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Abstract—ATLAS is a general purpose particle physics experi-1

ment located on the LHC collider at CERN. The ATLAS Trigger2

system consists of two levels, the first level (L1) implemented in3

hardware and the High Level Trigger (HLT) implemented in4

software running on a computing cluster of commodity CPUs.5

The HLT reduces the trigger rate from the 100 kHz L1 accept6

rate to 1 kHz for recording, requiring an average per-event7

processing time of ∼300 ms for this task. The HLT selection is8

based on reconstructing tracks in the Inner Detector and Muon9

Spectrometer and clusters of energy deposited in the calorimeters10

(electromagnetic and hadronic). Performing this reconstruction11

within the available HLT computing cluster resources presents a12

significant challenge. Future HLT upgrades will result in higher13

detector occupancies and, consequently, will harden the recon-14

struction constraints. General purpose Graphics Processor Units15

(GPGPU) are being evaluated for possible future inclusion in an16

upgraded HLT computing cluster. We report on a demonstrator17

that has been developed consisting of GPGPU implementations of18

the calorimeters clustering and Inner Detector and Muon track-19

ing algorithms integrated within the HLT software framework.20

We give a brief overview of the algorithm implementation and21

present preliminary measurements comparing the performance22

of the GPGPU algorithms with the current CPU versions.23

I. INTRODUCTION24

THE CERN Large Hadron Collider (LHC) [1] was build25

to explore the fundamental constituents of nature and the26

forces between them, at unprecedented energies. It is a circular27

accelerator with a perimeter of 27 km where two proton beams28

cross 40 million times per second. Each beam crossing is29

usually referred to as an event. The second data taking period,30

Run 2, started this year and will last until 2018. During Run31
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2 the LHC is operating at a centre-of-mass energy of 13 TeV32

to 14 TeV, almost two times higher than in Run 1, and an33

average of ∼27 pp collisions per bunch crossing (known as34

pile-up).35

The third data taking period, known as Run 3, is scheduled36

to start in 2019, after a two years shutdown for upgrade of37

the accelerator and the detectors, as shown on the activity38

schedule Table I. In Run 3 the LHC will work with a two times39

higher luminosity than in Run 2, yielding in an increased mean40

number of pp collisions per event and resulting in higher num-41

ber of particles hitting the detectors per event. As this results42

in events that are more complex, the trigger reconstruction43

software will demand more computing power. Therefore it will44

be essential to reduce the processing time of the reconstruction45

algorithms, to keep them within the time constraints of the46

online system while maintain the same physics performance.47

The General Purpose Graphical Processing Units (GPGPUs)48

can provide better computing performance to power ratio than49

Central Processing Units (CPUs), and are thus good candidates50

to maximize the computing cluster power, as the computing51

cluster is limited by the rack-space and cooling power.52

A. The ATLAS experiment53

The ATLAS detector is one of the two LHC multi purpose54

experiments [4].55

It is a cylindrical shape detector with 46 m length and56

25 m height. The detection elements are arranged in layers57

around the beam pipe. The inner part is the Inner Detector58

tracker (ID), immersed in a magnetic field generated by59

a superconductor solenoid. The ID allows the detection of60

charged particles trajectories and is made of three different61

technologies: pixel detectors, in the inner most layers; Semi-62

conductor Tracker (SCT) on the middle layers and Transition63

Radiation Tracker (TRT) in the outer most layers.64

The ID is surrounded by the calorimeter systems, composed65

by the electromagnetic calorimeter, based on Liquid Argon66

(LAr) technology, and the hadronic calorimeters, made of LAr67

and scintillator tile technologies.68

The muon spectrometer is the outermost sub-detector, im-69

mersed in a second magnetic field generated by superconduct-70

ing toroids.71

B. The ATLAS Trigger and Data Acquisition systems72

In total the ATLAS detector has around 108 electronic73

channels, resulting in events with an average size of 1.7 MB.74
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Table I: Table with LHC upgrade phases and nominal parameters [2][3].

Run 1

L
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-
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I

Run 3

L
S3

-
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II

Run 4
2011 2012 2015-17 2019-21 2023-

Center of mass Energy
√
s (TeV) 7 8 13-14 14 14

Luminosity (cm−2s−1) 8× 1033 1× 1034 2× 1034 5× 1034

Bunch spacing (ns) 50 25 25 25

Number of interaction/event, < µ > 10 20 ∼ 27 ∼ 55− 80 ∼ 140

Total Integrated luminosity ( fb−1) 25 ∼ 100 ∼ 300 ∼ 3000

As they are read for every proton bunch crossing, every 25 ns,75

the total data volume is closer to ∼ 64 TB/s, unfeasibly large76

to be recorded or processed with full precision in real-time77

with LHC. Furthermore, only a small fraction of these events78

contain a significant physics interest. The selection of which79

events should be kept for later analysis is made by the ATLAS80

trigger system [5], which probes the event data against a menu81

of desirable physical characteristics, typically the presence of82

a certain physical object (e.g. a highly energetic electron), that83

leaves a distinctive pattern in the detector. This menu contains84

a few thousands of different possibilities. The event selection85

is hampered by background patterns which mimic the desired86

objects. Each event has to be processed in real-time and the87

data volume reduced by a factor of 104 [6], [7] for offline88

storage.89

Figure 1: Schematic diagram of the ATLAS Trigger system
showing the input and output event rates and the expected
data rates at the different trigger levels.

