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The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector
containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and
proximity of the cryostat to the active detector volume demand the use of material with extremely
low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable
metals, the determination of factors limiting radiopure production, and the selection of titanium for
construction of the LZ cryostat and other detector components. This titanium has been measured
with activities of 238Ue <1.6 mBq/kg, 238Ul <0.09 mBq/kg, 232The = 0.28±0.03 mBq/kg, 232Thl =
0.25 ± 0.02 mBq/kg, 40K <0.54 mBq/kg, and 60Co <0.02 mBq/kg (68% CL). Such low intrinsic
activities, which are some of the lowest ever reported for titanium, enable its use for future dark
matter and other rare event searches. Monte Carlo simulations have been performed to assess
the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days
of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean
background of 0.160 ± 0.001(stat)±0.030(sys) counts.
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1. Introduction

Direct dark matter searches attempt to measure the
interaction of Weakly Interacting Massive Particles
(WIMPs) with an atomic nucleus, a process not yet ob-
served. The very nature of this low-energy rare-event
search demands extremely low background event rates in
the signal region of interest. In recent leading experimen-
tal searches, the background has been dominated by the
decay of naturally occurring radioactive contamination
present within the materials used to construct the detec-
tors, primarily 238U, 232Th, 40K, and 60Co. To achieve
the design sensitivity, the control of such radioactivity is
fundamental not only to direct dark matter experiments,
but to rare event searches in general, requiring exten-
sive radioassay campaigns to select suitable construction
materials.

LZ (LUX-ZEPLIN) is a second generation dark matter
experiment, presently under construction [1]. It will fea-
ture a two-phase xenon time projection chamber (TPC),
containing approximately 7 tonnes of active liquid xenon
(LXe) [2]. The total load of 10 tonnes of liquid xenon
and other detector components will be held in a cryostat
made from two nested vessels—the inner vessel contains
the cold xenon whilst the outer vessel enables a vacuum
region for thermal insulation. The material from which
the cryostat is fabricated must be suitable for operation
at cryogenic temperatures, must have mechanical proper-
ties that comply with international codes regulating the
materials for pressure vessel fabrication, must not be pro-
hibitively expensive and must be extremely radiopure.

Historically, dark matter searches have used cryostats
made from stainless steel or electroformed oxygen-free
high conductivity (OFHC) copper. Stainless steel is in-
expensive, readily satisfies mechanical constraints with
its high tensile strength, and vessels are straightforward
to manufacture. However, 238U and 232Th content can be
significant and highly variable and levels of 40K and 60Co
are typically high. Copper is usually found to be consid-
erably more radiopure, but thicker vessels are required
relative to stainless steel when manufacturing pressure
vessels for equivalent mechanical strength. The ZEPLIN-
III experiment, one of the predecessors to LZ, used a
low-activity copper cryostat containing 12 kilograms of

n Corresponding author: sally.shaw.13@ucl.ac.uk
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LXe [3, 4]. For larger experiments at the tonne-scale and
beyond, thick cryostats not only impact total radioac-
tivity, but also attenuate internally-produced γ-ray and
neutron backgrounds, acting to limit the effectiveness of
veto detectors that may surround the primary target vol-
ume.

Titanium has previously been considered as an attrac-
tive alternative to stainless steel and copper. It has a
high strength-to-weight ratio, is resistant to corrosion,
and is already popular in the aerospace, metal finishing,
oil refining and medical industries. It has a lower atomic
number and therefore lower attenuation of low energy γ-
radiation than stainless steel, should in principle contain
very little 60Co, and also benefits from little cosmogenic
activation. This is significant since radioactive isotopes
can be produced by neutron-induced spallation reactions
whilst the material is still above ground. Stainless steel
contains isotopes of iron, nickel and chromium that can
be activated to form radioisotopes such as 56Co, 58Co,
54Mn and 48V [5], whilst in titanium, only the produc-
tion of 46Sc is a concern [6]. Although the LUX exper-
iment [7–10], LZ’s most recent predecessor, successfully
manufactured and deployed a cryostat constructed from
low-activity titanium to contain 350 kg of LXe [11], se-
curing similarly radiopure material has proved non-trivial
across the field of rare-event search experiments. The im-
portance of constructing vessels of sufficient radiopurity
has already been recognized as necessary for the next
generation of neutrinoless double-beta-decay (0νββ) ex-
periments [12].

To procure titanium for the manufacture of the LZ
cryostat of similar or better radiopurity to that in LUX,
an extensive R&D campaign has been conducted. This
was necessary to ensure that reliably radiopure mate-
rial could be sourced in sufficient quantities for LZ. The
campaign has determined the requirements for procure-
ment of reproducible radiopure titanium metal, included
an extensive assay campaign of titanium samples (along-
side stainless steel samples as an alternative) and, finally,
selected suitable candidate materials. The measured ra-
dioactivities of screened samples have been used as input
for detailed studies employing Monte Carlo simulations
to model the LZ cryostat within the entire experiment.
The impact of the intrinsic contamination in terms of
background contribution to the WIMP search is deter-
mined, and this informs the selection of the most suitable
sample for further confirmatory screening before procure-
ment of the batch material for LZ.

