys consist 

of at least five metals of equimolar proportions. Additionally, HEAs can be defined 

according to the value of a solid-solution configurational entropy. As we seen earlier, the 

configurational entropy is 𝑆𝑖𝑑𝑒𝑎𝑙
𝑆𝑆 = −𝑅 ∑ 𝑥𝑖𝑙𝑛(𝑥𝑖)𝑖  , and so by definition HEAs have 

𝑆𝑖𝑑𝑒𝑎𝑙
𝑆𝑆 > 1.61𝑅 133. 

This is a revolutionary concept in materials design as the focus would be at the 

center of a multicomponent phase diagrams. Contrarily, conventional alloys focus on 

vertices and faces. This will open up a new vista into the previously unexplored parameter 

space of composition and phase.  In varying applications such as construction155, thermal 
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insulation/conduction156, electric conduction156, thermoelectricity157, and catalysis 158-159, 

the unique qualities of HEAs by way of lighter and more resilient alloys enhances 

resistance to heat and corrosion, it also improves catalyst surface activity and energy 

conversion efficiencies. The arrangement of atoms in a crystal induces certain structural 

properties, however, since electronic properties may also be altered doing same, HEAs may 

possess catalytic or electrochemical properties never seen with regular alloys. In the early 

years of the development of HEAs, the primary focus was on metal alloys, but in recent 

years there has been significant growth in other materials group such as ceramics and 

semiconductors. These multi-metal oxide HEAs can have exceptional catalytic properties 

especially when deployed in oxidative reactions. As an example, carbothermal shock 

synthesis was adopted in the synthesis of HEA nanoparticles was found to be useful as 

ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity 

over extended runs159. The challenge before materials engineer is to extend this HEA 

fabrication capabilities to more complicated ceramics such as nitrides, chalcogenides, 

phosphides and oxides. 

2.6.4 Synthesis of nanostructural complex oxides 

The search for a scalable and unique synthesis technique that simultaneously 

controls the chemical composition of the metals and one-dimensional (1D) growth remains. 

For example, research into 1D nanocathodes related to nickel-manganese-cobalt (NMC) 

and nickel-cobalt-aluminum (NCA) in lithium ion batteries, to the best of our knowledge, 

are unavailable in current literature, even though they are the most favorable and popular 

choice for cathode materials owing to their high specific capacity. Therefore, the non-

triviality of the challenge in synthesizing LiMO2 (M = transition metals and aluminum) 
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may have undermined the progress of research into 1D nanostructural cathodes. This goes 

without saying that a lot of opportunities are abound in this field of research and other 

related fields where 1D growth of complex oxides are critical to their operation. 

2.7 Routes to Complex Metal Oxide Synthesis 

The methods available for synthesizing complex oxides can be categorized based 

on whether the reactants are solid, liquid or in gas phase. Figure 2-3 shows the summary 

of the methods. It is worth noting that solid-state reaction has been in use since prehistoric 

times, whereas; liquid-phase nucleation has been around for more than 40 years since the 

first gas-phase nucleation method was reported. So, both the solid-state and liquid-phase 

nucleation routes are regarded as the conventional methods in this study. 

 

 

Figure 2-3| Summary of the techniques available for synthesis complex oxides. 
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2.7.1 Solid-state reaction  

In general, solid-state reaction involves synthesis technique with at least one 

reactant in the solid-phase. So; solid/solid, solid/liquid and solid/gas are grouped under this 

category. Solid/gas system does not necessarily mean a gaseous reactant but could also 

involve a gaseous product, in fact, a gaseous product are the most common types in this 

system. Also, in many situations, “solid/solid” systems do in fact mean solid/liquid as the 

high temperature required to initiate the reaction will turn at least of the reactants into a 

melt phase. Figure 2.4 displays the progression of two solids P and Q. Two solids hardly 

react at room temperature due to low entropy (or high Gibb’s free energy), but when a 

suitable temperature is attained, there is diffusion of ions P and Q in the opposite directions 

into a product phase R,  which is formed following its nucleation. The most common 

reaction temperature is two-thirds of the melting temperature of one of the reactants.  The 

product layer becomes thicker as time, t increases. At long times, diffusion length becomes 

 

 

Figure 2-4|  Solid/solid reaction showing reaction progression at (a) time, t = 0 

(b) t = t 
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longer and product phase acts as a barrier slowing the reaction rate. The rate law is 

parabolic operating between 1200 – 1500 °C, when the reaction rate is diffusion limiting, 

and is represented  by the rate equation160: 

𝑥2 = 𝑐. 𝑡          2.8 

where c is the rate constant, x is the thickness of the product layer. Owing to this slow 

reaction rates, additional ions being introduced into the system may not enjoy unfettered 

migration, which may hinder the facile distribution of cations in the product layer. This 

slow processing time often lead to stable phases as against the metastable ones due to ions 

having enough time to attain equilibrium conditions.  

2.7.2 Liquid-phase nucleation 

It is also called the wet-chemical methods. Liquid phase nucleation method is 

different from solid-state reaction in the sense that diffusional limitations is eliminated 

owing to reactants being dispersed in a solvent. Also, it is a self-assembly method where a 

molecular reactant is stacked on one at a time leaving the general bonding structures of 

most atoms intact17.  In this method, materials precipitate out of solution as either 

hydroxides, oxalates, sulfates and so on. The advantage with this method is that particle 

size and microstructure can be controlled but these powders needed to be filtered out from 

a solvent or more appropriately, supernatant and calcined afterwards to remove the 

organics and water vapor in order to generate the desired oxide phase. Calcination step can 

promote aggregation destroying the microstructure, also; the high temperature and long 

calcination time can lead to stable phases. This process route depends on nucleation and 

growth of sample from a solution that is under supersaturated condition. Nucleation can 

occur either heterogeneously or homogenously depending on whether a solid substrate is 
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involved in this process. In heterogeneous nucleation, a solid interphase provides seed to 

initiate nucleation, whereas, homogenous nucleation takes place without an intervening 

phase. The various methods of liquid-phase nucleation techniques are discussed below. 

2.7.2.1 Sol-gel method 

It is a unique method for the synthesis of metal oxide and mixed metal oxide 

nanoparticles. The method is advantageous because of its firm control on resulting 

microstructures of oxide particles. The outline of steps in this process is presented in Figure 

2-5. The steps are (1) hydrolysis (2) condensation (4) drying (5) thermolysis 161.  

 

 

Figure 2-5| Flow diagram showing the various steps of sol-gel technique. 
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The precursor is hydrolyzed into metal hydroxide called sol, which is quickly 

followed by condensation to three-dimensional gel. The drying route used determines the 

next material formed, supercritical drying forms aerogel and regular thermal drying leads 

to xerogel. The final step is the calcination (or thermolysis) at moderately elevated 

temperature to get rid of the organic and/or water molecule and crystallize the desired oxide 

phase.  

2.7.2.2 Pechini method 

The method is named after its inventor 21 who consolidated the sol-gel process, 

giving it more control of microstructure and composition. The most significant advantages 

of the Pechini method is the capability to form a precursor of polymer network where two 

or more metals embedded homogeneously throughout the network 162. As seen in Figure 

2-6, metal citrate complexes formed from a solution two-component metal precursors 

(containing cations A and B) and citric acid is combined with ethylene glycol, the mixture 

is mildly heated and stirred a polymeric network of material. This is a transesterification 

reaction between metal citrate complex and ethylene glycol to form a covalent polymer 

matrix containing metal cations distributed evenly. This rigid (covalent) framework 

 

  Figure 2-6| Pechini process involving two metal cations A and B, adapted from 

Ref. 162 
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ensures the cationic distribution remains the same during and after calcination to the 

desired ceramic material.  

2.7.2.3 Coprecipitation method 

The technique ranks as one of the oldest routes to making multicomponent metal 

oxide. This method involves the preparation of aqueous solution constituted by the desired 

multicomponent cations and mixing with another solution which contains the precipitating 

agent. The precipitate is separated from the supernatant by filtration, dried and calcined to 

crystalize the intended complex metal oxide phase. Conditions such as rate of mixing 

precursors and precipitating agent, temperature, pH, and concentration have to be 

optimized to produce acceptable final oxide products150. The controllability of the phase, 

stoichiometry, composition and microstructure of the resulting product are somewhat 

satisfactory, but the dissimilar precipitation rates among intermediate compounds could 

lead to compositional inhomogeneity in some cases150. The process is time-consuming, and 

also, aggregate formation and phase separation could result during calcination at elevated 

temperatures. 

2.7.2.4 Solvothermal technique   

This is the enclosure of a mixture of solvent (hence solvo), reactants and other 

agents (mineralizers, templating agents, etc.) in a sealed reactor called autoclave. The 

sealed reactor is heated to temperatures just above the boiling point of the solvent for a 

long time in a process termed ageing. Specifically, in an aqueous solvent, the reactor is 

heated above 100 °C and the process is termed hydrothermal synthesis.  Under this 

condition of sealed vessel and temperature, an autogenous pressure is built up, which 

assists in the supersaturation of the nutrients. Also, the viscosity of water, as well as its 
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dielectric constant are significantly reduced under the hydrothermal conditions, the 

solubility of the reactants can also be impacted by this163. This method is good for preparing 

single crystals, and well-ordered polycrystalline materials. The method was first 

popularized for growing large single crystal quartz164, as well as zeolites165-166, but a lot of 

researchers are using this techniques to grow mixed oxides such as pervoskites167,  

pryrochlores167, garnet168 and Ruddlesden-Popper phase169. 

2.7.2.5 Other methods 

The soft chemistry routes consist of some other less known techniques such as 

freeze-drying170, flux method171, and room-temperature reduction-recrystallization 

(RTRR) method46. In the RTRR method, a reductant (NaBH4) was used to reduce mixed 

precursors of CoCl2.6H2O and MnO2 into a precipitate of non-stoichiometric metastable 

CoxMn3-xO4 spinel at room temperature. Also, key in this approach is the ability to switch 

between tetragonal or cubic spinel depending on the phase of the starting MnO2.  What’s 

more, the obtained spinel phase possesses exceptional bifunctional ability when deployed 

as electrocatalysts for both OER and ORR (oxygen reduction reaction).  

Flux methods use molten salts to synthesize complex oxides at temperatures 

ranging from 200 - 500 °C. It consists of reacting molten multicomponent alkali hydroxide 

melts, which can have eutectic temperatures as low as 175 °C. The acid-base equilibria:  

2OH-  ↔ H2O + O2- 

suggests the solubility of wet acidic fluxes (right-hand side of equilibria) and their 

recrystallization as dry basic fluxes (left-hand side of equilibria)33. 
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2.7.3 Gas-phase nucleation 

The liquid-phase approach leverages on mild reaction conditions such as 

temperature and pressure to make metastable phases, whereas in gas phase nucleation 

methods, these reaction conditions may be extreme, but the reaction times are rapid. In the 

justification of Ostwald’s step rule130, either of mild reaction condition or rapid processing 

time are necessary to make metastable phases. This makes a lot of sense because the 

molecular reactants are frozen-in in their metastable states without having ample time to 

reach equilibrium state. Another way gas-phase nucleation method differ from the liquid-

phase nucleation methods is that there are no solvent wastes to contend with, as the 

complex oxide particles nucleates directly from aerosol (liquid precursor dispersed in gas) 

to particles in what is called gas-to-particle conversion. Besides, the unit operation 

normally used to separate oxide particles from solvent/supernatant will be eliminated for 

the same reason172. Other attractive feature of this method is the report that particle size 

can be controlled from droplet size of liquid in aerosol, also, the composition of the liquid 

droplet completely mirrors the composition of the precipitated oxide phase giving it 

exceptional control of composition. Absent agglomeration, particles generated have 

narrow particle size distribution, however, particles can sometimes agglomerate and 

coagulation/sintering are the two competing processes which are responsible for 

agglomeration 173.   

The gas-phase nucleation method can be categorized according to the media used 

in the gas-to-particle conversion. In general, there are two main media (1) flame (2) plasma, 

as represented in Figure 2-3, and each process is discussed in more details below. 
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2.7.3.1 Flame spray pyrolysis 

Flame aerosol technology is already commercialized for the synthesis of carbon 

black, titania, silica, zirconia and alumina nanoparticles, with that market already valued 

at $15b per annum28, however, complex oxides are not. As we seen many times in this 

review, most of the energy applications of interest require materials with increasing level 

of complexities. The method consists of high energy flame with combustion temperature 

averaging between 1500 – 2757°C174-177   ̶  and powered from a mixture of fuel and oxygen, 

a combustible solvent, a combustible or sometimes a non-combustible liquid precursor, an 

atomizer or aerosol generating system, a particle collection system and a combustion 

chamber. The spray head or nozzle is the inlet of the combustion chamber where the liquid 

precursor and oxygen are fed in to generate an aerosol of atomized precursor dispersed in 

 

Figure 2-7| Gas-to-particle transition for single and multicomponent systems. 

Adapted from Ref. 178 



 

51 

 

oxygen. The aerosol travels through the flame and undergoes some physicochemical 

transformations from evaporation to nucleation. After this, particles grow by condensation, 

coagulation coalescence and sintering. There can be variation in these steps depending on 

whether the precursors are single or multicomponent178 (see Figure 2-7). Punginsang174 et 

al suggested the reaction steps in the formation of binary oxide Bi2WO6 proceed via the 

reaction of monometallic oxides Bi2O3 and WO3 even though the starting materials  are 

nitrate and hexaethanolate respectively. The maximum temperature of the flame (̴ 2757 °C) 

is about 1000 °C higher than the boiling points of Bi2O3 and WO3, giving it sufficient 

energy to gasify the monometallic oxide intermediates. Because the boiling points of Bi2O3 

and WO3    are somewhat different, their evaporation and condensation rates are expected 

to be different. This could unfortunately lead to poor control of the composition final mixed 

oxide phase.   

2.7.3.2 Plasma spray pyrolysis 

This method is similar to FSP in all regards, except that the flame media is 

substituted with plasma. Several technologies, especially in the semiconductor industry 

have used plasma-assisted technologies in many ways including etching179, plasma 

enhanced chemical vapor deposition180, plasma-assisted chemical vapor deposition181, ion 

implantation182, sputtering183, and so on. Plasma chemistry and plasma-induced reactions 

can occur at relatively low temperatures, or under non-equilibrium conditions, and many 

of these plasma-induced reactions are spontaneous processes making it perfect media to 

fabricate metastable phases. These plasma reactions result in the high heating rate, making 

the reactions rapid, also materials experience accelerated cooling as they exit plasma, 
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making the plasma a perfect media to freeze-in atoms before they attain equilibrium 

position.  

In general, plasmas are defined as quasineutral gas of charged and neutral particles 

that exhibit collective behavior184. A gas is defined by Brownian motion as conceptualized 

in the kinetic theory of gases, whereas, with plasmas, apart from the local inter-particle 

collisions between nearest neighbor particles, a particle far away can also affect the 

collisional pattern due to the influence of electric field, this phenomenon is called a 

collective behavior. A plasma is created when a sufficient energy is supplied to gas, enough 

to cause electric breakdown or allow the gas to conduct electricity in a process called 

ionization. In ionization, for example, a gas particle, A, loses an electron from its valence 

shell to create a positive ion (A → A+ + e−), an exact inverse process called recombination 

could take place simultaneously where the positive ion an electron recombines to form A 

(A+ + e− →A). Recombination could also result from combination of neutrals, a positive 

and negative ion, leaving behind a large heat (exothermic reaction). A plasma is usually 

initiated and sustained by supplying electromagnetic energy to a gas, and these energies 

come in several forms including direct current, radio frequency, and microwave energy185. 

These electromagnetic energy forms are called plasma source. The choice of plasma source 

depends on the expected plasma density (electron/ion density) and/or plasma temperature. 

The plasma temperature can be looked at in a way that the plasma has two sub-systems: 

electrons and heavy particles or gas (heavy particle comprises of gas and charged particles, 

where gas temperature is approximately equal to the ion temperature), with each system 

having its own distinct temperature: Te for electron temperature and Tg for heavy particle 

temperature. In local thermodynamic equilibrium (LTE) plasma these two subsystems are 
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not differentiable, whereas for non-LTEs local gradients are large, hence the two 

subsystems are delineable.  

 

 

 

Table 2.2 Example of various atmospheric pressure plasma systems 

Source Excitation 

frequency 

Species temperature and density Ref. 

DC arc Low frequency Te=Tg ̴ 8,000-14,000K 

ne = 1021 – 1026 m-3 

186 

Pulsed DC 

(Dielectric barrier 

discharge) 

Low frequency Te= 10,000-100,000K 

Tg<700K 

ne = 1018 – 1021 m-3 

187 

Inductively 

coupled plasma 

Radio frequency Te=Tg = 6,000-11,000K 

ne = 1021 – 1026 m-3 

186 

Microwave High frequency Tg < 4,000K 

ne = 3x1020 m-3 

188 

 

 

Table 2.2 gives an example of plasma source, their excitation frequencies and the 

properties including temperatures and densities of plasma species. The DC arc and 
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inductively coupled plasma are mostly LTEs, the pulsed DC arc is non-LTE while the 

microwave plasma is partial LTE. Coupled with the fact the that the microwave plasma is 

electrodeless (advantageous owing to the absence of contamination problems arising from 

complex oxide deposition on electrodes), the partial LTE makes it an interesting choice 

due to the non-equilibrium conditions necessary to make metastable phases. Most of the 

applications of plasma spray pyrolysis are applied in thermal barrier coatings (TBCs)189-

191. Figure 2-8 shows a typical DC arc plasma spray coating set-up for TBCs, solution 

precursor or suspensions sprayed perpendicular to the direction of the plasma jet, the 

momentum of the plasma carries the spray particles onto a substrate material to be 

coated192.   The plasma spray pyrolysis has not been successful beyond coating 

applications, but it will be interesting to test these plasma-synthesized materials in a more 

functional role as energy-harnessing materials.  

 

 

Figure 2-8| DC arc plasma spray set-up for thermal barrier coatings. Adapted from 

Ref.192 
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2.8 Chapter Summary 

This chapter has covered history, energy-focused applications, structure and 

property relationships, challenges, thermodynamics and the several routes available for the 

synthesis of complex oxides. It is quite evident from current literature that the slow 

processing times and extreme temperatures required for either treatment (solid-state) or 

post-treatment (liquid-phase nucleation) makes the synthesis of complex oxides far from 

equilibrium untenable. So, many of the important processes in energy conversion where 

these materials have been utilized may be underperforming probably owing to the fact that 

metastable phases may have been bypassed sometimes unwittingly by the material designer 

because not many compositions have been actually realized. Literature also suggests that 

the ability to have firm control on materials composition is lacking in many of these 

incumbent methods, additionally, the several process steps inherent in these classical 

methods may hinder their large-scale manufacturing, and it comes as no surprise that many 

of these materials from literature are not fully commercialized. Other than thermal barrier 

coating, the plasma is seldom used in the preparation of complex oxides needed to address 

the multifaceted energy and materials challenges. This in spite of the fact that it has many 

attributes tailor-made for the synthesis of oxides of multicomponent type, this dissertation 

is about addressing this gap. Also, no work has been done to date to offer insights into 

fundamental understanding of the mechanism in which plasma or even flame pyrolysis 

process complex oxide synthesis. 
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CHAPTER 3 

3. EXPERIMENTAL AND ANALYTICAL METHODS 

3.1 Introduction 

In this chapter, the procedure in the experimental study of the synthesis of 

polycrystalline complex oxides from solution-phase precursors in the atmospheric plasma 

is presented here, and this includes, the design and construction of the reactor systems and 

key components, variation of process parameters to optimize reactor conditions, etc. The 

characterization and analytical steps employed in both qualitative and quantitative analyses 

of the surface, morphology, composition and textures are also presented here. An 

assortment of techniques such as scanning electron microscopy (SEM), energy dispersive 

spectroscopy (EDS), X-ray diffractometer (XRD), Rietveld analysis, Brunauer-Emmett-

Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), transmission 

electron microscopy (TEM), inductively coupled plasma mass spectrometer (ICP-MS), and 

thermogravimetric analysis (TGA) shall be discussed in this chapter, including the detailed 

measurement conditions and analytical settings. Electroanalytical techniques such as cyclic 

voltammetry, galvanostatic charge/discharge measurement, chronopotentiometry, 

including the electrode fabrication methods shall be covered in this chapter. Finally, the 

computational procedures using the first principle DFT, in the analysis of the electronic 

band structure of complex oxides shall be presented here. 



 

57 

 

3.2 Batch Operation 

3.2.1 Reactor system 

 

The schematic of the batch-operated reactor system for the synthesis of thin-film 

based complex oxides is shown in Figure 3.1. In this setup, an electrode-less atmospheric 

microwave plasma jet system was assembled with a commercially available units 

comprising of a microwave power generator (AX2530, SmartPowerTM) which converts AC 

power to DC, a magnetron head (ASteX FI20162-2, 2.45 GHz) with a maximum stationary 

power of 3 kW, which coverts DC power to microwave energy, an isolator that absorbs 

reflected microwave power from the applicator and a precision power detector (PPD) that 

 

Figure 3-1| Atmospheric microwave plasma batch reactor system for thin film 

complex oxide synthesis 
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monitors power propagated in the waveguide for feedback optimization. The 

SmartMatchTM optimizes the coupling of power to the plasma for reproducible impedance 

matching. At the far end of the waveguide was attached to an applicator consisting of a 

quartz tube of about 1 in. in diameter and 3 ft. long, and a cooling water line with maximum 

flow of 3 slpm (standard liters per minute) which supplies cooling to the SmartPowerTM, 

magnetron head, isolator, PPD, SmartPowerTM and the waveguide. The microwave plasma 

was ignited in the applicator by inserting a copper wire into the resonant cavity from the 

top of the reactor, moving it around the walls of the resonant cavity until a plasma jet was 

generated. The flow rates of gases were controlled with mass flow controllers (MFC1 and 

MFC2) connected to the top and side of the quartz tube, and gases are flowed at an angle 

of 60°, to create a spiral flow path in order to avoid the quartz tube from melting due to 

overheating. Initially, an easily ionizable gas such as Ar with low dielectric breakdown 

constant was introduced into the reactor to ignite the plasma, when the plasma is stable, an 

appropriate processing gas (air, oxygen, nitrogen, etc) was admitted to the reactor and the 

flow Ar was turned off.  

This custom-built reactor comprises of a magnetron that generates microwaves of 

2.45 GHz frequency, also called as the S-band. The microwaves from the magnetron are 

transmitted by a rectangular waveguide (WR-284) which allows the propagation of 

microwaves in the TE10 mode. A cavity magnetron consists of a resistively heated cathode 

(usually barium oxide) emits electrons into interaction space between the cathode and the 

anode comprising of several cylindrical cavities. A permanent magnet is positioned on the 

magnetron in such a way that the direction of magnetic field is parallel to the axis of the 

cathode, resulting in a deflection the electron in the path perpendicular to the magnetic 
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field lines.  Electron reaching one end of the cavity induce a positive charge while the other 

end of the cavity is at negative charge. The oscillation of electrons in the anode cavities 

results in the loss of some its kinetic energy, alongside the generation of microwave energy. 

A coupling loop connecting the magnetron with the waveguide transmits this microwave 

into the waveguide. The isolator allows microwave propagation in one direction and is used 

to prevent the reflected microwaves from entering the magnetron, while the power detector 

module measures forward and reflected power. SmartMatchTM is a complex microwave 

matching unit which uses phase-magnitude detection tool and a sophisticated predictive 

matching algorithm to provide rapid and reproducible matching of source (microwave) and 

load (plasma). SmartMatchTM uses the measurement of power detector module to estimate 

the phase and magnitude of the reflections. The controller in the SmartMatchTM, through a 

complex algorithm, moves three tuning stubs into the ideal position matching the load 

impedance and maximizing microwave power coupling into the plasma.  

3.2.2 Sample preparation 

The steps in the preparation of thin film on fluorinated tin oxide (FTO)-coated glass 

or any other suitable substrate is illustrated by Figure 3-2(a). Prior to oxide deposition, the 

substrates were cleaned by ultrasonication in an alkaline aqueous washing solution, 

deionized water, ethanol, and then deionized water again for 10 min per step. For FTO–

glass electrodes, the metal precursor solution was directly cast on the substrate and exposed 

to the plasma jet to form a thin film of the mixed-metal oxide. A laser pyrometer was used 
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to monitor the temperature of the substrate, and in general, operating plasma power of 500- 

600 W guarantees substrate temperatures do not exceed 500 °C, the limit of thermal 

stability of FTO-coated glass. This technique is rapid, with the oxide film formed in most 

cases within 14s. Figure 3-2(b) shows a device constructed to extract reactive heat from 

the substrate as part of the experiment investigating the overall influence of the 

 

 

Figure 3-2| (a) Different stages of solution to complex oxide conversion in the batch 

process (b) substrate cooling device to extract recombinative heat from sample during 

plasma exposure 
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recombinative heating in the formation of complex oxides. Results from this experiment 

can be found in chapter 5 of this dissertation.   

3.3 Continuous Operation 

This section shall cover tasks related to design of continuous plasma processing 

reactors wherein the precursors are airborne with the final oxide products made from gas-

phase nucleation of aerosol precursors. This operation is convenient for oxide nanopowders 

production.  

3.3.1 Reactor system and sample preparation 

The reactor set-up is shown in Figure 3-3, the set-up is similar to batch operated 

system in section 3.2.1 with a few modifications. A 3 ft. quartz tube is used with most of 

the 3 ft length below the waveguide.   Compressed air and precursor liquid are forced 

 

Figure 3-3| Atmospheric microwave plasma continuous reactor system for 

nanopowder complex oxide synthesis 
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through the nozzle of an atomizer which creates an aerosol of liquid precursor droplets 

dispersed in air. The vacuum pump help directs the nanopowders into the air filter where 

the particles are collected. 

3.4 Materials Characterization 

3.4.1 X-ray diffraction 

An X-ray diffractometer is used to determine the crystallography of a crystalline 

oxide. X-rays are generated using an X-ray tube comprising of heated tungsten filament 

contained in a low-pressure chamber. A cathode (tungsten metal) emits electrons when 

heated up thermionically193. A high voltage (typically 40kV) is applied across electrodes 

so that the emitted electrons are accelerated towards an anode (copper, molybdenum, etc) 

called targets so that on reaching the target, electrons lose energy via two mechanisms: 

firstly, the electrons can decelerate as they approach the nucleus of the atoms in the anode 

due to opposing electric field from the nucleus towards the electrons. This slowing down 

of electrons produce Bremsstrahlung or white X-rays194. Secondly, the electrons can knock 

out the electrons in the inner shells of the copper atoms. Electrons in the valence shells 

relax to the inner shells and the difference in energy is emitted in the form of continuous 

X-rays. The continuous copper X-rays are not pure, they contain Cu-Kα1, Cu-Kα2 and Cu-

Kβ X-rays, but needing just Cu-Kα1 for analysis, an array of mirrors called primary 

monochromators, coupled with Ni filter are placed in the path of these impure X-rays 

allowing only Cu-Kα1 through the sample. Diffracted X-rays are passed through anti-

scatter and soller slits into a scintillation counter detector. 

 A Bruker D8 powder X-ray diffraction (XRD) system was used for crystal 

structure and phase analysis using non-monochromated Cu-Kα radiation produced by an 
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X-ray tube operated at 40 kV and 40 mA. The sample XRD patterns were scanned between 

20–80° at a scan speed of 4 seconds per step with a step size of 0.02°. XRD detector is 

LYNXEYE detector operated in 0D mode and uses a scintillation counter. Bruker EVA 

software and powder diffraction file (PDF 3) were used for phase identification.  

3.4.2 Rietveld refinement analysis and crystal structure depiction 

This is an advanced XRD analysis tool that refines several crystallographic 

parameters including peak shape, preferred orientation (or texture), lattice parameters in 

order to establish a calculated diffraction patterns195. The matching of the calculated pattern 

with experimentally obtained data (observed) could help to determine quantitative results 

such as grain size, occupancy or even phase composition in multiphase samples. The 

Rietveld method optimizes the calculated pattern to minimize the weighted sum of squared 

differences between the observed and calculated intensity values, i.e., it minimizes196: 

∑ 𝑤𝑖(𝑦𝑐,𝑖 − 𝑦𝑜,𝑖)
2

𝑖               3.1 

where the weight,  𝑤𝑖 =
1

𝜎2 [𝑦𝑜,𝑖], yc and yo represents intensity values of the calculated and 

observed data. There are many discrepancy indices used to test the accuracy of data. 