The trigger system is divided in two levels, as shown in90

Figure 1, the Level-1 (L1) and the High Level Trigger (HLT).91

L1 is based on custom hardware and is located near the92

detector. It uses a simple and fast reconstruction, over a coarse93

granularity readout of the calorimeter and muon spectrometer,94

to find Regions of Interest (RoI), where high transverse energy95

(ET) objects like electrons (e), photons (γ), muons (µ) or96

jets are found. L1 takes a decision within a latency of 2.5 µs97

and selects at most one out of 400 events, thus reducing the98

40 MHz crossing rate to a maximum of 100 kHz for input to99

the HLT. The detector data of these events is then read from100

the front-end electronics and stored in buffers in the Readout101

System (ROS), waiting for HLT requests and decisions.102

The HLT is software based, implemented mainly in C/C++,103

and runs on a CPU computing cluster, under a a component104

framework named Athena [8]. The system was designed for105

multi-process event processing, running one HLT Processing106

Unit (HLTPU) in each CPU core. HLT executes chains of107

reconstruction (feature extraction) algorithms followed by108

hypothesis testing (hypothesis) algorithms. Chains are seeded109

by the L1 RoIs. Each algorithm in a chain runs over the output110

of the previous one. If the same algorithm is scheduled for111

execution in different chains over the same data, then the first112

execution output is cached and used on the remaining chains.113

In this way repeated calculations are avoided. The hypothesis114

algorithm’s job is to compare the features produced against115

some configured hypothesis and accept or reject the events.116

The system was designed for early event rejection. It also117

allows chains than run over partial data, requiring typically 2 %118

to 6 % of the full event data, to be processed in order to reject119

the events. For the rejected events the data is flushed from ROS120

system and the information of this collision is not retained.121

This is the case for 99% of events. HLT has an average event122

processing time budget of 300 ms. In this time it selects at123

most one out of 100 events thus reducing the event rate for124

permanent storage to about 1 kHz, translating to a data rate of125

about 1.5 GB/s.126

II. TRIGGER ON GPUS127

ATLAS is investigating the execution of trigger recon-128

struction algorithms on GPUs, as a potential solution to129

meet Run 3 challenges of event reconstruction within the130

trigger computing cluster constraints, mainly the available131

rack-size and the thermal extraction capability. As GPUs132

are autonomous high performance computing devices, data133

has to be transferred between the CPU host and the GPU134

device, imposing a data transfer overhead. The performance135

achieved, along with the code porting effort required, in terms136

of manpower, will contribute to the architecture choices of137

the trigger computing cluster upgrade. To aid the architectural138

choice a demonstrator implementation of several algorithms,139

most time consuming or demonstrating the worst luminosity140

scalability, was launched. It is supposed to conclude with the141

indication of the cost/benefit estimates for various hardware142

compositions of the future HLT computing cluster.143
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Figure 2: Trigger on GPU framework schematic. ATLAS framework (Athena) clients request offloading to the TrigDetAccelSvc.
TrigDetAccelSvc uses TrigDataTools for data conversions between the client and server structure. Data and meta-data is then
sent through the offloading service. The server reads the meta-data and hands the request to the proper module. The module
appends the data to a unique data space and gives it to a new worker. The worker is appended to a to-do queue that is managed
by the server. After execution, the worker goes to a done queue and the server hands the result back to the client.