2. Titanium Production and Contaminants

Titanium (Ti), a lightweight transition metal with
atomic number 22, average atomic weight 47.90 and a
density of 4510 kg/m3, is the fourth most abundant metal
on Earth, comprising 0.62% of the Earth’s crust. Ti-
tanium production begins with the mining and refine-
ment of ores, and involves exposure to coke, coal, oil
and tar which can introduce significant contamination
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of radioactive elements including uranium and thorium.
However, titanium oxide ores are treated with chlorine
gas to produce titanium tetrachloride (TiCl4), which is
found to have extremely low radiocontent after chemical
treatment and filtering [13].

To produce metallic titanium, the TiCl4 is reduced by
liquid magnesium or sodium in a vessel filled only with
argon to avoid oxygen or nitrogen contamination. This
produces a porous titanium sponge, which is purified by
leaching or heated vacuum distillation. There are typi-
cally no controls in place at this stage to limit contami-
nation from surfaces or fluids in contact with the sponge,
and thus variability in radioactivity of sponge products
is expected.

Before melting the sponge, any alloys and scrap met-
als required are added by mechanical compaction. The
use of these, where radioisotope contamination of source
material is not traceable, constitutes the highest risk for
introduction of radioactivity into the bulk material. At
this stage the radiopurity may be greatly affected even if
the purity has been preserved from the TiCl4 through to
the sponge.

Refinement of titanium sponge can be undertaken us-
ing either vacuum arc remelting (VAR) or electron beam
cold hearth (EBCH) techniques. VAR is used for most
commercial titanium and involves melting the metal un-
der a vacuum in a crucible. A current is passed across a
gap between an electrode consisting of compacted sponge
and alloy and a smaller piece of the metal. This creates
an arc and begins a continuous melting process. As the
electrode melts, it must be lowered towards the bottom
of the vessel, allowing control over the solidification rate,
which affects the micro-structure of the titanium. The
vacuum conditions allow any remaining gas contamina-
tion (e.g. N2, O2, H2) to escape the titanium into the vac-
uum chamber. The resulting ingot is usually melted ei-
ther once or twice more. Other impurities such as carbon,
sulphur and magnesium that have a high vapour pressure
will also be reduced in concentration. The disadvantages
of VAR are that it is a slow process and nitrogen-rich
low density particles survive as their residence time at
sufficient temperatures is not long enough to melt them.

Electron beam remelting uses electron beams to heat
and melt metals in a water-cooled copper crucible un-
der a vacuum. In EBCH, cold hearth refers to a wa-
tercooled copper hearth in which the feedstock is drip
melted, overflowing into a withdrawal mold. EBCH holds
some advantages for manufacturers: it is a faster process
as it involves fewer steps than traditional refinement im-
plying fewer opportunities for further radiological con-
tamination, its high yield, its flexibility in melting feed-
stock of any geometry and finally the possibility of pro-
ducing ingots and slabs with a wide range of cross sec-
tions. A final and key advantage for applications such
as low-background experiments is that EBCH exceeds
other refinement methods in removing high density con-
taminants, as these sink to the bottom of the hearth and
so do not reach the mold [14].

As part of the radioassay campaign for LZ, titanium
of varying grades has been sampled in partnership with
several manufacturers and at various stages of the pro-
duction cycle beyond radiopure TiCl4 (including sponge,
slabs, and sheet), using both re-melting processes (VAR
and EBCH), and with varying scrap concentrations (with
the majority requested and delivered with 0% scrap).

3. Radioassay Campaign

3.1. Screening Techniques

The cryostat material assays have been primarily car-
ried out by the Berkeley Low Background Facility using
its surface screening detectors at the Lawrence Berkeley
National Laboratory and the underground HPGe system
Maeve. Until November 2015, Maeve was located un-
derground (∼550 ft) at the Oroville Dam in Oroville, Cal-
ifornia, but has now been relocated to the Black Hills
State University Underground Campus (BHUC) facility
dedicated to low-background counting 4,850 ft under-
ground at the Sanford Underground Research Facility
(SURF) in Lead, South Dakota. Maeve is an ORTEC
HPGe 85% p-type detector in a low background cryostat,
shielded by OFHC copper and lead. For samples of a few
kg, the sensitivity after two weeks of counting reaches ap-
proximately 10 ppt U (≈0.1 mBq/kg 238U) and 25 ppt Th
(≈0.1 mBq/kg 232Th), 20 ppb for K (≈0.7 mBq/kg 40K)
and ≈0.03 mBq/kg for 60Co. Maeve counting efficien-
cies were modelled with a Geant4 [15] simulation includ-
ing precise geometry, accounting for sample dimensions
and placement within the detector castle. The GEANT4
models were carefully verified with well-characterized,
homogeneous, weakly radioactive sources to ensure the
validity of the Monte Carlo simulations for both geomet-
ric placement, self-attenuation, and energy response of
the HPGe crystal.

Measurements have also been performed at the Boulby
Underground Laboratory in the UK, primarily using
Chaloner, a 0.8 kg Canberra BE5030 Broad Energy
Germanium (BEGe) detector. This instrument, with the
advantage of its low energy threshold (≈15 keV), was
used to perform confirmation measurements, particularly
of the low energy and low branching ratio lines close to
the top of the 238U and 232Th decay chains. Low back-
ground HPGe detectors operated at the University of Al-
abama in a surface laboratory have also been utilized for
this campaign. All detectors have been cross-calibrated
with results from the assay of standard sources, and agree
within stated systematic uncertainties.