Weighted profile R-factor, Rwp, is the most common and is defined as: 

𝑅𝑤𝑝 = √
∑ 𝑤𝑖(𝑦𝑐,𝑖−𝑦𝑜,𝑖)

2
𝑖

∑ 𝑤𝑖(𝑦𝑐,𝑖)
2

𝑖

              3.2 

The expected R-factor, Rexp, is the best possible Rwp, defined as: 

𝑅𝑒𝑥𝑝 = √
𝜈

∑ 𝑤𝑖(𝑦𝑜,𝑖)
2

𝑖

         3.3 
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where 𝜈 is the degree of freedom. Another discrepancy index is chi-square (χ2), and is 

defined as: 

𝜒2 = (
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
)

2

               3.4 

At the start of refinement, χ2 is initially large if model is poor and gets better as the model 

improves, ideally χ2 have a value equal to one for good models but should not be less than 

one. χ2 < 1 implies overestimation of uncertainties. Crystallographic data analysis software 

GSAS-EXPGUI197 and FullPROF198 were employed to analyze and/or quantify the phases 

of materials in the Rietveld method for structure refinement. Atomic positions, cell 

parameters, background, scale-factors, and profile parameters were all refined. 

Additionally, a March–Dollase199 algorithm was employed for the correction of 

preferential orientation. The crystallographic information files (CIF) were exported from 

GSAS-EXPGUI into VESTA200 in order  to draw the crystal structures of the samples, 

while images were rendered using Tachyon ambient occlusion lighting implemented in 

Visual Molecular Dynamics (VMD).201  

3.4.3 BET surface area analysis 

To quantify the surface area of the mixed-metal oxide, Brunauer–Emmett–Teller 

(BET) analysis was performed with a Micromeritics TriStar 3000 porosimeter. Samples 

were carefully weighed and degassed before performing the measurements to remove any 

adsorbed contaminants from the surface and pores of the sample. Calculations for the BET 

surface area were done using the TriStar 3000 analysis program. 
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3.4.4 Scanning electron microscopy and EDS measurement 

A scanning electron microscope comprises of two main components- (i) electron 

gun column and (ii) detector. The electron gun column generates electron, by thermionic 

emission, and focuses the electrons on the sample202. In field emission (FE-SEM) mode, a 

high voltage is applied to material with a very sharp tip, the potential at the tip of the 

material is deformed creating a pathway for the escape of electrons by tunneling effect. 

FE-SEM is the mode of choice in high resolution scan. Electromagnetic lenses (condenser 

and objective) are used to further focus the electron beam, these comprise of wound coils 

enclosed in cast iron yolks with a small narrow opening. When a current pass through the 

coils, it produces a magnetic field around that axis of the coils that deflects and focuses the 

electron beam. The strength of the magnetic field can be varied by changing the current 

passing through the coils. The condenser lens is used to reduce the diameter of the electron 

beam that has been accelerated towards the anode and the objective lens is used to focus 

the electron beam on the sample. The focused electron beam from the objective lens can 

be rastered along the sample using scanning coils that deflect the position of the electron 

beam by applying a small voltage between the coils. The secondary electrons emanating 

from the sample are finally detected using an Everhart-Thornley detector (ETD). The SEM 

is coupled with an energy dispersive spectroscopy (EDS) which determines the elemental 

composition and mapping of sample. When the electron beam hits a sample, some inner 

shell electrons are displaced, exciting these atoms to higher energy state. Relaxation of 

these atoms from their excited state allows X-rays to be are emitted from the material. The 

resulting X-rays have wavelengths/energies related to difference in energy levels between 
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which the relaxation occurs. And because these shell transition energies are characteristic 

of particular elements, the X-ray spectrum provides a fingerprint of the sample203. 

Electron micrographs of the morphology and EDS measurements of the complex 

oxides were performed with a FEI Nova 600 and a TESCAN VEGA3 SB-EasyProbe 

scanning electron microscopes (SEM) at accelerating voltages of 10–15 kV and 20 kV, 

respectively. 

3.4.5 Inductively coupled plasma mass spectrometer 

An inductively coupled plasma mass spectroscopy (Thermo Scientific XSERIES 2 

ICP-MS) method was used to determine the elemental composition in the mixed metal 

oxide. Prior to ICP-MS analysis, the oxide was digested in trace metal grade HNO3 (BDH), 

filtered and dissolved in a matrix of 2% w/v HNO3 solution to make an analyte of known 

concentration, analytes are then atomized and carried into the plasma torch by a carrier gas 

(Ar). The ions generated in the energetic plasma are introduced into the mass spectrometer, 

where analytes are identified according to their mass-to-charge (m/z) ratios and are 

quantified by a detector. Detector signals are compared with pulses from those of a multi-

element ICP-MS standard (Inorganic Ventures) which make up a linear calibration curve.  

3.4.6 X-ray photoelectron spectroscopy 

The surface of the sample was analyzed using two X-ray photoelectron 

spectroscopy (XPS) instruments: Thermo Scientific MultiLab 2000 and TFA XPS Physical 

Electronics. The MultiLab 2000 instrument is coupled with a highly efficient Alpha110 

hemispherical electron energy analyzer. The energy analyzer integrated with twin anode 

X-ray source, produces both high quality and small area XPS down to 100 µm. To line up 

the sample analysis position more precisely, a high-quality microscope and CCD camera 
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is provided in the MultiLab 2000 system. The optional twin-crystal X-ray monochromator 

provides high resolution XPS and the benefits of source-defined XPS in small area 

analysis. The base pressures in the XPS analysis chambers were approximately 6.1–8.0 Pa. 

The samples were excited with X-rays over a 400 µm spot area with monochromatic Al-

Kα1,2 radiation at 1486.6 eV. The photoelectrons were detected with a hemispherical 

analyzer positioned at an angle of 45° with respect to the normal to the sample surface. The 

energy resolution was about 0.5 eV. Survey-scan spectra were made at a pass energy of 

187.85 eV and a 0.4 eV energy step, while for C-1s, O-1s, Ni-2p, Mn-2p, Co-2p, W-4f and 

Ir-4f,  individual high-resolution spectra were taken at a pass energy of 29.35 eV and a 

0.125 eV energy step. All the spectra were calibrated with C-1s spectra. The spectra were 

fitted using XPSPEAK 4.1 software, and a Shirley-type background subtraction was used. 

3.4.7 Raman spectroscopy 

The measurement is performed by focusing a laser beam onto the sample. Raman 

signal gives the information on molecular vibrational and rotational motions of a material. 

Raman scattering occurs because a molecular vibration can change the polarizability of a 

material. When photons hit the sample at a certain frequency the molecules excite from 

ground state to virtual states and fall back to the ground state or lower level states emitting 

a photon. If the frequency of the emitted photon is same as the incident photon, this 

phenomenon is called Rayleigh or elastic scattering and does not give any information in 

identifying the sample. In contrast, when the frequency of the emitted photon is different, 

the change in the frequency is identified as Raman shift and is characteristic for a given 

sample. 
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In this study, room temperature Raman measurements were performed in a 

backscatter configuration using an inVia Renishaw micro-Raman spectrometer, equipped 

with a 50x objective lens, visible light optics, an 1800 mm-1 diffraction grating, and a HeNe 

laser producing 633 nm excitation wavelength. The silicon peak at 520 cm-1, measured 

from a standard silicon wafer, was used for the system calibration. The spectra were 

analyzed using a peak fitting algorithm implemented in Origin Pro 8.5. 

3.4.8 Transmission electron microscopy 

TEM detects the elastically scattered electrons that are transmitted through a 

sample. If the sample is crystalline, diffraction of electrons through the plane of the crystals 

results in diffraction patterns.  Images in the TEM can be obtained either in the bright field 

(BF) mode or dark field mode. In dark field (DF) image the direct beam is blocked by an 

aperture in the back focal plane and the diffracted beam of electrons that have strongly 

interacted with the sample are used for image formation. Hence, the DF images give 

information about the defects in the sample. In the bright field mode, an aperture is placed 

in the back focal plane and only the direct beam of electrons that have interacted with the 

sample are used for image formation and the diffracted electron beam are blocked. As a 

result of this, the electrons interacting with atoms of higher atomic mass and thicker regions 

produced a darker contrast which means the BF images give information of the thickness 

of the sample. High Resolution TEM (HRTEM) mode in the TEM is used for high 

resolution imaging of crystalline material and can provide resolution up to 0.25nm point to 

point, with a line resolution of 0.12nm possible.  In this technique several diffracted beams 

are used to form the image. Selected area diffraction (SAED) analysis has been performed 

on oxide sample to understand the crystallinity of the sample. This can selectively perform 
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analysis on very small parts of the sample independently under the electron beam by using 

an aperture which sends only small part of the beam. Crystal quality can be determined 

from the obtained diffraction pattern. For example, if the sample is polycrystalline it gives 

rise to a series of ring patterns whereas single crystalline sample gives discrete spot 

patterns. If the crystalline oxide sample is few nm in size, the HRTEM may not be able to 

capture images in TEM mode, due to strong diffraction contrast. In such situations, high-

angle annular dark field scanning transmission electron microscopy (HAADF-STEM) is a 

perfect mode to image sub-nm sized particles and single atoms - with high contrast by 

forming the image with electrons that are scattered incoherently into high angles. The 

diffraction and phase contrast are disabled in this TEM mode, counts depend on atomic 

number Z. STEM resolution is 0.18nm on the HAADF detector. TEM is fitted with an 

electron spectrometer to measure the electron energy loss spectroscope (EELS). EELS is 

techniques that measure the variation in the loss of kinetic energy of electrons after they 

interact with a sample. This data is used to determine the atomic structure, chemical state, 

quantity and the interaction between an atom and its nearest neighbors. 

HR-TEM, SAED, nanoprobe-based energy dispersive X-ray spectroscopy (EDS), 

and STEM were conducted using two instruments FEI Tecnai F20 transmission electron 

microscope and JEOL 2010F transmission electron microscope, with an accelerating 

voltage of 200 kV.  

3.4.9 Thermogravimetric analysis 

Thermogravimetric analyses were performed in a differential thermogravimetric 

analyzer, (model SDT Q600 from TA Instruments, precision of temperature measurement 

±2 °C, microbalance sensitivity <5 μg), with which the precursor weight loss and rate of 
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weight loss as functions of time or temperature were recorded continuously, under dynamic 

conditions, in the range 20–1000 °C. The experiments were carried out at atmospheric 

pressure, under nitrogen atmosphere, with a flow rate of 40 ml/min, at ramp rate of 10 °C 

min-1. A precursor weight of 20 mg was placed in the crucible. The experiments were 

replicated at least twice. 

3.5 Electrochemical Characterization 

All measurements were performed for the electroanalytical studies for OER 

electrocatalysis in a three-electrode setup using a Biologic SP-200 potentiostat. A Pt gauze 

counter electrode was separated from the main cell compartment with a glass frit and a 

saturated calomel electrode (SCE) served as the reference electrode. All potentials were 

converted and referred to the reversible hydrogen electrode (RHE) using the Nernst 

equation204: 

ERHE = ESCE + 0.241 + 0.059pH      3.5 

All electrochemical measurements were performed in aqueous 1.0 M H2SO4 at a scan rate 

of 20 mV s-1 with continuous stirring of the electrolyte during cyclic voltammetry (CV) 

and chronopotentiometry (CP) measurements. Catalysts current density vs potential was 

measured in each case for samples that were plasma-oxidized directly on FTO-coated glass 

substrates, and electrodes prepared via plasma oxidized powders prepared into catalysts 

ink and drop-casted on glassy carbon (GC). Potentiostatic electrochemical impedance 

spectroscopy (EIS) measurements were performed before every experiment to determine 

the uncompensated solution resistance, Ru, and the potentiostat subsequently compensated 

for 85% of Ru during electrolysis. The typical electrochemical cell in these experiments 

had a resistance, Ru ͠   10–20Ω in 1 M H2SO4. The current densities were determined relative 
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to the geometric projected electrode area throughout this study. In basic electrolyte 

experiments, the procedure is similar as with acidic electrolyte, 1.0 M solution NaOH was 

used and Ru was around 20-25Ω. The methodology for determining upper and lower 

bounds on the turnover frequency (TOF) are described in the Appendix 3. 

In the electroanalytical analysis of lithium-ion battery cathodes, the galvanostatic 

charge-discharge measurements were carried out using Arbin instrument. Charge and 

discharge measurement were carried out at the voltage range of 4.7 – 2.0V with different 

current densities of 10, 50, and 100 mA/g. The cyclic voltammetry measurement was 

carried out at the voltage range of 4.7– 2.0V with scan speed of 1mV/s using eDAQ e-

corder potentiostat. 

3.6 Electrode Fabrication 

3.6.1 Anodes for OER electrocatalysis 

In the case of the acidic media OER, catalysts current density vs potential was 

measured in each case for samples that were plasma-oxidized directly on FTO-coated glass 

(Hartford Glass, Hartford, CT) substrates as thin films, and electrodes prepared via plasma 

oxidized powders prepared into catalysts ink and drop-casted on glassy carbon. The Ir-rich 

compositions on FTO/glass displayed highly stable behavior. However, plasma oxidation 

with the tungsten precursor led to delamination issues under extended operation, so films 

were instead ballmilled to microparticles and bound to a GC disk for extended 

galvanostatic measurements205. The ball-milled samples were made into a catalyst ink and 

electrochemically characterized for stability with a similar setup and experimental 

conditions using a rotating disk electrode (RDE) with the GC disk as the working electrode 

rotated at 1600 rpm and by monitoring the potential of the working electrode at a constant 
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current density of 10 mA cm-2. Catalyst inks were prepared by horn sonication of oxides 

and 40µl 5% of Nafion 117 solution (Sigma Aldrich), 3.8 mL DI water, 1.0 mL 2-propanol 

yielding inks with final concentrations of 80 mg of oxide per ink.  10µ L of catalyst ink 

was drop-casted onto a GC electrode 0.196 cm2 area, (Pine, NC) polished to a mirror finish 

with alumina slurry. The particle binding method had limitations, however, and the Nafion 

binder film was observed to partially delaminate after extended testing. The unsteady 

performance of the WO3 (x = 0), which is known to be stable at pH 0.0 under anodic 

potentials 206-207, was attributed to this issue.  

All the electrodes in basic media electrocatalysis were synthesized directly from 

the plasma in the methods discussed in section 3.2.2 of this dissertation.  

3.6.2 Cathodes for lithium ion battery 

The electrode materials for LiNi0.2 Mn0.6Co0.2O2 was prepared using 80 wt.% of 

active material with 10 % of acetylene black binder and 10 % of PVDF (polyvinyledine 

fluoride) in N-methylpyrolidone (NMP). The well-mixed slurry was coated onto Al sheet 

using doctor blade. The coated active material on Al sheet was dried at 120 C for 1h to 

remove the NMP solution. The electrode was cut into a size of 2.0 cm2. The loading of 

active LiNi0.2 Mn0.6Co0.2O2 cathode electrode was 1.3-1.4 mg/cm2.  The electrode was 

vacuumed at 160C for 5 h in a vacuum oven. The cell assembling was carried out in an 

argon filled dry glove box.  The LiNi0.2Mn0.6Co0.2O2 was used as a working electrode and 

Li foil as an anode separated by 2 piece of glass fiber filter (ADVANTEC, GB-100R, 

Japan) using 2032 coin-type cell. The electrolyte used was 1.0M LiPF6-EC (ethylene 

carbonate): DMC (dimethyl carbonate) (1:2 by volume).  
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3.7 Computational Procedure  

In this section, a procedure for the density functional theory (DFT) calculations of 

La1-xCaxNi0.5Co0.5O3-δ structure discussed in chapter 7 is presented here. For the theoretical 

study, we used first-principles (DFT) in the generalized gradient approximation (GGA) and 

the Perdew-Burke-Ernzerhof (PBE) 208 augmented by including the Hubbard-U corrections 

(GGA+U formalism) 209 based on Dudarev's approach210 as implemented in the Vienna 

Ab-initio Simulation Package (VASP) 211. We used a unit cell of CanLa24-n(CoNi)12O72-δ 

consisting of 120 atoms (δ=0) in the perovskite structure and in various atomic 

configurations specified by the atomic concentrations x and y. Oxygen vacancies were 

simulated by letting the concentration δ to be different than zero. All our initial structures 

were obtained by substitutional replacements. U values were used only for the transition 

metals. In particular, we used Ud,Co = Ud,Ni = 4.0 eV. The projected augmented wave (PAW) 

potential 210 is used to describe the core electrons. After testing for convergence, we settled 

for a 2x2x1 Γ-centered pack for k-vectors sampling. A kinetic energy cutoff of 520.0 eV 

was found to be sufficient to achieve a total energy convergence of the energies of the 

systems to within 10-5 eV. Gaussian smearing of 0.05 eV was chosen to accelerate the 

electronic convergence. The optimization of atomic positions (including full cell 

optimization) could proceed without any symmetry constraints until the force on each atom 

is less than 5 meVA-1.  

The reaction calculator in Materials Project212 was used to calculate the formation 

energy per atom in La/Mn oxide system in chapter 5. This software allows users to estimate 

tens of thousands solid-state reaction enthalpies from a database of density functional 

theory calculations. Also, this calculator does the computation with experimental 
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enthalpies (at 298K and 1atm) where available. The reaction calculator's energies are 

generally a good estimate of room temperature formation enthalpies, although all 

calculations were performed at 0K and 0atm.  

3.8 Chapter Summary 

The methods and procedures for the analysis of samples, theoretical calculations 

and design and construction of reactor systems have been highlighted in this chapter. 
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CHAPTER 4 

4. A RAPID AND SCALABLE METHOD FOR MAKING MIXED METAL 

OXIDE SOLID SOLUTION FOR ENABLING ACCELERATED MATERIALS 

DISCOVERY1 

4.1 Introduction 

Many grand challenges in energy conversion and storage need discovery of new 

materials40. However, there are not too many reported synthesis approaches that could 

easily be implemented for the rapid screening and rational understanding of structure-

property relationships. Specifically, the challenges include semiconductors for 

photoelectrochemical water splitting5, stable electrocatalysts for oxygen evolution and 

reduction46 and nitrogen reduction213 and for many heterogeneous gas-solid reactions 

including carbon dioxide reduction5. Many of the above challenges require synthesis of 

multi-element solid solutions with stoichiometry over a wide-range of compositions 

regardless of phases present.  

                                                 

1 The texts in this chapter were reproduced with the permission (see Appendix 12) of Cambridge 

University Press. Original article was published as “B. P Ajayi, S. Kumari, D. Jaramillo-Cabanzo, J. M. 

Spurgeon, J.B. Jasinski, M. K. Sunkara, (2016), A rapid and scalable method for making mixed metal oxide 

alloys for enabling accelerated materials discovery. J Mater Res, 31, 1596-1607, 

https://doi.org/10.1557/jmr.2016.92”. Formatting styles were changed to adapt original article to the style of 

this dissertation, and some data from the supporting information in the original article are included in this 

chapter. 
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The conventional synthesis method is a solid state route that involves the 

mechanical milling of oxides, carbonates or nitrates16. Solid state route is highly 

unfavorable because it requires long processing time and elevated temperature and 

pressure17. Consequently, wet chemical methodologies such as sol-gel18, co-precipitation19 

solvothermal techniques20, pyrolysis in air23 have all been proposed to deal with this 

problem. However, these methods require prolonged heat treatments and therefore are 

primarily restricted to equilibrium phases22. Besides, they are also low yield methods and 

involve multi-step and laborious processes, each bearing a risk of introducing impurities to 

the final product.  More so, with these methods, it is quite a challenge to control the size 

and composition of mixed metal oxide nanoparticles, a key parameter determining the 

intrinsic properties and performance of these materials.  

So, there have been concerted efforts to make mixed metal oxide in a single step 

from inexpensive materials with high scalability and control over size and final product 

stoichiometry, by using the flame spray pyrolysis (FSP) methods such as vapor-fed flame 

spray pyrolysis 214, liquid-fed flame spray pyrolysis215-216  and liquid-fed flame assisted 

spray pyrolysis217. Unfortunately, metal oxides produced through vapor-fed spray 

pyrolysis are limited to few oxides such as zirconium, aluminum, titanium, and silicon 

based oxides214. In addition, the starting materials of this synthesis route are basically 

volatile chlorides that release by-products such as hydrogen chloride gas which are not 

benign from the environmental standpoint. Vapor-fed FSP has  been improved upon by the 

incorporation of a liquid feed system 214, making the process cleaner and has been shown 

with many metal oxides. Both liquid-fed flame assisted and flame spray pyrolysis use either 

the enthalpy of combustion of precursors or external high enthalpy value flame for 
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providing temperatures up to 2800 K.218 Earlier works on combinatorial synthesis have 

used pyrolysis in air to convert precursor to mixed metal oxides, but have failed to show 

strong evidence that solid solutions are really formed14, 23. Many of these techniques have 

only demonstrated to produce certain stable phases of mixed metal oxide. However, it is 

crucial to be able to synthesize mixed metal oxide solid solutions over complete range of 

compositions for discovering new materials and for addressing grand challenges in energy 

conversion and storage.  

Specifically, in this chapter, the synthesis of mixed transition metal oxide 

comprising of binary metal oxides (nickel manganese oxide, nickel iron oxide) and ternary 

mixed metal oxides (involving nickel, manganese and iron) have been demonstrated with 

exceptional control over composition and phases. In order to understand the functional 

behavior of these synthesized materials, we tested the activity of the above nanoparticles 

as an electrocatalyst for oxygen evolution reaction (OER). The OER, 2H2O → 4H++ O2 + 

4e– (acidic solution) or 4OH– → 2H2O + O2 + 4e– (basic solution) is heavily reliant on 

efficient electrocatalysts because it is kinetically sluggish and thus constitutes an outlet for 

efficiency loss and places a significant overpotential requirement in water splitting 

reactions39, 219.  Cogent understanding of the structural morphology and composition of 

catalysts at a molecular level has been instrumental in the rational design of robust 

electrocatalysts with high activities. The state-of-the-art OER electrocatalysts like RuOx, 

IrOx and Pt are quite expensive; hence it is important to find low-cost and readily available 

alternatives. High-throughput materials synthesis and screening have recently been 

employed to find these alternatives, and the oxides of first row transition metals like nickel, 

iron and cobalt have been reported to be good candidates220-221.  



 

78 

 

4.2 Complex Oxide Thin Film Synthesis and Characterization 

The reactor set-up in section 3.2.1 was used for most of the synthesis. The precursor 

solutions were prepared using mixtures of nickel, iron and manganese nitrates in desired 

proportion. Chemically pure grade of nickel (II) nitrate hexahydrate, manganese (II) nitrate 

hydrate, and iron (II) nitrate non-hydrate (research grade, Sigma Aldrich) were used as 

starting materials without further purification.  Appropriate amounts of the precursors were 

weighed out and dissolved in deionized water to make up 1.0 M solution.  About ~0.1ml 

of prepared metal precursor solution was sprayed onto  2 cm2 fluorine-doped tin-oxide 

(FTO) coated glass substrates (Sigma Aldrich) which were exposed to a plasma jet  with 

an input power of 500W and a volumetric flow of  2 slpm (standard liters per minute) Ar, 

11 slpm air, for 30 s. The argon gas is only necessary for plasma ignition and is turned off 

after obtaining a stable plasma. The substrate temperature is measured using a pyrometer 

and is determined to be anywhere between 500-550°C. The catalyst adhered very well to 

the surface of the substrate forestalling any use of a surfactant. The plasma power was set 

in such a way that the temperature of the substrate did not exceed 550 ˚C. The maximum 

temperature of 550 ˚C is set by the thermal stability of FTO-coated glass substrates, and 

the choice of FTO-coated glass substrates is based on its poor electrocatalytic properties. 

Substrates were cleaned prior to deposition by ultrasonication in an alkaline aqueous 

solution, deionized water, ethanol, and deionized water for 10 minutes per step. 

A Bruker D8 powder X-ray diffraction (XRD) system was used for crystal phase 

analysis. The data were processed to analyze sample NiMn0.2Fe1.8O4 using FullProf.2k198 

(Version 4.30—Apr, 2008-ILL JRC) in the Rietveld method for structure refinement. 

Program refinement of the first samples was started with the space group Fd3m, origin at 
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−3 m, O in 32e−, A site in 8f, and B site in 16c. In the first step the global parameters, such 

as 2θ-zero and background, were refined. In the next step, the structural parameters, such 

as lattice parameter, atomic coordinates, and site occupancy, were refined. 

4.3 Results and Discussion 

Experiments were conducted using several binary and ternary systems and the 

results are analyzed with various techniques to confirm that the composition of resulting 

solid solutions can be tuned over entire ranges. In fact, the data shows complete tunability 

with respect to compositional control using precursor composition in liquid droplets. 

Specifically, the results with nickel and manganese oxides for binary systems and nickel, 

manganese and iron oxide solid solutions for ternary systems are illustrated. In addition, 

the resulting ternary solid solutions are investigated for their performance as 

electrocatalysts for oxygen evolution reaction. 

4.3.1 Nickel-manganese oxide (NixMn1-xOy) 

 The mixed metal oxides are in general represented by NixMn1-xOy where 0.0 ≤ x ≤ 

1.0 and y is dependent on the type of phase present. Throughout the full range of 

composition, 0.0 ≤ x ≤ 1.0, as shown in Figure 4-1(a), the phase(s) present depends mainly 

on the x composition in the sample. Two clear phase regimes can be identified from XRD: 

(i) solid solution of NikMn1-kO (0.9 < x ≤ 1) (ii) a solid solution of NimMn3 – mO4   (0.05 < x 

≤ 0.9), where the indices k and m define the rock-salt and spinel solid solution series, 

respectively. In the entire range, there is no segregation of NiO and MnOx phases as 

evidenced by the absence of a clear α-Mn2O3 (221) peaks and the shrinking of NiO (222) 

peak from  x = 1.0 until it disappears at  x = 0.4.  
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4.3.1.1 Solid solution of NikMn1-kO (0.9 ≤ x ≤ 1) 

 In the compositional range of 0.9 < x ≤ 1, a solid solution is formed whose 

composition can be tuned. The resulting solid solution has the rock-salt phase (space group: 

Fm-3m). The XRD data in Figure 4-1(a) show pure phases for NiO and α-Mn2O3 cubic 

phases and Figure 4-1(b) show the (200) peak of the rock-salt phase (at 43.3°) for NikMn1-

kO solid solutions. The 43.3° peak position shifts monotonically to lower angles with the 

increase of manganese concentration. Figure 4-1(c) shows the plot of the variation of lattice 

parameter with Mn mol. % doping in Ni lattice. Clearly, the lattice parameter increases 

non-linearly until it reaches the solubility limit which is about 10 mol% Mn composition 

or x = 0.90. is noteworthy that at compositions above the solubility limit of Mn in Ni lattice, 

the speciation of the spinel phase is more evident. The crystal structure for sample with x 

= 0.90 was examined with HRTEM and the SAED, and the result are in agreement with 

the XRD results (Figure 4-2). 
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Figure 4-1| (a) X-ray diffraction of NixMn1-xOy (0.0 ≤ x ≤ 1.0) showing the 

phases present as x is varied, the encircled (200) peak is expanded in Figure 1b for 

clarity (b)X-ray diffraction showing  the (200) plane of NiO lattice shifting to a lower 

angle with Mn doping (c) Variation of the NiO lattice parameter with Mn doping 

concentration. 
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Figure 4-2| (a) High resolution TEM (HR-TEM) of sample x=0.9, showing 

grains with a single lattice fringes having d-spacing indexed to (101) of the tetragonal 

spinel lattice(b) a close-up view of the lattice fringes showing d101 to be 4.80Å   (c) 

Selected area electron diffraction (SAED) of sample x=0.9 (inset) showing the 

diffraction rings. The intensity line profiles measured from these patterns are as shown, 

assigned to the rocksalt phase with some spinel peaks, which is in agreement with XRD 

data (d) High resolution TEM (HR-TEM) of sample x=0.9, showing grains with a single 

lattice fringes having d-spacing indexed to (200) of the rocksalt lattice (e) a close-up 

view of the lattice fringes showing d200 to be 2.08Å   (f) Bright field TEM of 

composition x=0.9 
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4.3.1.2 Solid solution of NimMn3–mO4 spinel (0.05 ≤ x < 0.9) 

 In this compositional range (0.05 < x ≤ 0.9), the XRD data for samples were 

indexed to spinel solid solutions (NimMn3–mO4). The sample with composition x = 0.30 

showed well resolved diffraction lines corresponding to a tetragonal spinel phase (ICDD 

PDF-01-070-9039) with space group number I41/a m d (141). XRD data for samples with 

the following x composition and the corresponding m values in bracket: 0.50 (1.50), 

0.40(1.20), 0.30(0.90), 0.25(0.75), 0.20(0.60), shows that phase pure NimMn3 – mO4 bimetal 

spinel solid solutions exist in the composition range 0.20 < x ≤ 0.50 (or 0.60 < m ≤ 1.50). 

The series of oxides with composition 0.05 < x ≤ 0.20 shows peak deviation from nickel 

manganite peaks, and peaks at (112) and (103) were highlighted in Figure 4-3 for emphasis. 

