

CERN-PH-EP-2014-229
Eur. Phys. J. C(2015) 75:92

Search for dark matter in events with heavy quarks and missing transverse momentum in $p p$ collisions with the ATLAS detector

The ATLAS Collaboration

Abstract

This article reports on a search for dark matter pair production in association with bottom or top quarks in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions collected at $\sqrt{s}=8 \mathrm{TeV}$ by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.

[^0]
Search for dark matter in events with heavy quarks and missing transverse momentum in $p p$ collisions with the ATLAS detector

The ATLAS Collaboration

Received: 16 October 2014 / Accepted: 9 February 2015

Abstract

This article reports on a search for dark matter pair production in association with bottom or top quarks in $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions collected at $\sqrt{s}=8 \mathrm{TeV}$ by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.

1 Introduction

The existence of dark matter (DM) in the Universe is highly motivated by many astrophysical and cosmological observations [1-4]. However, its nature remains a mystery. One of the best motivated candidates for a DM particle is a weakly interacting massive particle (WIMP) [5]. At the Large Hadron Collider (LHC), one can search for DM particles (χ) that are pair produced in $p p$ collisions. These studies are sensitive to low DM

CERN, 1211 Geneva 23, Switzerland, E-mail: atlas.publications@cern.ch
masses ($m_{\chi} \leq 10 \mathrm{GeV}$), and therefore provide information complementary to direct DM searches, which are most sensitive to larger DM masses [6-9].

If the particles that mediate the interactions between DM and Standard Model (SM) particles are too heavy to be produced directly in the experiment, their interactions can be described by contact operators in the framework of an effective field theory [10-12]. For each operator considered, the reach is expressed in terms of the effective mass scale of the interaction, M_{*}, and of the χ-nucleon cross-section, $\sigma_{\chi-\mathrm{N}}$, as a function of m_{χ}.

Since DM particles do not interact in the detector, the main signature of DM pair production at colliders is large missing transverse momentum. Initial-state radiation (ISR) of jets, photons, Z, or W bosons, was used to tag DM pair production at colliders in several searches at the Tevatron [13] and the LHC [14-22].

A new search for DM pair production in association with one b-quark or a pair of heavy quarks (b or t) was proposed in Ref. [23]. The dominant Feynman diagrams for these processes are shown in Fig. 1. To search for these processes, dedicated selections are defined to reconstruct the various production and decay modes of these heavy-quark final states. For final states containing a semileptonic decay of a top quark, the results of the search for a supersymmetric partner of the top quark are used [24].

The analysis presented in this article is particularly sensitive to effective scalar interactions between DM and quarks described by the operator [12]

$$
\begin{equation*}
\mathcal{O}_{\text {scalar }}=\sum_{q} \frac{m_{q}}{M_{*}^{N}} \bar{q} q \bar{\chi} \chi \tag{1}
\end{equation*}
$$

where $N=3$ for Dirac DM (D1 operator) and $N=2$ for complex scalar DM (C1 operator). The quark and DM fields are denoted by q and χ, respectively. The scalar

Fig. 1 Dominant Feynman diagrams for DM production in conjunction with (a) a single b-quark and (b) a heavy quark (bottom or top) pair using an effective field theory approach.

Fig. 2 Example of DM production in the b-FDM model.
operators are normalized by m_{q}, which mitigates contributions to flavour-changing processes, strongly constrained by flavour physics observables [25,26], through the framework of minimal flavour violation (MFV). The dependence on the quark mass makes final states with bottom and top quarks the most sensitive to these operators.

This search is also sensitive to tensor couplings between DM and quarks. The tensor operator (D9), which describes a magnetic moment coupling, is parameterized as [12]:

$$
\begin{equation*}
\mathcal{O}_{\text {tensor }}=\sum_{q} \frac{1}{M_{*}^{2}} \bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\mu \nu} q \tag{2}
\end{equation*}
$$

MFV suggests that the D9 operator should have a mass dependence from Yukawa couplings although canonically this is not parametrised as such.

The results are also interpreted in light of a bottomFlavoured Dark Matter model (b-FDM) [27]. The b FDM model was proposed to explain the excess of gamma rays from the galactic centre, recently observed by the Fermi Gamma-ray Space Telescope, and interpreted as a signal for DM annihilation [28]. This analysis of the data recorded by the Fermi-LAT collaboration favours DM with a mass of approximately 35 GeV annihilating into b-quarks via a coloured mediator. In this model, a new scalar field, ϕ, mediates the interactions between DM and quarks as shown in Fig. 2. DM is assumed to be a Dirac fermion that couples to right-handed, down-
type quarks. The lightest DM particle, which constitutes cosmic DM, preferentially couples to b-quarks. The collider signature of this model is b-quarks produced in association with missing transverse momentum. This analysis sets constraints on the mass of the mediator and DM particle in the framework of the b FDM model.

2 Detector description and physics objects

The ATLAS detector [34] at the LHC covers the pseudorapidity ${ }^{1}$ range of $|\eta|<4.9$ and is hermetic in azimuth ϕ. It consists of an inner tracking detector surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting toroidal magnets. A three-level trigger system is used to select events for subsequent offline analysis. The data set used in this analysis consists of $20.3 \mathrm{fb}^{-1}$ of $p p$ collision data recorded at a centre-of-mass energy of $\sqrt{s}=8 \mathrm{TeV}$ with stable beam conditions [35] during the 2012 LHC run. All subsystems listed above were required to be operational.