All signal peaks detected with HPGe are passed for
analysis, and multiple lines are measured to infer 238U
and 232Th concentrations, as well as the lines from 60Co,
137Cs and other long-lived species. For 238U it is stan-
dard to measure the decays of 226Ra, 214Pb and 214Bi,
and for 232Th the decays of 228Ac, 212Bi, 212Pb and 208Tl.
Rather than combining these lines to report single val-
ues for 238U and 232Th, we separately extract both early
chain and late chain activities as manufacturing/chemical
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processes may break secular equilibrium in the chains.
This separation is necessary given the different energies
and branching ratios of γ-rays throughout the chains,
and more significantly, the impact on neutron production
yields through both (α,n) processes and spontaneous fis-
sion. In the case of 238U, we define the early part of
the chain (238Ue) as containing any isotopes above 226Ra
(T1/2 = 1600 yr). The late part of the chain (238Ul) is

counted from 226Ra and below. Another break in the
U chain often occurs at 210Pb (T1/2 = 22 yr) and is also

reported separately when available. Among the 238U sub-
chains, contributions from 238Ul dominate LZ γ-ray and
(α,n) backgrounds [16], whilst γ-rays and neutrons from
fission of 238U in 238Ue are efficiently vetoed [17]. For
the 232Th chain, we define the early part of the chain
(232The) as coming from isotopes above 228Th and the
late part of the chain (232Thl) as coming from isotopes
from 228Th and below. Among the 232Th sub-chains,
roughly equal contributions to LZ γ-ray background arise
from 232The and 232Thl, whilst (α,n) backgrounds arise
dominantly from 232Thl.

Small samples of titanium have been subjected to di-
rect mass spectrometry for their U and Th content using
Inductively Coupled Plasma Mass Spectrometry (ICP-
MS) at a dedicated facility set up at University College
London (UCL) for LZ assays [18], and at the Pacific
Northwest National Laboratory (PNNL). Both facilities
operated an Agilent 7900 ICP-MS instrument in clean-
rooms, taking extreme care to avoid trace contamination
of the samples in handling, preparation and assay.

3.2. Radioassay Results

Titanium samples were secured for radioassay from
several international manufacturers and suppliers, in-
cluding VSMPO [19], TIMET [20], Supra Alloy [21],
Honeywell [22] and PTG [23]. The samples were col-
lected from stages throughout the manufacturing process
with a focus on final processed sheet. TIMETAL®35A
sheet samples, equivalent to ASTM Grade 1, showed the
highest radiopurity in early measurements and so several
were obtained. After rejection of samples with known
high scrap content or where traceability of the sample
through the manufacture process was compromised, 22
samples were selected for assay with the high sensitivity
underground gamma spectroscopy detectors. The sam-
ple masses varied from approximately 0.5 kg to 10 kg and
were cleaned prior to assay by etching with hydrofluoric
and nitric acids. Several different types of titanium were
measured: ASTM Grade 1 which is the highest grade pu-
rity of unalloyed titanium with a maximum oxygen con-
tent of 0.18%, ASTM Grade 2 which is also unalloyed but
may contain a maximum oxygen content of up to 0.25%,
porous titanium sponge created during the first stage of
processing, and some finished nuts and bolts. The ra-
dioassay results from each of these samples are presented
in Table I.

ICP-MS assays have been performed to directly mea-

sure the 238U and 232Th content of the most radio-pure
samples as identified through γ-screening measurements:
TIMET HN3469 and TIMET Sheet (4), both ASTM
Grade 1 titanium with 0% scrap, and produced with
EBCH re-melting. ICP-MS can achieve higher sensitiv-
ity for some elements in particular matrixes, utilizes a
much smaller sample mass, and requires a shorter mea-
surement time than in γ-screening. However, ICP-MS
can suffer systematic errors that are larger than those
in γ-screening measurements, due to contamination of
the smaller sample mass, and variation due to the sam-
pling of a small fraction of a large mass. Two pieces
of TIMET HN3469-M were assayed with ICP-MS at the
UCL facility. The samples were sonicated in high pu-
rity IPA before rinsing in de-ionised water, followed by
an etch in 1:1 HF:HNO3 acid, further rinsing, and dry-
ing in an ISO class 10 LFU. The prepared samples, with
masses 128.8 g (UCL #1) and 202.3 (UCL #2), were di-
gested in a mixture of de-ionised water, HF, and HNO3,
with acids doubly distilled. The digestion was performed
in a closed microwave oven, with samples spiked with
233U and 230Th tracers assayed to monitor and correct
for uranium and thorium recovery, and separate sam-
ple blanks were also assayed for background subtraction..
The results of the assays are shown in Table II, with de-
tections of 238U at 2.23 ± 0.37 mBq/kg and 232Th at
0.10 ± 0.08 mBq/kg in sample UCL #1, and 238U at
2.01 ± 0.43 mBq/kg and 232Th at 0.15 ± 0.07 mBq/kg
in sample UCL #2. An additional 15% systematic un-
certainty is estimated based on ICP-MS assays of cali-
bration standards, such as IAEA-385 [25], used in the
HPGe cross-calibration campaign. The results are con-
sistent with the HPGe assays of TIMET HN3469-M, also
shown in Table II for comparison, at 2.80±0.15 mBq/kg
for 238Ue and at <0.20 mBq/kg for 232The indicating
the successful control of systematic effects in the ICP-MS
process. Similarly, two samples of TIMET Sheet (4) were
assayed at PNNL: a large piece (TiLarge) separated into
3 pieces of 1 g each measured separately, and a small rect-
angular bar (TiSmall) measured once. A surface etch was
performed on the TiLarge pieces to remove any surface
contamination remaining after cleaning the samples. The
etched material (TiLarge Etch) was retained and assayed
separately to the bulk material (TiLarge Inner). The re-
sults of the assays are also presented in Table II. Uncer-
tainties reported for TiLarge use the standard deviation
of the three samples as well as instrumental precision,
whilst TiSmall uses instrumental precision only. 238U re-
sults are consistent between samples, whilst 232Th results
show discrepancy particularly from the etched material,
likely due to surface contamination from processing. The
results from the the ICP-MS are generally in agreement
with the LZ γ-screening measurements of 8 ± 2 mBq/kg
of 238U and <0.12 mBq/kg of 232Th again highlighting
good control of systematic effects in the ICP-MS process.