 

Figure 4-3| XRD reflections of NimMn3 – mO4 capturing the speciation from 

binary metal spinel phase to the mono-metal spinel phase 
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There is a widening of the gap between the centerlines of these two peaks coupled with 

peak broadening until manganese oxide (Mn3O4  and α-Mn2O3) peaks are evolved at 

x=0.05. Peak broadening can be ascribed to the non-uniform strain on the spinel lattice 

and/or decreasing grain size.  It is interesting to note that at nickel composition x ≤ 0.05, 

there is not enough Ni (II) to diffuse into the solid lattice of Mn3O4 to occupy the 

manganese vacancies or partially replace manganese ions in the tetrahedral or octahedral 

holes222. In the compositional range 0.5 < x ≤ 0.9, there is a co-existence of spinel solid 

solutions and rock-salt (Ni0.9Mn0.1O), however; at x > 0.5 only phase pure NimMn3–mO4 can 

be seen.  

The spinel manganates are known to exhibit large tetragonal distortions223-224. The 

tetragonal distortion is a consequence of Jahn–Teller effect of the cubic spinel associated 

with a high density of Mn3+ cations225. Large amounts of Mn3+ are found in Mn-rich nickel 

manganese spinels due to the reduced amount of Ni2+ on the octahedral sites of the spinel 

lattice226 . The Mn valence states is strongly dependent on Ni occupancy in the octahedral 

sub-lattice, which is a measure of inversion parameter of the spinel lattice. Ni cations 

moving to the octahedral sub-lattice is balanced by the Mn going in the opposite way 

(tetrahedral sites). The tetrahedral Mn has a valence state of +2 since Mn3+ is a less suitable 

state in a four-fold coordination. To attain charge neutrality, an equal amount of Mn4+ is 

formed in the octahedral sites to compensate for the Mn2+ on the tetrahedral sites resulting 

into internal disproportionation227.  
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Figure 4-4| (a) Bright field TEM of composition x=0.2 with crystallite size of 

50-80nm, (b) Selected area electron diffraction (SAED) of sample x=0.2 (inset) 

showing ten diffraction rings. The intensity line profiles measured from these patterns 

are as shown, assigned to the tetragonal spinel, which is in agreement with XRD data 

(c) High resolution TEM (HR-TEM) showing grains with two lattice fringes having d-

spacing indexed to (101) and (200) planes of the tetragonal spinel crystals (d) SEM 

micrograph of samples x=0.2 showing its morphology 
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The XRD data is further corroborated with diffraction and EDS analysis in TEM. 

A representative sample x=0.2 is used as an example to confirm the morphology and crystal 

structure. Figure 4-4(a) shows the bright field TEM image for the solid solution with 

composition x=0.2 where a rapidly changing strong diffraction contrast can be noticed, an 

indication of randomly oriented grains and polycrystallinity of sample. The SAED patterns 

obtained for sample x=0.2 is shown in the inset of Figure 4-4(b). The intensity line profiles 

measured from these patterns are shown in Figure 4-4(b). About ten diffraction rings are 

visible which corresponds to the family of planes of the tetragonal spinel nickel manganite; 

the other rings were not clearly detectable due to their low intensity. Formation of 

tetragonal spinel phase is further confirmed from the sample with composition x=0.2 by 

the HRTEM analysis. We identified two of lattice fringes, one with the d-spacing of 4.85 

Å and the other one with the d-spacing of 3.00 Å, which are consistently   observed   in   

HRTEM   images   of   the   nanoparticles (Figure 4-4(c)).  Knowing that the typical 

accuracy of HRTEM analysis is usually not better than a few percent, the observed lattice 

fringes can be assigned to the (101) and (200) planes of tetragonal spinel Ni0.6Mn2.4O4. As 

expected, the HRTEM data did not show any presence of α-Mn2O3 and NiO phases in this 

sample composition. SEM image (Figure 4-4(d)) of the solid solution with sample 

composition x=0.2 has a morphology resembling cubes interconnected by a channel. Figure 

4 shows TEM-EDS compositions of four randomly selected grains of samples with 

precursor compositions x=0.1 to x=0.9, showing strong agreement with the precursor 

composition. 



 

87 

 

4.3.2 Nickel iron oxide NiaFe1-aOb (0.0 ≤ a ≤ 1.0) 

Similar bimetallic oxide system was reproduced for nickel ferrite, illustrated in 

Figure 4.5. Identical to the Ni-Mn-O system, the two clear solid-solutions that are evident 

are the rocksalt (Ni1-pFepO) and the cubic spinel solid-solution phase (NiqFe3-qO4). To 

estimate the degree of solid solution of Ni1-pFepO samples with composition p = 0.0, 0.05, 

0.10, 0.20, 0.30 were investigated. XRD reflections show that the samples were single 

phase up until  p = 0.05, beyond this value (i.e.  p > 0.05) the evolution of the spinel phase 

is clearly evident as shown by Figure 4.5(b). This result is to be expected because on 

saturation of the NiO lattice, the excess Fe ions precipitate out as another phase. The sample 

with composition p = 0.05 is isostructural with the NiO rocksalt structure (sp. gr. Fm-3m). 

The solid solubility limit lies in the range 0.05 < p < 0.10 in agreement with earlier 

report228. Increasing the Fe doping beyond 40 mol. % causes the XRD reflections shifting 

in the reverse direction, which may be ascribed to the onset of solid solution of the NiqFe3-

qO4 spinel phase (Figure 4.5(d)). Samples with Fe composition from 40 to 70 mol. %, trends 

in the same direction and corresponds to 0.9 <  q < 1.8, beyond 70 % atom Fe, solid solution 

limit is reached as evidenced by the evolution of the α-Fe2O3 phase (Figure 4.5(c)). The Fe 

rich end of spinel solid solution ranges from only q = 0.9 and q = 1.0, however the Ni rich 

end has a wide solid solution range, from q = 1.0 to q = 1.8. 



 

88 

 

  

 

Figure 4-5| (a) X-ray diffraction of NiaFe1-aOb (0.0 ≤ a ≤ 1.0) showing the phases 

present as a is varied (b) X-ray diffraction of NiO (111) plane showing the precipitation 

of a new spinel phase after the solid solubility limit has been reached, where S is spinel 

and B is bunsenite phase . (c) Fe rich NiaFe1-aOb showing the evolution of hematite peaks 

(H) in relation to spinel (S) with increasing Fe concentration (d) X-ray diffraction 

showing the spinel solid solution. 
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4.3.3 Comparison between plasma and thermal oxidation 

 In order to understand whether one can obtain similar results with thermal 

oxidation, a sample with composition x=0.2 is investigated using thermal oxidation route. 

The phases obtained from XRD data were the ilmenite (NiMnO3), bixbyite (α-Mn2O3) and 

the bunsenite (NiO) phases (refer to Figure 4-6(a)), which is identical to the 

thermodynamically predicted phases that can be found from the phase diagram obtained 

from Materials Project212, and illustrated in Figure 4-6b)). However, these results are 

completely different from the result obtained with plasma oxidation.  The difference in the 

phases can be ascribed to the dissimilar mechanistic steps obtainable in the two oxidation 

processes, given that the reaction temperature and pressure are same. As can be seen from 

the results, plasma oxidation better reflects the reaction off-stoichiometry, producing solid 

solution of nickel manganite spinel. However, the thermally oxidized sample are 

segregated into thermodynamically stable monometal oxide (bunsenite and bixbyite) and 

mixed metal oxide (ilmenite) phases in agreement with Xiao-Xia and co-workers 229.  

 

Figure 4-6| (a) X-ray diffraction of the sample with nominal composition of x=0.2 

prepared via plasma and thermal oxidation (b) Phase diagram of the Ni/Mn/O system 

a b
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 In order to explain the differences between thermal and plasma oxidation, a 

proposed mechanism as elucidated by the schematic presented in Figure 4-7, and it is used 

to illustrate various stages of oxidation process. The following are the stages of oxidation: 

first, upon either plasma exposure or thermal heating, the liquid droplet will lose solvent 

by evaporation until a densified amorphous phase is formed. In the case of thermal 

oxidation, heating and cooling rate is slow and so atoms have enough time to diffuse, 

inducing a phase transformation towards thermodynamically stable phases. So, irrespective 

of precursor composition inside liquid droplets, the resulting materials would consist of 

thermodynamically stable phases. The oxidation proceeds with diffusion of molecular 

oxygen into the amorphous mass containing nitrates and the thermal decomposition of the 

amorphous mass to release NOx.  After an induction period, nuclei are formed. In the case 

 

Figure 4-7| Proposed mechanism for the formation of nanoparticles of thermally 

oxidized and plasma oxidized precursor solutions. 
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of plasma oxidation, several processes take place in a very short period of time of a few 

seconds and they include the following: oxygen radicals can diffuse into the core of the 

densified amorphous mass of precursor; faster reaction kinetics with oxidation of nitrates 

with oxygen radicals; and fast heating and cooling rate of the core for nucleation and 

transport limited ordering of atoms makes for the speciation of metastable phase nuclei. As 

the growth proceeds with transport limited region, the composition of resulting solid 

solutions depends directly on the composition of elements in the surrounding environment. 

The composition of the surrounding nutrients is as homogenous and similar to the 

supersaturation, thus; the growing crystals reflects this compositional homogeneity and on 

rapid cooling the diffusion of atoms is suppressed, which leads to a non-equilibrium solid 

solution phase growth. Average size of crystallites obtained in plasma oxidation is about 

twice that of thermal oxidation indicating fast growth kinetics compared to thermal 

oxidation. This mechanism was mainly determined via speculation and physical 

observation only and hence hypothetical in nature, so, further experiments (presented in 

chapter 5) are necessary  to either prove or refute this mechanism. 

4.3.4 Ternary solid solutions of NiMnzFe2-zO4 (0≤ 𝑧 ≤1) 

 Ternary spinel oxides comprising manganese substituted nickel ferrite, with 

nominal series formula NiMnzFe2-zO4 (where z=0.0, 0.20, 0.40, 0.60, 0.80 and 1.0) have 

been successfully synthesized by the plasma spray method. The XRD reflections (Figure 

4-8(a)) show highly crystalline nanoparticles with exceptional phase purity. Figure 4-8(b) 

shows an expanded view of (311) peak position. As can be seen, there is a monotonic shift 

of the 311-peak position to the left with increasing manganese doping, an indication of the 

formation of a spinel solid solution. The same family of peaks indexed to cubic spinel phase 
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(sp. gr. Fd-3m) appears in all six samples and no foreign peak was observed, an indication 

that no other phase co-existed with sample phase. The domain size of microstrain were 

estimated from Williamson-Hill (W-H) plots (Figure A1, Appendix 1) and tabulated as 

shown in Table 4.1. After a linear fit to the W-H plot, the micro-strain and domain size 

were extracted from the slope and vertical axis intercept respectively. Results reveal that 

the strain portion of the W-H plot has no contribution to the line broadening (Figure A1, 

Appendix 1) except for the sample z=1.0 with negligible microstrain (0.01%) as shown by 

Table 4.1. The lattice parameters and unit cell volume expand isotropically as the density 

of the manganese dopant increases, and the crystal size is in the range 500-590 Å. For 

uniform strain, the unit cell dimensions change in isotropic fashion which leads to changes 

in the lattice parameters and a shift of the peaks with no accompanying broadening of the 

XRD reflections. The shape of peaks is unchanged from 𝑧 =0.0 to 𝑧 =1.0 which confirms 

the absence of anisotropic microstrain. Figure 4-8(c) shows a typical EDS spectrum 

obtained at 0−20 kV, along with peak assignments for Mn, Ni and Fe elements for various 

compositions (0≤ 𝑧 ≤1). The peak areas fairly match the precursor compositions, 

confirming the formation of ternary solid solutions (Figure 4-8(d)). After integrating the 

peak areas of Mn-Kα, Ni-Kα, Fe-Kα and Fe-Kβ we converted the X-ray counts into the 

elemental weight percentages using quantification software. The elemental analysis of the 

nanoparticles confirms that the proportion of the elements is consistent with the precursor 

composition (Table 4.2). Figure 4-9 shows the XRD patterns and corresponding Rietveld 

analysis of as-prepared sample NiMn0.2Fe1.8O4, confirming the formation of spinel phases. 

Rietveld refinement and Bertaut method230 are used to determine the cation distribution 
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Figure 4-8| (a) X-ray diffraction reflections of ternary spinel oxides comprising 

manganese substituted nickel ferrite NiMnzFe2-zO4 (0≤ 𝑧 ≤1) showing a single cubic spinel 

phase (b) Zoom-in of (311) peak position showing a monotonic shift to a lower angle with 

increasing Mn doping concentration (c) TEM-EDS spectra obtained at 0−20 kV, along with 

peak assignments for Mn, Ni and Fe elements for various compositions (0≤ 𝑧 ≤1). (d) 

Ternary plot of NiMnzFe2-zO4 (0≤ 𝑧 ≤1) showing an excellent match between the nominal 

precursor composition (∆) and the TEM-EDS measured alloy composition (○), in 

normalized atomic percent. 
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 (Table A2, Appendix 2). Combining the refined results and TEM elemental analysis, the 

structural formula of NiMn0.2Fe1.8O4 was determined to be 

(Ni0.1Mn0.15Fe0.75)8a[Ni0.9Mn0.05Fe1.05]16dO4,  revealing a high degree of inversion in 

agreement with other results for ferrite spinel231, where the parenthesis  refers to the 

tetragonal sites while octahedral  sites are represented by square brackets. For an AB2O4 

type spinel, the extent to which sub-lattices are disordered is determined by the inversion 

parameter i which is the fraction of B3+ occupying the tetragonal sites, as such i can vary 

from 0, which corresponds to normal spinel and 1, which refers to a structure where all the 

tetragonal sites are occupied by B3+. 

 

Figure 4-9| Structural analysis of the synthesized nanocrystalline spinels 

NiMn0.2Fe1.8O4 showing Rietveld refined XRD patterns with experimental data (black 

line), calculated profiles (red dots), allowed Bragg diffraction positions (vertical bars) 

and difference curve (blue line).  
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Table 4.1 Structural parameters of NiMnzFe2− z O4 (0.0 ≤ z ≤ 1.0) showing how lattice 

parameter, unit cell volume and anisotropic strain vary 𝜐 composition 

z 

Lattice Parameter 

(Å) 

Cell Volume 

(Å3) 

Domain Size 

(Å) 

Strain 

% 

0.0 8.3347 579.0 590.5 - 

0.2      8.3369      579.4 505.6 - 

0.4 8.3415 580.4 500.7 - 

0.6 8.3528 582.8 587.1 - 

0.8 8.3573 583.7 521.5 - 

1.0 8.3938 591.4 574.4 0.01 

 

 

Table 4.2 TEM-EDS analyzed composition of NiMnzFe2− z O4 (0.0 ≤ 𝜐 ≤ 1.0) 

      

  TEM-EDS Analyzed Composition, at. % 

z O  Mn Fe Ni 

0.0 61.9 ± 0.7  - 25.1 ± 0.6 13.1 ± 0.5 

0.2 61.8 ± 0.4  3.1 ± 0.1 23.6 ± 0.4 12.5 ± 0.3 

0.4 61.0 ± 0.4  5.3 ± 0.2 20.4 ± 0.3 13.4 ± 0.3 

0.6 58.2 ± 0.5  9.4 ± 0.3 19.3 ± 0.4 13.1 ± 0.4 

0.8 57.4 ± 0.4  12.0 ± 0.3 16.8 ± 0.3 13.8 ± 0.3 

1.0 55.5 ± 0.5  17.6 ± 0.4 13.1 ± 0.3 13.8 ± 0.3 
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4.3.5 OER kinetics 

 A series of NiMnzFe2-zO4 (z = 0, 0.20, 0.40, 0.60, 0.80 and 1.0) mixed metal oxide 

films were tested for OER catalysis by studying the cyclic voltammetry at 20 mV/sec scan 

rate. Two parameters were selected to understand the catalyst performance: (i) 

overpotential (ƞ) required to reach a current density of 10 mAcm-2; (ii) steady state Tafel 

slope (mV/dec). The data in Figure 4-10(a) shows a decrease in ƞ for OER catalysts with 

increase in Mn content in the binary metal oxide nickel ferrite.  Pure nickel ferrite shows 

higher overpotential of 0.46 V compared to the ternary metal oxides. Among all the six 

compositions, z = 0.20 demonstrates the lowest ƞ at 0.39 V. There still remains the 

challenge of impartially comparing the efficiencies of electrocatalysts, due largely to 

complications arising from both inadequate standardizations and deviations in average 

particle size and/or surface areas. It is also notable that the manganese doped ternary metal 

 

Figure 4-10| (a) Cyclic voltammetry of the conditioned NiMnzFe2-zO4 (0≤

𝑧 ≤1) films collected in 1 M NaOH solution at a scan rate of 20 mV s–1 (b) Steady state 

Tafel plot for the linear region from 0.35 – 0.50 V. 
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oxides are more active catalysts than stand-alone NiOx, FeOx or MnOx catalysts. The NiOx-

type catalyst has been previously reported to give 10 mA cm-2 at overpotential value of ~ 

0.42V 232-233, and the reported overpotential value at current density of 1.0 mAcm-2 for 

FeOx and MnOx based catalyst are 0.41 V and 0.51 V respectively44, which are expected 

to  be at a higher overpotential value when adjusted to the benchmarking  current density 

of 10 mAcm-2. Substitution of cations into complex metal oxide crystal lattice has been 

known to induce oxygen vacancies, and according to Bao et al 234, there is a positive 

correlation between oxygen vacancy and electrocatalytic activity in OER of nickel-cobalt 

oxide based catalysts, of which they adduced low H2O adsorption energy at the defect site 

to this outcome. 

The linear part of the Tafel plots is shown in Figure 4-10(b) obtained for all the six 

compositions in the overpotential window of ƞ = 0.35 - 0.50 V. The electrodes with lower 

z value show smaller Tafel slopes less than 45 mV/dec compared to the electrodes with 

higher content of Mn doping indicating an improvement in the electrocatalytic activity of 

the catalyst. The data presented in Table 4.3 shows the variation of the overpotential and 

linear portion of the Tafel slope with composition. The values of the Tafel slope found 

onthe manganese substituted nickel ferrite solid solutions are comparable to those found 

elsewhere: MnFe2-xCrxO4 (~40mv/dec)235 and NiFe2-xCrxO4 (~40mv/dec)235. Strasser and 

co-workers 236 found through experimental and first principle studies that compressive 

strain in Pt-Cu solid solution have a strong correlation with its electroactivity in oxygen 

reduction reaction. Also, the improved activity of the alloy may have been due to the 

favorable adjustment of the electronic properties of the alloy as a direct effect of the 
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combination of the completely filled d orbitals (Ni) with semi-filled orbitals (Mn and Fe) 

according to the Brewer-Engel theory237.  

Besides high catalytic activity, an optimal catalyst material should be stable for 

their implementation in any operating system. The stability of these catalysts under 

catalytic conditions was determined using controlled-current electrolysis. The catalyst 

material was held at a constant current density of 10 mA/cm2 per geometric area for 2 

hours, while the operating potential was measured as a function of time. Figure 4-11 shows 

the results of the controlled current electrolysis measurements of these catalysts. Clearly, 

ƞ (t=0) and ƞ (t=2h) are similar, an indication that the catalyst is stable under the operating 

conditions for at least a 2 hours period.  The concept of plasma oxidation of precursor 

solution mentioned here offers excellent metastable phase formation possibilities due to its 

 

Table 4.3 Electrode kinetic parameters for the OER of NiMnzFe2−z O4 

(0.0 ≤ z ≤ 1.0) in 1 M NaOH at 298 K 

z 

η, V 

@ 10mAcm-

2 

Tafel slope(0.35-0.50V) 

mV/dec 

0.0 0.46 44.9 

0.2 0.39 42.7 

0.4 0.43 38.8 

0.6 0.46 61.2 

0.8 0.45 76.6 

1.0 0.42 60.2 
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fast reaction kinetics and cooling rates. In general, short reaction times allow for the 

formation of either transient phases in the case of monometal oxides or solid solutions in 

the case of mixed metal oxides.238 The process is highly adaptable to any precursor 

chemical (inorganic and organic, etc.) and any solvent (aqueous, polar, non-polar, organic, 

etc.) which can be easily incorporated into the spray feedstock. Precursor solution mixtures 

can be used to produce multi-component systems such as bimetallic and ternary oxides and 

their solid solutions. Since each droplet contains precursor chemicals in the same 

stoichiometric composition as desired in the produced particle, the synthesized particles 

will have exceptional compositional uniformity.  

4.4 Chapter Summary 

The synthesis technique that can be used to accelerate the discovery of materials 

for various energy conversion and storage applications is presented. Specifically, this 

 

Figure 4-11|Comparison of overpotential values of NiMn𝜐Fe2-𝜐O4 ternary alloys 

before and after 2h stability test. 
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technique allows a rapid and controlled synthesis of mixed metal oxide particles using 

plasma oxidation of liquid droplets containing mixed metal precursors. The conventional 

wet chemical methods for synthesis of multi-metal oxide solid solutions often require time-

consuming high pressure and temperature processes, and so the challenge is to develop 

rapid and scalable techniques with precise compositional control.  The concept is 

demonstrated by synthesizing binary and ternary transition metal oxide solid solutions with 

control over entire composition range using metal precursor solution droplets oxidized 

using atmospheric oxygen plasma. The results show the selective formation of metastable 

spinel and the rocksalt solid solution phases with compositions over the entire range by 

tuning the metal precursor composition. The synthesized manganese doped nickel ferrite 

nanoparticles, NiMnzFe2-zO4 (0≤ 𝑧 ≤1), exhibits considerable electrocatalytic activity 

towards oxygen evolution reaction (OER), achieving an overpotential of 0.39V at a 

benchmarking current density of 10 mAcm-2 for a low manganese content of z = 0.20.  
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CHAPTER 5 

5. NUCLEATION AND GROWTH OF COMPLEX OXIDES WITH NON-

STOICHIOMETRIC COMPOSITIONS DURING PLASMA OXIDATION OF 

LIQUID PRECURSORS 

5.1 Introduction 

 As detailed in chapter 4, the concept of plasma oxidation of liquid precursors has 

been demonstrated with composition control of resulting complex oxides. However, the 

fundamental understanding of the mechanism guiding this process has remained elusive. 

The ability to control composition in complex oxides cannot be overemphasized as cation 

ratio is a critical parameter in the performance of these materials in many applications 

especially solid oxide fuel cells(SOFC)239-240, catalysis88, 241, supercapacitance242-243, and 

thermoelectricity 244-245. For example, for La/Mn less than one, the electrical conductivity 

of LaMnO3 is increased240, 246 when deployed as SOFC electrodes. It is reported that by 

inducing about 5% cationic vacancy in La0.95FeO3-δ, an exceptional catalytic 

bifunctionality was recorded when the material was tested as electrocatalysts in both 

oxygen evolution reaction (OER) and oxygen reduction reaction (ORR)88. Ahuja et al 

concluded that the ratio of Ni/Mn in NiyMn1−yOx affects the supercapacitor electrode 

performance, with a Ni/Mn ratio of 0.25 giving the optimal performance, with a specific 

capacitance of ∼380 F g−1. 
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Here, a concept on the use of plasma oxidation involving admixture of aqueous 

metal precursors will be investigated in this project.  The liquid droplets were sprayed into 

high energy air plasma where they react to form an oxidized solid powder. Earlier studies 

using plasma oxidation schemes have shown ultra-fast timescales for both molten metals 

24 and metal oxides in the presence of alkali salts. Studies involving inductively coupled 

plasma for droplet-to-particle concept has been successful but only shown with single 

component systems 25-26.  

 The main goal of this chapter is to understand the whys and the hows regarding the 

plasma rapid action in the conversion of mixed liquid precursors into metastable and solid-

solution phases through time-controlled experiments devised to study the evolution of the 

compositions and phases, and to understand the mechanism of the transfer of heat from 

plasma to liquid droplets, and how these processes affect materials synthesis from 

nucleation of the first phase through the evolution of the phases until the ultimate product 

is formed. It was hypothesized in chapter 4 that reaction kinetics is faster than atomic 

transportation, and that the transport limited ordering of atoms makes for the evolution of 

metastable phase nuclei. Then, as the growth proceeds within the transport limited region, 

the composition of resulting solid solutions depends directly on the composition of 

elements in the surrounding environment. The composition of the surrounding nutrients is 

as homogenous and identical to the supersaturation, thus; the growing crystals reflects this 

compositional homogeneity, and on rapid cooling the diffusion of atoms is suppressed, 

which leads to a non-equilibrium solid solution phase growth. 
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5.2 Experimental Procedures 

A more detailed report of the plasma synthesis technique is available in in chapter 

3.  Plasma treatment of the liquid precursors was performed using a homemade 

atmospheric microwave plasma reactor operated in the batch mode (chapter 3). Chemically 

pure grades of nickel nitrate hexahydrate (Alfa Aesar) and manganese nitrate tetrahydrate 

(Alfa Aesar) and lanthanum nitrate hydrate (Alfa Aesar) were used as starting materials 

without further purification. In another experiment, halides of nickel (nickel chloride 

hexahydrate, Alfa Aesar) and manganese (manganese chloride hexahydrate, Alfa Aesar) 

were used instead. Precursors were dissolved in 18 MΩ-cm DI water to a concentration of 

0.1 M, and these solutions were mixed as needed to get the desired metal cation 

stoichiometry. Subsequently, 0.1 mL of the mixed precursor solution was drop-cast and 

spread onto 2 cm2 of a quartz substrate (AdValue Technology) which was then exposed to 

the plasma jet with an input power of 800 W and a volumetric flow of 2 standard liters per 

minute (slpm) Ar, 11 slpm air, for varying amount of time to obtain a film of material on 

quartz.  

XRD measurement was completed using a Bruker D8 system with a non-

monochromated Cu-Kα radiation produced by an X-ray tube operated at 40 kV and 40 mA. 

The sample XRD patterns were scanned between 20-80° at a scan speed of 4 seconds per 

step with a step size of 0.02°. Bruker EVA software and powder diffraction file (PDF) were 

used for phase identification. Surface elemental analysis was performed using XPS with a 

VG Scientific Multilab 3000 custom-built ultra-high vacuum system with Al-Kα radiation. 

XPSPEAK 4.1 software was used for peak deconvolution and the XPS data analysis. Room 

temperature Raman measurements were performed in a backscatter configuration using an 



 

104 

 

inVia Renishaw microRaman spectrometer, equipped with a 50x objective lens, visible 

light optics, an 1800 mm−1 diffraction grating, and a HeNe laser producing 633 nm 

excitation wavelength. The silicon peak at 520 cm-1, measured from a standard silicon 

wafer, was used for the system calibration. (TGA (model SDT Q600 from TA Instruments) 

was utilized to perform TGA tests on the starting materials. For testing, the materials were 

placed in the alumina sample pan in the TGA and heat-treated dynamically from room 

temperature to 1000 °C with a ramp rate of 10 °C/min with an input gas (air) of flowing at 

40 mL/min.  

 

5.3 Results and Discussion 

The synthesis of two compounds were selected to probe the mechanistic steps 

involved in the plasma oxidation process. The compounds are off-stoichiometric spinel 

(nickel manganate) and cation deficient perovskite (lanthanum manganate). These 

compounds were selected for their wide applications in several processes. In general, 

nitrate precursors were utilized in study, but to study the effect change in precursor type, 

more volatile precursors such as halides were also used in the experiments. 
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5.3.1 Temporal studies on the composition evolution of Ni0.6Mn2.4O4+δ with plasma 

oxidation of Ni- and Mn-containing precursors. 

The evolution of the phases of the mixed solution precursors containing nickel (II) 

nitrate hydrate and manganese (II) nitrate hydrate (in molar proportion of Ni/Mn = 1/4) 

after the exposure to air plasma (plasma power = 800 W) are illustrated in Figure 5-1(a). 

Evaporation of aqueous solvent was complete in about 4s, yielding an amorphous nutrient 

of mixed precursor which nourishes the growth of the resulting nuclei. Two seconds later, 

MnO2 phase was formed; resulting from the thermal decomposition of manganese(II)  

nitrate hydrate, according to the reaction: Mn(NO3)2 → MnO2 + 2NO2, in agreement with 

the TGA data obtained in Figure 5-1(d) and elsewhere247-248. The extended 

thermogravimetric runs do allow the opportunity of elucidating the thermal process steps 

Table 5.1 Evolution of the energy dispersive X-ray spectroscopy (EDS) elemental 

analysis and phase identification of plasma-processed Ni-Mn nitrate precursor, where 

L=Liquid, A=Amorphous 

Time/s Elemental Analysis/at. % Phase Domain 

size/Å 

N O Mn Ni Ni0.6Mn2.4O4+δ MnO2 NiMnO3 Ni0.6Mn2.4O4+δ 

(311) 

2 - - -  L L L - 

4 12.2 51.5 28.3 8.0 A A A - 

6 10.8 53.7 29.4 6.1 no yes no - 

8 6.6 52.6 33.4 7.5 no yes no - 

10 0 56.6 34.7 8.7 yes no yes 159.9 

12 0 47.2 42.0 10.8 yes no yes 150.1 

14 0 33.9 50.8 15.3 yes no no 277.9 

16 0 55.5 34.3 10.1 yes no no 221.4 

18 0 48.8 39.8 11.4 yes no no 213.4 

20 0 50.5 39.3 10.2 yes no no 242.7 
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and intermediate product(s) before the final oxide residue is obtained.  In similar vein, NiO 

was formed by the decomposition of nickel nitrate hydrate, though the XRD data did not 

explicitly indicate the presence of NiO phase. The most probable rationalization of the 

inability of XRD to detect this phase shall be explained later in this study. Figure 5-1(a) 

and (c) shows the spinel phase began to evolve in the first 10s and becomes fully developed 

in 14s, with maximum grain size of the 311 plane obtained in this timeframe (Table 5.1).  

