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We review the results on the bottomonium system from the CMS experiment at the

Large Hadron Collider. Measurements have been carried out at different center-of-mass

energies in proton collisions and in collisions involving heavy ions. These include preci-
sion measurements of cross sections and polarizations, shedding light on hadroproduction

mechanisms, and the observation of quarkonium sequential suppression, a notable indica-

tion of quark-gluon plasma formation. The observation of the production of bottomonium
pairs is also reported along with searches for new states. We close with a brief outlook

of the future physics program.
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1. Introduction

Bottomonia, bound states bb̄ of a bottom quark and its antiparticle, constitute the

heaviest meson system. The only heavier quark, the top quark, decays before it can

hadronize. Light quark (u, d, s) constituents in mesons typically move at relativis-

tic speeds as their masses are considerably smaller than the meson masses. Heavy

quarkonia, charmonia and especially bottomonia, are in contrast approximately

non-relativistic systems. This allows in turn the application of effective theoreti-

cal approaches to describe nonperturbative effects in Quantum Chromodynamics

(QCD). As a result, heavy quarkonia provide a valuable framework for probing the

strong interaction as described by QCD within the Standard Model (SM) and for

searching for new phenomena.

The description of heavy quarkonium production is achieved through effective

models of QCD. A most complete approach is provided by nonrelativistic QCD

(NRQCD),1,2 which implements a factorization of the perturbative and nonpertur-

bative terms. The latter are expressed in terms of long-distance matrix elements,

assumed to be universal. Several effective QCD models1–13 of quarkonium produc-

tion predict different cross sections and polarizations. The thorough measurement

of these observables plays a crucial role in advancing the theoretical understanding

of the quarkonium production mechanisms.

Under extreme temperature and density conditions, QCD calculations predict

a transition to a color-deconfined phase of matter, referred to as the quark-gluon

plasma (QGP). Heavy quarkonia are most promising probes of the QGP medium,

having become the focus of detailed scrutiny since the phenomenon of color screen-

ing was proposed.14 While charmonia has been extensively explored as a QGP

probe,15,16 until recently this had not been the case for bottomonia, even though

the bottomonium family of states provides experimentally more robust and theo-

retically cleaner probes.

Heavy flavor states in general, and quarkonia in particular, are “standard can-

dles”, which are explored for detector calibration and used in precision measure-

ments of the SM as well as searches for phenomena beyond the SM. Precision studies

of observable decay rates may indicate discrepancies that would be accommodated

by new mediating heavy bosons. They can also be used directly to search for new

physics. Decays to pairs of new light particles, or possible dark matter candidates,

are foreseen in certain new physics scenarios. Quarkonia may be further explored to

search for exotic states and rare physics processes that are sensitive to new physics.

Bottomonia originate from bb̄ pairs that are produced in the partonic interactions

occurring in the hadronic collision, which evolve into color-neutral states, and are

experimentally detected through their leptonic decay channels, as illustrated in

Fig. 1. The first bottomonium state to be discovered, the Υ, was observed in 1977

in the µ+µ− spectrum produced in 400 GeV proton-nucleus collisions by the E288

experiment at Fermilab.17 Later many other bottomonium states have been seen

and the bb̄ system has been experimentally established, as summarized in Fig. 2.18
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Fig. 1. Schematic illustration of the production of a bb̄ pair in a hadronic collision, followed
by its evolution into a color-singlet bottomonium state, involving gluon emission, and eventual

electroweak decay into a muon pair.

Since 2010, a new era of detailed bottomonium studies has been underway at the

 = PCJ − +0 − −1 + −1 + +0 + +1 + +2 − −2

(1S) 
b

η

(2S) 
b

η

(3S) 
b

η

(11020)ϒ

(10860)ϒ

(4S)ϒ

(3S)ϒ

(2S)ϒ

(1S)ϒ

 (2P)bh

 (1P)bh (1P) 
b0

χ
(1P) 

b1
χ (1P) 

b2
χ

(3P) 
b

χ

(2P) 
b0

χ (2P) 
b1

χ (2P) 
b2

χ

)2D3(1 ϒ

BB

*B*B
sBsB

Thresholds:

η
ππ

ππ
ππ

ππ

KK
ππ

ππ

0π

ππ ππ

ππ
η

ππ ππω π π

9300

9500

9700

9900

10100

10300

10500

10700

10900

11100

Mass (MeV)

Fig. 2. Representation of the bottomonium system, taken from the Particle Data Group 2012 Re-

view.18 The dashed lines indicate bb̄ states that have not yet been experimentally established. The
single photon transitions Υ(nS) → γηb(mS), Υ(nS) → γχbJ (mP ), and χbJ (nP ) → γΥ(mS) are
omitted for clarity. Theoretically, the quarkonium system has been thoroughly studied with poten-
tial models,19–25 effective field theory approaches,26,27 and lattice gauge theory calculations.28,29

Large Hadron Collider (LHC)30 with higher energy and intensity. The center-of-

mass energy of the proton-proton (pp) collisions reached 13 TeV in 2015, which is

about 7 times higher than that attained at the Tevatron (pp̄). The center-of-mass
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energy reached at the LHC with the Lead-Lead (PbPb) collisions is more than 20

times that attained at the Relativistic Heavy Ion Collider (RHIC).

The Compact Muon Solenoid (CMS) is a general purpose detector at the LHC. It

explores both pp collisions and collisions involving heavy ions. The charged particles

produced in the collisions leave trajectories in the CMS all-silicon Tracker. The

particle momentum is precisely measured in the 3.8 T axial magnetic field. Since

the start of its operation, several large data sets have been delivered by the LHC.

The integrated luminosity recorded by CMS is shown in Fig. 3.31 Early into the

start of the LHC data taking in 2010, a full spectrum of the dimuon invariant mass

was reconstructed by CMS. As evidenced in Fig. 4, even with an initial data set

corresponding to a few hundred nb−1, CMS was able to observe many SM particles,

in a wide mass range from the ω to the Z boson. The figure essentially combines

many particle physics discoveries of the past 50 years into a single picture.
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and pPb collisions (right).31
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produced with the very first LHC data, collected in 2010 and corresponding to 280 nb−1 in pp
collisions at

√
s = 7 TeV. Bottom left:33 the most recent version, produced with a data set of 13.1

fb−1 √
s = 13 TeV collected in 2016, which also highlights the dedicated heavy-flavor triggers in

use by the experiment. Top right: the dimuon invariant mass spectrum in PbPb collisions. Bottom
right: the dimuon invariant mass spectrum in pPb collisions.

