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Abstract: This paper presents a measurement system intended to monitor the usage of walker
assistive devices. The goal is to guide the user in the correct use of the device in order to prevent risky
situations and maximize comfort. Two risk indicators are defined: one related to force unbalance
and the other related to motor incoordination. Force unbalance is measured by load cells attached to
the walker legs, while motor incoordination is estimated by synchronizing force measurements with
distance data provided by an optical sensor. The measurement system is equipped with a Bluetooth
link that enables local supervision on a computer or tablet. Calibration and experimental results are
included in the paper.

Keywords: force measurement; distance measurement; walker assistive device; gait analysis;
usage monitoring

1. Introduction

It is estimated that by the year 2025, in the United States and Canada, 25% of the population will
be over 65 years old [1–3]. Moreover, it is expected that in the European Union the life expectance
for the year 2060, for women and men, will be around 89 and 84.5 years, respectively [4]. Thus,
topics related with the mobility of elderly people have an increased importance, particularly in which
concerns the proper usage of mobility aiding devices [5,6]. The careful and conscientious use of these
devices can avoid harmful injuries [7–9], namely the ones caused by elderly people falls. Besides the
improvements related with elderly people, in terms of quality of life and extension of the time they
can live autonomously at home, mobility adding devices are also very important for patients during
rehabilitation processes.

Several solutions were developed to address these problems [10–14] but many of them are too
complicated, too expensive or too impractical for day-to-day applications. Many solutions make use of
accelerometers and Inertial Motion Units (IMU) to extract kinematic parameters related with human
gait [15–17]. However, these solutions require complex algorithms to improve measurement accuracy,
in particular to mitigate the problems related with time integration of signals that contain persistent
DC offsets (as it happens with low-cost accelerometers).
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Solutions based on RAdio Detection and Ranging (RADAR) measurements are also referred to in
the literature [18,19] and they are successful regarding the identification of gait patterns but not so
efficient to obtain accurate measurements of walking distance.

Usage of ultrasounds can also be a solution to obtain distance measurements [20]. However,
ultrasound measurements are not directional and are affected by external factors such as environmental
temperature and humidity.

Several works [21,22] also refer the usage of image processing techniques to monitor gait. The main
advantages of these methods are related with their non-invasiveness but there are strong limitations
related with camera positioning and it is not possible, at all, to acquire data concerning force intensities.

Concerning force measurements, used to evaluate walking balance conditions, the authors
already reported a measurement system that uses Force Sensing Resistors (FSR) [23]. The results were
acceptable but the main problems identified were related with lack of repeatability, poor robustness
and sensors’ detrition. The positioning of the FSRs at the bottom of walker legs was critical to
assure a uniform pressure distribution over the sensitive area, thus affecting the repeatability of the
measurements over time.

To overcome some of these limitations and to contribute to further advances in this research
area, the authors propose a low-cost, easy-adaptable instrumented walker that detects risk situations
motivated by unbalance and motor incoordination. This new proposal makes use of load cells to
measure the force applied on the walker legs and Light Detection and Ranging (LIDAR) to measure
distance. The acquired data is transferred through a Bluetooth link to a personal computer where it is
processed and presented to a physiotherapist.

A prototype based on a conventional walker with a four legs ground contact configuration was
implemented and used for testing purposes. The measurement methods and technical solutions
presented here can easily be applied to other mobility aiding devices, particularly walkers with
different ground contact configurations such as wheeled walkers and rollators.

The paper is organized as follows: Section 2 defines metrics to assess risk; Section 3 describes
the implemented measurement system; Section 4 presents experimental results; and Section 5
draws conclusions.

2. Usage Metrics

Two risk indicators, one related with force unbalance (I1) and the other related with motor
incoordination (I2), are defined to monitor walker usage and detect potential dangerous situations.