Despite the large variety of manganese-oxide-based compounds, the Raman spectral 

features in the high-frequency region of internal vibrations (Figure 5-1(c)) are always 

assigned to symmetric stretching vibrations of the MnO6 octahedra (present in both MnO2 

and manganite spinel) with the Ag phonon species for the band above 600 cm−1 249, which 

appears in the first 6s. Whereas, a second peak centered around 500 cm-1 is  attributable to 

the T2g mode related to the Ni-O motion249, i.e. the NiO4 tetrahedral cation movements in 

a spinel lattice, which became quite obvious in the first 10s. However, the Eg mode; which 

is the symmetric bending motion of the oxygen atoms inside the NiO4 tetrahedron, may 

have been too weak to be detected in the spectra. This study also reveals the changes in 

composition as the reaction progresses with the complete elimination of nitrogen after 10s, 

as illustrated in Table 5.1. The non-isothermal temperatures in TGA allow us to track the 

changes in the oxidation state of Mn during the thermal process. 
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Figure 5-1| (a) XRD showing temporal phase evolution of Ni-Mn nitrate 

precursor in plasma (b) XRD of Ni-Mn chloride precursor in plasma after 20s (c) Raman 

spectra showing temporal phase evolution of Ni-Mn nitrate precursor in plasma (d) 

TGA/DSC of Mn(NO3)2.6H2O at 20°C/min (e) TGA/DSC of Ni(NO3)2.6H2O at 

20°C/min 
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For example, Figure 5-1(d) indicates that Mn transforms from +2 in 

Mn(NO3)2.6H2O (at 25°C) to +3 in MnONO2 (at 225°C) to +4 in MnO2 (at 275°C) and 

back to +3 in Mn2O3 (600°C) and ultimately a mixture of +2/+3 in Mn3O4(960°C).  

Similarly, Ni(NO3)2.6H2O changes from +2 to +3 oxidation state of Ni2O3 residue at 

around 400°C, until NiO, with a +2-oxidation number is attained around 600°C (Figure 

5-1(e)). It is clear from these steps that the two monometallic oxide residues; NiO and 

Mn2O3 whose solid solutions are responsible for the spinel phase, according to: NiO + 

Mn2O3 → NiMn2O4, are formed around 705°C250.  Since there are strong evidentiary values 

from the plasma temporal studies regarding the presence of intermediates such as NiMnO3 

and MnO2, we can speculate that the initial processes in the plasma is similar to the thermal 

decomposition steps obtained in the TGA. The absence of NiO in XRD may be have been 

due to either NiO concentration beneath the limit of instrument detection, or the NiO phase 

evolving faster than it could be tracked within the experimental timeframe. Recall that NiO 

 

Table 5.2 Temperature-dependent vapor pressures of Ni and Mn chlorides 

Halide Temperature-dependent vapor pressures of metal halides 

1 Pa 10 Pa 1 00Pa 1 kPa 10 kPa 100 kPa Ref. 

MnCl2 461°C* 537°C* 633°C* 760°C 933°C 1184°C Stull 245  

NiCl2 534°C 592°C 662°C 747°C 852°C 985°C Stull 245 

Values with asterisk (*) were extrapolated using Antoine’s equation: log10P = A - 

B/(C+T). A, B, C are component specific parameters. P and T are vapor pressure and 

temperature respectively. 
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is crystallized around 600 °C, and the spinel phase formation was estimated to occur at 

similar temperature (705 °C), therefore, NiO must have been consumed as soon as they 

were crystallized.   

Despite the non-stoichiometric starting proportions of Ni and Mn, we obtained a 

single-phase spinel with composition identical to the metal cation composition in the nitrate 

precursor mixture. However, using chlorides of Ni and Mn as starting materials in the 

cation ratio of Ni/Mn = 1:4, we obtained a different outcome. According to the XRD data 

in Figure 5-1(b), it appears stoichiometric spinel (NiMn2O4) phase was obtained along with 

segregated Mn2O3 phase. It can be suggested from the temperature-dependent vapor 

pressure data (Table 5.2, Ref.251) of these halide precursors that the high volatility and/or 

the differences in the degree of volatility may play a huge role in the inability to control 

the stoichiometry of the mixed oxide.  

The evolution of surface composition in relation to the bulk is presented in Figure 

5.2 (a). There was a substantial deviation from the bulk composition after 6s, with about 6 

at. % increase in Mn surface concentration over the bulk composition in 8s. This increase 

continues until 12s where it reaches a maximum of 8.7 at. % Mn concentration over the 

bulk level and thereafter drops to 6.8 at. % in 14s. The exact surface conditioning that led 

to this phenomenon is somewhat unclear, but there is one report suggesting that the 

migration of Mn4+ to the surface may be linked to the high binding energy of Mn4+ with 

oxygen species present in a strongly oxidative environment 252 (plasma in this case). The 

charge-to-ionic radius ratio of Mn4+ is 10.256, which is about twice that of Mn3+ (charge-

to-ionic radius of 5.172) which comes in second place among Mn4+, Mn3+, Mn2+, Ni3+ and 

Ni2+.  Thus, Mn4+ produces the most stable monometallic oxide favoring the relaxation to 
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the minimum total energy of the surface. Noteworthy is the observation that this 

pronounced deviation from bulk-like constitution of the surface coincides with the 

exposure time of 8s where considerable polycrystallinity of the sample was first observed 

in the XRD data of Figure 5-1, showing low-intensity broad diffractograms. The 

polycrystalline grains formed can become a source or sink for vacancies and other defect 

chemistries with inherent free energy of formation different than the grains, then the 

condition of charge neutrality in the bulk may produce a space charge region in the 

boundaries and surface253. 

 

There have been several reports on the determination of the chemical state of 

manganese ions using the Mn2p3/2 and Mn2p1/2 spectra. For simplicity and clarity, the 

Mn2p3/2 spectra will be the focus of analysis (ignoring Mn2p1/2). Figure 5.3 and Table 5.3 

shows the evolution of Mn2p3/2 XPS spectra of the mixed precursors exposed to air plasma 

in 6, 8, 10, 12, and 14s. Three distinct deconvoluted spectra (Mn2+: navy blue, Mn3+: 

magenta and Mn4+: olivine, Figure 5-3) with broad emission lines having a maximum near 

643.5 eV, and a minimum close to 639.7 eV were observed for four of them (6, 8, 10 and 

12s), whereas; the last sample (14s) had only two fitted peaks at 641.9 and 643.7eV. In 

general, there was a dramatic shift to lower binding energy, of the sum of the fitted peaks 

moving from 6 to 8s, and thereafter, a gradual increase in the binding energy from 8 to 14s. 

This may be rationalized in terms of the decomposition of the metal nitrates into loosely-

held intermediates, which give way to nucleation and growth of the spinel compound. 
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Figure 5-2| (a)Evolution of the XPS spectra of Ni/Mn precursor exposed to air 

plasma for N1s spectra showing the disappearance of nitrogen in 10s  (b) Time-

dependent surface concentration of Ni/Mn precursor in relation with the bulk. 
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 Figure 5-3| Evolution of the Mn2p3/2 core-level spectra of Ni/Mn precursor 

exposed to air plasma. 
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Many have reported that the Mn2p3/2 binding energy of Mn2+, Mn3+ and Mn4+ ions are in 

the range 640.2 – 641.6 eV, 641.2 – 642.6eV and 642.3 – 643.8 eV, respectively.254-255 

Peak assignments are tabulated in Table 5.3. One striking feature in these spectra is the 

emergence of a large Mn2+ spectrum in the sample with 8s exposure time, which later 

reduces in intensity for the samples exposed for 10 and 12s, and the ultimately disappears 

in 14s. It is not inconceivable to speculate that the Mn2+ species formed an intermediate 

alongside the nitrite or peroxynitrite species characterized earlier in the foregoing 

paragraph. According to Table 5.3, with an initial high concentration (74%), the 

concentration of Mn4+ was stabilized to 35-41% after 6s, whereas Mn2+ showed no time 

 

 

            Table 5.3 XPS data of Mn2p3/2 region showing the evolution of the Ni/Mn 

precursor exposed to air plasma 

Exposure 

Time/s 

Binding Energy(FWHM)a/eV Peak Intensityb/% 

Mn4+ Mn3+ Mn2+ I(Mn4+) I(Mn3+) I(Mn2+) 

6 643.5(3.4) 642.1(2.1) 640.6(3.5) 74.3 22.5 3.1 

8 643.2(4.1) 642.1(4.0) 640.7(3.0) 40.4 18.2 41.3 

10 642.9(3.8) 641.7(2.7) 639.7(3.3) 34.8 54.2 10.9 

12 643.3(4.2) 641.8(2.4) 640.1(2.5) 36.5 48.1 15.4 

14 643.7(4.9) 641.9(3.3) - 40.9 59.1 0 
 

 a Data in parenthesis represents full width half maximum in eV 

 b Peak intensity refer to the Mn chemical state in  percentage of  the total peak area 
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dependence and ultimately vanishes in 14s. Noteworthy is increment in Mn3+ concentration 

with exposure time.  Similar binding energy trend was observed for the Ni2p3/2 core-level 

spectra as with Mn2p3/2 for the samples exposed to the plasma for 6, 8, 10, 12, and 14s. 

Initially, there was a high binding energy for sum of the fitted peaks in 6s which swiftly 

moved dramatically to lower binding energy in the next 2s. Subsequently, a gradual and 

consistent increase in binding energy was observed until 14s. The final binding energy of 

the sum of the fitted peaks at 14s was similar to the initial value at 6s. The dramatic shift 

by about 1.5eV to a lower binding energy might be indicative of perhaps the formation of 

a metastable or unstable intermediate. As with Mn2p3/2, only Ni2p3/2 were deconvoluted, 

as well as the shake-up satellite peaks separated by binding energies ranging from 6.0 – 

6.9eV. Two peaks are present in the range 854.4 – 857.6eV (magenta and navy blue, Figure 

5-4) and their properties are presented in Table 5.4. The first peak (magenta) which could 

be found in the range 854.4 – 855.8eV can be assigned to Ni2+ while the second peak (navy  

blue) located between 854.4 – 855.8eV can be assigned to Ni3+. The O1s spectra is shown 

in Figure 5.5. The first deconvoluted peak (529.4 – 530.8eV, magenta profile, Figure 5-5)  

can be ascribed to lattice oxygen, the second feature peak (530.8 – 531.9eV, olivine profile, 

Figure 5-5) is attributable to the adsorbed or trapped oxygen molecule and/or compounds 

with hydroxyl functional group.  The third dominant deconvoluted peak (binding energy 

of 532.8eV, cyan profile, Figure 5-5), present only in the sample exposed within 6s is due 
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Figure 5-4| Evolution of the Ni2p3/2 core-level spectra of Ni/Mn precursor 

exposed to air plasma. 
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Table 5.4 XPS data of Ni2p3/2 region showing the evolution of the Ni/Mn 

precursor exposed to air plasma  

Exposure 

Time/s 

Binding 

Energy(FWHM)a/eV Peak Intensityb/% 

Ni3+ Ni2+ I(Ni3+) I(Ni2+) 

6 857.1(2.9) 855.6(2.0) 52.8 47.2 

8 856.1(2.5) 854.4(2.0) 36.3 63.7 

10 856.9(2.3) 855.0(2.0) 29.7 70.3 

12 857.1(2.3) 855.2(2.0) 31.9 68.1 

14 857.6(2.5) 855.8(2.0) 41.5 58.5 

a Data in parenthesis represents full width half maximum in eV.  

b Peak intensity refer to the Ni chemical state in  percentage of  the total peak area 

  

Figure 5-5| Evolution of the O1s core-level spectra of Ni/Mn precursor exposed 

to air plasma. 

540 535 530 525

532.8
530.8

530.1

6s O1s

 

 

8s 529.4
530.9

 

 

530.010s

531.4  

 

531.7
530.312s

 

 

531.9
530.8

X
P

S
 I
n
te

n
s
it
y
/a

.u
.

Binding Energy/eV

14s

 

 



 

117 

 

 

to O1s spectra in nitrate containing salts. This is a clear confirmation that thermal 

decomposition was incomplete in 6s. Also, the trend reported for both Ni2p3/2 and Mn2p3/2 

continues with O1s, with a shift from high to low binding energy going from 6 to 8s, and  

a consistent shift from low to high binding energy until 14s.  

 

The N1s XPS spectra was collected for the samples exposed to the plasma for 6s, 

8s and 10s; and the results are shown in Figure 5.2(b). Only three spectra were recorded 

because the N1s spectrum disappears after 10s of exposure in support of the EDS elemental 

analysis in Table 5.1.  The sample exposed in the plasma environment for 6s displayed a 

high intensity spectrum with a full width half maximum (FWHM) of 1.73eV and a binding 

energy 407.2eV, 8s of exposure however saw a shift of 1eV to a lower binding 

energy(406.2eV) with a broader spectrum having FWHM of 2.23eV. The binding energy 

of 407.2eV matches well with N1s in metal nitrates256-257 having binding energies ranging 

from 407.0eV to 407.3eV, however, the binding energy of 406.2eV obtained for the sample 

with an exposure time of 8s may very well suggest decomposition of the anhydrous nitrate 

salt may have occurred via an intermediate nitrite or peroxynitrite species258. The ease with 

which Mn and Ni nitrates thermally decompose was ascribed to the moderate to high 

charge densities of Ni2+ and Mn2+ ions respectively259. The high or moderate charge density 

of the cations pulls toward itself the electronic charge distribution on the nitrate ion, or 

some of the electronic charge on the nitrate ion are donated to the empty 3d orbital of the 

cation to pave the way for the polarization of the nitrate ion, which in effect weakens the 
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N-O bond. In the plasma environment, this bond weakening becomes even more severe 

with the oscillating electric field and the local charge states of the plasma, eliminating any 

traces of nitrogen-containing species in 10s. 

5.3.2 Understanding the role of reactive heating of the plasma species 

There are several thermal processes that take place during plasma oxidation. So, it 

is important to understand the heat transfer processes across the plasma-liquid interphase 

and their role in the mixed oxide formation. There are many interactions between plasma 

and liquid droplets, and they include; free electrons, solvated electrons, positive ions and 

electric field in a plasma system. This section aims to predict the most dominant heat 

sources among convective, reactive (or recombinative), radiative and electron collisional 

heating and perform experiments to gauge their influence in the processing of solution 

precursors into oxides. 

 The net heat rate required to vaporize a droplet, Q: 

                     Q = mcpl(T0-Tb) - mLv                                               5.1                        

The estimated value of Q is 1.7 x 10-4mJ/s, based on 5μm droplet containing 0.05M of 

nickel nitrate and manganese nitrate aqueous solution, T0 is the initial temperature of 

droplet, Lv is the latent heat of vaporization of droplet, Tb is the boiling point of droplet, cpl 

is the specific heat capacity of liquid droplet, and m is the mass of droplet. Rate of heat 

source Qs is given by:     

                    Qs = aph(T∞-Td) + apєσ (T∞
4 - Td

4) + ε + Qr               5.2 

where ap is the surface area of droplet, T∞ is the temperature of plasma, Td is the temperature 

at the surface of the droplet, є is the emissivity and σ is the Stefan's constant, 
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5.670 × 10−8 W/m2K4. The first term on the right-hand side represents convective heating, 

whereas, the second term represents the heat due to radiative heating from the plasma 

medium to the surface of the droplet. Heat transfer coefficient (h) is obtained from Nusselt 

number (Nu) which is given by correlation from Ranz and Marshall260:  

                  Nu = hD/k = 2 + 0.6Re1/2 Pr1/3                                   5.3 

where Re is Reynolds number, Pr is Prandtl number, k is thermal conductivity and D is the 

diameter of droplet. For the limiting case of creeping flow, where both the droplet and 

plasma velocity are same, and thus Nu ~2. The electronic collision heating term ε, the third 

term in Eq. 5.2 is given as a function:  

                   f(ε)= F(ε) ε-1/2   ∝  d2Ip/dV2                                     5.4 

Eq. 5.4 is the Druyvestein formula, where f(ε) and F(ε) are the electron energy probability 

function (EEPF) and electron energy distribution function (EEDF) respectively. The 

integrated area of the EEDF is used to estimate an average value of ε called <ε>. Electron 

collisional heating, which scales with ν/(ν2 + ω2 ), is ineffective in microwave plasma 

because the collision to wave frequency ratio ν / ω <<1.  Here, ν is the electron-neutral 

collision frequency and ω is the angular frequency (2.45 GHz) of the electromagnetic field. 

For an electron to collide with a positively charged metal ion, the time it takes to reach the 

surface (1/ ν) should be smaller than the time the surface takes to become negatively 

charged and repulse the electron (1/ ω), due to changing polarity of microwave induced 

electric field. Using order of magnitude analysis, a 5μm droplet, with T∞ =104K, Td =103K, 

and є=0.9, the radiative heating is of the order 10-2 mJ/s, therefore negligible. Assuming k 
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= 0.07 J/m-Ks (air), the convective heating becomes 17 mJ/s. The last term in Eq. 5.2, Qr, 

is the heat release due to these recombination reactions: 

 

OH + OH → H2O2   ΔHr(298.15 K)  = -214.6 kJ/mol                                                                                                                        

O + O → O2              ΔHr(298.15 K) = -505.3 kJ/mol                                                                                                        

H + H → H2              ΔHr(298.15 K) = -444.0 kJ/mol                                                                                                           

N + N → N2              ΔHr(298.15 K) = -944.9 kJ/mol 

Assuming 20 % of the plasma flux are radicals/neutrals, with air flow rate of 10 slpm, for 

an ideal gas, the molar flow rate is 7.45 x 10-3 mol/s. Also, if the average reactive heat is 

1000 kJ/mol, the total reactive heat is then estimated as 1.50 x 103 mJ/s. These estimated 

calculations show that the convective and reactive heating are more than sufficient to 

vaporize the solution until precipitation of oxide. Reactive heating is significantly higher 

than convective heating, and may play an important role in plasma oxidation, so, 

experiments were performed to eliminate or perhaps attenuate its contribution using a 

substrate cooling device illustrated in Figure 5-6(a). The precursor-sprayed substrate is 

fixed inside a water-cooled device consisting of copper tubes, with the droplet sprayed 

portion of substrate exposed to the plasma for a period of 14s while flowing cold water 

through the cooling device in order to extract the recombinative heat released in situ. The 

XRD data shown in Figure 5-6(b) is indicative of an amorphous phase and possible 

incomplete thermal decomposition of precursor, which is a crucial step in the formation of 

the spinel oxide. The XPS spectra of N1s, O1s, Ni2p3/2 and Mn2p3/2 are shown by Figure 

5-6(c-f) for the sample cooled during plasma exposure time of 14s. In general, the spectra 
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Figure 5-6| (a) Set-up for the in-situ cooling of Ni/Mn precursor during exposure to 

plasma (b) XRD of the cooled sample with 14s exposure. XPS core-level spectra of water-

cooled Ni/Mn precursor with 14s exposure time: (c) N1s (d) O1s (e) Ni2p3/2 (f) Mn2p3/2 
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are similar to the spectra of the uncooled samples which were  exposed to the plasma for a 

total of 6s as illustrated by Figure 5-2(a), 8.3, 8.4, and 5.5, with a few exceptions, however. 

The binding energies of N1s, O1s, Ni2p3/2 (Ni2+) and Mn2p3/2 (Mn2+) for the cooled samples 

are 407.0, 530.2, 855.9 and 640.5eV respectively, while the binding energies of the 

uncooled samples exposed to the plasma for a total of 6s are 407.2, 530.1, 855.6 and 

640.6eV respectively. The major differences between both results are the absence of the 

adsorbed species from the O1s spectra of the cooled sample, also, the peak fitting of the 

spectra of the cooled sample indicate that Ni3+ oxidation state is absent. The presence of 

N1s spectra positioned at a binding energy of 407.0eV confirms our suspicion from earlier 

that the thermal decomposition of the nitrate was incomplete. The O1s spectra clearly 

indicate that there are two chemical states of oxygen: (1) lattice oxygen from oxides (2) 

lattice oxygen from NO3-, with the latter making up about 76 at. % of the total oxygen 

species. 
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5.3.3 Evolution of non-stoichiometric La0.8MnO3 perovskite 

Studies were performed to understand the evolution of non-stoichiometric mixed 

oxide (perovskite) system with plasma oxidation of liquid precursors. This study was done 

 

Figure 5-7| XRD showing phase evolution in plasma of (a) La/Mn nitrate precursor 

in proportion 0.8:1 and (b) La/Mn nitrate precursor in proportion 1:1(c) Reaction formation 

energy of La2O3/Mn2O3 alloy system 
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to understand whether perovskites oxides evolve differently than spinel compounds. 

Cation-deficient La0.8MnO3 perovskite was prepared via similar plasma-based and time-

controlled method by varying the plasma exposure times. The XRD patterns (Figure 5-7 

(a)) were used to monitor the transitions in the phases per exposure times. As before, an 

amorphous phase results when the droplets were exposed for 4s. The first detected phase 

is the ε-MnO2 (PDF-01-089-5171, hexagonal, space group: P63/mmc), which appears in 

the first 6s, and continues to appear until the 12th second. The first detection of the 

perovskite phase (PDF-01-074-7372, rhombohedral, space group: R-3c) occurs after 10s 

of exposure, with accompanying ε-MnO2 phase. These phase dynamics were identical to 

the Ni/Mn system in which the spinel phase was nucleated in 10s. While profile of the 

perovskite peaks is very broad placing the nucleation of perovskite in that timeframe, the 

manganese (IV) oxide peaks were narrow suggesting fully developed, relatively larger 

crystals. The MnO2 peaks disappear after 14s without a trace, also, the increasing 

narrowness of the 110/104 peaks from 10 – 20s indicated growth of crystal grains. As is 

the explanation for the inability to detect NiO phase in the XRD data of Ni/Mn system, the 

absence La2O3 phase from the XRD of Figure 5.7(a) may have been due to lanthanum 

nitrate hexahydrate thermally decomposing to La2O3 at around 700°C261, a higher 

crystallization temperature than MnO2 (275°C). So, the crystallization temperature of 

La2O3 is probably close to the solid-state reaction temperature of La2O3/Mn2O3, consuming 

La2O3 as soon as they were generated. 

Surprisingly, when the La/Mn starting proportion was 1:1 or stable/stoichiometric 

composition, the phase evolution was completely different. The stated hypothesis about the 

composition of the first nucleated phase mimicking the composition of the surrounding 
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nutrient seem to be accurate here, as illustrated in the phase dynamics of the XRD data of 

Figure 5.7 (b). The XRD reflections of the first phase nucleated in 6s was assigned to a 

perovskite phase (PDF-01-074-7372, rhombohedral, space group: R-3c), this very phase 

was found in the remaining samples with exposure times ranging from 8 – 20s. The data 

also show increasing crystallite size from 6 – 20s. This is a clear indication of the 

differences in the nucleation and growth mechanistic steps between the stable and 

metastable compositions. The reason(s) for these differences is(are) somewhat unclear, but 

it is suspected that the low-energy available at short times (6 - 12s) before the sample attains 

steady state temperature in the plasma might just be favorable to nucleate stable phases 

which require much less energy than the metastable phases, refer to Figure 5.7(c) 

(computed from Materials Project212). So, the mechanism here would not follow solid-state 

reaction requiring a high-temperature condition to initiate. 
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5.4 Proposed Nucleation and Growth Mechanism for Complex Oxides and Non-

Stoichiometric Compositions 

 

The plasma oxidation of precursors is instantaneous due to the fast kinetics 

resulting from rapid reactive heating of the plasma species. Evidence from experimental 

study suggests that the synergy from reactive heat and plasma species in (partial) thermal 

plasmas are necessary for the formation of non-stoichiometric mixed metal oxides. So, a 

mechanism of plasma-based processing of mixed metal precursors gleaned from the 

foregoing data is illustrated in Figure 5.8. The plausible steps involve: (1) evaporation of 

water from droplets containing mixed metal precursors(2) formation of amorphous 

nitrate/nitrite/peroxynitrite phase (3) formation of amorphous oxide  phase (4) nucleation 

of monometallic oxides through thermal decomposition of part of amorphous oxide phase, 

 

 

Figure 5-8| Proposed mechanism of plasma-processed nitrate-based 

precursors. The steps are (1) evaporation precursor solvent (2) amorphous 

nitrate/nitrite/peroxynitrite phase formation (3) amorphous oxide phase formation (4) 

nucleation of monometallic oxides (5) alloying of oxides into intermediate 

compositions (6) growth of alloyed species (7) final non-stoichiometric oxide 

1 3 4 5 6 72
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with the heat coming from plasma recombinative heating (5) alloying of nuclei close to 

each other into stable intermediate compositions (6) growth of alloyed species, so that over 

time, composition of grains resembles the concentration of the nutrient, and  (7) final non-

stoichiometric oxide phase. Densification and partial decomposition of the solution 

precursor will lead to amorphous phase of nitrate, nitrite or peroxynitrite in step 2. It is 

important to state that these steps may overlap, evidenced by the detection of nitrogen-

containing phase in 8s, which is well into step 4 (Figure 5.2(a) and Table 5.1). Nitrogen-

containing amorphous species is metamorphosed into a rigid solid constituted by an 

amorphous metal–oxygen network or amorphous oxide. Evidence for the amorphous oxide 

phase in step 3 can be found in Figure 5.6(a) showing a partial amorphous oxide phase in 

O1s spectra of the substrate-cooled oxide film. The slow kinetics in the substrate-cooled 

sample allow for the resolution of the oxide phase which was undetected in the uncooled 

sample due to their super-fast kinetics. Although lattice oxygen ascribed to oxides is found 

in the O1s of the uncooled sample (Figure 5.5) exposed to the plasma for 6s, we cannot say 

to a high degree of certainty that the portion of those which are amorphous oxide due to 

the nucleation of nanocrystalline MnO2 phase in that timeframe.   

Plasma could serve as flux to enable the crystallization of high temperature phases 

by improved diffusion of metal elements to help order the randomized metal-oxygen 

network. Also, the ultraviolet component in the plasma could facilitate photoexcitation, in 

addition to this, amorphous oxide has a modest absorbance in the ultraviolet range. Photons 

from plasma could help with bond cleavage, generate active plasma oxidation species like 

O neutral or ozone or create a conducive milieu to nucleate polycrystalline oxides262. 

Though it was initially hypothesized that the first nuclei would have compositions that is 
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reflective of the composition of the surrounding nutrient, but counterintuitively, the 

nucleation of monometallic oxide phase was first noticed, followed by alloying of these 

phases into more stable bimetallic intermediate phase (NiMnO3) as observed in the Ni/Mn 

system (step 4). Step 4 is not observable in the La/Mn system probably due to the proximity 

of the La/Mn starting composition (La/Mn = 0.8:1) to the stable composition (La/Mn = 

1:1). This alloying is as a result of the crystals being of very small size, and very close to 

each other. The nucleation of MnO2 at short times is supported by the decomposition 

profile of the TGA data which indicated that the crystallization of MnO2 is favored at low-

temperature (275 °C). By observation and measurement, the steady state temperature of 

the samples exposed to the plasma is not reached until 15s (red-hot appearance and 

temperature measurement via laser pyrometer), and so, it is expected that at short times, 

MnO2 will be crystallized before Mn2O3 and Mn3O4 in the plasma, which were crystallized 

in the furnace at 600 °C and 960 °C respectively. Although NiO may have been too small 

to be detected by XRD or perhaps the lack of detection may have been due to higher 

crystallization temperature of NiO (600 °C) compared to MnO2, the detection of the first 

alloyed phase (NiMnO3) is suggestive of the reaction:  

NiIIO + MnIVO2 → NiMnO3 ΔG(1000 K)= -9.16 x 105 kcal mol-1 

offering support for the presence of NiO. The computed high negative Gibbs free-energy 

value shows this reaction is feasible at the suspected reaction temperature. The ramp rate 

in the plasma is about 3200 °C min-1, reaching steady state temperature of about 800°C in 

15s. This is the reference temperature for the low-temperature processing of oxide films by 

wet-chemical methods262, but is sufficient for the solid-state reaction herein observed in 

step 5 as a result of reactants being nanosized and/or the influence super-high plasma ramp 
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rate and plasma effect mentioned at the beginning of paragraph. Compared to thermal 

heating coils in conventional furnaces, the heating rates are from 5  _ 10 °C min-1, which 

can go up to 20 °C min-1, and for this reason, the plasma offers much faster kinetics 

evidenced by the finalization of the non-stoichiometric phase in 14s. The recombinative 

exothermic heat released from plasma particles is responsible for the exceedingly large 

heat ramp rate, and the experiment conducted to extract of this heat in order to slow down 

the kinetics led to the conclusion of a positive effect of this heat in the process. Also, the 

local bonding environment as indicated by the XPS data shows an increase in Mn3+/Mn4+ 

ratio as the reaction progresses, which were also supported by the TGA data, confirming 

the chemical state of the spinel manganate. This mechanism is only valid for metastable 

compositions such as solid solutions or non-stoichiometric compositions. 