Taking advantage of its good momentum resolution, CMS is able to distinguish

the three lowest lying Υ resonances in the dimuon decay channel. None of the heavy

ion experiments at RHIC were able to achieve this, and ALICE and ATLAS at the

LHC are only able to resolve the Υ resonances with difficulty. Compared to LHCb

and the Tevatron experiments, CMS has both complementary and wider kinematic

acceptance coverage. These advantages make CMS uniquely suited for bottomonium

measurements.

In this review, measurements of S-wave bottomonium Υ(nS) production in pp,

PbPb, and pPb collisions are summarized. The relative production of P -wave bot-

tomonia χb(nP ) is presented. Several effective models of QCD have been compared

to and challenged by these measurements. The QCD predicted deconfined medium

has been probed by comparing the measurements from different types of collisions.

The first observation of bottomonium pair production and searches for new states

are also discussed.
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2. Production in proton-proton collisions

Historically, quarkonium production has been poorly understood. A number of

effective QCD approaches attempt to describe the nonperturbative evolution of

the qq̄ pair into a color neutral bound state, including the color-singlet model

(CSM),9,10 the color-octet mechanism (COM)11,12 dominant in NRQCD, and the

color-evaporation model (CEM).13 The models have been proposed to explain

hadroproduction measurements. The similarities and differences among them are

discussed in detail elsewhere.34 These models provide different predictions for the

quarkonium production cross sections and polarizations. Bottomonium states are

heavier and more non-relativistic than charmonium states, so the comparison be-

tween experiment and theory is expected to be more reliable for bottomonium.35 A

precise measurement of bottomonium production is thus crucial for distinguishing

among the models.

In recent years, cross section and polarization results of Υ production in

hadron collisions have been reported by CDF,36,37 D0,38 CMS, ATLAS,39,40 and

LHCb.41,42 However, none of the current theoretical models predict both the rate

and the polarization as observed in any of these experiments. This situation is

referred to as the “quarkonium puzzle.” In this section, we summarize the Υ pro-

duction measurements for the different center-of-mass regimes probed by CMS.

The Υ(nS) states are typically reconstructed through the dimuon decay channel,

Υ(nS) → µµ. While the branching fractions for these decays are only about 2%,

Fig. 4 shows that CMS is able to collect a large number of Υ events even in a limited

integrated luminosity data set and to cleanly resolve the lightest three Υ states.

2.1. Υ cross section

The first preliminary results on quarkonium production cross sections at the LHC

were reported32 only a few months after the start of data taking, in summer 2010,

based on less than 0.3 pb−1 collected by CMS. The first publication43 of the cross

sections of the individual Υ(nS) states in pp collisions at
√
s = 7 TeV followed

based on a 10 times larger data set, corresponding to an integrated luminosity of

3.1 pb−1.

The Υ(nS) differential cross section is measured as:43

d2σ(pp→ Υ(nS)X)

dpTdy
·B(Υ(nS)→ µ+µ−) =

NΥ(nS)(A, ε)

L ·∆pT ·∆y
, (1)

where B is the dimuon branching fraction, N is the signal yield corrected for the

event weights given by the inverse product of the detector acceptance A and the

combined trigger and reconstruction efficiencies ε, L is the integrated luminosity,

and ∆pT and ∆y are the widths of the bins in transverse momentum (pT) and

rapidity (y). The symbol X in Eq. (1) is used to indicate that the measurements

include feed-down contributions originating from decays of higher-mass bottomonia

as indicated in Fig. 2.
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Fig. 5. The dimuon invariant mass distribution between 8 and 12 GeV, reconstructed using pp

data corresponding to 3 pb−1 collected by CMS in 2010 (
√
s = 7 TeV).43 The Υ(1S), Υ(2S), and

Υ(3S) resonances are clearly visible and fully resolved.

The signal yield before correction is determined using an extended unbinned

maximum-likelihood fit to the dimuon invariant mass spectrum, as shown in Fig. 5.

The dimuon candidates are required to satisfy |y| < 2, while the individual muon

candidates must satisfy kinematic thresholds that depend on pseudorapidity η, to

ensure that the trigger and reconstruction efficiencies are high and stable:43

pµT > 3.5 GeV, if |ηµ| < 1.6,

pµT > 2.5 GeV, if 1.6 < |ηµ| < 2.4.
(2)

Such a detector acceptance region defined by the pT, η, and y requirements is

referred to as the fiducial region. The Υ→ µ+µ− signal acceptance A is defined as
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the fraction of Υ mesons with |y| < 2 and with both muons in the fiducial volume

of the detector, and is determined from Monte Carlo simulation. The acceptance

as a function of Υ pT is shown in Fig. 6 (left).43 The seemingly peculiar form of

this graph shows that, when the Υ is produced at rest, both muons are likely to

reach the muon detector and pass the pµT threshold. When the Υ acquires a small

boost, one of the muons may be below the muon detection threshold defined in

Eq. (2), and the acceptance drops. This is due to the large mass of the Υ compared

to the pµT threshold. For an Υ momentum above about half the Υ mass (in natural

units), the strongly boosted Υ passes large momentum to the two daughter muons

and the acceptance starts to increase with Υ pT. The trigger and reconstruction

efficiency of the accepted muon is determined with a data-based tag-and-probe

(T&P) technique.43,44 An example efficiency turn-on curve as a function of the muon

pT is displayed in Fig. 6 (right).43 Other selection criteria, such as the separation

between the two muons, and the vertex quality of the dimuon candidate, are also

applied, and accounted for in the total efficiency.

Assuming unpolarized Υ(nS) production, the product of the Υ(nS) cross section

and dimuon branching fraction, in pp collisions at 7 TeV, in the rapidity region

|y| < 2 is:43

σ(pp → Υ(1S)X) ·B(Υ(1S)→ µ+µ−)

= 7.37± 0.13(stat.)+0.61
−0.42(syst.)± 0.81(lumi.)nb,

σ(pp → Υ(2S)X) ·B(Υ(2S)→ µ+µ−)

= 1.90± 0.08(stat.)+0.20
−0.14(syst.)± 0.21(lumi.)nb,

σ(pp → Υ(3S)X) ·B(Υ(3S)→ µ+µ−)

= 1.02± 0.07(stat.)+0.11
−0.08(syst.)± 0.11(lumi.)nb.