In parallel with the titanium R&D, we maintained a
programme to secure samples of stainless steel as a vi-
able alternative for the LZ cryostat to mitigate risk of
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Table I: Radioassay results of 22 titanium samples (68% CL) from a variety of suppliers. Numbers in italics are 1σ upper
limits, and 210Pb results are given where available. Systematic uncertainties are estimated to be up to 10% by comparing the
cross-calibration results of the assay of standard sources. TIMET sponges were obtained as a dirty gravel; the high 210Pb
activities observed are expected due to surface contamination and identify them as unsuitable.

Name Type
238U (mBq/kg) 232Th (mBq/kg) 40K

early late 210Pb early late (mBq/kg)
Supra Alloy Sheet (1) ASTM Grade 1 Sheet 32 4.2 - 3.3 2.8 <1.9
Supra Alloy Sheet (2) ASTM Grade 2 Sheet 110 <2 - 200 180 25
TIMET Sponge (1) Sponge 25 <2 250 <4.1 <4.1 <12
TIMET Sponge (2) Sponge <25 <2 6200 <4.1 <2.4 <15
TIMET Sponge (3) Sponge <25 <2 <62 <5.3 <1.6 <12
TIMET Sponge (4) Sponge 74 <2 120 <4.1 <1.6 <12
TIMET Sponge (5) Sponge <12 <2 740 <4.1 <1.6 <12
TIMET Sponge (6) Sponge 74 <4 2500 <5.3 14 <19
TIMET Sponge (7) Sponge 37 25 2500 12 5.7 <12
TIMET Sheet (1) ASTM Grade 1 Sheet 11 <0.62 - <0.8 <0.6 <2.5
TIMET Sheet (2) ASTM Grade 1 Sheet 5 3.3 - 2.8 0.8 <1.5
TIMET Sheet (3) ASTM Grade 1 Sheet 8.5 0.37 - 0.45 0.61 <0.5
TIMET Sheet (4) ASTM Grade 1 Sheet 8.0 <0.12 - <0.12 <0.1 <0.6
TIMET HN3469-T ASTM Grade 1 Slab <1.6 <0.09 - 0.28 0.23 <0.5
TIMET HN3469-M ASTM Grade 1 Slab 2.8 <0.10 - <0.20 0.25 <0.7
PTG Sheet (1) ASTM Grade 1 Sheet 47 2.8 - 2.0 2.8 <1.9
PTG Sheet (2) ASTM Grade 2 Sheet <9.9 3.7 - <0.81 2.4 <2.2
Bolts Bolts 1300 <6.2 - 160 160 <37
Nuts/Washers Nuts/Washers 520 <8.6 - <12 81 <62
Honeywell Sheet ASTM Grade 1 Sheet 3.7 4.7 - 1.5 1.6 <1.5
VSMPO Disc (10% scrap) ASTM Grade 1 Metal 62 <6.2 - <4.1 <4.1 <31
VSMPO Sponge ASTM Grade 1 Sponge 17 12 - <4.1 <4.1 <6.2

Table II: ICP-MS assay results of TIMET HN3469-M and
TIMET Sheet (4) titanium samples. Also shown for
comparison are the 238Ue and 232The (1 σ upper limits)
results from γ-screening where uncertainties are statistical
only and a systematic uncertainty of up to 10% is estimated
by comparison of cross-calibration assays.

Sample
238Ue

232The

(mBq/kg) (mBq/kg)
TIMET UCL #1 2.23 ± 0.15 0.10 ± 0.08

HN3469-M UCL #2 2.01 ± 0.43 0.15 ± 0.07
HPGe 2.80 ± 0.15 <0.20

TiLarge Inner 9.9 ± 0.2 0.12 ± 0.01
TIMET TiLarge Etch 9.9 ± 0.8 0.7 ± 0.2
Sheet (4) TiSmall 9.8 ± 0.2 0.086 ± 0.003

HPGe 8.0 ± 2.0 <0.12

being unable to find a source of sufficiently radiopure
titanium, or an inability to manufacture a sufficiently
large quantity. Stainless steel samples were sourced from
NIRONIT [26], suppliers for the GERDA [5], NEXT [24]
and XENON100 [27] experiments. We also re-measured
a selection of stainless steel samples previously measured
by the GERDA and NEXT experiments for independent
assay, finding activity levels consistent with theirs [5, 24].
The radioassay results of the 22 stainless steel samples are
presented in Table III. NIRONIT samples were sourced
from ThyssenKrupp (samples 2–6, 9 and 13) and Aperam
(1, 7, 8, 11, 12).