5.5 Chapter Summary 

Series of interrupted experiments were carried out to probe the mechanistic steps 

involved in the nucleation and growth of non-stoichiometric complex oxides prepared in 

the plasma. Two non-stoichiometric systems of Ni/Mn and La/Mn were selected, where 

starting precursors of both systems were dissolved in separate aqueous solution and drops 

of these solutions were sprayed on an inert substrate and exposed to air plasma for a 

controlled duration, completed in 20s, using an interrupted interval of 2s. In general, the 

non-stoichiometric phases were formed in 14s, showing great control of final oxide 

composition from the precursor composition. However, when the precursor was changed 

to more volatile compound, this compositional control seems lacking. Back of the envelop 

estimation suggests convective and reactive heating are the most important sources of heat 

supply to the precursor, and of these two, reactive heating is the most dominant. 
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Experiments to isolate reactive heating from the plasma process led to a conclusion that it 

is vital to the fast kinetics of the plasma oxidation. Evidence suggests initial nuclei is 

different in composition than the surrounding amorphous oxide nutrient contradicting 

earlier hypothesis suggesting identical composition. Rather, intermediate monometallic 

oxide crystalline phases were found, followed by the solid-state alloying of the initially 

nucleated monometallic oxide phases. Evidence also suggests this mechanism is 

inoperative for stable compositions. To conclude, the results from this chapter will push 

forward our understanding of the oxidation mechanisms of solution precursor exposed to 

partially thermal atmospheric plasmas. 
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                                                   CHAPTER 6 

6. LOW-NOBLE-METAL W1-xIrxO3-δ WATER OXIDATION 

ELECTROCATALYST VIA RAPID PLASMA SYNTHESIS2 

 

6.1 Introduction 

Renewably-driven water electrolysis may be the most promising pathway for 

carbon-neutral, sustainable H2 production.263-265 The high operating voltage of commercial 

electrolyzers and corresponding energy loss are largely associated with the sluggish 

kinetics of water oxidation at the anode.266-267The oxygen evolution reaction (OER) (i.e., 

2H2O → O2 + 4H+ + 4e-, in acid) is a kinetically demanding four-electron redox process 

with even the best catalysts having an overpotential of ~300 mV at 10 mA cm-2, a 

benchmark current density for use in solar water-splitting.76Proton exchange membrane 

(PEM) electrolyzers, which operate in strong acid, offer a promising way to produce 

hydrogen of high-grade purity.268 269The advantages of PEM electrolyzers relative to 

alkaline-based electrolyzers include greater power density, higher efficiency at lower 

                                                 

2 The texts in this chapter were reproduced with the permission (see appendix 12) of Royal Society 

of Chemistry. Original article was published as “S. Kumari§, B. P Ajayi§, B. Kumar, J. B. Jasinski, M. K. 

Sunkara, J. M. Spurgeon (2017), A low-noble-metal W1−xIrxO3−δ water oxidation electrocatalyst for acidic 

media via rapid plasma synthesis, Energy & Env. Sci, 10, 2432-2440, https://doi.org/10.1039/C7EE02626A  

(§Authors contribute equally to this work)”. Formatting styles were amended to adapt original article to the 

style of this dissertation, and some data from the supporting information in the original article were included 

in this chapter.  
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temperatures, and the availability of well-developed membranes with better ionic 

conductivity, durability, and tolerance to pressure differences.270 Unfortunately, the high 

operating potential in a strong acid creates a corrosive environment in which only precious 

metal oxides have exhibited simultaneously high catalytic activity and stability. 

Currently, mixed-metal IrRuOx nanoparticles are the main OER catalysts used in 

PEM electrolyzers.271 Other acid-stable catalyst combinations of platinum group metals 

have been reported, but these metals are exceedingly rare.23 Ir is ~10,000 times less 

abundant than Ni, Co, or W.272  Even with affordable minimal catalyst loadings, it is 

unclear if production of these noble metals could be scaled up to meet global energy needs.  

A number of effective earth-abundant OER catalysts, including NiFeOx, Co3O4, 

MnO2, and others,76, 273-274 have overpotentials comparable to IrO2 in alkaline conditions, 

but none are stable in strongly acidic electrolyte.76, 275 Among other stable oxides for acidic 

OER, PbOx has been studied extensively but to date only moderate to high overpotentials 

have been reported.276-280  Recently, a F-doped Cu1.5Mn1.5O4 has also shown promise as a 

water oxidation catalyst in acid.281 Prior catalysis research has also tried to exploit 

multimetallic oxides with synergistic properties of the component elements, like the 

modest-overpotential acid-stable (Mn-Co-Ta-Sb)Ox.
282 Some efforts have focused on 

mixed noble and non-noble metal compositions to achieve acid-stable high activity with 

minimal noble metal content. Ir has been alloyed with numerous metals to make active 

acid-stable catalysts, but each of these studies required at least 40 mol. % Ir to be effective. 

77, 283-286   

Testing theoretical predictions of new alloys for OER catalysis requires production 

of a phase-pure composition, which has often been limited by experimental synthesis 
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techniques. Conventional wet chemical methods such as solution-cast,287 solvothermal,288 

or sol-gel289 techniques rely on subsequent heating in air to thermally oxidize the material. 

The prolonged high-temperature oxidation leads to thermodynamic equilibrium, which can 

cause phase segregation into species other than the originally targeted composition.290 In 

contrast, oxidation in an oxygen plasma is a rapid (~ 1 min) and scalable technique which 

has been demonstrated to lead to non-equilibrium solid solution phase growth capable of 

producing homogenous metastable phases.290 Herein we report plasma-oxidized mixed Ir- 

and W-metal oxide compositions for OER catalysis. W is an earth-abundant metal with an 

acid-stable oxide (WO3)
291 but poor activity for oxygen evolution. Yet with minimal Ir 

content, plasma-oxidized W1-xIrxO3-δ was acid-stable with promising OER activity. 

6.2 Catalyst Synthesis and Electrode Preparation 

Plasma oxidation of the liquid precursors was performed using a homemade batch-

operated atmospheric microwave plasma flame reactor as described in greater detail in 

chapter 3.  Chemically pure grades of ammonium paratungstate, (NH4)6W12O39•xH2O 

(Alfa Aesar, 99.9%) and iridium acetate, Ir(CH3COO)n (Alfa Aesar, Ir 48-54 wt. %), were 

used as starting materials without further purification. Precursors were dissolved in 18 MΩ-

cm DI water to a concentration of 0.1 M, and these solutions were mixed as needed to get 

the desired metal cation stoichiometry in mixed-metal oxide compositions. Subsequently, 

0.1 mL of the mixed-metal precursor solution was drop-cast and spread onto 2 cm2 of a 

fluorine-doped tin-oxide (FTO) coated glass substrate (Hartford Glass, Hartford, CT) 

which was then exposed to the upstream plasma jet with an input power of 500 W and a 

volumetric flow of 2 standard liters per minute (slpm) Ar, 11 slpm air, for 90 s to obtain a 

thin film of catalyst on FTO. FTO-glass and glassy carbon (GC) disks were used as 
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working electrode substrates for the electrochemical measurements due to their high 

conductivity and poor electrocatalytic activity for OER. Prior to catalyst deposition, the 

FTO-glass substrates were cleaned by ultrasonication in an alkaline aqueous washing 

solution, DI water, ethanol, and then DI water again for 10 min/step. For FTO-glass 

electrodes, the metal precursor solution was directly cast on the substrate and exposed to 

the plasma jet to form a thin film of the mixed-metal oxide. For rotating disk electrode 

(RDE, Pine Instruments) measurements, 5 mm diameter GC disks were sonicated 

sequentially in pure DI water, acetone, 2-propanol, and then DI water again for 10 min/step. 

However, because glassy carbon substrates experienced significant degradation if exposed 

to the plasma jet, direct plasma oxidation of the catalysts on GC disks was not performed. 

Instead, an established drop-casting protocol for benchmarking nanoparticulate catalysts 

was used205 , and well detailed in chapter 3 of this study. Also, an alternative synthesis 

route was employed to prepare catalyst materials via thermal furnace in order to compare 

activity performance. TGA experiment described in Appendix 11 was carried out in order 

to explain the thermal processes of the liquid-gas interfacial reactions and/or thermal 

decomposition of catalyst sample precursors and to determine the furnace temperature at 

which crystallization of the respective oxides will occur. A temperature of 500 °C was 

adopted in synthesis following the TGA results. Materials and electrochemical 

characterizations details are also already explained in chapter 3 of this dissertation.  

6.3 Morphology and Phase Homogeneity 

Plasma synthesis can produce variations in structure due to the rapid crystallization 

and non-equilibrium mixed phase formation, which could have potential consequences for 

the electrocatalytic behavior of the materials. Electron microscopy showed that there was  
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Table 6.1 OER catalyst surface area and mass activity data  

Catalyst [a] SBET 

(m2 g-1) [b] 

Mass activity (A g-1) 

@η = 0.3 V [c] 

WO3(P) 3.27 0.0036 

IrO2(P) 5.89 17.4 

W0.57Ir0.43O3-δ(P) 6.57 1.46 

W0.92Ir0.08O3-δ(P) 11.37 0.077 

W0.99Ir0.01O3-δ(P) 3.68 0.220 

W0.99Ir0.01O3-δ(T) 8.66 0.014 

[a] (P) Plasma oxidized, (T) Thermally oxidized. [b] BET-measured specific 

surface area per mass of catalyst. [c] Current per total mass of catalyst on the electrode 

determined at 0.3 V of overpotential, from as-deposited catalyst without optimization 

for deposition method or mass loading. 
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strong structural variation in the morphology with the W1-xIrxO3-δ stoichiometry, from a 

sponge-like microporous structure at x = 0.43 to a smoother layer at x = 0.01 (Figure 6.1) 

The BET-measured specific surface area per catalyst mass (Table 6.1) consequently did 

not display a clear trend with Ir content either. Energy dispersive X-ray spectroscopy(EDS) 

elemental mapping for mixed-metal oxide catalysts showed that W and Ir were uniformly 

distributed throughout the majority of the sample. Figure 6.2 shows the EDS map for 

W0.99Ir0.01O3-δ, in which the Ir appears to be evenly distributed with no segregation into 

concentrated regions. Uniformity of the metal distribution was mostly maintained 

throughout the phase for compositions with higher percentages of Ir as well, though EDS 

maps for 8% and 43%  Ir samples displayed isolated regions of concentrated W or Ir (Figure 

6-3). For the samples investigated, the phase homogeneity depended strongly on the 

fraction of Ir in the composition. The X-ray diffraction (XRD) data for the plasma-oxidized 

W1-xIrxO3-δ catalysts indicated that the mixed-metal oxides primarily maintained the 

triclinic structure of the WO3, with characteristic peaks for IrO2 observed at 28º, 35º, and 

54º for the x = 0.43 material (Figure 6.4 (a)). This finding was supported for x = 0.43 by 

Raman spectra showing a faint peak at ~560 cm-1 attributed to IrO2 (Appendix 4, Figure 

A4) as well as the O1s XPS spectra showing a shoulder with a binding energy at 532.8 eV 

corresponding to IrO2 (Appendix 5, Figure A5 (a)). Strong XRD peaks corresponding to 

metallic Ir were also present for x = 0.43 at 41º, 48º, and 69º (Figure 6-4(a)). However, in 

decreasing the Ir content to x = 0.08, there was no longer observable  IrO2 in the XRD or  
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Figure 6-1 | (a – f) SEM and (g – j) TEM images of W1-xIrxO3-δ catalysts prepared 

by plasma oxidation (P) or by thermal oxidation (T). The scale bar is 5 μm for (a – f) 

and 100 nm for (g – j). 

 

 

Figure 6-2 | (a) SEM image of the morphology and EDS elemental mapping of 

(b) W and (c) Ir for ball-milled, plasma-oxidized W0.99Ir0.01O3-δ. The scale bar in (a) is 

5 µm 
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Figure 6-3|  (a - c) SEM images of the morphology and EDS elemental mapping 

of W and Ir for plasma-oxidized samples of (a) W0.57Ir0.43O3-δ and (b) W0.92Ir0.08O3-δ and 

(c) thermally oxidized W0.99Ir0.01O3-δ. The scale bar in (a - c) is 5 μm. 
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O1s XPS spectra (Appendix, Figure A5 (d)), with only a smaller XRD peak for metallic Ir 

discernible at 41º. No diffraction peaks for IrO2 or metallic Ir were observed for x = 

0.01,although such peaks may have been below the instrument detection limit. At this low 

Ir concentration, dispersion of Ir atom in WO3 lattice is the most efficient, perhaps even 

create single atom Ir-sites. Single-atom-site catalysis is an increasingly important topic in 

catalysis292, and the schematic in Figure 6-4(b) illustrates OER electrolysis based on single 

 

Figure 6-4 | (a) XRD data for each type of plasma-synthesized (b) Space-filling 

model of triclinic structure of W1-xIrxO3-δ in a 3x3x3 supercell, showing OER Ir-active 

sites, where blue; W atoms, red; O atoms; yellow; Ir and white; protons or H atoms. 

 

a b
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atom Ir-site. An XRD Rietveld analysis was employed for phase quantification to estimate 

the concentration of IrO2 and metallic Ir observed in nominal compositions with 8% Ir and  

above (Figure 6-5, and Appendix 6 (Table A6)). Figure 6.5 shows the corresponding 

Rietveld analysis of the iridium tungsten oxide samples prepared via plasma or thermal 

processes, which confirmed the formation of a triclinic phase. All the reflections in both 

samples were indexed based on space group �̅�1 (no. 2) and coincided with the standard 

values of triclinic WO3 [International Center for Diffraction Data (ICDD) PDF card no. 

00-020-1323]. The low reliability factor; Rwp (W0.99Ir0.01O3-δ-T) = 6.2 %, Rwp (W0.99Ir0.01O3-

δ-P) = 7.3 %, indicated that the Rietveld refined XRD pattern fit quite well with the 

experimental data points in spite of the complexities and low symmetry of the triclinic 

structure, giving calculated cell parameters of W0.99Ir0.01O3-δ (T) as a = 7.390(2) Å, b = 

7.537(1) Å, and c = 7.703(1) Å, while the cell parameters for W0.99Ir0.01O3-δ (P) were a = 

7.329(1) Å, b = 7.518(1) Å, and c = 7.698(1) Å. The a and b lattice parameters were 

noticeably smaller in W0.99Ir0.01O3-δ (P), giving it a slightly higher calculated density value 

of 7.259 g cm-3 than the 7.180 g cm-3 value for W0.99Ir0.01O3-δ (T). The rest of the refined 

parameters are available in Table A6 of Appendix 6.  

 

Figure 6-6 shows high-resolution transmission electron microscope (HR-TEM) 

images of the W1-xIrxO3-δ catalysts and is consistent with the XRD findings indicating some 

Ir metal phase segregation. The Ir-rich regions are observable as dark patches in the TEM, 

which generally correlated with areas of locally enhanced polycrystallinity. This effect was  
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Figure 6-5| XRD Rietveld analysis for plasma-oxidized (P) (a) WO3, (b) 

W0.99Ir0.01O3-δ, (c) W0.92Ir0.08O3-δ, and (d) W0.57Ir0.43O3-δ and thermally oxidized (T) (e) 

W0.99Ir0.01O3-δ. Black circles mark the observed XRD intensity, the red line is the calculated 

intensity, the blue line is the background baseline curve, the pink line is the difference 

between the observed and calculated intensity, and the Bragg lines for the phases are 

represented by green bars for the single W1-xIrxO3-δ phase, cyan bars for Ir, and purple bars. 

for IrO2. 
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Figure 6-6| (a-d) High-resolution TEM images for the W1-xIrxO3-δ catalyst 

particles prepared by plasma oxidation (P) or by thermal oxidation (T). The scale bar 

for (a-d) is 10 nm. Insets show the FFT pattern. (e-f) STEM images for (e) x = 0.01 (P) 

and (f) x = 0.01 (T). The scale bar for (e-f) is 50 nm 
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most clearly displayed for W0.57Ir0.43O3-δ, with multiple dark patches and misaligned lattice 

fringes, whereas the plasma-oxidized W0.99Ir0.01O3-δ particle was mostly uniform with 

highly parallel lattice fringes. As shown in Figure 6-6 for each W1-xIrxO3-δ catalyst, the 

lattice spacing for most of the bulk phase corresponded to a d-spacing of ~3.84 Å, 

consistent with the (002) planes for a WO3 crystal. The TEM for the x = 0.08 composition 

in Figure 6-6(b), however, shows a dark patch with a lattice d-spacing of 2.3 Å, which was 

indexed to Ir (111) and confirmed the presence of Ir metal inclusions. The plasma-oxidized 

W1-xIrxO3-δ structure thus generally consisted of evenly dispersed Ir throughout the WO3 

phase interspersed with small pockets of Ir-rich metal, as seen further in Figure 6-7 in 

which additional TEM and EDS mapping specifically targeted regions with Ir-rich clusters. 

In these maps, the regions with high counts for Ir corresponded to areas with low counts 

for O, consistent with the presence of metallic Ir inclusions. This data suggests the bulk of 

each mixed-metal precursor is a phase homogeneous solid solution of W1-xIrxO3-δ. 

However, there is a limit to how much Ir can be favorably incorporated into the WO3 lattice, 

and for increasing amounts of Ir beyond 1%, much of it is segregated to Ir and IrO2 

nanoclusters.  
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Figure 6-7|  TEM images and EDS elemental mapping for O, W and Ir for 

particles of (a) W0.99Ir0.01O3-δ, (b) W0.92Ir0.08O3-δ, and (c) W0.57Ir0.43O3-δ. 
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6.4 Electrochemical Performance of Plasma-Oxidized W1-xIrxO3-δ 

The plasma-oxidized W1-xIrxO3-δ catalyst compositions were made into electrodes 

and measured as anodes for electrochemical water oxidation in pH 0 aqueous electrolyte 

(see chapter 3 and section 6.2). Figure 6-8(a) shows the OER current density versus 

overpotential (J-η) behavior, with the catalyst activity parameters reported in Table 6.2. 

The overpotential at 10 mA cm-2 projected electrode area was reported in accordance with 

benchmarking protocol for electrocatalysts for a solar fuels application.76  

 

 

Figure 6-8| The electrochemical characterization for the plasma-synthesized W1-

xIrxO3-δ catalysts in 1 M H2SO4. (a) OER catalyst current density vs. overpotential (J-η) 

behavior, with solid lines for performance of catalysts by Ir content x, and data point 

squares for the current density of IrO2 (x = 1) scaled relative to the Ir content of the 

mixed-metal compositions. Overpotential was determined relative to 1.23 V vs. RHE. 

(b) Tafel plot of the OER catalyst data. (c) Catalyst electrochemical stability for a 

constant current density of 10 mA cm-2.  
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The plasma-oxidized IrO2 (x = 1) had an overpotential of 0.28 V, which puts it on 

par with literature values for state-of-the-art thermally oxidized IrO2.
76, 287 On the other 

hand, WO3 (x = 0), devoid of active noble metals, had an overpotential of 1.58 V. 

Unsurprisingly therefore, higher Ir content mixed-metal catalyst compositions had better 

overall electrocatalytic performance (Figure 6-8(a)) with lower overpotential (Table 6.2). 

Nevertheless, with only 1 at.% of the W replaced with Ir atoms during plasma oxidation, 

 

 

Table 6.2 Comparison of OER catalyst activity.  

 
η @ 10 mA cm-2  

Tafel 

Slope 

TOFLB (s-1) 

[c] 

TOFUB (s-1) 

[d] 

TOFLB,Ir (s-1) 

[e] 

TOFUB,Ir (s-1) 

[f] 

Catalyst [a] (V) [b] 

(mV 

dec-1) @ η = 0.3 V @ η = 0.3 V @ η = 0.3 V @ η = 0.3 V 

WO3 (P) 1.58 ± 0.012 116 2.2x10-6 2.5x10-4 N/A N/A 

IrO2 (P) 0.28 ± 0.004 85 1.0x10-2 4.7x10-1 1.0x10-2 4.7x10-1 

W0.57Ir0.43O3-δ (P) 0.37 ± 0.002 125 8.7x10-4 4.2x10-2 2.0x10-3 9.7x10-2 

W0.92Ir0.08O3-δ (P) 0.48 ± 0.021 112 4.6x10-5 1.5x10-3 5.8x10-4 1.8x10-2 

W0.99Ir0.01O3-δ (P) 0.50 ± 0.026 136 1.3x10-4 1.3x10-2 1.3x10-2 1.3x100 

W0.99Ir0.01O3-δ(T) 1.07 ± 0.016 301 8.2x10-6 3.5x10-4 8.2x10-4 3.5x10-2 

[a] (P) Plasma oxidized, (T) Thermally oxidized. [b] Error determined by the standard 

deviation in measuring three different samples of each type. [c] TOF based on all metal atoms of 

the catalyst. [d] TOF based on metal atoms at the catalyst surface. [e] TOF based on all Ir atoms 

of the catalyst. [f] TOF based on Ir atoms at the catalyst surface. 
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the x = 0.01 composition decreased the overpotential of WO3 by more than 1 V to η = 0.5 

V. In fact, if the current density of the pure IrO2 (x = 1) electrocatalyst is multiplied by the 

corresponding x value of the other compositions, the resulting J-η behavior outperformed 

the respective W1-xIrxO3-δ catalyst for x = 0.43 and 0.08 but underperformed for x = 0.01 

(Figure 6-8(a)), perhaps indicating greater activity per Ir content for x = 0.01. 

Another relevant metric of catalyst activity is the turnover frequency (TOF, defined 

for OER as the molecules of O2 generated per metal atom per second), which is included 

in Table 6.2 for a characteristic overpotential of η = 0.3 V. The method used for calculating 

TOF is described in Appendix 3. With the uncertainty in the number of metal sites 

contributing to the reaction, both a lower and an upper bound TOF were calculated. The 

lower bound turnover frequency (TOFLB) assumed all metal sites contribute to the 

reaction.287 The upper bound turnover frequency (TOFUB), in contrast, was approximated 

assuming that only metal cations at the surface were active reaction sites. The resulting 

TOFLB for IrO2 of 0.010 s-1 matched well with a similarly calculated TOF for solution-cast 

thin films of IrOx,
287 with the calculated TOFUB of IrO2 increasing to 0.47 s-1. As expected 

from Figure 6-8(a), the mixed-metal W1-xIrxO3-δ catalysts displayed lower TOF values on 

a per metal atom basis. However, if the activity is assumed to occur only at the Ir sites and 

the TOF values are corrected for the reduced Ir content in the mixed-metal oxides, the x = 

0.01 composition actually displayed greater lower and upper TOF values than pure IrO2 

(Table 6.2). Figure 6-8(b) shows the Tafel slopes, with the slope for plasma-synthesized 

IrO2 (x = 1) of 85 mV dec-1 comparable but a bit higher than similar literature values. The 

plasma-synthesized W1-xIrxO3-δ compositions displayed a distinct increase in the Tafel 

slope from IrO2, with values comparable to the slope observed for WO3 (Table 6.2). This 
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increased Tafel slope may indicate a shift in reaction mechanism as the lattice becomes 

dominated by the WO3 crystal structure and the minimized presence of IrO2.  

The calculated TOF values based on Ir content indicated that only the x = 0.01 

composition had higher activity per Ir site than the pure IrO2 (Table 6.2). From the materials 

characterization data discussed above, we thus speculate that the phase pure homogeneous 

W1-xIrxO3-δ solid solution surface had more active OER kinetics per Ir atom while 

segregation to Ir0 and IrO2 phases, particularly as clusters within the catalyst bulk where 

access to the electrolyte would be hindered, led to a reduced performance on an Ir atom 

basis. It is also possible that the oxygen deficiency created by balancing charge with Ir4+ 

in the W1-xIrxO3-δ phase leads to oxygen vacancies near the Ir site, with such vacancies 

reported to contribute to OER activity in metal oxides.45 Future density functional theory 

(DFT) modeling of W1-xIrxO3-δ crystal structure and bonding as a function of Ir content on 

the binding energy with OER intermediates could provide additional insight. 

Furthermore, the promising activity with only 1% of the metal sites consisting of Ir 

was achieved without sacrificing the stability of the material under acidic oxidizing 

conditions, due to the use of W with its corrosion resistant oxide as the structural support 

material. The W1-xIrxO3-δ catalyst compositions were evaluated for durability by 

monitoring the potential during a galvanostatic measurement at 10 mA cm-2, ensuring an 

equal charge passed per time for each material (Figure 6-8(c)).76 Using this method, all W1-

xIrxO3-δ compositions were measured to be quite stable.  
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6.5 Plasma vs. Thermally Oxidized W0.99Ir0.01O3-δ 

To test if the preparation of the W1-xIrxO3-δ via plasma oxidation (P) had a 

significant effect on the catalyst behavior, the x = 0.01 composition was compared to a 

material of equivalent stoichiometry prepared with the same precursors via thermal 

oxidation (T). In the thermal synthesis, furnace temperature was set to 500°C according to 

the results obtained from the TGA in Appendix 11. Compared to plasma-oxidized material, 

the thermally oxidized 1 % Ir catalyst showed a rougher microparticulate structure (Figure 

6.1 and 6.6). HR-TEM analysis showed larger grain size and higher crystallinity for the 

plasma-oxidized material (Figure 6-6(c)) compared to the thermally oxidized sample, 

which exhibited strong contrast variations due to nanoscale polycrystallinity and voids 

(Figure 6-6(d)). This structural difference is most clearly displayed in the STEM images, 

in which x = 0.01 (P) particulates showed crystal grains of > 150 nm while x = 0.01 (T) 

particulates had grains < 50 nm and displayed nanoscopic roughness and porosity (Figure 

6-6(e-f)). Figure 6-9 shows the electrochemical and materials characterization comparison 

between W0.99Ir0.01O3-δ fabricated by plasma vs. thermal oxidation. Most notably, the same 

nominal W0.99Ir0.01O3-δ composition displayed strikingly different electrocatalytic behavior 

depending on the oxidation method. Thermally oxidized material led to an overpotential of 

1.07 V with a high Tafel slope of 301 mV dec-1, compared to 0.50 V and a Tafel slope of 

136 mV dec-1 when plasma oxidized. The exact structural and chemical differences which 

lead to strongly enhanced OER activity in plasma relative to thermally oxidized material 

is somewhat unclear. XRD characterization of the x = 0.01 (T) composition was 

comparable to the x = 0.01 (P), with all the peaks indexed to the WO3 phase without any 

resolvable IrO2 or Ir peaks within the detection limit (Figure 6-9(c)). 
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Figure 6-9| Plasma (P) vs. thermally (T) oxidized W0.99Ir0.01O3-δ. (a) OER catalyst 

current density vs. overpotential (J-η) behavior. Overpotential was determined relative to 

1.23 V vs. RHE. (b) Tafel plot of the OER catalyst data. (c) XRD data comparing crystal 

structure and (d) Raman spectra. 
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Similarly, Raman spectra for both materials displayed the characteristic WO3 peaks 

without the corresponding IrO2 peaks (Figure 6-9(d)). However, for both x = 0.01 samples 

there was an additional Raman band peaking at ~960 cm-1 not present in either WO3 or 

IrO2, which the literature generally attributes to the νs (W=O terminal) symmetric stretching 

mode.293-294 This band was present for all the mixed-metal W1-xIrxO3-δ materials (Figure 

A4, Appendix 4), and similar Raman features have been reported for numerous metal 

heteropolyoxo tungstate species.294 This Raman band at ~960 cm-1 thus reflects distortion 

among the tungsten oxide framework and further supports the presence of an iridium 

polytungstate phase. Also, the noticeable broadening of the Raman bands of the thermal 

sample relative to the plasma sample has been correlated to greater nanocrystallinity,295 

consistent with the observable nanocrystal domains in the HR-TEM for the x = 0.01 (T) 

(Figure 6-6).  