(3)

The differential Υ(nS) cross sections as functions of Υ pT and rapidity are shown

in Fig. 7.43 The measurements are performed down to zero Υ pT. The complemen-

tarity of the CMS and LHCb41 detectors in terms of phase-space coverage is also
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illustrated. Heralding the start of the LHC era, the first bottomonium measurement

performed at the LHC covers about the same Υ pT range as the Tevatron experi-

ments had reached at the end of their lifetime.36,38 The measured cross section is

about three times larger than that measured at the Tevatron. This increase in the

cross section values is expected, given the increased center-of-mass energy at the

LHC compared to the Tevatron.

To measure the Υ differential cross section more precisely, especially in the high

pT region, the analysis was subsequently extended to a larger data set, also collected

in 2010,45 corresponding to an integrated luminosity of about 36 pb−1. In a wider Υ

rapidity and transverse momentum range, |y| < 2.4 and pT < 50 GeV, the product

of Υ production cross section and dimuon branching fraction at 7 TeV is found to

be:45

σ(pp → Υ(1S)X) ·B(Υ(1S)→ µ+µ−)

= 8.55± 0.05(stat.)+0.56
−0.50(syst.)± 0.34(lumi.) nb,

σ(pp → Υ(2S)X) ·B(Υ(2S)→ µ+µ−)

= 2.21± 0.03(stat.)+0.16
−0.14(syst.)± 0.09(lumi.) nb,

σ(pp → Υ(3S)X) ·B(Υ(3S)→ µ+µ−)

= 1.11± 0.02(stat.)+0.10
−0.08(syst.)± 0.04(lumi.) nb.

(4)

To facilitate the comparison with the results given in Eq. (3), a matching rapidity

requirement was applied. The results agree within uncertainties in the |y| < 2

region; for example, σ(pp→ Υ(1S)X) ·B(Υ(1S)→ µ+µ−) = 7.50± 0.05 (stat.) nb.

is statistically compatible with the result in Eq. (3). The differential cross sections,

corrected for acceptance and efficiency, as a function of Υ pT and y are shown

in Fig. 8.45 The comparisons of the measured results with the CASCADE46 MC

generator, the CEM model without feed-down,13 NRQCD COM at next-to-leading

order (NLO) including feed-down,12 CSM to NLO, and NNLO*,10 are also shown

in the figure.

The cross sections reported above assume unpolarized production. Polarization

affects the spatial distribution of the two muons from the Υ decay, and therefore

the fraction of the signal that is in the detector acceptance region. For extreme

assumptions for the polarization, i.e. either fully transverse or fully longitudinal,

the cross section results vary by about ±20%. A fiducial cross section may be

defined as the Υ yields corrected only by the efficiency but not by the geometric

acceptance, which can be used to compare with theoretical models without making

any assumption for the polarization. The product of the fiducial Υ(nS) cross section

and dimuon branching fraction is:45

σ(pp → Υ(1S)X) ·B(Υ(1S)→ µ+µ−)

= 3.06± 0.02(stat.)+0.20
−0.18(syst.)± 0.12(lumi.)nb,

σ(pp → Υ(2S)X) ·B(Υ(2S)→ µ+µ−)

= 0.910± 0.011(stat.)+0.055
−0.046(syst.)± 0.036(lumi.)nb,

σ(pp → Υ(3S)X) ·B(Υ(3S)→ µ+µ−)

= 0.490± 0.010(stat.)+0.029
−0.029(syst.)± 0.020(lumi.)nb.

(5)
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Fig. 8. The differential cross sections of Υ(1S) (a), Υ(2S) (b), and Υ(3S) (c) in pp collisions at

7 TeV as a function of Υ pT in the rapidity region |y| < 2, and as a function of Υ rapidity (d).

The complementarity of the CMS and LHCb41 measurements in terms of phase-space coverage is
illustrated in (e).

As pT increases, higher-order corrections become more significant in several of

the theoretical models. Therefore, cross section measurements in high pT regions

are important for distinguishing among the models. The CMS analysis was further

expanded using the full 4.9 fb−1 pp collision data taken at
√
s = 7 TeV in 2011 with

the pT coverage increased to 100 GeV.47

Figure 9 (left)47 shows the differential cross section as a function of pT from

the two groups of data, one integrated over the rapidity range of |y| < 1.2 (CMS

2011, black dots) and the other scaled to the same range (CMS 2010, cross-hatched

areas). The solid lines are the NLO NRQCD color-octet calculations from Ref. 48,

with the range of pT further extended to pT < 100 GeV by the corresponding

authors, which describe the trends of the data points for all the three Υ states. This

significant increase of the pT range is also useful in studying the pT dependence in

other models.

A similar measurement was repeated using a data set corresponding to 2.7 fb−1,

collected in 2015, at the beginning of the second LHC data-taking period (Run 2).

This was the first result of the Υ cross section at
√
s = 13 TeV reported by CMS.49
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An analysis strategy similar to the one previously described was used: dimuons were

selected in the central rapidity region, |y| < 1.2, and tighter muon pT acceptance

thresholds were adopted, namely pµT > 4.5 (4.0) GeV for |ηµ| < 0.3 (0.3 < |ηµ| <
1.4). The pT reach attained with this measurement based on the initial data is

already 100 GeV, and will increase with enlarged Run 2 datasets. While the focus is

in the high pT region, a lower threshold is effectively imposed from tightening trigger

rate requirements. This measurement is reported from an Υ pT of 20 GeV. The

results are shown in Fig. 9 (right),49 where a comparison of the Υ(nS) differential

cross sections for the 7 and 13 TeV data sets is also given. The cross sections for all

bottomonium states at 13 TeV are larger than the corresponding cross sections at

7 TeV by a factor of two to three. This increase is expected from the
√
s-induced

variation in the parton distribution functions, and is confirmed by simulations using

the PYTHIA 8 description. The extensions of NRQCD and other theoretical models

at 13 TeV are currently in progress.

Reduced event number data sets accumulated in special pp runs at different

center-of-mass collision energies, of
√
s = 2.76 TeV (Ref. 50) and

√
s = 5.02 TeV

(Ref. 51), corresponding to 5.4 and 28 pb−1, respectively, have been also explored.