The trigger GPU project demonstrator comprises ID,144

calorimeter, muon and jet reconstruction algorithms. From an145

initial analysis, taking into account expected speedup due to146

Amdahl law, the following set of algorithms was selected to147

be ported to a GPU architecture:148

• Inner Detector data preparation, seed making and track-149

following algorithms.150

• Calorimeter cell clustering algorithm.151

• Muon tracking algorithms, based on Hough transform.152

• Jet finding Anti-kt algorithm [9], [10].153

Nvidia cards with the CUDA [11] framework were chosen154

for the demonstrator, based on the hardware quality, maturity155

of the technology and framework, the good framework support156

and lower porting effort.157

A. GPU Acceleration framework158

The demonstrator implements a client-server architecture,159

based on the Accelerator Process Extension (APE) frame-160

work [12], to offload and process HLT data, as shown in161

Figure 2. This allows a reduction of the resources needed162

as the services of one server are available to many clients163

as well as separation of concerns, where the APE server is164

only responsible for computing on GPU while HLT only for165

processing on CPU.166

1) Client Side: The client side is implemented in the HLT.167

For the reconstruction of data from each ATLAS sub-detector168

an algorithm requesting the GPU-accelatared processing is169

developed. These algorithms extract the input data from the170

detector, request GPU-acceleration process of the data through171

an acceleration service (TrigDetAccelSvc), and inject the result172

back to the HLT.173

The TrigDetAccelSvc uses TrigDataTools to convert back174

and forth the sophisticated Athena data structures to ones175

suitable for GPU implementation. Each sub-detector uses its176

own Acceleration service and data export tool.177

The data to be processed are then sent to the GPU through178

the offloading service (OffloadSvc) to the APE server. After179

processing, the offloading service sends the result back to the180

detector specific acceleration service, which in turn sends it181

back to the HLT algorithm, after converting back to the Athena182

data structures.183

2) Server side: APE implements a plug-in mechanism and184

is composed by the manager, the modules and the workers.185

The manager deals with the offloading requests from the HLT186

processes and demands the workers execution.187

The module manages resources and the processing requests188

by creating work items. When initialized, the module creates a189

set of data contexts that are stored in a context queue, managed190

by the module. Each data context is a unique space, containing191

all the necessary memory blocks and configurations needed to192

process the input data. After initialized, the module stays as a193

service waiting for acceleration request. Upon new request it194

picks the next free context data and pairs it with the received195

data to crate the work item.196

Work items, being GPU ported versions of Athena algo-197

rithms, perform the computations requested by the clients.198

They are usually composed by CUDA kernels and each work199

runs on its own independent stream. When the worker finishes200

it moves itself to the work done queue. The worker returns201

the data context back to the context queue after it receives the202

request for results and before its own destruction.203

It is the module that is responsible for executing the work204

items by placing them in to-do queue. It is also responsible205

for sending the result of the computation back to the HLT.206

Modules and workers are specific of each detector.207

By using the accelerator abstraction and the modular struc-208

ture, APE can exploit any kind of computing resource, such as209

GPUs, FPGAs or Xeon-Phi, as long as modules and workers210

are provided for such technologies.211
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B. Trigger modules implementation212

The GPU demonstrator project started with an evaluation213

of the HLT algorithms. It highlights the most interesting214

algorithms to port to GPUs by each sub-system: the inner215

detector tracking, the calorimeter cell clustering, the muon216

tracking and the jet finding algorithms.217

The ID tracking is the most time consuming part of the218

system, followed by the calorimeter clustering, muon tracking219

and jet maker.220

Figure 3: Inner detector seed making and track-following
algorithms schematics. Compatible clusters in inner layer are
paired to form seeds. Seeds are then paired with outer layer
clusters to form triplets. Triplets are then followed through the
full detector to form track candidates. A decision algorithm
then selects the final tracks.

1) Inner detector: The inner detector reconstruction starts221

with the decoding of the raw data [13]. It then clusters neigh-222

bouring activated sensors (hits), using a cellular automaton223

algorithm [14]. Compatible clusters in the two inner most224

layers are paired to form objects known as seeds, left side225

of Figure 3. Seeds are paired with the clusters in the outer226

layer to form triplets of space-points. Then track-following227

algorithm starts and extrapolates the triples of space-points228

(SPs) through the full detector, to form track candidates, as229

shown in right side of Figure 3. After the track-following230

a large number of tracks candidates is formed due to the231

significant detector occupancy. Therefore, at the final stage, an232

hypothesis algorithm selected best tracks from all candidates.233

Sheet1

Page 1
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x X X X x X X · · ·

x X X x X X · ·

x X X X x X X · ·

x x x x x X X X X X

Seed Growing Terminal Not enough 
S/N

Not 
evaluated

Figure 4: Calorimeter cell clustering algorithm schematic. The
algorithm starts by classifying the cells in 3 groups according
to S/N value: SEEDS > GROWING > TERMINAL. SEED cells
initiate clusters, with a defined unique cluster tag. SEEDS and
GROWING cells tag is passed to their neighboring cells, if they
are tagged with higher S/N ratio. The algorithm stops when
no cell tag is modified.