3.3. Material Selection

Following the assays of all 22 Ti and 22 stainless steel
samples, the highest and most reproducible radiopurity
is found in ASTM Grade 1 titanium that contained 0%
scrap and had been refined using EBCH technology. Of
these, the lowest radioactivity is observed in material
from TIMET Heat Number (HN) 3469, a single 15,000 kg
slab of titanium, produced by TIMET at its Morgantown
(Pennsylvania) mill. Results from a chemical analysis of
this sample to measure concentrations of iron, carbon,
oxygen and nitrogen are shown in Table IV.

A sample from TIMET HN3469, denoted HN3469-T,
was screened at the Berkeley Low Background Facility
using Maeve in May of 2015. This consisted of 10.1 kg
of plates selected from the top portion of the single slab.
A second sample taken from the middle (HN3469-M), was
acquired and assayed in September of 2015 to confirm the
uniform distribution of contamination. The radioactivi-
ties of both samples of this titanium stock were found to
be consistent.

In both samples, each counted for approximately three
weeks, the early uranium chain was non-detectable or
barely detectable within the limited abilities of HPGe
detectors to assay this portion of the decay chain via
γ-ray spectroscopy. The late portion of the chain (at
226Ra and below), however, is quite accessible via γ-ray
spectroscopy due to both the branching ratio and de-
tection efficiency for γ-rays emitted during the decay of
constituent isotopes, and registered no detectable activ-
ity above background down to a few ppt. The 238Ul value
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Table III: Radioassay results from the 13 stainless steel samples directly from NIRONIT, 3 from GERDA and 3 from
NEXT. All limits are 1σ upper limits and systematic uncertainties are estimated to be up to 10% by comparing the
cross-calibration results of the assay of standard sources. NIRONIT samples that were excluded following pre-screening due
to their high 60Co content were not assayed for early-chain contents. Samples (2–6) were selected for additional assay
underground at SURF using Maeve primarily upon their lower 60Co content. Published results from the GERDA and NEXT
collaborations are included for comparison.

Name
238U (mBq/kg) 232Th (mBq/kg) 60Co 40K
early late early late (mBq/kg) (mBq/kg)

NIRONIT (1) 7.3 0.35 1.1 4.0 14.5 0.53
NIRONIT (2) 1.2 0.27 0.12 0.49 1.6 <0.4
NIRONIT (3) <1 0.54 0.49 1.1 1.7 <0.59
NIRONIT (4) 1.4 0.5 0.5 0.32 2.6 <0.5
NIRONIT (5) 1.1 0.38 0.81 0.73 5.6 <0.46
NIRONIT (6) 0.5 1.9 1.7 1.5 4.5 <0.5
NIRONIT (7) - 1.1 - 4.1 8.2 <3.0
NIRONIT (8) - <0.6 - <0.8 7.4 <3
NIRONIT (9) - <0.6 - <0.9 6.5 <3
NIRONIT (10) - 4 - 2.2 26 <4
NIRONIT (11) - <0.6 - 4.8 32 <2
NIRONIT (12) - <0.8 - 2.1 32 5
NIRONIT (13) - <1.4 - <1.5 335 <4
GERDA D6 <5 <0.4 - <0.002
published [5] <0.6 <1.4 16.8 ± 2.4 <1.8
GERDA G1 <5 <0.4 - <0.003
published [5] <1.3 <2.6 45.5 ± 2.1 <2.8
GERDA G2 <5 <0.4 - <0.003
published [5] <0.86 <0.24 14.0 ± 0.1 < 0.93
NEXT 10 mm 7.46 <0.24 - <0.63
published [24] <21 <0.59 2.8 ± 0.2 <0.96
NEXT 15 mm 12.4 <0.24 - <0.63
published [24] <25 <0.69 4.4 ± 0.3 <1.0
NEXT 50 mm 12.4 <0.24 - <0.63
published [24] 67 ± 22 2.1 ± 0.4 4.2 ± 0.3 <2.5

Table IV: Chemical analysis of two samples from TIMET
HN3469-T, showing % weight of iron, carbon, oxygen and
nitrogen in the titanium [28].

Sample Fe C O N
1 0.01 0.001 0.04 0.002
2 0.02 0.006 0.02 0.002

is based upon the 609 keV peak from 214Bi and is con-
sistent when compared to upper limits from other use-
ful peaks in the late uranium chain, such as from 214Pb
(295, 352 keV) and 214Bi (1764 keV). Both samples had
detectable levels of the thorium series in both the early
and late portions of the chain, consistent with secular
equilibrium in both samples. The 232Thl measurement
is based upon the 238 keV γ-ray from 212Pb, which is
the strongest peak given the product of the detection ef-
ficiency of that γ-ray line and its branching ratio in the
thorium chain. The assays are summarized in Table V.

In terms of cosmogenic activation there were several
isotopes of scandium present, most of which are the result
of cosmic ray-induced reactions with the five stable iso-
topes of titanium. Detected in the sample was 46Sc (889,
1121 keV, T1/2=84 days); as well as small amounts of
47Sc (159 keV, T1/2=3 days), 48Sc (984, 1038, 1312 keV,

T1/2=44 hours), and 44,44mSc (271, 1157 keV, T1/2=59
hours and 4 hours, the metastable state being the longer-

lived). Screening results for 46Sc are also listed in Ta-
ble V, whilst the 47Sc, 48Sc, and 44,44mSc activities are
not listed as their short half lives mean they essentially
disappear over the course of the measurement. The re-
ported value for 46Sc was corrected to the start of count-
ing for each of the samples. The cosmogenic production
of 46Sc can be mitigated by moving components under-
ground as soon as possible after manufacture.