The differential cross section measurements of the individual Υ(nS) states as a

function of pT and rapidity are shown in Fig. 10. Despite the modest statistical

power and reduced pT reach, because of the small size of the data sets accumulated,

these measurements add useful information for characterizing the production
√
s

dependence.

The relative production cross sections provide further information, from both

experimental and theoretical perspectives. For this reason CMS has provided cross

section ratios since the earliest measurements,43,45,47 and these are summarized in

Fig. 11. They illustrate a clear increase in the production ratios, Υ(nS)/Υ(1S),

particularly at low pT values. As larger data sets probe the higher pT region, a
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Fig. 10. Υ(nS) differential cross sections times branching fractions as a function of pT (left) and
rapidity (right), in pp collisions taken at 2.76 TeV (top) and 5.02 TeV (bottom).

saturation threshold appears at about three times the Υ mass, as displayed in the

right-side panel of Fig. 11.

2.2. Υ polarization

Measurements of quarkonium polarization provide important information about the

production mechanisms, and complement the cross section measurements. As was

discussed, the latter also have a sizable dependence on the former. The strategy

adopted by CMS involves the measurements of the assumed unpolarized cross sec-

tions and separately of the polarizations. The two form the proper inputs to carry

out global fits for disentangling and characterizing the competing production mech-

anisms.

Although the ψ(nS) and Υ(nS) cross sections measured at Tevatron36,38,52 and

LHC41,43,45,53 can be reproduced by NRQCD COM calculations, the correspond-

ing predictions54 for “strong” transverse polarizations are in stark contrast with

the negligible polarizations observed by the experiments.55 And, although heavy
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quarkonia from color singlets are expected to be produced with longitudinal polar-

ization,9,35 this is also not observed.

The polarization can be measured through the analysis of the angular distribu-

tion of the two leptons produced in the Υ→ µ+µ− decay:7,8

W (θ, φ) ∝ 1

3 + λθ
(1 + λθ cos2 θ + λφ sin2 θ cos 2φ+ λθφ sin 2θ cosφ) , (6)

where φ and θ are the azimuthal and polar angles of the outgoing leptons with re-

spect to the quantization axis (z-axis) of the chosen polarization frame. λ are the set

of polarization parameters; the parameter λθ is 0 (1) for fully longitudinal (trans-

verse) polarization. The polarization parameters depend on the reference frame in

which they are measured. The three most commonly used reference frames are the

helicity frame (HX), where the z-axis coincides with the Υ momentum direction

in the collision center-of-mass frame; the Collins–Soper (CS) frame,56 where the

z-axis is chosen as the bisector of the two beam directions in the Υ rest frame; and

the perpendicular helicity (PX) frame,57 which is orthogonal to the CS frame. The

y-axis is always taken along the direction of the vector product of the two beam

directions in the Υ rest frame. In addition, one can define some observables that do

not depend on the frame in which they are measured.

The bottomonium states are heavier and satisfy the non-relativistic approxima-

tion better than charmonium states. Measurements of the Υ states, especially in

the high pT region, are thus expected to provide more robust tests of NRQCD.

Earlier measurements from CDF37 and D058 collaborations were found to be in

disagreement with the theoretical predictions, and also disagreed to some degree

between the two experiments. In these earlier measurements only the λθ parameter

was extracted, in a single polarization frame. CMS measured all the polarization

parameters λθ, λφ, and λθφ, in the complementary polarization frames mentioned

above, as well as the frame-invariant quantity λ̃ = (λθ + 3λφ)/(1 − λφ), using the
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pp data sample at
√
s = 7 TeV corresponding to an integrated luminosity of 4.9

fb−1.59

Figure 12 shows the λθ, λφ, and λθφ measurements as function of pT,59 for the

Υ(nS) states in the HX frame, in the rapidity range |y| < 0.6. Measurements in

complementary kinematic regions and reference frames were also performed. The

frame-invariant parameters λ̃ for the three Υ states were also studied as a function

of the Υ(nS) pT, and are in good agreement in the HX, CS, and PX frames.59

All polarization parameters are compatible with zero or small values in the three

polarization frames.

In summary, the measurements exclude large longitudinal and transverse polar-

izations for Υ(nS), in extended pT and y ranges compared with previous experi-

ments. This result is in disagreement with the theoretical predictions for high-energy

hadron collisions, as shown in Fig. 13.59,60

The measurements of Υ cross section and polarization have led to new theo-

retical interpretations of the quarkonium puzzle. For instance, in a recent study,6

global fits using both cross section and polarization measurements are performed

to determine the nonperturbative parameters of bound-state formation. This study

reveals unexpected hierarchies in the phenomenological long-distance parameters,

which brings a new understanding of the bound-state formation mechanism in QCD.
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3. Suppression in heavy ion collisions

3.1. Υ suppression in PbPb

Quarks and gluons are normally bound together to form composite particles. How-

ever, QCD allows for strongly interacting matter to undergo a phase transition to

an unbound (deconfined) state at sufficiently high temperature and density. The

unique medium of quarks and gluons in this deconfined state where the partons

are no longer confined to hadrons is referred to as the quark-gluon plasma. This

medium can be produced in heavy ion collisions, where once the heavy quarko-

nium states are formed they are expected to unbind due to the strong interactions

with partons in the medium through a QCD Debye screening mechanism.14 Above

a certain temperature, the weaker bound states, such as Υ(3S), are expected to

unbind more completely compared to the more strongly bound states, e.g. Υ(1S).

At even higher temperatures, more of the weakly bound states are expected to dis-

solve. In the experiment, this sequential unbinding (also referred to as melting) of

quarkonium states is expected to be observed as a sequential suppression of their

yields. The suppression of heavy quarkonium states was accordingly proposed as

the smoking-gun signature of the phase transition, and its sequential pattern as a

probe of the medium temperature.14,61,62

The NA5063–65 and NA6066 experiments at the CERN Super Proton Syn-

chrotron, and the PHENIX15 and STAR67 experiments at BNL RHIC had mea-

sured suppression of J/ψ and ψ(2S) yields in heavy ion collisions. However, these

experiments were not able to carry out quantitative studies of the Υ(nS) states.