2.1. Force Balance

The first risk indicator (I1) has to do with the (un)balance of forces applied on the walker legs.
Considerer the coordinate system illustrated in Figure 1 where the walker legs are numbered from
1 to 4 (as quadrants) and the y-axis points to the forward direction. According to this arrangement,
the Centre of Forces (COF) is given by [24]:

COFx =
W12(F1 − F2) + W43(F4 − F3)

2(F1 + F2 + F3 + F4)
(1)

COFy =
L(F1 − F4) + L(F2 − F3)

2(F1 + F2 + F3 + F4)
(2)

where Fk represents the magnitude of the force applied to each leg, W12 and W43 represent the
distances between the front and rear legs respectively—which corresponds roughly to the mean
walker width (W), L represents the distance between front and rear legs, which corresponds to the
walker length.
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Figure 1. Coordinate system chosen for the measurement system. The black circles represent the 
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of force Fk and the y axis indicates the direction of movement. 
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injured foot to move forward; GP3: the injured foot is moving forward; GP4: waiting for the healthy 

foot to move forward; GP5: the healthy foot is moving forward. 

The transitions are validated by sensor measurements as follows: 

 T01 is enabled when F1 + F2 + F3 + F4 < WEIGHT_TH (threshold of minimum weight). This 

transition occurs when the total force measured by the load cells falls below the walker weight; 

in other words, when the walker is lifted in the air. 

Figure 1. Coordinate system chosen for the measurement system. The black circles represent the
walker legs (numbered as the quadrants in the Cartesian plane), Pk represents the application point of
force Fk and the y axis indicates the direction of movement.

The unbalance indicator is defined as the deviation of the COF in relation to the geometrical centre
of the walker polygon:

I1(%) = 100 ×

√
(COFx)

2 +
(
COFy

)2√
(W/2)2 + (L/2)2

× α (3)

with α being given by:

α =
F1 + F2 + F3 + F4

FU
(4)

where the numerator represents the total force applied on the walker legs and FU represents the user
weight. Alpha (α) is a weighting factor that takes values between 0 (when the walker is resting) and 1
(when the walker is charged with all the weight of the user).

2.2. Motor Coordination

The second risk indicator (I2) has to do with the (in)coordination between walker movements and
user gait. Considerer the state machine illustrated in Figure 2, first proposed by Winter D.A. [25,26],
where the states represent the Gait Phases (GP) and the continuous arrows represent normal transitions
between states.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 16 

 

𝐼1(%) = 100 ×
√(𝐶𝑂𝐹𝑥)

2 + (𝐶𝑂𝐹𝑦)
2

√(𝑊/2)2 + (𝐿/2)2
× 𝛼 (3) 

with α being given by: 

𝛼 =
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝐹𝑈
 (4) 

where the numerator represents the total force applied on the walker legs and FU represents the user 

weight. Alpha (α) is a weighting factor that takes values between 0 (when the walker is resting) and 

1 (when the walker is charged with all the weight of the user). 

y

x

W43

P1P2

P3 P4

W12

L

 

𝑷𝟏 = (+
𝑾𝟏𝟐

𝟐
; +

𝑳

𝟐
)  

𝑷𝟐 = (−
𝑾𝟏𝟐

𝟐
; +

𝑳

𝟐
)  

𝑷𝟑 = (−
𝑾𝟒𝟑

𝟐
; −

𝑳

𝟐
)  

𝑷𝟒 = (+
𝑾𝟒𝟑

𝟐
; −

𝑳

𝟐
)  

Figure 1. Coordinate system chosen for the measurement system. The black circles represent the 

walker legs (numbered as the quadrants in the Cartesian plane), Pk represents the application point 

of force Fk and the y axis indicates the direction of movement. 

2.2. Motor Coordination 

The second risk indicator (I2) has to do with the (in)coordination between walker movements 

and user gait. Considerer the state machine illustrated in Figure 2, first proposed by  

Winter D.A. [25,26], where the states represent the Gait Phases (GP) and the continuous arrows 

represent normal transitions between states. 

 

Figure 2. Gait Phases (GP) during a walker step (the polygon delimits the support area). GP0: the 

walker is resting on the floor; GP1: the walker is flying; GP2: the walker is on the floor waiting for the 

injured foot to move forward; GP3: the injured foot is moving forward; GP4: waiting for the healthy 

foot to move forward; GP5: the healthy foot is moving forward. 