X-ray photoelectron spectroscopy (XPS) was used to probe the catalyst surface 

chemical bonding environment, and Figure 6-10 shows the key data with normalized  

intensity for the ease of peak position comparison. Detailed XPS fitting for the various 

catalyst types are presented in Appendices 5, 7 and 8. For the O1s orbital, the main peaks 

at 530 eV and 532.8 eV were attributed to O2- in the WO3 lattice and IrO2 lattice, 

respectively. At a high concentration of Ir (x = 0.43), a distinct shoulder was present at 

~533 eV, consistent with the presence of IrO2 as confirmed by XRD. Although this 

shoulder was greatly reduced for plasma-oxidized compositions of x = 0.08 and 0.01, it 

was clearly present for the thermally oxidized x = 0.01 sample. Because no IrO2 peaks were 

discernible in the XRD for the x = 0.01 (T) catalyst (Figure 6-9(c)), this phase was either 

below the XRD detectable limit or restricted to the surface region probed by the XPS. 
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However, no equivalent IrO2 O1s peak was present for the x = 0.01 (P), indicating that 

surface primarily maintained the metastable W1-xIrxO3-δ phase. Spectra for the W4f doublet 

peaks were comparable for all the catalysts with the W4f7/2 peak at ~35.3 eV, close to 

literature values for W6+ in WO3 (Figure A7 (Appendix)).296 297  The Ir4f peaks, in contrast, 

displayed noticeably different XPS spectra between plasma and thermally oxidized 

W0.99Ir0.01O3-δ (Figure 6-10(b)). The Ir4f doublet peak for the x = 0.01 (T) material was 

well-fit primarily by a single Ir4+ peak, while the x = 0.01 (P) Ir4f signal required both Ir4+ 

and a lower binding energy peak to properly fit. The identity of this additional peak is 

uncertain and could possibly be attributed to either Ir in the mixed-metal polytungstate 

phase or to trace metallic Ir segregated to the particle surface. 

Although it remains uncertain how the exact nature of the structure-function 

relationship permits dramatic enhancement in the OER catalysis of the plasma-synthesized 

 

Figure 6-10| XPS spectra of the catalysts for the (a) O1s, and (b) Ir4f peaks for 

plasma (P) and thermally (T) oxidized W0.99Ir0.01O3-δ. 

a b
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compound relative to the thermally synthesized compound, the materials characterization 

data highlights the physical differences between these forms of W0.99Ir0.01O3-δ which are 

likely responsible. Morphologically, the Raman and electron microscopy data indicated 

that the thermal material consisted of rougher particles with nanocrystalline grains and 

porosity, in comparison to the smoother plasma material with larger crystal grains. 

Chemically, although both materials displayed a mixed iridium polytungstate phase of 

similar crystal structure to WO3, XPS data indicated that the thermally oxidized catalyst 

had more segregated IrO2 domains. Taken together, these observations suggest that the 

smooth crystalline faces of the metastable W0.99Ir0.01O3-δ had greater kinetic activity for 

water oxidation in acid. A more well-developed study focused on theoretically modeling 

OER at the W1-xIrxO3-δ surface, with crystal models informed by the data reported here, 

would provide greater insight into how the plasma-synthesized material alters the water 

oxidation mechanism. 

The observed 570 mV difference in the benchmarked overpotential between a 

plasma vs. thermally oxidized catalyst of the same composition clearly displays the effect 

that the non-equilibrium reaction and crystallization process can have on a mixed-metal 

oxide material. Several ambitious research efforts have used combinatorial synthesis and 

characterization methods to explore the elemental parameter space in search of novel active 

materials for OER catalysis, with most relying on thermal oxidation to convert the 

precursors to mixed-metal oxides.23, 298-299   The plasma vs. thermal oxidation catalyst 

results herein indicate that such combinatorial efforts could be in danger of bypassing 

promising materials which may require a metastable phase for high activity. 
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6.6 Chapter Summary 

Acid-based electrolysis has many advantages, but to achieve simultaneous activity 

and stability, commercial water oxidation catalysts rely on noble metal oxides that are 

expensive and too rare for the global scale. Here, earth-abundant tungsten was used as a 

structural metal to dilute the noble metal iridium content while maintaining high activity 

and stability in acid. Mixed-metal oxide catalysts were synthesized using rapid plasma 

oxidation in which the non-equilibrium reaction environment permitted better formation of 

a homogenous W1-xIrxO3-δ phase. With an Ir metal content as low as 1%, a competitive 

acid-stable overpotential for oxygen evolution was achieved. Relative to high Ir content, 

low Ir compositions consisted of a more highly crystalline, phase-pure iridium 

polytungstate which was more catalytically active per Ir content. Moreover, the plasma-

synthesized material had a sharp electrocatalytic improvement over an equivalent 

composition synthesized via standard thermal oxidation, demonstrating the value of non-

equilibrium synthesis to find new catalysts. 
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CHAPTER 7 

7. RELATION OF THE OXYGEN EVOLUTION ACTIVITY WITH OXYGEN 2p 

BAND CENTER IN La1-xCaxCo0.5Ni0.5O3-δ 

7.1 Introduction 

Rational design of catalysts through experiment, computation or molecular orbital 

theory are increasingly becoming more popular than the reliance on intuition and 

serendipity, as is the traditional practice. Specifically, the OER, 2H2O → 4H++ O2 + 

4e– (acidic solution) or 4OH– → 2H2O + O2 + 4e– (basic solution) is heavily reliant on 

efficient electrocatalysts because it is kinetically sluggish and thus constitutes an outlet for 

efficiency loss and places a significant overpotential requirement in water splitting 

reactions 39.  Using the plasma oxidation experiments developed in chapter 4 of this 

dissertation, several compositions of mixed metal oxides can be prepared to understand the 

correlation of d-band and p-band structure with OER activity. It will allow us to understand 

and/or verify models for OER activity.  

AAʹBBʹO3 perovskite-type oxides, with transition metal (TM) ions at the BBʹ-site 

and rare earth and/or alkaline earth metal occupying the AAʹ-site, have been studied to 

understand the interactions of d-electrons in the BO6 octahedra network connected by the 

apical oxygen atoms with approximately 180° B-O-B bond angle. Specifically, these class 

of oxides are generating much attention because the degree of freedom to occupy one of 

the twofold-degenerate eg orbitals is linked with some interesting physical attributes, such 
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as the Jahn-Teller effect, orbital ordering, metallicity,  ferromagnetism and electrocatalysis 

39, 300. Bockris and Otagawa proposed that the mechanistic model of the catalyst assisted 

OER in alkaline media, consists of a sequence of reaction intermediates: S+OH- → S-OH 

→ S-H2O2 → S-O2H
- → O2 

13, where the surface active site is denoted by S. As with many 

other catalytic reactions, the OER can be described qualitatively using the Sabatier 

principle, also known as a volcano plot, which relates the catalytic activity to the binding 

energy (BE) of the adsorbed species at the catalyst surface. Since measuring of BE of 

intermediates is difficult, efforts have intensified to identify other universal OER activity 

descriptors. Prior studies have suggested several structures and electronic structure-related 

OER descriptors. For example, the position of the TM d-band affects the strength of the 

TM-oxygen bond on the surface seems to correlate with the OER activity. Similarly, near 

surface oxygen ions are also important due to the strong hybridization of the O-2p and TM-

3d states and high bond covalency. Both the catalytic activity and stability seems to depend 

on the bond covalency and on the location of the hybridized states. In the case of perovskite 

oxides, TM-3d states undergo splitting in the crystal field and hybridize with the O-2p 

states, which give rise to eg ( σ-bonded) and t2g (π -bonded) states. Both the position of 

these hybridized states and their relative occupancy affect the electronic structure and 

indirectly the catalytic activity. Fundamental properties of the TM ions, such as the number 

of d-electrons, electronegativity, and ionic number, are also potential descriptors. In fact, 

the OER activity has been correlated with the number of 3d-electrons for some perovskite 

oxides13. In this work, the BBʹ-site d-band electron occupation was correlated with OER 

activity for the perovskite molecules with Ni, Co, Fe, Mn, Cr, and V as BBʹ-site cations. 

The OER current density at a given overpotential was found to increase with the number 
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of d-electrons, in the following order V < Cr < Mn < Fe < Co < Ni. This linear dependency 

of the d-electron filling is substantially related to the bonding strength of the intermediate 

with the active B-site. Conversely, Dowden et al 301 published a paper that accounts for the 

filling of the degenerate eg and t2g orbitals with increasing d-electrons, which gives a non-

linear, or more specifically M shaped dependency of the bonding strength of the 

intermediate to the number of d-electrons. Strong bonding exists at d3 and d8, whereas, the 

weak bonding at d0, d5 and d10 form the minimums. The crystal field stabilization energy 

which has been well linked to the eg/t2g occupation301 has been one of the most important 

descriptors for the activation barriers in catalytic reactions to date. In furtherance of this 

concept, Suntivich et al39 found that, for the σ*-orbital (eg) occupation, an eg-filling close 

to 1 could be correlated to maximal activity. The optimum eg-filling of ~1 was found for 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ, while perovskites such as LaNiO3 and LaCoO3 with eg filling less 

than 1 shows some weak activity performance, also; electrocatalysts such as 

La0.5Ca0.5CoO3-δ and LaMn0.5Ni0.5O3 with eg filling above 1 are not sufficiently active 

towards OER. This poor performance was attributed to the too strong (eg < 1) and too weak 

(eg > 1) TM−oxygen covalent bonding, suggesting that a peak activity is achieved at a 

balanced (neither too strong nor too weak) bond strength. Unfortunately, the different spin 

states of TM ions have made the estimation of the eg filling of complex oxides to be 

extremely difficult, even with the spectroscopy and computational techniques 79, as such; 

extrapolations and conjectures based on oxides with well-known eg states have been 

employed to give estimates in some cases39, 39. So, researchers are actively working on 

alternative descriptors which will allow for an uncomplicated design and prediction of 

active oxygen evolution electrocatalysts. 
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Some theoretical studies have also suggested the importance of the TM valency302 

and position of the O-2p center 209. This latter parameter seems also to affect the catalyst 

stability: The calculations indicate that moving the O-2p center closer to the Fermi level 

increases OER activity but having it too close decreases oxide stability due to decrease of 

the oxygen vacancy formation energy. The oxide energy band gap and location of the Fermi 

level may also affect the stability. For oxides with large band gaps, the inherent OER 

related formation of oxygen vacancies, which are double electron donors, may be 

suppressed and corrosive decompositions may occur. These investigations were done with 

Mott-Hubbard insulator type oxides where the 3d-bands are split by Coulombic force into 

upper and lower Hubbard bands which results into the insulating character of most oxides. 

Charge transfer insulators, on the other hand, have received little to no attention as per the 

correlation of its catalytic character with either molecular orbital theory or the DFT 

computations. In charge transfer insulators, splitting of 3d-band into the upper and lower 

Hubbard bands is sufficiently great, in fact, large enough to have the O-2p band center 

positioned between them. It is imperative to note at this juncture that the term “insulators” 

herein refer to either a good or a bad conductor at a given temperature, because; at a finite 

temperature (T > 0 kelvin), say the room temperature, both metals and insulators exhibit 

finite DC conductivity.303  

Here, we present with DFT computations and experimental validation, the 

successful correlation of the position of the center of mass of the O-2p band in the total 

density of states and the catalyst performance for the charge transfer type complex oxides 

for the first time. Experimental samples comprise of lanthanum based double perovskites, 

La1-xCaxCo0.5Ni0.5O3-δ (0.0 ≤ x ≤ 0.3) prepared by the atmospheric microwave plasma 
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oxidation of liquid droplets of metal precursors, which has shown to be an efficient 

electrocatalyst in OER. The concept of plasma oxidation of precursor solution mentioned 

here offers excellent metastable phase formation possibilities due to its fast reaction 

kinetics and cooling rates290. In general, short reaction times allow for the formation of 

either transient phases in the case of monometallic oxides or solid solutions in the case of 

mixed metal oxides238. The process is highly adaptable to any precursor chemical 

(inorganic and organic, etc.) and any solvent (aqueous, polar, non-polar, organic, etc.) 

which can be easily incorporated into the spray feedstock. Precursor solution mixtures can 

be used to produce multi-component systems such as bimetallic and ternary oxides and 

their solid solutions in ultra-fast timescales (14 s to 1 minute). Since each droplet contains 

precursor chemicals in the same stoichiometric composition as desired in the produced 

particle, the synthesized particles will have exceptional compositional uniformity.  

7.2 Synthesis, Electrode Preparation, Electroanalytical and Materials 

Characterizations and Computational Procedures. 

A well detailed description of the custom-made atmospheric microwave plasma set-

up used in this synthesis is available in chapter 3. The electrodes were prepared by 

depositing thin film of perovskite oxide directly on it by using the atmospheric plasma jet 

(batch operation). The precursor solutions were prepared using mixtures of lanthanum, 

calcium, nickel and cobalt nitrates in desired proportion. Chemically pure grade of calcium 

nitrate tetrahydrate, nickel (II) nitrate hexahydrate, lanthanum (III) nitrate hexahydrate, and 

cobalt (III) nitrate hexahydrate (>99%, Sigma Aldrich) were used as starting materials 

without further purification.  Appropriate amount of the precursors was weighed out and 

dissolved in deionized water to make up 1.0 M solution.  About ~0.1ml of prepared metal 
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precursor solution was sprayed onto 2 cm2 fluorine-doped tin-oxide (FTO) coated glass 

substrates (Sigma Aldrich) which were exposed to the upstream plasma jet with an input 

power of 500 W and a volumetric flow of 2 slpm (standard liters per minute) Ar, 11 slpm 

air, for 30. The electrochemical and materials characterization were performed according 

to the procedures in chapter 3. DFT calculations were completed based on the 

computational procedures from chapter 3.  

 

Figure 7-1| (a) X-ray diffraction of La1-xCaxCo0.5Ni0.5O3-δ for x=0.0, 0.1, 0.2 and 

0.3, indexed to rhombohedral phase with space group 𝑅3̅𝑐(ICDD PDF #00-056-0157) 

(b) Ball and stick model of the La1-xCaxCo0.5Ni0.5O3-δ 120 atom supercell with x = 2/24, 

optimized using DFT simulations, La atom is green, Ca is light blue, Ni is grey, Co – 

dark blue while oxygen atom is red. 
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7.3 Results 

7.3.1 Crystal phase analysis  

Powder XRD measurements (Figure 7-1(a)) using CuKα radiation shows that the 

samples are single phase with a rhombohedral unit cell, and all the detected diffraction 

peaks were consistent with the space group 𝑅3̅𝑐, No. 167 (ICDD PDF # 00-056-0157).  

Figure 7-2 shows the XRD patterns and corresponding Rietveld analysis of as-

prepared samples confirming the formation of rhombohedral phases. The table showing 

 

Figure 7-2| Rietveld plots for La1-xCaxCo0.5Ni0.5O3-δ (a) x = 0.0 and (b) x = 

0.1. The calculated pattern is shown by a red solid curve; black open circles show the 

observed intensities. The difference between the observed and calculated intensities 

is presented by a pink curve. The short vertical bars indicate the position of Bragg 

lines. The inset of (a) shows a polyhedral structure of La1-xCaxCo0.5Ni0.5O3-δ viewed 

from the c-direction with the a-a-a- tilt system, where blue : Co, Ni atoms, grey : La, 

Ca atoms and red : O atoms. 
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the calculated parameters and the fitting quality is displayed in Table 7.1. The low 

reliability factor indicated that the Rietveld refined XRD pattern fitted quite well with the 

experimental data points, giving calculated cell parameters for composition x = 0.0 to be a 

= b = 5.4677(3) Å and c = 13.1722(9) Å. Lattice parameters for the composition x = 0.1 

were found to be: a = b = 5 .4619(3) Å and c = 13.2059(4) Å. To further evaluate the 

perovskite structure we used the computer program SPuDS (Structure Prediction 

Diagnostic Software), developed to study the stability of a wide-ranging tilt patterns in 

perovskites304. Utilizing a rocksalt-type Co-Ni cation ordering and a- a- a- Glazier tilt 

system (inset of Figure 7-2(a)), a tilt angle of 10.2050°, Goldschmidt tolerance factor of 

0.9736 and a global instability index of 0.000264 was obtained. The rhombohedral 

structure is highly symmetric with a tolerance factor close to unity, despite the a- a- a- tilting 

of the octahedral sub-lattice305, and so we can hypothetically utilize  the idealized 6-

coordinated B-cations with oxygen in the octahedral sub-lattice and 12-coordinated  A-

cations with oxygen.  Though the ionic  radius of Ca(II) is slightly larger than La(III) in the 

12-fold coordinate symmetry, rCa(II) is 1.40 Å and rLa(III) is 1.36 Å 306, there was no 

discernible shift in 2 theta as the Ca doping level is increased from 10 at. % to 30 at. % in 

the A-site. However, the intensity and sharpness of the peaks were reduced in the same 

trend. This may be attributable to a defective crystal structure resulting from an oxygen 

vacancy ordering mediated through charge neutrality originating from Ca (II) replacing La 

(III) in the lattice. The La1-xCaxCo0.5Ni0.5O3-δ 120 atom supercell with x = 2/24, optimized 

using DFT simulations is shown in Figure 7.1 (b). La atom is green, Ca is light blue, Ni is 

grey, Co – dark blue while oxygen atom is red. Despite the presence of some defects, the 

clear fringes observed in HRTEM images and the corresponding fast Fourier transform  
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Table 7.1 Refined cell parameters (a, b, c), atomic positions (x, y, z), isotropic 

thermal factor (Uiso), Cagliotti parameters (GU, GV, GW), Lorentzian broadening due 

to domain size (LX) and strain (LY), and fitting factors (Rwp, Rp, and reduced χ2) 

 
La1-xCaxCo0.5Ni0.5O3 

  x = 0.0 x = 0.1 

a(Å) 5.5677(3) 5.4619(3) 

b(Å) 5.5677(3) 5.4619(3) 

c(Å) 13.1722(9) 13.2059(14) 

Uiso(La/Ca) (Å 2) 0.027(1) 0.064(2) 

Uiso (Co/Ni) (Å 2) 0.163(9) 0.051(2) 

Uiso (O) (Å 2) 0.010(3) 0.069 

x(O) 0.4387 0.4693 

y(O) 0.0000 0.0000 

z(O) 0.2500 0.2500 

GU 150 3043 

GV -39.3 -2324 

GW 19.1 533 

LX 9.9 31.7 

LY 3.4 14 

Rwp (%) 3.7 3.3 

Rp (%) 2.9 2.5 

Reduced χ2 3.172 2.579 
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(FFT) diffraction pattern of the highlighted rectangular area (Figure 7.3 (a, b)) indicate the 

crystallinity of the synthesized nanoparticles. 

The measured d-spacings in La1-xCaxCo0.5Ni0.5O3-δ (x = 0.0, 0.1) were consistent with the 

spacing between the (110) and the d-spacing between the (012) planes of the single 

 

Figure 7-3| High resolution TEM images and fast Fourier transforms(FFTs) of 

La1-xCaxCo0.5Ni0.5O3-δ (a) x = 0.0, scale bar 10 nm and (b) x = 0.1, scale bar 5 nm, 

FFTs were indexed using space group 𝑅3̅𝑐 and lattice parameters ap x ap x ap. 

Normalized EELS spectra at x = 0.0 and 0.1 in the vicinity of  (c) O-K edge and (d) 

Co-L2,3, Ni-L2,3 and La-M4,5 edges. 
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rhombohedral phase, in the direction of [22̅1] zone axis, consistent with the XRD analysis. 

The well-defined points in the FFT pattern agree with the allowed Bragg diffraction of 

rhombohedral phase.  

 

7.3.2 TEM-EELS  

Metal-oxygen atomic bond is one of the greatest considerations when probing the 

electronic properties complex metal oxides. The proximity of the partially filled TM-3d 

bands and the O-2p bands to the Fermi level has been instrumental to probing the electronic 

properties through the investigation of fine structures of the TM-L edge and O-K edge in 

most perovskites. From the dipole selection rules, the O K pre-edge structure found near 

530 eV is as a result of the excitations of O 1s electrons to the 2p bands, while TM-L edges 

result from the excitation of 2p electrons into empty bound states 307. Seeing that in 

perovskites TM-oxygen bands are close enough to be hybridized with each other, 

interesting variations are expected in both edges when the occupation of the 3d bands are 

altered by way of TM valence states. In perovskites, this can be easily achieved by 

replacing the trivalent A-cation with divalent one, or by the having partial substitution of 

trivalent with divalent cation. This may result into a mixed-valence state of the B cation 

which leads to a complex electronic structure. Contrary to the conclusion in Ref. 107, we 

found that the A-site substitution plays a vital role in adjusting the O-K near-edge structure. 

For example, in Figure 7-3(c), for composition x = 0.0, we found the pre-edge peak at 529.6 

eV, which is attributed to the hybridization of the O 2p with Co-Ni 3d states, and two more 

peaks near 535 and 542 eV that are related to the bonding of the O-2p with the La 5d and 

Co-Ni 4sp bands, respectively; consistent with Refs. 308, 309. However, substitution with 10 
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at. % of Ca saw an increase in the pre-peak intensity and a shift of the pre-peak position to 

532.7eV from 529.6 eV, shrinking the peak separation energy (ΔE) between the pre-peak 

and the adjacent peak.  Assuming spin transition is negligible, the changes occurring in the 

O K edge fine structure with increasing Ca content may be ascribed to changes in electronic 

structure. The higher intensity pre-peak may be linked to stronger hybridization between 

Co-Ni 3d band and O-2p band, the energy loss peak shift and consequent contraction of 

ΔE, on the other hand, can be interpreted based on the O K edge fine structures of La1-

xSrxCoO3 discussed elsewhere. According to Ref. 310, increasing Sr content from x = 0 to 

x = 0.15 in La1-xSrxCoO3 saw an expansion in ΔE. Because the host LaCoO3 is a Mott-

Hubbard type oxide55, the O 2p band would move up some energy level on doping with Sr 

to hybridize with the Co 3d band following the  O 1s excitation into the empty or partially 

filled O 2p band. Contrarily, to promote strong p-d hybridization in LaCo0.5Ni0.5O3-δ, the 

O 2p band would have to move down some energy levels on doping with 10 at. % of Ca. 

Evidence from the DFT calculations in this work show that the O-2p and TM-3d bands in 

LaNi0.5Co0.5O3-δ   are set-up like a charge transfer type oxide. In summary, the O-2p band 

position of the host oxide provides a clue as to whether the ΔE of the O K edge would 

expand or shrink when the electronic character is altered in favor of p-d hybridization. In 

Figure 7-3(d), the fine structures of Co-L2,3, Ni-L2,3 and La-M4,5 edges are displayed and 

their intensity ratios before and after doping were compared and tabulated (Table 7.2). In 

line with expectations, the intensity ratios of the Co-L2,3 edge increases from 0.884 (x = 

0.0) to 0.971 (x = 0.1) while the opposite is true for La-M4,5 (1.011 to 0.981 respectively). 

The increase in Co-L2,3 intensity ratio has been correlated with increase in valence states of 

Co3+ 310, while a reduction in the intensity ratios of La-M4,5 has been linked with the valence 
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state reduction in La3+. The La-M4,5 edge probes the unoccupied density of La 4f states and 

can provide a clue as to the valency of La. It is clear from the asymmetry in Figure 7-3(d) 

that the La-M4 and Ni-L3 edges coincides with each other due to the very small energy 

separation between La 3d and Ni 2p core levels, invariably obfuscating the accurate 

estimation of Ni-L2,3 intensity ratios. 

 

7.3.3 OER kinetics and electrocatalyst stability 

An array of La1-xCaxCo0.5Ni0.5O3-δ (x = 0.0, 0.1, 0.20, 0.30) mixed metal oxide films 

were tested for OER catalysis by studying the CV at 20 mVs-1 scan rate. Two parameters 

Table 7.2 Computation of the Intensities and intensity ratios of Co-L2,3 and La-M4,5 edges 

    

x   

Intensities of Co-L2,3 and La-M4,5 
Intensity ratios of Co-L2,3 and 

La-M4,5 

I(Co-

L3) 

I(Co-

L2) 

I(La-

M5) 
I(La-M4) 

I(Co-

L2)/I(Co-L3) 

I(La-M4)/I(La-

M5) 

0 0.3808 0.3365 1.242 1.255 0.884 1.011 

0.1 0.638 0.6208 1.594 1.564 0.971 0.981 
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were selected to understand the catalyst performance: (i) overpotential (ƞ) required to reach 

a current density of 10 mAcm-2 (ii) galvanostatic conditioning at current density of 10 

mAcm-2 for 2h. Figure 7.4 (a) shows the CV curves, obtained by taking average of the 

forward and backward scans. Secondary x-axis indicates the overpotential values also 

tabulated in Table 7.3. The onset potential of samples x = 0.1 and 0.2 is 1.12 V vs RHE 

while the onset potentials for samples x=0.3 and x=0.0 are 1.17 and 1.30 V vs RHE 

respectively. The overpotentials ranges from 330 to 463 mV with sample x=0.1 

outperforming the sample set with an overpotential of 330 mV.  

  

 

Table 7.3 Overpotentials of the double perovskites (x = 0.0, 0.1, 0.2, 0.3) and the 

corresponding O 2p band relative to Fermi level computed by DFT. 

Electrocatalysts 

La1-xCaxCo0.5Ni0.5O3-δ η /mV O-2p band center relative to EF / eV 

x=0.0 463 -2.429 

x=0.1 330 -2.669 

x=0.2 423 -2.433 

x=0.3 400 - 
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Aside from high activity performance which all good catalysts are expected to have, 

optimal catalyst material should be stable for their implementation in extreme pH 

conditions. The stability of these catalysts under catalytic conditions was determined using 

controlled-current electrolysis. The catalyst material was held at a constant current density 

of 10 mAcm-2 per geometric area for 2 h, while the operating potential was measured as a 

function of time.  

 

Figure 7-4| (a) Cyclic voltammetry of the conditioned La1-xCaxCo0.5Ni0.5O3-δ (0.0 

≤ x ≤ 0.3) films collected in 1 M NaOH solution at a scan rate of 20 mV s-1(b) 

Galvanostatic controlled current electrolysis measurement of La1-xCaxCo0.5Ni0.5O3-δ, 

where x = 0.0, 0.1, 0.2, and 0.3, where current is fixed at 10 mAcm-2, measured for 2h. 

Inset: Parity plot of the overpotential at 10 mAcm-2 before galvanostatic measurement 

(horizontal axis) and after 2h of measurement (vertical axis). 

 

 

 

a b
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Figure 7.4 (b) shows the results of the controlled current electrolysis measurements 

of these catalysts. The inset of  Figure 7.4 (b) shows that, η (t = 0h) and η (t = 2h) are alike 

to a moderate extent, an indication that the catalyst is stable under the operating conditions 

for at least a 2 h period. The small deviation of the overpotentials of samples x = 0.1 and x 

= 0.3 from the 45˚ parity line may have been due to O2 bubbles that collect around the 

surface of the electrocatalysts over the 2 h stability test period creating an O2 mass transport 

limiting situation.  

7.3.4 Relationship between O 2p band center and OER activity 

 The very influential work of the Zaanen-Sawatzky-Allen311 was formulated to 

categorize the oxides of TM compounds, which have been extended to the study of sulfides, 

iodides and fluorides of TM compounds. This concept is a revolutionary, describing the d-

d Coulombic interaction of the TM 3d electrons (Udd) and the charge-transfer (C-T) energy 

between TM-3d and anion-p states (∆CT) are key features for controlling the underlying 

physics of the electronic structure of TM compounds.  In this theory, both the  fundamental  

structure scheme of C-T insulators does not consider the Coulomb splitting of the TM-3d 

bands into upper and lower Hubbard bands (Mott gap), which causes the insulating 

behavior of TM oxides. In the first-row TM, the Coulombic splitting increases from left to 

right, and consequently, the O-2p bands could be positioned in such a way that it could 

become energetically sandwiched between the two Hubbard bands, an outcome not 

incorporated into standard band structure models. In this case, the energy for a charge 

excitation is no longer determined by the Hubbard Udd but instead by the charge-transfer 

energy ΔCT. The Hubbard energy (U) responsible for transporting an electron from TM d 

band to another TM atom is given by311: 



 

171 

 

                  

      U = E(dn+1) + E(dn−1) − 2E(dn)      7.1 

accordingly, we have to furnish the charge-transfer energy: 

      Δ = E(dn−1) − E(dn) + E(pm+1) − E(pm )    7.2 

to shift an electron to an oxygen p level. If Udd > ΔCT holds, the insulator should no longer 

be denoted a (multi-band) Mott–Hubbard insulator, but rather a charge-transfer insulator 

since the energy gap for charge excitations is now determined by the charge-transfer energy 

ΔCT and no longer by the on-site interaction Udd.  