Bottomonium states are regarded as better probes because recombination effects
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are believed to be much less significant than in the charmonia case.68 Although

the recombination effect is expected to increase for bottomonia from RHIC to LHC

energies, it is predicted to remain small.69

The first indication of Υ suppression in heavy ion collisions was reported by

CMS in 2011.61,70,71 This result is based on data collected during the first LHC

PbPb run in 2010 and a special pp run in 2011, at the same 2.76 TeV center-of-mass

collision energy per nucleon pair (
√
sNN ). The PbPb and pp data sets correspond

to integrated luminosities of 7.3 µb−1 and 230 nb−1, respectively. Thanks to the

good momentum resolution of the CMS detector and the large event samples, the

three Υ resonances observed in the dimuon mass spectrum were well separated for

both PbPb and pp. Similar techniques were applied to the two data sets to extract

yields and calculate cross sections. The results are shown in Fig. 14,72 where the

solid (blue) line represents the fit to the mass spectrum in PbPb, and the dashed

(red) line represents the line-shape from the fit to the pp data. In this figure, all

three Υ(nS) peaks are normalized such that the Υ(1S) yield in the pp line-shape

matches the Υ(1S) yield in the PbPb fit. The Υ(2S) and Υ(3S) resonances in

PbPb collisions are clearly more strongly suppressed than the Υ(1S), compared

with the pp result. The statistical significance of the effect has been evaluated to be

2.4 σ. The double ratio, [Υ(2S+ 3S)/Υ(1S)]PbPb/[Υ(2S+ 3S)/Υ(1S)]pp, measured

in the kinematic region defined by pµT > 4 GeV and |ηµ| < 2.4, is found to be

0.31+0.19
−0.15(stat.)± 0.03(syst.),61 significantly smaller than unity.

Besides the hot-nuclear-matter (HNM), corresponding to the QGP, the suppres-

sion of Υ production can also be caused by cold-nuclear-matter (CNM) effects.73

But the CNM effects cancel to first order in the Υ double ratio measurements. For
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example, one of the initial-state effects, “shadowing,”73 is expected to suppress all

three Υ resonances by almost the same factor, so it has a small impact on their

ratio. One of the final-state effects, “nuclear absorption,”73 is expected to be less

important at LHC collision energies. (To further probe CNM effects, measurements

in proton-lead collisions are conducted as described in Sec. 3.2.) Other effects that

could affect the suppression measurements, such as differences in the detector ac-

ceptance and efficiency, are similar for the different Υ states and largely cancel in

the double ratio analysis.

The integrated luminosity of the second LHC PbPb run exceeded 150 µb−1 at

the end of 2011, which is approximately 20 times larger than the 2010 integrated

luminosity. With this large data set, the relative suppression of excited Υ states

with respect to the Υ(1S) ground state in PbPb was observed with a significance

exceeding 5σ.74 A comparison of dimuon mass spectra in PbPb and pp is shown

in Fig. 15.75 The Υ(1S) state is clearly suppressed in PbPb relative to pp, while

the Υ(2S) and Υ(3S) states are suppressed to an even greater degree. The double

ratios for Υ(2S) and Υ(3S) are measured as:74

[Υ(2S)/Υ(1S)]PbPb

[Υ(2S)/Υ(1S)]pp
= 0.21± 0.07(stat.)± 0.02(syst.),

[Υ(3S)/Υ(1S)]PbPb

[Υ(3S)/Υ(1S)]pp
= 0.06± 0.06(stat.)± 0.06(syst.) < 0.17(95%CL).

(7)

In addition to the relative suppression of the two excited Υ states with respect

to the ground state, the absolute suppression of all three individual Υ states was

also measured. This is quantified by the nuclear modification factor, RAA, that is

defined as the ratio of the yield per nucleon-nucleon collision in PbPb relative to
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that in pp, corrected for efficiencies and normalized by luminosities. It is measured

as

RAA =
Lpp

TAANMB

Υ(nS)|PbPb

Υ(nS)|pp
εpp
εPbPb

, (8)

where TAA is the nuclear overlap function,71 and NMB is the number of minimum-

bias events sampled by the event selection. When RAA < 1, suppression in PbPb

is observed; otherwise, there is no indication of medium effects. A more detailed

explanation of the RAA observable can be found in Ref. 74. The absolute suppression

of the three individual Υ resonances is measured to be:74

RAA(Υ(1S)) = 0.56± 0.08(stat.)± 0.07(syst.),

RAA(Υ(2S)) = 0.12± 0.04(stat.)± 0.02(syst.),

RAA(Υ(3S)) = 0.03± 0.04(stat.)± 0.01(syst.) < 0.10(95%CL).

(9)

Subsequently, the pp event sample was increased by about 20 times in 2013

(5.4 pb−1) ,50 which allowed for a better differential RAA study as function of the

Υ rapidity, transverse momentum, and centrality. Figure 16 shows the Υ(1S) and

Υ(2S) RAA versus rapidity (left plot) and transverse momentum (middle plot).
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Centrality is an important parameter in QGP matter studies because it is di-

rectly related to the overlap region of the colliding nuclei. It is determined from

the energy deposits in the forward calorimeter,76 starting from 0% for the most

central collisions. With Glauber model calculations,77,78 the centrality variable can

be expressed in terms of the number of nucleons participating in the collisions,

Npart. In PbPb collisions, Npart is the number of nucleons (at most 208 for a Pb

nucleus) that collide at least once with nucleons in the other Pb nucleus. In Fig. 16

(right), the RAA values for Υ(1S) and Υ(2S) are shown as functions of Npart.
50 For

Υ(1S), the suppression was observed to increase with the centrality of the collisions.

Comparisons with theoretical models are given in Ref. 79.
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The suppression of Υ states in PbPb collisions at
√
sNN = 5.02 TeV is expected

to be stronger than that measured at 2.76 TeV, because the temperature of the

medium is higher owing to the higher collision energy. CMS results reported at

Quark Matter 201751,80,81 support this expectation, as shown in Fig. 17 (left). In

Fig. 17 (middle), the Υ(nS) RAA versus centrality is compared with model expecta-

tions,80,82 which contain bottomonia placed in an anisotropic hydrodynamic model.