The transitions are validated by sensor measurements as follows: 

 T01 is enabled when F1 + F2 + F3 + F4 < WEIGHT_TH (threshold of minimum weight). This 

transition occurs when the total force measured by the load cells falls below the walker weight; 

in other words, when the walker is lifted in the air. 

Figure 2. Gait Phases (GP) during a walker step (the polygon delimits the support area). GP0: the
walker is resting on the floor; GP1: the walker is flying; GP2: the walker is on the floor waiting for the
injured foot to move forward; GP3: the injured foot is moving forward; GP4: waiting for the healthy
foot to move forward; GP5: the healthy foot is moving forward.
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The transitions are validated by sensor measurements as follows:

• T01 is enabled when F1 + F2 + F3 + F4 < WEIGHT_TH (threshold of minimum weight). This
transition occurs when the total force measured by the load cells falls below the walker weight;
in other words, when the walker is lifted in the air.

• T12 is enabled if F1 + F2 + F3 + F4 > WEIGHT_TH AND d > TRAVEL_TH (threshold of minimum
distance travelled forward). This transaction occurs when the walker touches the floor after
traveling a distance greater than the minimum.

• T23 is enabled if COFx > RIGHT_TH or COFx < LEFT_TH depending on which foot is injured
(left or right, respectively). This transaction occurs when the user steps forward with the injured
foot and applies maximum force on the opposite side. The injured foot shall always be the
first one to move. The type of disability must be defined in advance because it determines the
threshold value.

• T34 is enabled if COFx < RIGHT_TH or COFx > LEFT_TH depending on which foot is injured
(left or right, respectively). This transaction occurs when the user alleviates the force previously
applied to the walker; in other words, when COFx returns to zero.

• T45 is enabled if COFx < LEFT_TH or COFx > RIGHT_TH depending on which foot is injured
(left or right, respectively). This transaction occurs when the user steps forward with the healthy
foot and applies maximum force on the opposite side. The healthy foot shall always be the last
one to move.

• T50 is enabled if COFx > LEFT_TH or COFx < RIGHT_TH depending on which foot is injured
(left or right, respectively). This transaction occurs when the user alleviates the force previously
applied to the walker; in other words, when COFx returns to zero.

If the machine passes through all the states successfully then the step is marked as “good”;
otherwise, the step is marked as “bad” and the counter B is incremented. The incoordination indicator
is then computed as:

I2(%) = 100 × B
N

(5)

where N is a moving window covering the last steps (defaults to 10).

3. Measurement System

The measurement system includes four load cells to sense the force applied on the walker legs,
a LIDAR to measure the travelled distance, a data acquisition board with Bluetooth link and software
to process and present data. The apparatus was installed on a pick-up standard walker [27] with the
following characteristics: width between front legs (W12) equal to 52 cm, width between rear legs (W43)
equal to 53 cm, length between front and rear legs (L) equal to 45 cm, adjustable height between 78 cm
and 90 cm in increments of 2.5 cm.

3.1. Force Sensors

Force measurements were initially done by FSRs as described in [23]. Unfortunately,
the installation of these sensors was very tricky making it very difficult to guarantee that each sensor
had the same mechanical coupling to the process and, consequently, the same sensitivity. To overcome
this problem, FSRs were replaced by load cells.

Each load cell was attached to the extremity of a walker leg using a dedicated plastic adapter
grown on a low-cost 3D printer (see Figure 3). The cell contains four strain gauges fixed to a small
body of aluminium (55.3 × 12.7 × 12.7 mm) that supports 20 kgf. Other characteristics include:
rated output = 1 ± 0.15 mV/V for nominal capacity (20 kgf), non-linearity = 0.05% FS (Full Scale),
hysteresis = 0.05% FS, output impedance = 1000 Ω, overload = 150% nominal capacity. The use of
bending beam load cells seems awkward when compared to inline/axial load cells but the truth is that
they are much cheaper making them the best choice for low-cost systems.
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The load cells were characterized using the fastening scheme shown in Figure 3b. Three legs
of the walker were laid on the floor while the fourth leg was laid on a precision scale, model Spider
1S–60S from Mettler Toledo, all properly levelled. Static loads were applied to the walker frame by
putting lead weights on it. The weight measured by the scale is equal to the force applied on the
walker leg provided the leg does not move. The load cell under test was supplied with 5 V its output
voltage was read using a 6 1