Although the n values in CanLa24-n(CoNi)12O72-δ unit cell consisting of 120 atoms 

utilized in computation corresponds to non-integer number of atoms in La1-

xCaxCo0.5Ni0.5O3-δ for x = 0.1, 0.2 and 0.3 and so, approximations such as x = 2/24 ~ 0.1, 

for n = 2 are used, and such approximations in no way compromise the qualitative and 

quantitative trends we can obtain from computational data. From the DFT studies, the 

valence band in CanLa24-n(CoNi)12O72-δ is the O 2p band which fluctuates across the energy 

levels on changing the n values. As shown in Figure 7-6(a) increasing n from 0 to 1 saw a 

shifting away of the O 2p center from the Fermi level, while n = 2 corresponds to the 

furthest away from the Fermi level beyond which there was a reversal in trend. With the 

exception of n = 0, the center of mass of the total density of states of the 3d band 

experienced relatively fewer fluctuations across the energy axis. It interesting to note that, 

at n = 2, we have the strongest hybridization (Figure 7-6(b)) of the O 2p and TM 3d bands 

which incidentally corresponds to the highest activity recorded for all catalysts under study.  
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Figure 7-5| Schematic representation of important features used to describe 

charge dynamics in transition metal oxide (TMO) compounds. Charge-transfer 

energy ΔCT: energy needed for transferring charge carriers from the O 2p band to the 

TM 3d band (with respect to the band center of mass); Hubbard energy, Udd: energy 

needed to remove an electron from the occupied 3d band and to add it to the 

unoccupied 3d band; effective charge-transfer energy Δeff: defined by equation Δeff = 

ΔCT - ½ (W1 + W2). Where, (a) Udd < ΔCT, Mott-Hubbard insulator results, and (b) Udd 

< ΔCT, charge transfer insulator results. 
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Figure 7-6| (a) The sketch of variations of n in CanLa24-n(CoNi)12O72-δ for the 

120-atom supercell as computed by DFT for (a) n = 0 (b) n = 1; (c) n = 2; (d) n = 4 and 

(e) n = 5 (b)DFT computation of the center of mass of TM 3d and O 2p band relative 

to the Fermi level plotted against the ratio of Ca/La in the 120-atom supercell. Strongest 

hybridization corresponds to Ca/La ~ 10 mol. %. 
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Distortions from cubic perovskites are mostly due to the A-cation size and/or 

doping, therefore, this distortion may extend to the BO6 octahedra giving it a hybrid 

character consisting of ionic-covalent blend.  Because of this hybrid character, the TM 3d 

orbitals and O 2p orbitals may overlap to produce steady bands. Also, the covalent mixing 

from the p-d electron overlap provides an access for electrons to move between the  B-site  

cation  and  O  anion,  which is the underlying reason for material conductivity especially 

in oxides312. From Table 7.3, the overpotentials at a current density of 10 mAcm-2 of 

catalyst samples with Ca contents 0 ≤ x ≤ 0.3 are as displayed, where for sample x = 0.1 

(approx. n = 2), the overpotential of  330 mV was obtained, which is a competitive value 

when compared with the best perovskite oxides and noble metal oxides reported  till date.  

7.4 Discussion 

Among all catalysts, the sample with no Ca content (x = 0.0) exhibits the poorest 

activity and from DFT results, its O 2p band center is the closest to the Fermi level of all 

catalysts studied. Contrarily, it was reported that moving the O 2p band center closer to 

Fermi level is the basis of a strategy to create catalysts with high intrinsic OER activities79. 

Perhaps that conclusion is true for Mott-Hubbard oxides where p-d hybridization is highly 

favored by O 2p band center moving closer to the Fermi level. As we have seen for charge 

transfer oxides, moving the O 2p band center away from the Fermi level creates the same 

effect, and so we conclude that band structures play a vital role in determining the activity 

trend by moving the O 2p band center towards or away from the Fermi level. The high 

activity in x = 0.1 sample can be rationalized in terms of the covalent mixing from the p-d 

hybridization which creates electron pathways between the B-site cation and O anion, and 

the small charge transfer gap in the bands. This small charge transfer gap becomes even 
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more important when Ca is doped on the A-site. The Co3+/Ni3+ ions in the immediate 

vicinity of doping becomes tetravalent and creating additional holes in the eg orbital299, 

charge carriers may now hop between neighboring Co3+/Ni3+ and Co4+/Ni4+ ions through 

the O2- ion links, closing up the charge transfer gap. 

7.5 Chapter Summary 

The discovery of active and stable oxygen electrocatalysts can be accelerated by 

exploiting the adjustable electronic character of transition metal d bands and oxygen p 

bands which, in effect, plays a crucial role in the catalysis of electrochemical conversion 

processes such as the oxygen evolution reactions. In this report, experimental and 

computational studies of charge transfer type complex double perovskites La1-

xCaxCo0.5Ni0.5O3-δ (0.0 ≤ x ≤ 0.3) were employed to find the correlation between computed 

oxygen p band and oxygen evolution activity. The catalyst with calcium content of x = 0.1 

shows overpotential comparable with the best OER perovskite based electrocatalysts 

reported, with overpotential as low as 330 mV at current density of 10 mAcm-2 in alkaline 

media and controlled current chronoamperometry displayed a 2h stable potential-time 

profile for all electrocatalysts under study. The high activity and stability of the low-

calcium content perovskite is ascribed to the small charge transfer gap resulting into 

stronger transition metal 3d – O 2p hybridization.  
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CHAPTER 8 

8. ATMOSPHERIC PLASMA SPRAY PYROLYSIS OF LITHIATED NICKEL-

MANGANESE-COBALT OXIDES FOR CATHODES IN LITHIUM ION 

BATTERIES3 

8.1 Introduction 

The first commercial lithium ion battery with non-aqueous electrolyte adopted 

LiCoO2 as the positive electrode.  However, due to safety and cost concerns, efforts were 

made to develop new compounds by reducing the use of Co with Mn and Ni313. LiMnO2 

exhibited severe capacity fading during electrochemical cycling with phase transition. On 

the other hand, LiNiO2 suffered from difficulty in their synthesis due to cation mixing and 

structural degradation caused by irreversible phase transition during electrochemical 

cycling.314 Kang et al. 224 investigated LiNi0.5Mn0.5O2 by both experimental and ab initio 

studies and concluded that Li/Ni disorder is responsible for the poor rate performance. 

Moreover, Co was found to improve the conductivity of the lithium layered NMC cathode 

material 315. The most successful transition metal (M) layer formulation up to date is 

                                                 

3 The texts in this chapter was originally published as “B. P Ajayi, A. K. Thapa; U. Cvelbar, J. B. 

Jasinski, M.K. Sunkara, (2017), Atmospheric plasma spray pyrolysis of lithiated nickel-manganese-cobalt 

oxides for cathodes in lithium ion batteries, Chem Eng. Sci, 174, 302-310”. Formatting styles were amended 

to adapt original article to the style of this dissertation, and some data from the supporting information in the 

original article are included in this chapter. No permission required to reuse article per publisher’s guidelines 

in Appendix 12. 
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inclusive of all three metals - nickel, manganese and cobalt 316-318, hereafter referred to as 

NMC.  

The conventional synthesis method of NMC is a solid state route that involves the 

mechanical milling of oxides, carbonates or nitrates 16. Consequently, the wet chemical 

methodologies such as sol-gel319, co-precipitation19 solvothermal techniques320 were all  

given some considerations. However, these methods require prolonged heat treatments, 

and therefore are primarily restricted to equilibrium phases321. All the above methods result 

in low yields as they involve multiple steps and laborious processes, each bearing a risk of 

introducing impurities into the final product, creating batch-wise inconsistencies in the 

process. The scale-up of these techniques can be difficult due to the long reaction times (12 

– 24 h) required.  Moreover, it is quite a challenge to control the size and composition of 

mixed metal oxide nanoparticles, a key parameter for the properties and performance of 

these materials. So, it is immediately apparent that a synthesis technique that allows 

ultrafast timescale of processing, controllable size, composition and crystallinity will 

facilitate the advancement of large-scale manufacturing of these materials290. 

Beside the material composition, contribution of surface morphology via particle 

size and packing density of materials which rely on the method of preparation, is an 

important consideration in materials design. Nano sized cathode materials are effective 

because they impart larger electroactive surface for rapid lithium diffusion and a higher 

packing density for enhanced energy storage capabilities219. In nanoparticles, the distances 

over which Li must diffuse are significantly shortened; the nanoparticles can quickly 

absorb and store large amount of lithium ions without disintegration of the electrode and 

nanoparticles have large surface areas, short diffusion lengths, and fast diffusion rates 
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along their many grain boundaries322. Spray pyrolysis was found  to be an effective 

production technique leading to an ultra-fast production time, uniform particle 

composition, particle size control, and is a single-step method.178 However, the application 

of this method to cathode materials in the lithium ion batteries was limited to electric 

furnace spray pyrolysis (LiM1/6Mn11/6O4, M = Mn, Co, Al and Ni)323, 

(Li1.2Mn0.54Ni0.13Co0.13O2 )
22 and flame spray pyrolysis (LiV3O8)

324, (LiMn2O4, Li4Ti5O12, 

LiFe5O8) 
325. The electrochemical performance data of the spray pyrolyzed material 

showed that excess lithium containing layered material, Li1.2Mn0.54Ni0.13Co0.13O2 (annealed 

at 900 °C over 2 h duration) displayed superior electrochemical performance with excellent 

capacity retention, revealing a reversible capacity of 236 mAhg−1 after 100 cycles, when 

cycled between 2.0–4.8 V at C/10 rate, where 1C = 280 mA g−1 22. In many of these 

flame/electric furnace pyrolysis techniques, crystalline materials are not made in a single 

step. Therefore, additional post-treatment annealing step is imperative before these 

materials can be deployed as battery electrodes. 

Here, we report the advanced synthesis of crystalline NMC materials using an 

atmospheric spray plasma oxidation, and consequently their electrochemical performance 

as cathodes in lithium ion batteries. Primarily, studies were performed to understand 

whether one can make compositionally-controlled NMC materials. Specifically, Mn-rich 

NMC oxide LiNi0.2Mn0.6Co0.2O2 was prepared and the material was tested for its 

electrochemical performance.  

8.2 Materials Synthesis and Characterization and Electrode Fabrication /Testing. 

Chemically pure grade of nickel (II) nitrate hexahydrate, manganese (II) nitrate 

hydrate, and cobalt (II) nitrate non-hydrate (research grade, Alfa Aesar) were used as 
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starting materials without further purification. In a typical experiment, continuously 

operated plasma reactor (chapter 3) input plasma power was set to 1.20 kW using flow of 

2 slpm Ar and 11 slpm air, Ar flow was turned off after igniting the plasma (Ar is basically 

necessary for igniting the plasma). In these experiments, precursor solutions containing 

appropriate amounts of nitrates of nickel, manganese and cobalt were dissolved deionized 

water to make 0.50 M solution (with composition of Ni/Mn/Co in 1/3/1 ratio) and was 

made into aerosols of small droplets and delivered onto air plasma. NMC nanopowders 

were collected in a high efficiency particulate filter (HEPA) with the action of a vacuum 

pump. Consequently, the obtained NMC oxide was crushed and well mixed in the solid 

state with appropriate amount of Li2CO3 in such a way that the stoichiometric ratio of 

lithium to NMC was 1:1, a 5 wt. % excess of Li2CO3 was added to compensate for the 

volatilization of lithium in the high temperature reaction.  The mixture was calcined in the 

furnace at 900˚C (5˚C min-1) for 5h. The as-prepared sample is herein referred to as LiNi0.2 

Mn0.6Co0.2O2. Electrode fabrication procedures and electrochemical characterizations 

details are fully explained in chapter 3 of this dissertation. Materials characterization 

procedures are also available in chapter.  
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8.3 Results and Discussion 

The X-ray diffraction (XRD) measurements were carried on sample before and 

after lithiation of NMC oxide material. Figure 8-1(a-I) indicates the XRD reflection of the 

manganese rich Ni0.2Mn0.6Co0.2Ox oxide before the lithiation step. The well resolved 

 

Figure 8-1| (a-I) X-ray diffraction patterns of NMC as-prepared sample from 

atmospheric microwave plasma (a-II) X-ray diffraction reflections after solid state 

lithiation of NMC, major phase found is the rhombohedral, α-NaFeO2 type phase, with 

a minor cubic spinel phase (in red) and (b) General view of the crystal structure viewed 

along b axis for (I) spinel unit cell (green: Li-O tetrahedron, purple: Mn-O octahedron 

(II) rhombohedral 3×3×3 supercell (green atom: Li, dark blue: TM octahedron) 
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patterns show good crystallinity, which is indexed to a cubic spinel phase with space group 

of 𝐹𝑑3̅𝑚 (PDF card no. 00-001-0111). The well-defined and sharp peaks in the powder 

diffraction patterns depicted in Figure 8-1(a-II) exhibit also a good crystallinity of the 

manganese rich lithium NMC sample obtained after the lithiation step. The two separate 

crystallographic phases are found to be present in the sample. First, the dominant lithiated 

phase can be indexed to the hexagonal α-NaFeO2 type crystal structure with a space group 

of 𝑅3̅𝑚 (PDF card no. 01-074-4671). The clear distinctions of the hexagonal doublets 

(018)/(110) located around 65˚ is an indication of the layer character of the sample326. The 

intensity ratio of the (003) to (104) peak is about 0.85, indicating a slight cation mixing 

with some Ni ion occupying the lithium sites. The second minor phase is indexed to a cubic 

spinel phase with space group of 𝐹𝑑3̅𝑚, with the XRD parameters matching the lithium-

deficient spinel Li0.1Mn2.05O4 according to PDF card no. 01-073-5020. Xiao and co-

workers concluded that the limit of a layered phase is Mn content of 0.5 beyond which 

results in the speciation of spinel impurity phase327. They also established that the ‘a’ lattice 

parameter found for spinel phase in LiNi0.3Mn0.6Co0.1O2 is 0.8577 nm, which is far more 

than the a lattice parameter of the stoichiometric LiMn2O4 (0.8235 nm). This indicates a 

lithium deficient and non-stoichiometric Li0.1Mn2.03O4 spinel phase, consistent with our 

data. The ratio of the metal ion content in LiNi0.2Mn0.6Co0.2O2 measured by ICP-MS 

experiment is Li/[Ni,Co,Mn] = 1.015 and Ni/Mn/Co = 1.000/2.952/1.057. The raw data 

and measurement error estimation is presented in Tables A9 (a) and (b) of Appendix 9. 

This composition was also confirmed by the transmission electron microscopy energy-

dispersive X-ray (TEM-EDS) analysis as displayed in Appendix 10, Figures A10 (a-b) and 

Tables A9(a) and 9(c). The observed values are in good agreement with the starting  
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Figure 8-2 | (a)-(c) SEM micrograph showing the surface morphologies of the 

as prepared NMC oxide nanoparticles of different magnifications (d)-(f) Bright field 

TEM image of a few particles at two different magnifications. 
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Figure 8-3| High resolution TEM (HR-TEM) of sample LiNi0.2Mn0.6Co0.2O2 (a) 

presenting grains with a single lattice fringes having d-spacing indexed to (003) of the 

rhombohedral phase (R3̅m) and equal to 0.475 nm. Inset: Fast Fourier Transforms 

(FFT) of the area marked by the dashed square (b) showing grains with two lattice 

fringes with one having d-spacing indexed to (111) and the other to (311) plane where 

d(111) = 0.471 nm and d(311) = 0.245 nm respectively, which is indexed to the cubic spinel 

phase (𝐹𝑑3̅𝑚) .Inset: Fast Fourier transforms (FFT) of the area marked by the dashed 

square, where (1) corresponds to (111) plane and (2) corresponds to (311) plane, 

respectively (c) Selected area electron diffraction (SAED) patterns of the 

LiNi0.2Mn0.6Co0.2O2 sample displaying ring patterns indexed to the rhombohedral phase 

(𝑅3̅𝑚) (in red) and cubic spinel phase (𝐹𝑑3̅𝑚) (in blue). (d) Assignment of ring 

patterns to corresponding planes (layered in red, and spinel in blue).  
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material composition. The surface morphologies of the as-prepared LiNi0.2Mn0.6Co0.2O2 

samples are presented in Figure 8-2(a)-(c) with both low and high magnification. The 

samples reveal irregularly-shaped nanoparticles, with particle size in the range between 50 

samples reveal irregularly-shaped nanoparticles, with particle size in the range between 

50 nm and 100 nm.  

 

Transmission electron microscopy (TEM) analysis was performed to provide data 

of the morphology, size and crystal structural phase of the synthesized LiNi0.2Mn0.6Co0.2O2 

in pristine condition and is outlined in Figure 8-3. The TEM studies performed include a 

high resolution TEM (HRTEM), bright field (BF) imaging techniques, fast Fourier 

transform (FFT) patterns and energy-dispersive X-ray spectroscopy (EDS). The structural 

information obtained by TEM is in good agreement with the one obtained using XRD, 

demonstrating that the structure of the pristine sample is explained as a two-phase system 

including the cubic spinel and rhombohedral layered phase. Figure 8-2(d)-(f) show a BF 

image of a few typical particles at two different magnifications. The particles appear to be 

irregularly-shaped nanoparticles as in the case of SEM analysis. The HRTEM image of 

Figure 8-3(a) belongs to the rhombohedral phase (𝑅3̅𝑚), with lattice fringes corresponding 

to (003) plane and d-spacing, d (003) = 0.475 nm. The inset of Figure 8-3(a) is the FFT of 

the area marked by the dashed white square indexed to the (003) plane. Figure 8-3(b) 

contains two distinct lattice fringes corresponding to the (111) and (311) planes with d-

spacing values of 0.471 nm and 0.245 nm, respectively. The insets of Figure 8-3(b) are the 

FFTs of the areas marked by the numbered dashed white squares, where (1) belongs to 

(111) plane and (2) belongs to (113). Both areas are indexed to the cubic spinel phase 
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(𝐹𝑑3̅𝑚). Furthermore, Figure 8-3(c) indicates the selected area electron diffraction 

(SAED) of the LiNi0.2Mn0.6Co0.2O2 sample where patterns are indexed to the rhombohedral 

phase and cubic spinel phase as confirmed by XRD. This is more carefully outlined in 

Figure 8-3(d), where the assignment of ring patterns is connected to corresponding planes 

(layered in red, and spinel in blue). At the same time, it is important to point out that the d-

spacing of the (111) plane of the spinel phase (0.471 nm) is similar to the d-spacing of the 

(003) plane of the layered phase (0.475 nm). However, the instrument’s sensitivity is not 

sufficient to delineate between these two, and for this reason, the first ring pattern is 

assigned to the most dominant layered phase.  

 

To unravel the differences further, the Raman spectra was recorded for the materials 

in the pristine and spent state (after 50 cycles) and results are seen in Figure 8.4(a) and (b), 

respectively. The deconvoluted spectra of the pristine LiNi0.2Mn0.6Co0.2O2 (Figure 8.4(a)) 

clearly exhibits two bands at 500 and 560 cm-1. These two bands are assigned to Eg and 

A1g Raman-active modes for the transition metal-oxygen arrangements in the layered 

lithium metal oxide with rhombohedral 𝑅3̅𝑚 symmetry328. The presence of the signature 

peak of the cubic spinel phase at 630 cm-1 indicates that the prepared materials are mixed 

phase layered-spinel oxide materials 329-330. Thus, the Raman spectra data clearly supports 

the XRD evidence. The spinel structure comprises of MnO6 octahedra and LiO4 tetrahedra. 

The Raman band located near 630 cm-1 is attributable to the symmetric Mn–O stretching 

vibration of MnO6 octahedra331. This band is assigned to the A1g symmetry in the Oh
7 

spectroscopic space group. The broadening of this signature band in Figure 8-4 (b) could 
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Figure 8-4| (a) Raman spectra of pristine LiNi0.2Mn0.6Co0.2O2 powder and (b) 

spent LiNi0.2Mn0.6Co0.2O2 cathode material after 50 cycles of testing with deconvoluted 

peaks. 
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 be related to the cation–anion bond lengths and polyhedral distortion occurring in 

LixMn2O4 
329. Previously, similar case was already reported that the Raman scattering 

spectra of the Li1+δMn2-δO4 spinel, where dominant band centered at 630–650 cm-1 

corresponded to the Mn–O stretching vibrations330. The fitted peaks are presenting two 

components at 647 and 604 cm-1 for the spent sample. It is possible to have Li ions in the 

16d octahedral sites in Li1+δMn2-δO4, and therefore a distortion of the cubic lattice into 

tetragonal lattice is not an unexpected phenomenon.  These leads into the breakdown of 

the translation symmetry because of the non-systematic location of the metal ions on the 

 

Figure 8-5| XPS high-resolution peaks of pristine LiNi0.2Mn0.6Co0.2O2 screening 

(a) Ni 2p3/2 (b) Mn 2p3/2 and (c) Co 2p3/2. 
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octahedral sites; imposing some extra bands in addition to the Raman-active mode 

vibrations predicted by the space group theory for an ideal spinel structure330. Moreover, 

the two bands at 500 and 560 cm-1 in Figure 8-4(b) are assigned to Eg and A1g Raman-

active modes caused by the transition metal-oxygen arrangements in the layered lithium 

metal oxide with rhombohedral (𝑅3̅𝑚) symmetry. However, these peaks remained 

unchanged even after cycling.   

 

To determine the surface states of elements in the lithium NMC oxide, the X-ray 

photoelectron spectroscopy (XPS) was performed and typical results are presented in 

Figure 8-5(a) – (c). The best fitted peaks for the Ni 2p3/2 spectrum correspond to binding 

energy values. The main peak with a binding energy of 854.0 eV corresponds to the Ni2+ 

and the less prominent one at 856.3 eV corresponds to Ni3+ 332. The deconvolution of the 

Mn 2p3/2 reveals binding energy values centered at 641.7 eV and 642.1 eV; the major one 

being the binding energy centered at 642.1 eV, ascribed to the manganese IV oxidation 

state, which is in agreement with the report by Shaju et al. 332. The Mn3+ state is represented 

by the binding energy at 641.7 eV.   Further analysis revealed the Co 2p3/2 peak located at 

779.8 eV., which  is assigned to  Co3+ in Co2O3, re-confirming the +3 oxidation state of Co 

in the samples 333. The surface elemental analysis is shown in Table A9(a) of Appendix 9, 

showing a deviation from the nominal values, this is not a surprising outcome because XPS 

elemental analysis can only provide a semi-quantitative surface composition up to about 

10 nm depth into the surface of sample, and especially since LiNi0.2Mn0.6Co0.2O2 is a two-

phase system, XPS data precludes the accurate determination of the bulk composition. 
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Figure 8-6| (a) Charge-discharge curves of LiMn0.6Ni0.2Co0.2O2 cathode 

electrode at a current of 10 mAg-1 (b) Capacities versus cycle number of 

LiMn0.6Ni0.2Co0.2O2 cathode electrode at a current of 10 mAg-1 over 50 charge-

discharge cycles. The secondary axis shows the Coulombic efficiency over 50 cycles 

(c) C-rate tests of LiNi0.2Mn0.6Co0.2O2 cathode electrode for Li-ion battery at different 

current densities between 2.0 V to 4.7 V. 
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The electrochemical lithiation behavior is shown in Figure 8-6(a) which depicts the 

voltage profile of the LiNi0.2Mn0.6Co0.2O2 electrode during the galvanostatic charge–

discharge cycles. Two regions are quite conspicuous in the first charge, and to some extent 

in the second charge cycle. The first sloping region from 3.9 V to 4.4 V could be assigned 

to the oxidation of transition metal ions to the +4 oxidation state, 334 while the second 

sloping region from 4.4 V to 4.7 V is consistent with the oxidation of O2- ions to molecular 

oxygen, and the attendant extraction of lithium ions from the lattice in the form Li2O 335. 

The initial charge profile is accompanied with an irreversible voltage plateau at 4.4 V to 

4.7 V, and can be ascribed to oxidation of Ni2+ to Ni4+ and Co3+ to Co4+. During the oxygen 

loss plateau, the layered component is activated to remove Li2O from the M layer leaving 

MO2 in the electrode structure, MO2 then serve as a host structure for reversible lithium 

intercalation/deintercalation so that the electrode can deliver capacity above 200 mAh g-1 

between 2.0 V and 4.7 V 336. However, the extensive removal of lithium and oxygen 

evolution results in the instability of electrode structure leading to breakdown of lattices 

and phase transformation from layered to spinel during the subsequent cycles. The 

unusually large charge capacity in the first cycle may be rationalized thus: when charging 

across the plateau at 4.5 V, parts of the metal ion are reduced accompanied with the removal 

of Li and O. The Mn ions are activated due to reduction and will participate in the following 

electrochemical reactions. The removal of Li and O from the lattice leads to the structural 

rearrangement, and the metal ions may migrate to the Li layer337. Part of removed oxygen 

from oxygen molecules, may be reduced in the discharge stage and provide extra capacity. 

Although some oxygen vacancies remain on the surface after the discharge process, the 

majority of oxygen vacancies are eliminated as well as certain amount of cation site, 
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resulting in large irreversible capacity during the first and second cycles 338.  The discharge 

profiles however indicate the re-insertion of lithium-ions and the accompanying reduction 

of the transition metal ions from +4 oxidation state 336. While majority of the initial voltage-

capacity profile fits the layered oxide narrative, nevertheless there are a few exceptions. 

For example, in the initial discharge curves, the plateau regions at ∼2.7 V and ∼2.1 V are 

associated with the intercalation/deintercalation of lithium ions from/to the empty 

octahedral site of the cubic spinel structure, which is followed by a cubic to tetragonal 

phase transition involving Jahn−Teller distortion 98.   Furthermore, the typical cycling 

performance of LiNi0.2Mn0.6Co0.2O2/Li cells is measured at 10mAg-1 during 50 cycles 

(Figure 8-6(b)). The specific capacity of the charge and discharge decreases steadily in the 

initial cycling stages until the 3rd round, where it is stabilized above a specific capacity of 

210 mAhg-1. In the first ten cycles, the Coulombic efficiency is raised from about 67% to 

almost 95% at the 10th cycle and remains at least 90 % until the 50th cycle.  Specifically, 

the discharge capacity (with an initial capacity of 258 mAhg-1) retains about 83% of its 

initial capacity, whereas the charge capacity; initially at 450 mAhg-1 was only able to retain 

58% of its capacity over the cycle period. It was reported that LiNi0.3 Mn0.6Co0.1O2 with a 

similar chemistry and prepared by  co-precipitation method delivers  an initial discharge 

capacity of about 75 mAh g-1 (2.5 – 4.6 V) at a charging rate of 0.5 mAcm-2 327. 

Furthermore, Table 8.1 shows comparison of method and performance of this work with 

published reports. To investigate the rate capability of the fabricated electrodes, the cells 

were charged and discharged at various current rates. Galvanostatic charge-discharge 

curves of LiNi0.2Mn0.6Co0.2O2 at current rates of 20, 100, 200, 400 and 1000 mA g−1 in the 

voltage range of 2.0 and 4.7 V are shown in Figure 8-6(c). The specific discharge capacity 
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upon increasing current rate to 20, 100, 200, 400 and 1000 mAg-1 are 180, 141, 116, 94, 

and 84, mAh g−1 respectively. On reducing the current rate to the initial value 20 mA g−1 

after the rate performance testing, the LiNi0.2Mn0.6Co0.2O2 electrode still retains more than 

97 % of its specific capacity with a value 175 mAh g−1, indicating a good reversibility and 

high rate capability.  

 

 

Figure 8-7| Cyclic voltammetry of Li Ni0.2Mn0.6Co0.2O2 cathode electrode at 

scan speed of 1.0 mV/s. 
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The cyclic voltammetry (CV) was conducted for LiNi0.2Mn0.6Co0.2O2 to evaluate 

the redox potential of the transition metal ions during cycling. Figure 8-7represents the first 

five cycles of the CV traces of the material between 2.0 and 4.7 V at 1 mV s-1 in which 

metallic lithium acts as the counter and reference electrodes. The shape of the CV provides 

some insight into the phase transitions that occur during lithium insertion and 

extraction.  The anodic peak at 4.0–4.7 V is associated predominantly with the oxidation 

of Ni2+ to Ni3+/Ni4+
, whereas the reverse sweep cathodic peak at 3.71 V is decreased to 3.65 

V when the cycle progresses.  The high redox potential 4.45 V/4.40V in the sample is due 

to the partial redox contribution from Co3+↔ Co4+ that corresponds to the second electron 

transfer 339. The small anodic peak at first charge seen around 2.93 V is as expected, and is 

attributable to Mn3+ → Mn4+ + e- oxidation reaction, where the potential moves to a higher 

value (2.95 V at the 5th cycle) as the cycle advances.  Moreover, the reduction peak below 

3.0 V is allocated to the reduction of Mn4+ to Mn3+ 340. This result is agreement with our 

earlier result that the Mn3+ oxidation state (from the spinel phase) is present at first charge. 
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Table 8.1 Comparison of this work with the performance of published flame/electric furnace spray pyrolyzed Li 

NMC oxides. Also, performance comparison is made between Li NMC oxide from co-precipitation and plasma-based 

method (this work) with similar chemistry. 
 

Synthesis  

Chemistry 

 

Voltage 

 

Current 

rate 

 

Initial 

Discharge  

(mAh/g) 

 

Discharge after 

cycling(mAh/g) 

Ref. Method Temp. 