Other comparisons of RAA as functions of Υ rapidity and transverse momentum

can be found in Refs. 80 and 51. The centrality-integrated double ratio for Υ(2S)

is measured as 0.308 ± 0.055(stat.) ± 0.019(syst.).81 The Υ(2S) double ratio as a

function of centrality is shown in Fig. 17 (right). The centrality-integrated double

ratio for Υ(3S) is less than 0.29 at 95% CL.81
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The sequential suppression behavior may be best illustrated by displaying RAA
as a function of the binding energy of the studied quarkonium states. This is rep-
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at 5.02 TeV with respect to pp collisions at 2.76 TeV (circles) and compared with similar ratios

for PbPb collisions at 5.02 TeV, which used a 5.02 TeV pp data set for the reference.

resented in Fig. 18,80,83 for all S-wave quarkonium states. In this way CMS has

experimentally established the sequential pattern of quarkonium suppression.

3.2. Υ suppression effects in pPb and in pp

As discussed above, cold-nuclear-matter effects will influence the formation of bot-

tomonium bound states. Some CNM effects could even cause a sequential suppres-

sion dependent on the binding energy of the bb̄ pairs. The suppression observed in

PbPb collisions is a combined effect caused by both CNM and HNM, while a pos-

sible suppression in proton-lead (pPb) collisions would be attributed to CNM only.

Consequently, it is essential to study Υ production in the pPb reference system, as

it is representative of the possible non-HNM suppression effects. This knowledge

can be extrapolated into the PbPb system so that the fraction of suppression due

to HNM in PbPb collisions can be understood.

The pPb data set collected by CMS in 2013 corresponds to an integrated lumi-

nosity of 31 nb−1. The pPb double ratios were measured to be:84

[Υ(2S)/Υ(1S)]pPb

[Υ(2S)/Υ(1S)]pp
= 0.83± 0.05(stat.)± 0.05(syst.),

[Υ(3S)/Υ(1S)]pPb

[Υ(3S)/Υ(1S)]pp
= 0.71± 0.08(stat.)± 0.09(syst.).

(10)

The results lie slightly below unit, pointing to the presence of possible non-HNM

effects. Such contributions reflect only as small corrections to the magnitude of the

sequential suppression in PbPb, which is highly significant and associated to HNM.

A comparison between pPb/pp and PbPb/pp double ratios is provided in Fig. 19.84

The Υ(nS)/Υ(1S) single ratios were also studied in the three collision systems,

20



 [GeV]
|>4η|

TE
1 10 210 310

(1
S

)
ϒ

(2
S

)/
ϒ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CMS

 = 2.76 TeVNNspp 

| < 1.93
CM

|y

 = 5.02 TeVNNspPb 

| < 1.93
CM

|y

 = 2.76 TeVNNsPbPb 

| < 2.4
CM

|y

(1S)ϒ
(2S)ϒ

|<2.4η|
tracksN

10 210 310
(1

S
)

ϒ
(2

S
)/

ϒ
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CMS

 = 2.76 TeVNNspp 

| < 1.93
CM

|y

 = 5.02 TeVNNspPb 

| < 1.93
CM

|y

 = 2.76 TeVNNsPbPb 

| < 2.4
CM

|y

(1S)ϒ
(2S)ϒ
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collisions.

along with their dependency on event activity variables. In the left panel of Fig. 20,84

the ratios are plotted with respect to the raw transverse energy deposited in the

most forward part of the hadron calorimeters at 4.0 < |η| < 5.2, while in the right

panel, the ratios are plotted with respect to the number of charged particle tracks,

excluding the two muons, with pT > 400 MeV and at |η| < 2.4. The tracks are

required to originate from the same vertex as the muon pairs.
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The decrease of the Υ(2S)/Υ(1S) ratio in Fig. 20 may indicate the presence

of some new phenomena in quarkonium production in pp collisions. Other results

recently published by the LHC experiments85–90 can also be interpreted as hints
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of collective effects in the high multiplicity pp environment at the attained ener-

gies.91,92 However, it is still not clear whether the medium produced in pp collisions

could undergo a phase transition, as observed in PbPb collisions.

A search was performed for possible new features in the bottomonium yields as

the particle multiplicities increase in pp collisions.93,94 Using the pp collision data

collected at
√
s = 7 TeV by the CMS experiment, the ratios of the cross sections of

the Υ(nS) mesons were investigated, as shown in Fig. 21.95 The production ratios

for Υ(2S)/Υ(1S), Υ(3S)/Υ(1S), and Υ(3S)/Υ(2S) are displayed as a function of

the number of charged particles with pT > 0.4 GeV and |η| < 2.4. All these ratios

clearly decrease with increasing multiplicity. Figure 22 shows the production ratios

in different pT regions.95 The decrease with increasing multiplicity is again present

and is stronger in the lower pT region. The behavior at higher pT is flatter, especially

so for the Υ(2S)/Υ(1S) ratio as indicated in Fig. 22 (left). Overall, the observed

decrease in the production ratios at
√
s = 7 TeV shows a similar trend as that at√

s = 2.76 TeV (Fig. 20).

4. P -wave states

Measurements of P -wave quarkonium production can be used to help further un-

derstand the hadron formation mechanism and test NRQCD predictions. The pro-

duction ratios χc2/χc1 have been measured by CMS,96 LHCb,97 and ATLAS,98

providing valuable insight into the quarkonium production mechanism. The χb1,b2
production cross section measurement is also important since it is particularly sen-

sitive to color-octet contributions.99,100 The measurement is challenging because of

the small separation (only 19.4 MeV) between the χb1(1P ) and the χb2(1P ) peaks,

as well as their small cross sections. The P -wave bottomonium production cross

section ratio, σ(χb2(1P ))/σ(χb1(1P )), was measured with the 20.7 fb−1 pp collision

data taken at
√
s = 8 TeV.100 The χb1(1P ) and χb2(1P ) states are detected through

their radiative decays χb1,2(1P )→ Υ(1S) γ, where the Υ(1S) decays to two muons,

and the photon is reconstructed through its conversion to a e+e− pair in the in-

ner layers of the tracker. Although the yield of reconstructed conversion photons is
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predicted by a theoretical calculation.102

small, the four-momentum of the photon can be precisely determined through a fit

to the electron and positron tracks in the tracker. With this strategy, the resulting

mass resolution (of the order of 5 MeV) of the χb candidates is sufficient to separate

the χb1(1P ) and χb2(1P ) peaks.