2 digits digital multimeter, model 2701 from Keithley. Figure 4 presents the
results obtained for a given load cell (similar results were obtained for the other cells).Sensors 2018, 18, x FOR PEER REVIEW  5 of 16 

 

 

Load cell

screw

nut

ground

Force
walker leg

(aluminum tube)

adapter

A B

 
(a) (b) 

Figure 3. Load cell attached to the walker leg: (a) Photo; (b) Side view. 

The load cells were characterized using the fastening scheme shown in Figure 3b. Three legs of 

the walker were laid on the floor while the fourth leg was laid on a precision scale, model Spider  

1S–60S from Mettler Toledo, all properly levelled. Static loads were applied to the walker frame by 

putting lead weights on it. The weight measured by the scale is equal to the force applied on the 

walker leg provided the leg does not move. The load cell under test was supplied with 5 V its output 

voltage was read using a 6½  digits digital multimeter, model 2701 from Keithley. Figure 4 presents 

the results obtained for a given load cell (similar results were obtained for the other cells).  

 

Figure 4. Load cell characterization. 

Using linear interpolation, validated by an R-squared value close to 1, the following relationship 

was found between the output voltage in mV (Vout) and the input force in kgf (F): 

𝑉𝑜𝑢𝑡 = 0.2726 × 𝐹 − 0.1273 (6) 

The offset error is strongly attenuated by the subtractive nature of Equations (1) and (2). The 

remaining error is cancelled by running a self-calibration routine (see Section 3.5.1 for more details). 

3.2. LIDAR 

A low-cost LIDAR device [28] was used to perform distance measurements. The LASER 

associated with this device makes use of pulsed light and modulation techniques to improve the 

measurement accuracy. The main characteristics of the LIDAR include: working wavelength of  

905 nm, maximum pulse train length of 256 pulses, pulse repetition rate of 20 kHz, accuracy better 

than 2.5 cm, measurement range up to 40 m (much higher than the required for our application), I2C 

communication interface, PWM output signal with 3 V of amplitude and 10 µs of resolution. 

y = 0,2726x - 0,1273
R² = 0,9985

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 2 4 6 8 10 12 14 16 18 20

Vo
ut

 (
m

V
)

F (kgf)

Figure 3. Load cell attached to the walker leg: (a) Photo; (b) Side view.
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Figure 4. Load cell characterization.

Using linear interpolation, validated by an R-squared value close to 1, the following relationship
was found between the output voltage in mV (Vout) and the input force in kgf (F):

Vout = 0.2726 × F − 0.1273 (6)

The offset error is strongly attenuated by the subtractive nature of Equations (1) and (2).
The remaining error is cancelled by running a self-calibration routine (see Section 3.5.1 for more details).

3.2. LIDAR

A low-cost LIDAR device [28] was used to perform distance measurements. The LASER
associated with this device makes use of pulsed light and modulation techniques to improve the
measurement accuracy. The main characteristics of the LIDAR include: working wavelength of 905 nm,
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maximum pulse train length of 256 pulses, pulse repetition rate of 20 kHz, accuracy better than
2.5 cm, measurement range up to 40 m (much higher than the required for our application), I2C
communication interface, PWM output signal with 3 V of amplitude and 10 µs of resolution.

The characterization of the LIDAR was performed pointing the LASER to a moving target and
measuring the duty cycle (δ) of the PWM signal. The sensor was fixed at one end of a graduated ruler
while the target could move freely anywhere from 10 to 90 cm. The distance was measured directly
from the ruler, with a resolution of 0.5 mm and the pulse width was measured using a universal counter,
model PM6669 from Philips (Amsterdam, Netherlands). Figure 5 presents the obtained results.
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Figure 5. LIDAR characterization.