Table V: Results from γ-ray spectroscopy (in mBq/kg) of
TIMET titanium sample HN3469 for both top and middle
samples. All limits are 1σ upper limits and uncertainties are
statistical only. A systematic uncertainty of up to 10% has
to be additionally assumed. Results were obtained with the
Maeve detector and confirmed with ICP-MS and the
Chaloner detector.

Top Middle
Date May 2015 Sep. 2015
Sample mass 10.07 kg 8.58 kg
Livetime 23.9 days 20.8 days

Activities (mBq/kg)
238Ue <1.6 2.80 ± 0.15
238Ul <0.09 <0.10
232The 0.28 ± 0.03 <0.20
232Thl 0.23 ± 0.02 0.25 ± 0.02
40K <0.54 <0.68
60Co <0.02 <0.03
46Sc 2.0 ± 0.1 2.7 ± 0.1
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The activities reported here for TIMET HN3469 are
among the lowest worldwide known to-date for tita-
nium; the radiopurity is comparable to the LUX tita-
nium (Ul<0.25 mBq/kg, Thl<0.2 mBq/kg [11]), making
the campaign a success. Titanium from the HN3469 slab
has been procured for the 2,292 kg LZ cryostat and cryo-
stat support structures, as well as other internal struc-
tures amounting to ∼364 kg. The measured radioactivi-
ties in the cryostat materials used in other dark matter
and 0νββ experiments are shown for comparison in Ta-
ble VI. The cryostat material with the lowest radiopu-
rity and most sensitive measurements is the copper used
in the Majorana Demonstrator (MJD) 0νββ experiment,
which is electroformed underground to ensure extremely
low levels of contamination.

4. Cryostat Background

4.1. Overview of Backgrounds

Backgrounds from the cryostat may be categorised into
two classes: electron recoils (ER) and nuclear recoils
(NR). ER events can be discriminated against in a LXe
TPC to greater than 99.5% efficiency, while NR events
may not as they are essentially signal-like. Neutron-
induced NR are indistinguishable from WIMPs if only
a single elastic scatter occurs within the LZ fiducial vol-
ume, unaccompanied by any other signal in other active
veto volumes of the experiment. Leading LZ background
sources include astrophysical neutrinos, intrinsic radioac-
tivity in the Xe, and emission from every component in
the experiment.

Radon emanation from the cryostat materials con-
tributes an additional ER background, due to the ‘naked’
beta emission from 214Pb in the 222Rn sub-chain. Back-
ground may also be generated from residual dust on the
detector surfaces and plate-out of radon daughters, by
emission of γ-rays from the radioactivity in the dust and
neutrons from (α,n) reactions, as well as further radon
emanation into the LXe from the dust, specifically from
the inside of the inner vessel. Plate-out of radon progeny
onto the surfaces of the cryostat following final cleaning
post-manufacture must also be considered, especially the
long-lived isotope 210Pb. Daughters of 210Pb, specifically
210Po, can induce neutron emission through (α,n) reac-
tions anywhere on the titanium surfaces, despite the rel-
atively low α energy, generating additional nuclear recoil
background. Furthermore, the presence of a reflective
PTFE liner inside the inner vessel must also be consid-
ered; neutrons can also be induced here by α-particles
from the cryostat, a process enhanced by the relatively
high (α, n) cross section of the fluorine present in PTFE.

4.2. Background Modeling

Monte Carlo simulations have been performed to assess
the contribution from all expected background sources,
particularly those that generate single vertex interac-
tions as expected from WIMP elastic scattering. These

are conducted using LZSim, a simulation package con-
structed to model the experiment and inform the design,
determine optimal performance parameters, and define
tolerable rates from background sources. Developed us-
ing the Geant4 toolkit [15], the framework inherits from
the LUX model [35], and includes all parts of the exper-
iment.

The LZ cryostat has been designed to stringent re-
quirements that factor science goals, safety, containment,
installation, and operation, and complies with ASME
Boiler Pressure and Vessel Code (BPVC) VIII Div. 1 [36].
It will contain a total of 10 tonnes of LXe at a minimum
temperature of −110°C and be placed inside a water tank
for shielding purposes. There are three primary parts—
the inner cryostat vessel (ICV), the outer cryostat vessel
(OCV) and the cryostat support (CS). Both the OCV
and ICV contain a series of ports for cabling, liquid ex-
change and calibration sources. A CAD model of the
cryostat is shown in Figure 1.

(a) OCV and CS (b) ICV

Figure 1: CAD models of the cryostat vessels and support.
The OCV connects to three support legs mounted on
baseplates and the ICV will be placed inside the OCV in
vacuum. The full cryostat assembly stands 4.1 m tall.

4.3. Radioactivity Simulations

Simulations have been conducted by positioning ra-
dioactive nuclides in all the cryostat materials including
the titanium, seals, liners, insulation, and bolts. For ER
simulations, 60Co, 40K and the U and Th chain decays
are simulated to produce γ-rays with the correct ener-
gies and branching ratios. For the U and Th early and
late sub-chains, activities are assigned as determined by
assays. Additionally, radon decays inside the LXe are
simulated, under the assumption that all radon released
from any material in contact with Xe mixes with the ac-
tive mass.