2) Calorimeter: The ATLAS Topological Cluster (TC) [15]234

algorithm joins the calorimeter detection units, known as cells,235

to form three-dimensional energy deposition clusters whilst236

suppressing the noise contribution. The noise suppression is237

achieved by making the cell clustering dependent on the238

neighbouring cells energy significance (S/N), the latter given239

by the ratio of the energy deposition with respect to the average240

electronics and pile-up noise in that cell. However, this kind of241

clustering requires more computation than what is required by242

simpler algorithms. Thus, the Topological Cluster algorithm is243

only used in the latest stage of the original ATLAS trigger and244

in the offline reprocessing of the accepted events.245

The calorimeter cell clustering classifies the detector cells246

in three groups, according to the cells signal-to-noise ratio.247

Cells with higher ratio, usually above four, are called SEED248

cells. Beside those, cells are classified as GROWING, usually249

if the energy is two times higher than the noise, or TERMI-250

NAL, which are remaining cells with absolute energy above251

zero. Each SEED cell starts a cluster formation, as shown252

in Figure 4. The clusters grow by iteratively including the253

neighbours of SEED or GROWING cells. TERMINAL cells are254

added to clusters to form the outer layer. Two different clusters255

are merged if they share a SEED or GROWING cell.256

The GPU implementation of this algorithm, the Topological257

Automaton Clustering (TAC), is a parallel oriented implemen-258

tation of the TC algorithm. It has to keep the TC properties259

and produce the same results. The algorithm starts with the260

cells classification. At this stage, the work space is simplified261

into pairs of cell and a neighbour. This abstraction assures an262

evenly distribution of workload across all GPU cores. Then263

the SEED cells are ordered so that each cluster will have a264

unique tag, the position of the SEED cell in the ordered list.265

The clustering starts after that. The clustering is based on a266

cellular automaton algorithm. Each thread evaluates a pair of267

cells and makes the cluster tag propagate according with the268

rules specified before. This process continues till the iteration269

cells do not change their tag. The set of cells in each cluster270

is the result shipped to the HLT client.271

III. RESULTS272

Preliminary results of the trigger GPU demonstrator are273

presented below. The gross figure of merit for the demonstrator274

is the throughput expressed as the number of events processed275

per second using the specific combination of hardware and276

software. The benefits of faster execution on the PC with GPU277

have to be compared against performance of same power or278

same cost machine with only CPUs. Fair comparisons have to279

assume comparable performance of the algorithms of which280

an example is presented below. In addition to the throughput281

the scalability of the implementations has to be assessed. This282

is achieved by measuring the algorithm processing time as a283

function of input data size.284

A. Inner detector285

The per-event execution time of the track seeding algorithm,286

as a function of the number of space points, is shown in287

Figure 5. The plot compares the standard CPU serial imple-288

mentation against the parallel version ported to GPU. This289

test was performed on a machine with an IntelTM Xeon E5-290

2695@2.3GHz and a NvidiaTM Tesla K80. The data set used291
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consisted of Monte Carlo simulated tt̄ events, for a scenario of292

14 TeV collisions and a mean value of 46 proton interactions293

per bunch crossing, representing a typical scenario for Run 3.294

This plot shows that the GPU implementation of the ID295

tracking algorithm is already up to 17 times faster than the296

CPU version and its performance scales linearly in the region297

of interest.298

B. Calorimeter cell clustering299
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Figure 6: Number of calorimeter clusters reconstructed using
the standard CPU cell clustering algorithms and the algorithm
ported to GPU. The blue line represents the CPU standard
algorithm. The red dashed line represents the GPU cell clus-
tering based on a Cellular Automaton algorithm [17].

The number of clusters reconstructed per-event is shown in300

Figure 6. The histogram compares the standard CPU serial301

implementation against the ported GPU parallel version of the302

algorithm, for a data sample of QCD di-jet events, simulated303

using Monte Carlo simulated events for a scenario of 14 TeV304

collisions, with leading-jet transverse momentum above 20305

GeV and a fixed number of 40 simultaneous interactions306

per bunch-crossing. The results presented are obtained after307

the complete Trigger Clustering execution. The histogram308

shows that both distributions are in very good agreement, with309

the mean number of cluster agreeing within 0.1% for both310

implementations.311

IV. CONCLUSIONS312

The LHC instantaneous luminosity for Run 3 will double313

compared to Run 2. For the ATLAS trigger system, higher314

luminosity will require more computation power to exploit315

the full potential of the LHC. GPUs are massive parallel316

architectures with high computing throughput and efficiency,317

in terms of operations per watt, making them interesting318

solutions for the trigger computing cluster upgrade.319

A GPU trigger demonstrator prototype is being imple-320

mented to assess the potential of such a system. For it, a321

server-client system was chosen to handle the trigger requests322

for GPU data processing. The demonstrator covers a set of323

algorithms from all sub-detectors. The ID tracking algorithm324

has already demonstrated a very significant speed-up of 17325

times. For the calorimeter cell clustering, the results showed326

an almost perfect agreement between the CPU and the GPU327

versions of the algorithm. Muon and jet algorithms are in the328

final implementation stage. The final stage of integration is329

ready and further tests are going to be performed to include330

detailed measurements of the throughput per unit cost for331

various architectural choices.332
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