The σ(χb2(1P ))/σ(χb1(1P )) ratio was measured as a function of Υ(1S) pT. The

invariant mass distribution of the µµγ candidates is shown in Fig. 23 (left),100 where

the χb1(1P ) and χb2(1P ) states are visible. Figure 23 (right) gives the production

cross section ratio as a function of Υ(1S) pT measured by CMS, and a compar-

ison with the LHCb result101 and an NRQCD theoretical calculation.102 Because

of the lack of χb measurements, the calculation is based on the previous charmo-

nium measurements of σ(χc2)/σ(χc1),96–98 but scaled for the case of bottomonium.

Neither CMS nor LHCb results agree with the band predicted by the theory. More

studies are needed in order to thoroughly test NRQCD predictions in the P -wave

bottomonium sector.

5. Pair production

The measurement of quarkonium pairs originating from a common vertex in pp

collisions provides additional insight into the underlying mechanisms of particle

production at the LHC. The study of quarkonium pair production is essential to

understand contributions of SPS (single-parton scattering) and DPS (double-parton

scattering) processes. It also forms the baseline for the search of quarkonium pair

resonances, which are predicted by several studies.103,104 In this section, the first

observation and cross section measurement of Υ(1S) pair production, reported by
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CMS based on 20.7 fb−1 of pp collisions at
√
s = 8 TeV, is discussed.105
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Fig. 24. Invariant mass distributions of the higher-mass muon pair (left) and the lower-mass

muon pair (right). The different curves show the contributions of the various event categories from

the fit.

Proton collisions at hadron colliders are described by parton models. Each col-

liding hadron is characterized as a collection of free elementary constituents. In

a single hadron-hadron collision, two partons often undergo a single interaction

(SPS), although the composite nature of hadrons permits multiple distinct inter-

actions (multiple-parton interactions or MPIs) to occur, the simplest case being

DPS. The SPS mechanism for heavy quarkonium pair production can be described

to a good extent by the NRQCD COM approach.11 However, contributions from

the DPS mechanism are not easily addressed within this framework,106 and DPS or

MPIs are sometimes invoked to account for observations that cannot be explained

otherwise.107 Heavy quarkonium states are expected to probe the distribution of

gluons in the proton since their production is dominated by gluon-gluon interac-

tions.108,109 The large event samples at the LHC enable a search for exotic states

decaying into heavy quarkonium, such as tetra-bottom or tetra-charm quark states,

and a measurement of the double Υ cross section provides a benchmark measure-

ment for these searches.104,110

In the CMS pair production study,105 each pp collision is scanned for a signature

of four-muon candidates with the sum of muon charges equal to zero. To ensure

a uniform muon acceptance and a well-defined kinematic region, selected muons

are required to be within |ηµ| < 2.4 and have pT > 3.5 GeV. An Υ candidate is

reconstructed by combining two oppositely charged muons that originate from a

common vertex. In constructing the ΥΥ candidates, the two pairs of muons are

assigned as (i) the µ+µ− invariant mass of the higher-mass Υ candidate, M
(1)
µµ , (ii)

the µ+µ− invariant mass of the lower-mass Υ candidate, M
(2)
µµ .

The signal yield of Υ(1S) pair events is extracted by constructing a two-

dimensional (2D) unbinned maximum likelihood fit to the invariant mass of the

reconstructed µ+µ− combinations, M
(1)
µµ and M

(2)
µµ . Figure 24 shows105 the projec-
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tion of the invariant mass distributions of the higher and lower mass muon pairs

in the data with the superimposed 2D fit. The efficiency and acceptance of the

detector are computed with a data-embedding method that repeatedly substitutes

the measured muon four-momenta into different simulated events, which are then

subjected to the complete CMS detector simulation and reconstruction chain.

The cross section of Υ(1S) pair production, measured for events in which both

Υ(1S) mesons have |yΥ| < 2.0, is determined to be

σ(pp→ Υ(1S)Υ(1S)X) =
Nsignal w̄

L [B(Υ(1S)→ µ+µ−)]2

= 68.8± 12.7(stat.)± 7.4(syst.)± 2.8 (B) pb ,

(11)

where Nsignal = 38 ± 7 is the measured Υ(1S) pair yield, w̄ = 23.06 is the average

correction factor that accounts for all the inefficiencies in the measurement, L =

20.7 fb−1 is the integrated luminosity. The world-average branching fraction of the

Υ(1S) → µ+µ− decay, B = (2.48 ± 0.05)%, is used, and its uncertainty is quoted

separately in the result. The Υ(1S) mesons are assumed to decay isotropically.

Compared to an isotropic Υ(1S) meson decay, the cross section is expected to vary

up to 40%, for fully longitudinal or transverse polarizations of the Υ(1S) meson.

An effective area parameter, σeff , may be defined108,112 that accounts for the

geometric size and the transverse spatial distribution of the partonic matter inside

the proton. While σeff is assumed to be independent of the scattering process, it

may depend on the parton flavor. The cross section for Υ(1S) pair production is

related to σeff as

σeff =
[σ(pp→ Υ(1S)X)]2

2fDPS σ(pp→ Υ(1S)Υ(1S)X)
, (12)

where fDPS is the fraction of DPS contribution to the observed cross section. An

experimental measurement of the fraction fDPS, which may be extracted from an

analysis of the rapidity or azimuthal angle difference between the two produced

quarkonia, has not been yet produced, given the reduced number of Υ pairs in the

current data set. Using the single Υ cross section45 in Eq. (4), restricted to the

fiducial region (|yΥ| < 2.0) adopted in the measurement, and assuming fDPS to

be in the range 10–30%,109 a result of σeff in the rage 2–7 mb would be obtained.