Using linear interpolation, validated by an R-squared value close to 1, the following relationship
was found between the duty cycle in % (δ) and the distance in cm (d):

δ = 0.2017 × d + 6.6574 (7)

3.3. Signal Conditioning

Each load cell is supplied at 5 V and conditioned by an instrumentation amplifier with gain 100
(AD623, Analog Devices, Norwood, MA, USA), followed by a non-inverting amplifier with gain 8
(MCP6272, Microchip, Chandler, AZ, USA) and an RC low-pass filter with a cut-off frequency of 20 Hz.
The result is a smooth output swing from 0 to 4 V for forces between 0 and 20 kgf.

The PWM signal of the LIDAR passes through a similar filter (RC, low-pass, 20 Hz) and a
non-inverting amplifier with gain 5, giving an output swing from 1 to 4 V for distances between 0 and
100 cm.

3.4. Data Acquisition

Data is acquired by a Bluno Nano board [29] attached to the walker body as shown in Figure 6.
The board provides all the resources of an Arduino Nano, plus a Bluetooth 4.0 wireless interface, all
contained in a low-cost, small-footprint package.

The load cells are mounted on the walker legs, one on each leg and the LIDAR is suspended on a
selfie-stick pointing to the injured foot. The five sensors (four load cells and the LIDAR) are sampled
at 50 S/s and the resulting data stream is transmitted over the air to a host (computer or tablet) where
it is processed. The Bluetooth link emulates a serial port on both sides allowing transmission speeds
up to 1 Mbps.
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It should be underlined the low cost of the proposed solution: the load cells (4 × 8 €), the LIDAR
(150 €), the Bluno Nano board (40 €), the conditioning circuits (30 €) and some mechanical adapters
(40 €) made a total of 292 €, a very reasonable price when compared to other proposals [30].Sensors 2018, 18, x FOR PEER REVIEW  7 of 16 
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Figure 6. Instrumented walker.

3.5. Data Processing

The samples arriving to the host are handled by a high-priority worker thread that buffers them
into memory. Later, when on the main thread wakes up, every 125 ms in the present case, the samples
are processed in batch, one by one. The buffer contains a variable number of samples, from 6 to a few
more, depending on the host’s load at that moment. The state machine (responsible for classifying
steps) is executed for all samples but the screen is refreshed only 8 times per second, which is enough
to give the application good responsiveness and fluidity.

Data processing consists in the calculation of the risk indicators according to the following
procedures:

1. Computation of COFx and COFy by solving Equations (1) and (2).
2. Computation of the first risk indicator (I1) by solving Equations (3) and (4).
3. Detection of “bad” steps (B) by running the state machine represented in Figure 2.
4. Computation of the second risk indicator (I2) by solving Equation (5).

All these tasks are done by the application “Spy Walker” that runs on the host side and is
managed by the physiotherapist. The application was developed in Visual Studio 2012 using the C#
programming language. Its main window offers the following options (see Figure 7):

• Login: Ask for information about the user including its weight (needed to compute Equation (4)).
• Connect: Establish a Bluetooth link with the smart walker.
• Calibrate Sensors: Determine experimentally the offset error of the load cells and the walker

weight (also needed for Equation (4)).
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• Stream Data: Open a sub-window where the physiotherapist can monitor online the usage of
the walker.

• Disconnect: Close the Bluetooth link with the smart walker.
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Figure 7. Main window of the Spy Walker application.

3.5.1. Calibrate Sensors

The “Calibrate Sensors” sub-window (see Figure 8) serves to extract the offset error of the
measurement system. With the walker resting on the floor, with no external forces applied, the user
registers the COF coordinates and the weight of the walker frame. These residues are offset errors that
will be cancelled later during normal operation. COF residues are subtracted from Equations (1) and (2),
while the weight residue is subtracted from the numerator of Equation (4).
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3.5.2. Stream Data

The “Stream Data” sub-window is where data processing takes place. The graphical interface is
divided in two main panels as shown in Figure 9:

• Balance (panel A): The COF is computed and the result is presented as a cross moving over
a XY graph. When the user loads his left side the cross moves toward negative values of X;
when he loads his right side the cross moves toward positive values of X. The same applies
for the front/back direction over the Y axis, much like a joystick. A vertical slider shows the
instantaneous value of the I1 indicator.
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• Coordination (panel B): The state machine is executed and the current gait phase is identified.
A set of six LEDs are turned on sequentially as the state machine moves forward the next phase.
If the user passes through all the phases successfully, all the LEDs end up lighted and the step
is marked as “good”. If the user violates any phase, the machine is reset to the first stage (GP0)
and the step is marked as “bad”. The number of “good” and “bad” steps is registered. A vertical
slider shows the instantaneous value of the I2 indicator.
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Figure 9. Stream Data sub-window. Panel A presents data related with force balance (the dark circles
represent the walker legs) and panel B presents data related with motor coordination.

4. Experimental Results

This section describes the preliminary tests executed to verify the effectiveness of the measurement
system and to get a first impression about the values of the risk indicators. A total of five tests were
done involving signals from all sensors (load cells and LIDAR). The sensors were easily integrated in
the commercial walker without need of any modification in its mechanical structure. The load cells
were installed in the terminal part of the walker legs and the LIDAR was fixed in the frontal frame bar
with the beam pointing to the user’s injured limb.

4.1. COF Location

Two well-known lead weights were applied in precise locations of the walker frame to compare
the COF measurements against the expected values. Figure 10 shows the two arrangements made: on
the left, the 10 kgf weight was applied at the point (0, 200) mm and the 6 kgf weight was applied at the
point (−250, 0) mm; on the right, the 10 kgf weight was applied at the point (250, 0) mm and the 6 kgf
weight was applied at the point (0, 200) mm. For each arrangement, the measured value of COF and
its distance to the origin (r) are presented, as well as the corresponding expected (theoretical) values.
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Figure 10. COF measurements after loading the walker frame with two lead weights: (a) 10 kgf at
(0, 200) mm and 6 kgf at (−250, 0) mm; (b) 10 kgf at (250, 0) mm and 6 kgf at (0, 200) mm.

The relative error of r was chosen to assess the accuracy of the measurement system. The values
obtained, below 5%, are acceptable taking into account that this is a lost-cost measurement system.

4.2. Computation of I1 (Assessment of Unbalance)

This test was done with the collaboration of a male user with 75 kgf of weight and impaired gait
caused by an injury on the right lower limb. This user will be referred as “Wally” (code name) in the
remaining of this paper.

Wally was instructed to make a “good” step following the recommendations of its physiotherapist.
Figure 11 presents the resulting plots of d, COFx and I1, which can be explained as follows:

• Gait phase 0 was omitted because it is a waiting state.
• During gait phase 1 the walker is lifted in the air and travels about 30 cm (from d ≈ 30 cm to

d ≈ 60 cm).
• Gait phase 2 is a waiting state that ends when the user starts moving the injured foot (making

COFx cross LEFT_TH).
• During gait phase 3 the user transfers part of his weight to the left to compensate the lack of

support on the injured foot [31]. While the injured foot moves forward, the distance returns to
the base value (around 30 cm) and COFx returns to the origin, thus making the machine enter in
stage 4.

• Gait phase 4 is another waiting state that ends when the user moves the healthy foot (making
COFx cross RIGHT_TH).

• During gait phase 5 the user transfers part of his weight to the right. The load applied during
phase 5 is lower than that applied on phase 3 because the healthy foot moves more easily than the
injured foot. The step ends when both feet stay side-by-side, making COFx return to the origin
and restart the state machine.
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Figure 11. Synchronized plots of d (top), COFx (middle) and I1 (bottom) during a “good” step. The square
boxes indicate gait phases from 1 to 5. The threshold values are WEIGHT_TH = 0.5 × WALKER_WEIGHT,
TRAVEL_TH = 6 cm, LEFT_TH = −78 mm and RIGHT_TH = +78 mm.

The risk indicator I1 has two maximums that match the extreme values of COFx, when the user
is more unbalanced and relies more on the walker. The first maximum is above 30% and the second
maximum is above 20%, meaning that the unbalance is greater when the user moves the injured foot.
These results suggest that I1 is strongly related with the posture of the user inside the walker frame but
more experiments, involving more impaired users, will be needed to identify patterns and establish
threshold values for I1.