For NR simulations, a neutron (α, n) energy spectrum
for each material was obtained from SOURCES4A [37].
Single neutrons were emitted with energies sampled from
the relevant spectrum, depending on their source mate-
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Table VI: Radioactivities of cryostat material for a selection of dark matter and 0νββ experiments. Late chain 238U & 232Th
activities are quoted due to the sparsity of data on early chain activities. Activities for 60Co, 40K, and 46Sc are included
where results are publicly available. Results from XENON100 and GERDA were reported as total activity and have been
scaled by the given mass for comparison.

Experiment Type
Mass 238U 232Th 60Co 40K 46Sc
(kg) (mBq/kg) (mBq/kg) (mBq/kg) (mBq/kg) (mBq/kg)

DarkSide50 [29] SS 175 <1 <1 13.1 ± 1 - -
XENON100 [27] SS 74 <1.8 <0.03 5.4 ± 0.5 <9 -
XENON1T [30] SS 870 2.4 ± 0.7 0.21 ± 0.06 <0.36 9.7 ± 0.8 2.7
ZEPLIN-III [31] Cu 400 <6.22 <2.03 - <0.32 -

EXO-200 [32] Cu 5,901 <0.01 <0.003 - <0.01 -

GERDA [33]
Cu 16,000 0.017 ± 0.005 0.014 ± 0.005 0.018 ± 0.005 <0.049 -
SS 25,000 <1.2 <1.2 19 <2.9 -

MJD [34] Cu 1,297 <0.0003 <0.0003 - - -
LUX [11] Ti 230 <0.25 <0.2 - <1.2 2.5

LZ (this work) Ti 1,827
Ue <1.6 The: 0.28 ± 0.03

<0.02 <0.54 2.0 ± 0.1
Ul <0.09 Thl: 0.23 ± 0.02

rial. The SOURCES4A code has been modified to extend
the energies of α-particles up to 10 MeV from the original
upper energy cut at 6.5 MeV [38], and to improve and ex-
tend the (α, n) cross-section library for a large number of
materials [39–41], with newly added cross-sections calcu-
lated using the EMPIRE-2.19 code [42]. In calculations
of neutron yields we use the thick target approximation,
valid for material thicknesses significantly exceeding the
range of α-particles, which are 10–30 µm in titanium. We
find <0.1% of α-decays in the titanium are able to reach
the neighbouring PTFE and induce a neutron, and so we
consider this rate as negligible.

In principle, 238U spontaneous fission can contribute
to neutron yields significantly in materials where (α, n)
rates are low. However, the near-simultaneous emission
of up to 5 neutrons and up to 20 γ-rays results in highly
efficient event rejection, reducing the contribution from
spontaneous fission to negligible levels, and so these are
removed from the background model [17]. In our sim-
ulations, this reduces the neutron yield in titanium by
35%.

The simulation output is analysed to examine events
with energy depositions in the LXe active target. In par-
ticular, for an event to constitute a background count,
the energy deposited in the active LXe must be within
the WIMP search region of interest (6–30 keV recoil en-
ergy) and the particle must be observed to have scattered
only once within the active LXe volume. Furthermore,
LZ will have a veto detector external to the cryostat,
and this may not register an energy deposition within an
event time window.

Table VII summarises the materials used in the cryo-
stat simulations, their masses, their measured activ-
ities, the neutron emission rate as determined with
SOURCES4A for the given activities and mass, and the
contribution to ER and NR background in LZ following
the selection criteria. Figure 2 shows the spatial distri-
bution of events generated by the cryostat radioactivity
in the 7 tonne active volume and energy range of inter-
est, showing the reduction as single scatter selection and
vetoing is implemented.

4.4. Total Cryostat Background

The total expected background in LZ’s 5.6 tonne fidu-
cial mass in a 1,000-day exposure (after the application
of the region of interest, single scatter and veto cuts de-
scribed above) from the intrinsic radioactivity within the
titanium of the cryostat is 0.0127 NR and 0.51 ER counts.
Discrimination allows 99.5% rejection of ERs, reducing
the cryostat contribution of WIMP-like events from ERs
to 0.003 events. The NR background is also reduced
to 0.006 counts under the standard NR acceptance of
∼50% typically assumed in LXe TPC dark matter ex-
periments. Figure 3 shows this background contribution
together with that expected if a selection of alternative
titanium samples were to be used based on our radioas-
say results. Also included is a hypothetical point based
on radioactivity equal to the LUX cryostat material. The
ER and NR background expected if any of the stainless
steel samples were to be used for the LZ cryostat are also
included. Contours on the figure indicate goals on back-
ground contribution from the cryostat material. The red
contour represents 0.2 NR counts and an ER rate equiv-
alent to 10% of the background expected from pp solar
neutrino scattering in the active mass—one of the largest
contributions to the experiment. This marks the upper
limit set on background from intrinsic radioactivity fixed
in all materials in the LZ experiment. The yellow con-
tour is 0.05 NR and 5% of the pp solar neutrino rate.
Given the cryostat mass and proximity to the LXe, it
is allocated up to a third of the maximum rate, 0.03
NR and 3.3% of the pp solar neutrino rate, denoted by
the green contour. The TIMET samples produced with
EBCH and 0% scrap and the LUX titanium each sat-
isfy this goal. Although some of the stainless steel sam-
ples assayed would be acceptable, most either fail the
requirement or are very close to failing, and all exceed
rates from titanium. Furthermore, the large sample-to-
sample variation indicates poorer reproducibility under
standard manufacturing and processing. This presents
increased risk of differences in radioactivities between as-
sayed and procured material. The use of a stainless steel
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Table VII: Table of expected backgrounds from all cryostat components, in an exposure of 5,600 tonne-days, before
discrimination and NR acceptance is applied. The stainless steel is used for fasteners and calibration tubes, and the PEEK
for seismic limiters. The totals show the mass weighed activities. ER and NR counts are rounded to two decimal places, and
statistical uncertainties are given for the totals.