/°C 

341 Electric 

furnace 

900 (6h) 0.2Li2MnO30.8LiNi0.33Mn0.33Co0.33O2 2-4.8 V 25 mA/g 242 208(50 cycles) 

341 Electric 

furnace 

900 (6h) 0.4Li2MnO30.6LiNi0.33Mn0.33Co0.33O2 2-4.8 V 25 mA/g 283 229(50 cycles) 

341 Electric 

furnace 

900 (6h) 0.5Li2MnO30.5LiNi0.33Mn0.33Co0.33O2 2-4.8 V 25 mA/g 291 266(50 cycles) 

341 Electric 

furnace 

900 (6h) 0.8Li2MnO30.2LiNi0.33Mn0.33Co0.33O2 2-4.8 V 25 mA/g 234 204(50 cycles) 

342 Electric 

furnace 

700 (6h) 0.3Li2MnO30.7LiNi0.5Mn0.5O2 

 

 

2-4.8 V 30 mA/g 177 <<177 
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342 Electric 

furnace 

750 (6h) 0.3Li2MnO30.7LiNi0.5Mn0.5O2 2-4.8 V 30 mA/g 202 <<202 

342 Electric 

furnace 

800 (6h) 0.3Li2MnO30.7LiNi0.5Mn0.5O2 2-4.8 V 30 mA/g 215 205(40 cycles) 

342 Electric 

furnace 

850 (6h) 0.3Li2MnO30.7LiNi0.5Mn0.5O2 2-4.8 V 30mA/g 212 <<212 

343 Electric 

furnace 

900 (6h) LiNi0.33Mn0.33Co0.33O2 2.75-4.5V 0.1C 195 <<195 

343 Electric 

furnace 

900 (6h) LiNi0.8Mn0.05Co0.15O2 
 

0.1C 218 <<218 

344 Flame  800 (3h) LiNi0.33Mn0.33Co0.33O2 2.8-4.4V 
 

168 120(30 cycles) 

345 Co-

precipitation 

450 (12h) 

900 (12h) 

LiNi0.3Mn0.6Co0.1O2 2.5-4.6V 0.5mA/cm2 80 <<80 

This 

work 

Plasma - LiNi0.20Mn0.60Co0.20O2 2-4.7V 10mA/g 258 210(50 cycles) 
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8.4 Chapter Summary 

Nickel manganese cobalt (NMC) oxides have been pursued for stable and high 

energy density cathodes in lithium ion batteries for years. The current synthesis techniques 

based on co-precipitation and hydrothermal techniques require reaction timescales on the 

order of several hours making them difficult for scale-up.  Here, we present a scalable 

manufacturing technique based on atmospheric plasma-based spray pyrolysis for 

producing NMC (and Li-NMC) with reaction timescales of the order of minutes. Results 

show that the chemistry of resulting materials (Ni/Mn/Co ratio) can be controlled from 

precursor composition. Specifically, the compound LiNi0.2Mn0.6Co0.2O2, is prepared by the 

atmospheric plasma-assisted synthesis method. The resulting LiNi0.2Mn0.6Co0.2O2 cathode 

material demonstrates a durable performance with an initial discharge specific capacity of 

258 mAh g-1 while maintaining above 210 mAh g-1 after 50 cycles. 
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CHAPTER 9 

9. CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

A synthesis technique based on plasma oxidation of liquid droplets for producing 

mixed metal oxide solid solutions with controllable composition over a wide-ranging 

composition, has been successfully demonstrated. Specific experiments were presented 

with binary and ternary metal oxides involving nickel, manganese and iron as elements. 

The selective formation of rocksalt and spinel solid solution is a direct consequence of the 

precise compositional control shown in this method and will be very useful in altering 

catalytic properties in many process applications. As an example, we have demonstrated 

rapid screening of several mixed metal oxide solid solution systems by testing a series of 

manganese substituted nickel ferrite materials for their activity with OER reaction in 

alkaline media. The results showed that the presence of a small amount of manganese 

(z=0.20) caused a significant drop in the overpotential with excellent Tafel kinetics. 

Additionally, we have shown through series of time-controlled experiments that the 

processes leading up to the formation of metastable solid-solution, specifically the non-

stoichiometric complex oxides involve the nucleation of monometallic oxide phases from 

an amorphous oxide nutrient followed by their solid-state reaction into an intermediate 

mixed oxide phase until the non-stoichiometric mixed phase is formed. Evidence also 

suggests the spontaneity of the plasma process is heavily reliant upon the large exothermic 
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heat released from the recombinative reactions among plasma species present in the plasma 

media.   

By synergistically combining Ir with W, a mixed-metal oxide phase with noble 

metal content as low as 1% had anodic stability in acid with promising OER catalysis. The 

critical electrocatalytic properties were enabled by oxidation in a non-equilibrium plasma 

environment, with traditional thermal oxidation instead resulting in significantly inferior 

OER activity. Although much work remains to be done to fundamentally explain the shift 

in catalysis, the materials characterization indicated the plasma method led to better 

catalysis by promoting larger crystals of the homogenous iridium polytungstate phase. The 

new material has promise for advancing the scalability of acidic water electrolysis. 

Additionally, the results demonstrate that the wide composition space of thermally 

processed oxides which have failed to show noteworthy catalysis may yield different 

outcomes and new active compositions of metastable phases when processed instead via 

non-equilibrium plasma oxidation. 

A series of La1-xCaxNi0.5Co0.5O3-δ double perovskite electrocatalysts in basic media 

OER has been prepared via the plasma route. Activity trend has been validated with DFT 

calculations, leading to a new activity descriptor for charge-transfer type oxides.  The 

catalyst with calcium content of x = 0.1 shows overpotential comparable with the best OER 

perovskite based electrocatalysts reported, with overpotential as low as 330 mV at current 

density of 10 mAcm-2 in alkaline media and controlled current chronoamperometry 

displayed a 2h stable potential-time profile for all electrocatalysts under study. The high 

activity and stability of the low-calcium content perovskite is ascribed to the small charge 

transfer gap resulting into stronger transition metal 3d–O 2p hybridization, the O 2p band 
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occupying the valence band in the band structure. As a result, a strategy for enhancing 

hybridization and hence OER activity in charge transfer oxides would be to design catalysts 

with O 2p band  several energy levels away from the Fermi level. 

Also, it is demonstrated in this dissertation, for the first time, the synthesis of a 

mixed spinel-layered oxide and lithium-excess layered cathode materials by atmospheric 

plasma spray pyrolysis method. The obtained LiNi0.2Mn0.6Co0.2O2 cathodes exhibited an 

initial discharge capacity of about 258 mAh g−1 at a current of 10 mA g-1 rate with high 

electrochemical cycling stability. The cycle life shows satisfactory cathode stability as the 

discharge capacity remains above 210 mAh g−1after 50 cycles. Plasma spray pyrolysis was 

also proven to be a futuristic single-step synthesis of lithiated NMC compounds, and as 

such is potentially useful for obtaining NMC cathode materials with rather controlled 

composition, crystallinity, and morphology at high production rates. 

To conclude, the plasma-based oxidation of liquid precursors has been 

demonstrated to be a scalable and viable route for synthesizing efficient materials for 

energy conversion and storage processes, specifically, in electrocatalytic water splitting 

and rechargeable battery applications. The study has also demonstrated that many of the 

complex oxide-based energy materials in current literature may be underperforming as a 

result of non-homogeneity of phase. We have compared performances of the oxide 

prepared via plasma and materials prepared through thermal oxidation in electrochemical 

conversion processes, and the performance of the plasma-synthesized oxides ranges from 

norm to exceedingly better in many of these examples. This superior performance is 

attributed to the firm control of composition enabled by the non-equilibrium conditions in 

the plasma media highlighting the significance of designing materials far from equilibrium 

https://www.sciencedirect.com/topics/chemical-engineering/pyrolysis
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in solving the grand challenges in energy science.  Overall, the study of the rudimentary 

nucleation and growth pathways regarding the formation of non-equilibrium complex 

oxides has intellectual merit, and thus will add to our current understanding of the design 

and synthesis of non-equilibrium materials.  

9.2 Recommendations and Future Experiments 

The precise structural distinctions which led to the outstanding activity of the 

plasma-prepared W1-xIrxO3-δ samples as compared with the thermally oxidized samples is 

still rather inconclusive, although Raman and X-ray photoelectron spectroscopy offer little 

insight. Extended X-ray Absorption Fine Structure or EXAFS is another test based on 

synchrotron X-rays, which would provide additional insights or perhaps even conclusive 

evidence about the superior performance of plasma-synthesized samples by probing the 

local structure of Ir atoms in WO3 lattice to retrieve information such as coordination 

number, distance of neighboring atoms, and disorder of neighboring atoms. Additionally, 

there has been a growing interest in the correlation of OER activity with oxygen vacancies 

via lattice oxygen mediation45, 55, and so, measurement of the oxygen vacancies (δ) in the 

plasma-synthesized samples and comparing that with the thermally prepared oxides can 

help gain more understanding about this dichotomy. 

It was established that the recombinative heating plays a crucial role in the 

formation mechanism of complex oxides derivable from the plasma method. Perhaps a 

synergy of this exothermic heat and the plasma species are responsible for this outcome. 

So, a method for isolating some of these species could be instructive to understanding the 

mechanism of formation of oxides going forward. To investigate the impact of the charged 

and neutral particles in the oxidation of metal precursors, it is essential to decouple the 
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effects of the charged particles from neutral species because it is unclear the role both 

species play. Electromagnetic or dielectric filters can help screen out charged particles in 

the plasma, allowing only the neutrals.  Another recommended method for plasma species 

screening is to introduce chemical scavengers into the liquid precursors to screen out the 

solvated electrons. The chemical scavengers proposed are chemical agents which leaves 

no cationic footprint in the final product. For example, NaNO3 is an important scavenger 

for H and e−(aq) but would leave Na+ in the complex metal oxide. Hence, the proposed 

scavengers would be hydrogen peroxide (H2O2) − a good scavenger for OH, H and e−(aq) 

and 2-propanol – an excellent scavenger for OH and H only but a weak scavenger for e−(aq), 

acetone is another recommended  chemical scavenger for solvated electrons. Oxygen atom 

neutral is an important species which may be contributing a lot to the oxidation mechanism, 

therefore; experiments to attenuate its contribution will be to key establishing the oxide 

formation mechanism. Fortunately, there are catalysts that facilitate the surface 

recombination reaction of O neutrals into O2 molecules, which can be adopted in future 

experiments. 

 The plasma oxidation rate is rapid due to the fast kinetics resulting from rapid 

heating and cooling rates of the plasma. One speculation is that the synergy from heat and 

plasma in hot plasmas are necessary for the formation of complex metal oxides. This 

speculation will be debunked if successful, an experiment to decouple the effect of reactive 

heating temperature in the plasma oxidation process. This can be realized by performing 

an experiment to oxidize liquid precursors in atmospheric cold plasma. Cold plasmas are 

partially ionized plasmas with low concentration of radicals, the recombination of these 

radicals are key components of the plasma energetics. However, in the event that this 



 

202 

 

experiment is not successful, an experiment that combines rapid externally heating source 

and cold plasma should be investigated. Tungsten heating lamps or xenon lamps can have 

ramp rate between 50 - 300°C per sec, mimicking the fast heating rate in thermal plasmas. 

This is the heat source currently in use by the semiconductor industries in a process known 

as rapid thermal processing (RTP). Also, stand-alone RTP should be carried out on liquid 

precursors regardless of the outcome of the last recommended experiment. 
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APPENDICES 

Appendix 1: Williamson-Hill Plots 

 

Figure A1 The linear fits of the Williamson-Hall plots for composition 𝜐=0.0, 0.2, 0.4, 0.6 

and 0.8 
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Appendix 2: Rietveld Refinement Table 

 

Table  A2 Values of atomic coordinates (x, y, z) and occupancy (g) determined from 

Rietveld refinement of XRD pattern of NiMn0.2Fe1.8O4 (Cation distribution from Rietveld 

refinement) 

Atom x=y=z Occ.(g) 

Ni 0.1250 0.0998(2) 

Mn 0.1250 0.1499(1) 

Fe 0.1250 0.7501(1) 

Ni 0.5000 0.9002(1) 

Mn 0.5000 0.0501(1) 

Fe 0.5000 1.0499(1) 

 

The data were processed to analyze all of the samples using the computer Program 

FullProf.2k (Version 4.30—Apr, 2008-ILL JRC) in the Rietveld method for structure 

refinement. Program refinement of the first samples was started with the space group 

Fd3m, origin at −3 m, O in 32e−, A site in 8f, and B site in 16c. The global parameters, 

such as 2θ-zero and background, were refined. Cation distribution from XRD patterns 

based on Bertaut method. 
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Appendix 3: Determination of Turnover Frequency 

Turnover frequency (TOF) was determined as the number of OER reaction 

conversions occurring per catalyst active site per time. With the uncertainty in the number 

of metal cation sites exposed to the electrolyte and contributing to the reaction, both a lower 

bound and an upper bound estimate to the TOF were calculated. Due to possible sub-nm 

porosity from combusted organic components during the rapid plasma oxidation as well as 

a possible semi-permeable hydrous layer at the catalyst surface under operation, some non-

surface metal sites may contribute to the reaction. The lower bound turnover frequency 

(TOFLB) was therefore estimated assuming all metal sites contribute to the reaction. The 

upper bound turnover frequency (TOFUB), in contrast, was calculated assuming that only 

metal cations at the surface of the catalyst were capable of being active reaction sites. 

The lower bound was calculated by: 

𝑇𝑂𝐹𝐿𝐵 =
𝐽𝑀𝑐𝑎𝑡

𝑛𝐹𝑙
 

where J is the current density at the overpotential under evaluation,  Mcat is the molecular 

weight of the catalyst, n is the number of moles of electrons per mole of reaction (n= 4 for 

OER),F is the Faraday’s constant, and ℓ is the catalyst mass loading per electrode projected 

area. For the catalyst W1-xIrxO3-δ, the molecular weight was approximated by assuming 

charge balance with only the predominant oxidation states W6+, Ir4+, and O2-, which gives 

W1-xIrxO3-x. Thus, for the catalyst W1-xIrxO3-x: 

𝑀𝑐𝑎𝑡 = 231.84 − 7.62 𝑥 
𝑔

𝑚𝑜𝑙
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Determining the upper bound turnover frequency required an estimate of the 

catalyst surface area. An electrochemically active surface area can be estimated by 

measuring the electrode double layer capacitance and comparing it to an estimated flat 

sample capacitance. However, large experimental error and unknown capacitance values 

for theoretically flat catalyst materials made this an unreliable method. Instead, the upper 

bound was calculated using the Brunauer–Emmett–Teller (BET) gas adsorption method to 

measure catalyst surface area. BET analysis was performed with the Micromeritics Tristar 

3000 porosimeter. Samples were carefully weighed and degassed before performing the 

measurements to remove any adsorbed contaminants from the surface and pores of the 

sample. Calculations for the BET surface area were done by using the TriStar 3000 analysis 

program. The number of metal cation sites per surface area was approximated by 

determining the molecular volumetric concentration of the catalyst, assuming a uniform 

molecule distribution (i.e., roughly cubic arrangement), and relating it the molecular 

surface concentration. Note that this is inherently an approximation for metal cation surface 

concentration, since the method neglects crystal structure and surface orientation, which 

are not precisely known for rough polycrystalline nanoparticulates with multiple possible 

phases. Two different mathematical approaches were used to relate Ccat,surf , the catalyst 

molecule concentration by surface area, to Ccat,vol , the catalyst molecule concentration by 

volume, both yielding identical results. In the first method, a spherical particle of radius, 

R, is assumed and the number of molecules at the surface, Ns, is determined by integrating 

across the volume of a shell with width equal to the distance between molecules: 

𝑁𝑠 = ∫ 4𝜋𝐶𝑐𝑎𝑡,𝑣𝑜𝑙𝑅
2𝑑𝑅 =

4

3

𝑅+𝑎

𝑅

𝜋𝐶𝑐𝑎𝑡,𝑣𝑜𝑙(3𝑅2𝑎 + 3𝑅𝑎2 + 𝑎3) 
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And for the spherical particle: 

𝐶𝑐𝑎𝑡,𝑠𝑢𝑟𝑓 =
𝑁𝑠

4𝜋𝑅2
≈ 𝑎𝐶𝑐𝑎𝑡,𝑣𝑜𝑙 𝑓𝑜𝑟 𝑅 ≫ 𝑎 

Assuming uniformly distributed molecules in roughly cubic arrangement, the 

intermolecular distance is: 

𝑎 ~ 𝐶𝑐𝑎𝑡,𝑣𝑜𝑙
−1/3

 

𝐶𝑐𝑎𝑡,𝑠𝑢𝑟𝑓 ~ 𝐶𝑐𝑎𝑡,𝑣𝑜𝑙
2/3

 

Alternatively, in the second approach, a cubic particle with N molecules per side of length 

L is assumed: 

𝐶𝑐𝑎𝑡,𝑣𝑜𝑙 =
𝑁3

𝐿3
 

𝑁𝑠 = 𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑁3 − (𝑁 − 2)3 

𝑁𝑠 = 6 (𝑁2 − 2𝑁 +
4

3
) ≈ 6𝑁2 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑁 

𝐶𝑐𝑎𝑡,𝑠𝑢𝑟𝑓 =
𝑁𝑆

6𝐿2
≈

𝑁2

𝐿2
 

with both methods providing the same molecular surface concentration estimate of: 

𝐶𝑐𝑎𝑡,𝑠𝑢𝑟𝑓 ≈ (𝐶𝑐𝑎𝑡,𝑣𝑜𝑙)
2/3

≈ (
𝜌𝑐𝑎𝑡𝑁𝐴

𝑀𝑐𝑎𝑡
)

2/3

 

where NA is Avagadro’s number, and 𝜌𝑐𝑎𝑡 is the mass density of the catalyst. 𝜌𝑐𝑎𝑡 was 

estimated assuming a linearly weighted average between the density of WO3 and IrO2. For 

the catalyst W1-xIrxO3-x: 
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𝜌𝑐𝑎𝑡 = (1 − 𝑥)𝜌𝑊𝑂3 + 𝑥𝜌𝐼𝑟𝑂2 = 7.16 + 4.5𝑥
𝑔

𝑐𝑚3
 

The upper bound was then calculated by: 

𝑇𝑂𝐹𝑈𝐵 =
𝐽𝐴𝑁𝐴

𝑛𝐹𝐶𝑐𝑎𝑡,𝑠𝑢𝑟𝑓𝐴𝐵𝐸𝑇
=

𝐽𝑁𝐴

𝑛𝐹 (
𝜌𝑐𝑎𝑡𝑁𝐴

𝑀𝑐𝑎𝑡
)

2/3

𝑙𝑆𝐵𝐸𝑇

 

where N is the electrode projected area, 𝐴𝐵𝐸𝑇  is the catalyst surface area as measured by 

BET, and 𝑆𝐵𝐸𝑇 is the BET-measured specific surface area per mass of catalyst. 

WO3 by itself is a very kinetically sluggish surface for OER, with a measured 

overpotential of 1.58 V at 10 mA cm-2. Thus, in the mixed metal W1-xIrxO3-δ catalyst, the 

Ir cation sites are presumed to support the large majority of oxygen evolution turnover. An 

Ir-specific turnover frequency was thus calculated to highlight the activity of the Ir sites 

accounting for their fraction of the total metal cations, assuming 100% reaction at Ir sites: 

𝑇𝑂𝐹𝐿𝐵,𝐼𝑟 =
𝑇𝑂𝐹𝐿𝐵

𝑥
 

𝑇𝑂𝐹𝑈𝐵,𝐼𝑟 =
𝑇𝑂𝐹𝑈𝐵

𝑥
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Appendix 4: Detailed Raman Spectra Characterization 

 

Figure A4 Raman spectra for each plasma-oxidized W1-xIrxO3-δ composition. 

The Raman bands for all W-containing catalyst samples displayed the characteristic 

peaks attributed to crystalline WO3. Pure WO3 (x = 0) had four well-resolved Raman peaks 

thatcorrespond to the fundamental modes of WO3 at 270, 324, 711, and 808 cm-1.290 The 

bands at 711 and 808 cm-1 have been assigned to the W-O-W stretching frequencies, with 

the band at 270 cm-1 corresponding to the W-O-W bending mode. The peak at 324 cm-1 

has been assigned to the O-W-O bending vibration. For all mixed W1-xIrxO3-δ samples 

there was an additional Raman band peaking at ~960 cm-1 not present in either WO3 or 

IrO2, which the literature generally attributes to the νs (W=O terminal) symmetric 

stretching mode.288-289Similar Raman features have been reported for numerous metal 

heteropolyoxo tungstate species. 289 This Raman band at ~960 cm-1 thus reflects distortion 

among the tungsten oxide framework and further supports the presence of an iridium 
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polytungstate phase. Also, the noticeable broadening of the Raman bands of the thermal 

sample relative to the plasma sample have been correlated to greater nanocrystallinity.290 
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Appendix 5: Detailed XPS Characterization 

 

Figure A4 XPS spectra for the O1s, W4f, and Ir4f peaks for plasma-oxidized (a-c) 

W0.57Ir0.43O3-δ, (d-f) W0.92Ir0.08O3-δ, and (g-i) W0.99Ir0.01O3-δ, and (j-l) thermally oxidized 

W0.99Ir0.01O3-δ. 
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Appendix 6: Structure Parameters and R-factors of Rietveld Refined Samples. 

Table A6 Structure parameters and R-factors of Rietveld refined samples. 

 

1Triclinic phase (Space Group: �̅�1), 
2Cubic phase (Space Group: Fd3̅m), 3Tetragonal phase 

(Space Group: P 42/m n m). 

Note: a, b, and c are the lattice constants. α, β, and γ are the unit cell angles. GU, GV and 

GW are the Gaussian terms for U, V and W in the Cagliotti function, GP is the Gaussian 

crystallite size broadening, LX is the Lorentzian isotropic crystallite size broadening while 

LY is the isotropic strain broadening. S/L is the axial divergence S term, H/L isthe axial 

divergence H term, stec represents Lorentzian anisotropic strain broadening, and L23 is 

represents the anisotropic Lorentzian microstrain. 
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Appendix 7: Detailed XPS Characterization 

 

 

 

 

Figure A7 Combined XPS spectra with normalized intensity for the (a) W4f and (b) Ir4f 

peaks. 
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Appendix 8: Detailed XPS Characterization 

 

Figure A8 XPS spectra for plasma-oxidized (a-b) WO3 (x = 0) showing the (a) O1s and 

(b) W4f peaks, and for (c-d) IrO2 (x = 1) showing the (c) O1s and (d) Ir4f peaks. 
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Appendix 9: Elemental Analysis 

Table A9 (a) Summary of elemental analysis of Ni, Mn and Co in LiNi0.20Mn0.60Co0.20O2 

Method Ni (at. %) Mn (at. %) Co (at. %) 

ICP-MS 19.96 58.93 21.11 

TEM-EDS 19.91 59.04 21.04 

XPS 19.41 52.12 28.46 

 

 Table A9 (b) ICP-MS raw data for elemental composition of Li, Ni, Mn and Co in 

LiNi0.20Mn0.60Co0.20O2
a 

Run Mn (ppb) Co (ppb) Ni (ppb) Li (ppb) 

1 29810 10080 10670 50978 

2 29670 10100 10690 50410 

3 29930 10100 10660 52597 

mean 29800 10090 10670 51328 

S.D. 132.7 14.13 15.26 1135 

% RSD 0.445 0.14 0.143 2.21 

atom % 29.25 10.47 9.91 50.37 
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a SD is the standard deviation of triplicate samples, where % RSD is the relative standard 

deviation defined as the percentage of the SD to the sample mean. 

Table A9 (c) TEM-EDS raw data (in atom %b) for elemental analysis of four grains of 

LiNi0.20Mn0.60Co0.20O2 
a 

Grain Mn (at. %) Ni (at. %) Co (at. %) 

1 18.99 6.73 5.75 

2 21.74 7.67 7.72 

3 19.19 6.92 7.66 

4 23.08 6.68 8.45 

mean  20.75 7 7.395 

SD 1.99501 0.458476 1.153964 

% RSD 9.614508 6.549653 15.60465 

atom %  59.04112 19.91748 21.0414 

 

a SD is the standard deviation from elemental analysis of four grains shown in STEM image 

of Figure S1, where % RSD is the relative standard deviation defined as the percentage of 

the SD to the sample mean. bThe balance is oxygen, which was ignored in calculation, and 

lithium composition is not captured because it is below the detection limit of the 

instrument. 
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Appendix 10: Elemental Analysis 

 

 

Figure A10 (a) Top: Four different grains of the LiNi0.2Mn0.6Co0.2O2 probed for 

Energy-dispersive X-ray (EDS) analysis. Below: TEM-EDS spectra of the four selected 

probe areas whose area is indicative of the composition of nickel, manganese and cobalt. 

The Cu spectra is as result of the Cu grid used for sample preparation. Note: Lithium 

spectra is not captured because it is below the detection limit of the instrument. ICP-MS 

analysis was carried out to confirm lithium amount 
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Figure A10 (b) Scatter plot of Mn-Ni-Co with the reference 45 ̊ line in the proportion 3:1:1 

respectively. Mn composition is on the horizontal axis while Ni and Co composition are 

on the vertical axis. All compositions were derived from the integration of the TEM-EDS 

spectra using a software 

 

 

 

 

 



 

240 

 

Appendix 11: Analysis of the Thermal Decomposition of  Precursors 

Figure A11 shows the results of thermogravimetric analysis (TGA) and differential 

scanning calorimeter (DSC) measurements under a flowing air atmosphere of the tungsten 

and iridium precursors used to produce W1-xIrxO3-δ. This experiment was carried out in 

order to elucidate the thermal events of the solid-gas interfacial reactions through thermal 

decomposition of catalyst sample precursors and to determine the synthesis temperature at 

which the speciation of the crystalline phase will occur. For the W precursor (ammonium 

paratungstate hydrate) the thermal decomposition profile is shown in Figure A11(a). The 

results indicate that the decomposition happens in three notable steps. The first weight loss 

step in the TGA curve occurred from 21 - 140 ºC, which is attributed to the release of water 

 

Figure A11. TGA (blue lines) and DSC (red lines) profiles of the (a) tungsten 

(ammonium paratungstate hydrate, (NH4)6[W12O39]·4.8H2O, molecular weight: 3024.48 

g/mol) and (b) iridium (iridium acetate, (CH3COO)4Ir, molecular weight: 428.42 g/mol) 

precursors used in this work. 
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as the hydrated precursor becomes anhydrous as well as the release of some trace amounts 

of ammonia. The weight loss due to the ·4.8H2O hydrate should theoretically be 2.86 wt. 

%, which agreed well with the measured 2.80 wt. % loss at 140 ºC according to the TGA 

profile. DSC indicated that this drying step into anhydrous ammonium paratungstate is 

endothermic in nature with a negative heat flow. The second weight loss step, from 140 - 

364 ºC, in the TGA curve could be due to ammonia and water vapor liberation according 

to the equation: 

(NH4)6[W12O39] → 6NH3 + 3H2O + 12WO3 

The observed weight loss from the TGA in this temperature region was ~5.0 wt. %, which 

corresponded well with a theoretical value from the above loss of ammonia and water vapor 

of 5.15 wt. %. This step was again endothermic according to the DSC curve. The third and 

final weight loss step occurred from 413 - 470 ºC and had a sharp exothermic peak at 443 

ºC as shown in the DSC profile that can be ascribed to the crystallization of the amorphous 

WO3 phase to a crystalline WO3 phase. The thermally synthesized W1-xIrxO3-δ samples in 

this work were fabricated at well above 443 ºC (processed at 500 ºC), so it is expected that 

the crystalline phase of WO3 will result under the thermal processing conditions used in 

this work. The theoretical ceramic yield of (NH4)6[W12O39]·4.8H2O to the remaining metal 

oxide as per the formula: 

 𝑌𝑊𝑂3% =
12 ×𝑀𝑊𝑡(𝑊𝑂3)

𝑀𝑊𝑡(𝑊 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟)
× 100% 

has a value of 92.3 wt. %, which was in strong agreement with the observed yield from the 

TGA of 92.0 wt. %. 
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The decomposition profile of the iridium acetate precursor showed only one main step, 

which occurred from 230 - 294 ºC, with a sharp exothermic peak at ~263 ºC as seen on the 

DSC curve (Figure A11(b)). This peak is related to complex solid-gas-solid reactions 

probably involving the production of metallic iridium (Ir0), iridium oxide (Ir4+) and volatile 

hydrocarbon products. The TGA weight fraction retained at 263 ºC was 46.80 wt. %, while 

the theoretical yield for IrO2 (Ir
4+) and Ir (Ir0) are 52.34 wt. % and 44.90 wt. %, respectively. 

Therefore, the TGA yield is consistent with a mixed phase of Ir and IrO2. Thus, a thermally 

synthesized oxide catalyst at the furnace temperature of 500 ºC in this work may 

decompose the acetate precursor into both metallic iridium and iridium oxide phases. 
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