4.3. Computation of I2 (Assessment of Motor Incoordination)

This test was done with the collaboration of ten non-disabled, inexperienced users with ages
between 42 and 70 years old. Since none of them have ever used a walker before, they all received a
preliminary briefing, given by a physiotherapist, about how to use the device correctly (i.e., they all
became aware of the gait phases depicted in Figure 2).

Each user was instructed to do two walks, of twenty steps each, over a straight line drawn on
the floor. During the first walk the user did not receive any feedback at all; during the second walk
the user received live feedback (audio) from the Spy Walker application. The feedback included the
classification of the step (“good” or “bad”) and the cause of the failure (“step aborted,” “injured foot
failed to move forward” or “healthy foot failed to move forward”). Figure 12a plots the risk indicator
I2 for user 1 during the two walks. Similar results were found for the other users. Figure 12b presents
the average value of I2, per walk, with and without feedback, for the ten users. In all cases, the motor
coordination became better after the feedback given by the Spy Walker application.

The state machine worked well with no false “goods” and a few false “bads”. This can be justified
by the fact that the validation of a “good” step is very demanding. Failures such as aborting a step by
lifting the walker in the air or starting a step with the wrong foot were successfully detected.
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Figure 12. Risk indicator I2 with and without feedback from the Spy Walker application: (a) Instantaneous
values for the user 1; (b) Mean values for all users.

4.4. COF Trajectories

Wally was instructed to make a sequence of three “good” steps. During that action, the coordinates
of the COF were recorded and plotted as shown in Figure 13. The plot on the top (a) represents the
waveforms of COFx and COFy over time; the plot in the middle (b) represents the trajectory of COF
on the plane; and the plot at the bottom (c) represents the histogram of COFx. When the user is not
walking, which is most of the time, the COF is around the origin. When the user makes a step, the COF
moves first to the 2nd quadrant, then to the 1st quadrant and finally returns to the origin.

The centre of the rectangle depicted in Figure 13b is located in (−37, 62) mm because the area
covered on the 2nd quadrant is wider than that covered on the 1st quadrant. The skewness of the
statistical distribution shown in Figure 13c is negative, equal to −0.93, because the tail on the left side
is longer than that on the right side. These are mathematical parameters that suggest (correctly) that
the user has an injury on the right lower limb and, for that reason, needs more support on his left side.
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4.5. LIDAR Measurements

Wally was instructed to make a sequence of ten “good” steps. During that action, the distance
measured by the LIDAR, together with the corresponding step lengths, were recorded and plotted as
shown in Figure 14. The step length is calculated by subtracting the maximum distance value (acquired
at the end of gait phase 1) from the minimum distance value (acquired at the end of phase 5).
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Figure 14. Distance values and step lengths for walker gait containing 10 steps.

The user walked a total distance of 3.33 m, in steps varying between 37.1 cm and 30.3 cm, with
mean value equal to 33.3 cm and standard deviation equal to 2.3 cm. The low value of standard
deviation suggests a regular walking pattern. The baseline of the LIDAR signal indicates the average
distance between the user and the walker frame.

5. Conclusions

The paper presents an upgraded solution that combines force and distance measurements to
monitor the usage of walker assistive devices. The sensed data is transmitted over a Bluetooth link
and processed on the host side to extract two risk indicators: I1 representing the (un)balance of forces
applied on the walker legs and I2 representing the (in)coordination between walker movements and
user gait. Data processing and presentation is done by a Windows-based application managed by
the physiotherapist.

The experimental results showed that the measurement system works as expected concerning
the localization of the COF and the extraction of distance metrics. The risk indicators were computed
successfully and the obtained values seem to be meaningful to assess the posture of the user inside
the walker frame. The live feedback provided by the Spy Walker application can help inexperienced
users to manoeuvre correctly walker assistive devices. New mathematical indicators (geometrical and
statistical) may be extracted to characterize gait and infer about the physical condition of the user.

It is important to refer that the proposed measurement system is a low-cost prototype that can
easily be adapted to existing mobility aiding devices, including standard walkers, wheeled walkers
and rollators.
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