Name
Mass 238U (mBq/kg) 232Th (mBq/kg) 60Co 40K ER NR
(kg) early late early late (mBq/kg) (mBq/kg) (cts) (cts)

Titanium 2,292 1.59 0.11 0.29 0.25 0.00 0.54 0.51 1.27 × 10−2

S. Steel 110.5 1.429 0.27 0.33 0.49 1.60 0.40 0.09 3.01 × 10−4

PEEK 1.167 17.00 16.60 16.10 8.50 0.52 40.80 0.02 1.42 × 10−4

Total 2,404 1.59 0.11 0.29 0.25 0.07 0.56 0.63±0.06 0.013±0.001

cryostat also reduces the efficiency of ER background ve-
toing, with γ-rays stopped in the vessels rather than pen-
etrating to veto systems.

The ER and NR contributions from the intrinsic ra-
dioactivity fixed within all of the cryostat components
is presented in Table VII, after all cuts are applied. The
combined contribution is 0.013±0.001 NR and 0.63±0.07
ER counts, reduced to 0.0032 ± 0.0004 WIMP like ER
counts and 0.0065± 0.0005 NR counts after 50% NR ac-
ceptance and 99.5% ER discrimination.

Estimates of radon emanation from titanium have been
made using emanation rates from steel in literature and
conservative models of the reduction expected at cryo-
genic temperatures [43]. The total estimated activity
from the titanium cryostat from 222Rn is 0.15 mBq.
This activity is combined with radon emanation from
the dust on the inside of the ICV, assuming typical 238U
concentrations of ≈10 mBq/g and a surface density of
500 ng/cm2, for a conservative total of 30 ER counts.

The contribution from intrinsic dust activity is in-
significant, contributing only 1.5 × 10−4 NR counts and
7.6 × 10−3 ER counts. This was calculated assuming
conservative exposure periods to air with no radon mit-
igation. Radon daughter plate-out, which leads to con-
tamination of titanium surfaces with the long-lived iso-
tope 210Pb, can induce neutron emission through (α,n)
reactions, but given the efficiency of neutron vetoing and
the single scatter selection criteria in the fiducial volume,
this process is expected to contribute only 2.8×10−3 NR
counts.

The combined total activity from the cryostat includ-
ing fixed radioactivity, radon emanation, plate-out and
dust is 0.152 ER and 0.008 NR after discrimination and
acceptances. Models of dust deposition are assumed to
have a systematic uncertainty of 30%. These and the sys-
tematic uncertainty on radioassays of 10% are combined
with statistical uncertainty from simulations to give a to-
tal of 0.160 ± 0.001(stat)±0.030(sys) background counts
to the WIMP search exposure of 5,600 tonne-days. The
breakdown from the contributors to this total is pre-
sented in Table VIII.

5. Conclusion

The LZ collaboration has completed an R&D cam-
paign to identify and procure radiopure titanium for con-
struction of a double vessel cryostat. Material will also

Table VIII: Breakdown of expected counts from the
cryostat, in 5.6 tonnes of LXe and 1000 days; the total is
shown before and after an ER discrimination of 99.5%, and
an NR efficiency 50%.

NR (cts) ER (cts)
Titanium contamination 1.27 × 10−2 0.51
Other contamination 4.43 × 10−4 0.11
Rn emanation 0 29.7
Rn daughter plate-out 2.81 × 10−3 0
Dust 1.51 × 10−4 7.58 × 10−3

Total (before dis./acc.) 0.016 30.31
Total (after dis./acc.) 0.008 0.152

be used for construction of other internal detector com-
ponents. We identified titanium made from EBCH melt
with 0% scrap, produced by TIMET, as by far the best
material. The measured activities for 238U, 232Th, 60Co
and 40K from the sample are significantly lower than re-
quirements and are, alongside the LUX titanium, the
lowest reported in titanium to date.

Identification of low radioactivity titanium, together
with associated manufacturing criteria required to reli-
ably reproduce such activities, represents mitigation of a
significant potential source of background for future dark
matter experiments that will operate with metal cryostat
vessels.

The total contribution to LZ backgrounds in the stan-
dard LZ exposure of 5.6 tons and 1000 days from the
titanium vessels alone is 0.51 ER and 0.0127 NR, before
any discrimination is applied. Accounting for all ancillary
components and materials, and backgrounds that may be
introduced during fabrication, assembly, and installation,
the cryostat is expected to contribute a background of up
to 0.152 ER and 0.008 NR WIMP-like background events
to the LZ science run.
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Figure 3: Expected background counts in ER and NR, within the fiducial volume after all vetoes are applied, showing the
TIMET sample chosen for LZ, the screened stainless steel samples as well as the titanium used for the LUX cryostat. An NR
acceptance of 50% and an ER discrimination factor of 99.5% are applied. The red curve corresponds to the sum of 10% of the
pp solar neutrinos and 0.2 NR events, the yellow is the sum of 5% of the pp solar neutrino ER background and 0.05 NR
events, and the green line is the sum of 3.3% of the pp solar neutrino ER background and 0.03 NR events. This green line was
the requirement for the LZ cryostat, and the titanium chosen (indicated by the star) is well below this requirement.
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