Such an estimate of σeff is consistent with the range of values obtained from heavy

quarkonium studies,111,112 but smaller than that from multi-jet studies.113–116 This

variation may be interpreted as resulting from a dependence of σeff on the dominant

partonic interactions in each type of process; namely, gluon-gluon interactions for

quarkonium production, and quark-antiquark and quark-gluon parton interactions

for the jet-related channels. More data at the LHC will improve the determination

of SPS and DPS contributions in associated particle production.
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6. Search for new and exotic states

Quarkonium states are “standard candles” that are used extensively for detector

and trigger calibration, and for extending measurements and searches down to the

limit of the detector kinematic acceptance. The low-mass region is directly probed

for new particle states. For example, searches are performed for light pseudoscalar

states around the Υ mass,117 as predicted in scenarios such as next-to-minimal su-

persymmetric models (Fig. 25, left). In addition, quarkonium states can be explored

as final states in the search for new particles and rare processes.
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Fig. 25. Left: search for light states near the Υ mass, showing hypothetical signals from pseu-

doscalar Higgs bosons of masses 7 and 12 GeV. Right: Search for an exotic bottomonium state in

the Υ(1S)π+π− invariant mass spectrum. The two pronounced peaks correspond to the Υ excited
states decays Υ(nS) → Υ(1S)π+π−.

Studies of di-quarkonium production, such as reported in Sec. 5, open new op-

portunities to search for possible exotic resonance states decaying to quarkonium

pairs. In the bottomonium case reported above, one may probe for four b-quark

bound states.104,110

Various unexpected quarkonium-like states have been identified since the dis-

covery of the X(3872) state by BELLE more than a decade ago.118 This exotic

charmonium was discovered in the final state J/ψπ+π−, tagged through B meson

decays, and its prompt production has been confirmed by various experiments, in-

cluding CMS.119 A search is conducted for an exotic bottomonium counterpart.120

This is done probing the corresponding final state Υ(1S)π+π−, as shown in Fig. 25

(right). Besides the excited Υ states that are expected (Fig. 2) and appear promi-

nently in the spectrum, no excess is detected over background, despite the analysis

having the sensitivity for detecting such a state if its relative strength were com-

parable to the corresponding value for the X(3872). The search yielded the first

exclusion limits on the production of the exotic bottomonium state at a hadron

collider.
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7. Conclusions and outlook

The CMS experiment has already contributed a set of very significant results to-

wards an improved understanding of the heavy quarkonium sector at the LHC. The

CMS detector acceptance, trigger, and reconstruction capabilities have allowed the

prompt collection of large data sets containing dimuon signals, down to low trans-

verse momenta, resulting in the ability to probe a wide mass spectrum as shown

in Fig. 4. While the muon detectors contribute particle identification and the seeds

for online selection, the silicon tracker allows for precise kinematic and topological

reconstruction of particle decays. In particular, the precision achieved allows for sep-

arately identifying lightest three Υ(nS) states – a capability that is fully exploited

in the measurements reported here.

CMS has contributed the first bottomonium measurements at the LHC. Cross

sections are among the first results extracted with initial data, both in LHC’s Run 1

and Run 2 data-taking periods. Measurements in pp collisions at the unprecedented

center-of-mass energies of 2.76, 5.02, 7, 8, and 13 TeV have been undertaken, within

the rapidity window of |y| < 2.4, and dimuon momenta up to 100 GeV. Cross sec-

tions and cross section ratios have been measured for S-wave and P -wave states.

In addition, the angular distribution of the final-state muons has been analyzed

in complementary reference frames, resulting in detailed measurements of the po-

larization parameters. This measurement has been reported for all three S-wave

states. The cross sections and the polarizations, combined in global fits, have shed

considerable light on the QCD production mechanisms, contributing towards the

resolution of the “quarkonium puzzle”. Analysis of new LHC data will extend the

kinematic reach of the measurements and, in addition, extend the cross section and

polarization measurements to the P -wave states. These will be important pieces

in the puzzle, and will allow the disentanglement of the P - to S-wave feed-down

contributions, thus granting access to directly produced bottomonia.

Ground breaking results have also been achieved in collisions involving heavy

ions. The considerable jump in collision energy and detector capability, as compared

to previous heavy ion experiments, has placed CMS in a privileged position to ex-

plore the bottomonium sector in nuclear collisions. In particular, the experiment has

delivered the first complete measurements of the individual states of the Υ family

in collisions involving heavy ions. Foremost, the ability to separately identify the

individual Υ(nS) states has been explored to probe their relative suppression. Such

a novel and robust analysis has experimentally established the pattern of sequential

suppression, wherein the excited states are more suppressed than the smaller, more

strongly bound states. The absolute suppression, in PbPb with respect to pp, of the

individual states has also been assessed. Detailed measurements of bottomonia, in

PbPb but also pPb and pp, have probed (hot and cold) nuclear and environment

effects. The analysis of larger LHC data sets will explore P -wave states, quantifying

the suppression of higher-mass states and their feed-down contribution to the inclu-

sive measurements of the lighter ones. It will allow also to explore new observables,
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such as azimuthal anisotropies and polarizations through angular analyses, and to

perform further studies of kinematic, angular, and environment dependencies. The

continued exploration of the bottomonium sector, through more precise and new

measurements, across different collisions systems and energies, will provide a more

complete understanding of the underlying processes contributing to quarkonium

production and suppression, and a more complete characterization of the proper-

ties of the hot medium attained with LHC collisions. Bottomonia can be explored

in addition via photoproduction in collisions of protons or ions at the LHC. In such

exclusive collisions, the incoming hadrons remain intact after the interaction and

no other particles are produced, e.g. pA → pAΥ.121 Such studies will offer a clean

probe of the structure of the target hadron (A).

Production of bottomonium pairs has been observed for the first time and the

cross section of Υ(1S) pair production was reported. Extended and more precise

studies of quarkonium pair production will more precisely quantify the effect of

multi-parton interactions at the LHC. Additional studies of bottomonia associated

production, involving other quarkonium states and, more generally, other hadrons,

jets, and vector bosons, will contribute new perspectives towards a more complete

understanding of the mechanisms of hadron production. At the same time, such

studies of associated production open an interesting window into the spectroscopy

realm, forming the basis for the search for new and exotic states. Rare decays of

heavier particle states, e.g. Z and Higgs, to heavy quarkonium provide interesting

channels that should be explored with increased precision in future higher luminosity

LHC runs.

Precision heavy flavor measurements with a general purpose detector at the LHC

are challenging, required an understanding of fine-grain effects and calibration of

the detector in a low-pT regime, with a thorough appreciation of the correspond-

ing increasing online rate limitations. Building upon the solid achievements already

attained, and benefitting from detector and data acquisition systems upgrades, a

dedicated and promising program of heavy-quarkonium physics will continue to be

pursued in future LHC runs, aiming at contributing to a more complete understand-

ing of the nature of strong interactions and the search for new phenomena.
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