This analysis requires the reconstruction of muons, electrons, jets, and missing transverse momentum. Muon candidates are identified from tracks that are well reconstructed inside both the inner detector and the muon spectrometer [36]. To reject cosmic-ray muons, muon candidates are required to be consistent with production at the primary vertex, defined as the vertex with the highest $\Sigma\left(p_{\mathrm{T}}^{\text {track }}\right)^{2}$, where $p_{\mathrm{T}}^{\text {track }}$ refers to the transverse momentum of each track.

Electrons are identified as tracks that are matched to a well-reconstructed cluster in the electromagnetic calorimeter. Electron candidates must satisfy the tight electron shower shape and track selection criteria of Ref. [37]. Both electrons and muons are required to have transverse momenta $p_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.5$. Potential ambiguities between overlapping candidate objects are resolved based on their angular separation. If an electron candidate and a jet overlap within $\Delta R<0.2$, then the object is considered to be an electron and the jet is discarded. If an electron candidate and any jet overlap within $0.2<\Delta R<0.4$, or if an electron candidate and a b-tagged jet overlap within $\Delta R<0.2$ of

[^1]Table 1 Selections for signal regions 1-4. Variables $p_{\mathrm{T}}^{j_{i}}\left(p_{\mathrm{T}}^{b_{i}}\right)$ represent the transverse momentum of the i-th jet (b-tagged jet). The asymmetric transverse mass $a m_{\mathrm{T} 2}$ [29-31], topness [32], $m_{j j j}$ and Razor R [33] are used to reject the abundant top quark background.

	SR1	SR2	SR3	SR4		
Trigger	$E_{\mathrm{T}}^{\text {miss }}$	$E_{\mathrm{T}}^{\text {miss }}$	5 jets \|	4jets(1b)	$E_{\mathrm{T}}^{\text {miss }} \\|$ 1 lepton (no τ)	
Jet multiplicity n_{j}	1-2	3-4	≥ 5	≥ 4		
b-jet multiplicity n_{b}	>0 (60\% eff.)	>0 (60\% eff.)	>1 (70\% eff.)	>0 (70\% eff.)		
Lepton multiplicity n_{ℓ}	0	0	0	$1 \ell(\ell=e, \mu)$		
$E_{\mathrm{T}}^{\text {miss }}$	$>300 \mathrm{GeV}$	$>300 \mathrm{GeV}$	$>200 \mathrm{GeV}$	$>270 \mathrm{GeV}$		
Jet kinematics	$p_{\mathrm{T}}^{b_{1}}>100 \mathrm{GeV}$	$\begin{gathered} p_{\mathrm{T}}^{b_{1}}>100 \mathrm{GeV} \\ p_{\mathrm{T}}^{j_{2}}>100(60) \mathrm{GeV} \\ \hline \end{gathered}$	$p_{\mathrm{T}}^{j}>25 \mathrm{GeV}$	$\begin{gathered} p_{\mathrm{T}}^{b_{1}}>60 \mathrm{GeV} \\ p_{\mathrm{T}}^{1-4}>80,70,50,25 \mathrm{GeV} \\ \hline \end{gathered}$		
Three-jet invariant mass				$m_{j j j}<360 \mathrm{GeV}$		
$\Delta \phi\left(j_{i}, E_{\mathrm{T}}^{\text {miss }}\right)$	$>1.0, i=1,2$	> $1.0, i=1-4$	-	$>0.6, i=1,2$		
Angular selections	-	-	$\Delta \phi\left(b_{1}, E_{\mathrm{T}}^{\mathrm{miss}}\right) \geq 1.6$	$\begin{gathered} \Delta \phi\left(\ell, E_{\mathrm{T}}^{\mathrm{miss}}\right)>0.6 \\ \Delta R\left(\ell, j_{1}\right)<2.75 \\ \Delta R(\ell, b)<3.0 \end{gathered}$		
Event shape	-	-	Razor $R>0.75$	topness >2		
$a m_{\mathrm{T} 2}$	-	-	-	$>190 \mathrm{GeV}$		
$m_{\mathrm{T}}^{\ell+E_{\mathrm{T}}^{\mathrm{miss}}}$	-	-	-	$>130 \mathrm{GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}^{4 j}}$	-	-	-	$>9 \sqrt{\mathrm{GeV}}$		

each other, then the electron is discarded and the jet is retained.

Photon candidates must satisfy the tight quality criteria and $|\eta|<2.37$ [38].

Jet candidates are reconstructed using the anti- k_{t} clustering algorithm [39] with a radius parameter of 0.4. The inputs to this algorithm are three-dimensional topological clusters [40]. The four-momentum of the jet is defined as the vector sum of the four-momenta of the topological clusters, assuming that each cluster originates from a particle defined to be massless and to come from the interaction point.

To calibrate the reconstructed energy, jets are corrected for the effects of calorimeter response and inhomogeneities using energy- and η-dependent calibration factors based on simulation and validated with extensive test-beam and collision-data studies [41]. In the simulation, this procedure calibrates the jet energies to those of the corresponding jets constructed from stable simulated particles. In-situ measurements are used to further correct the data to match the energy scale in simulated events. Effects due to additional $p p$ interactions in the same and preceding bunch crossings (pileup effects) are corrected [42]. Only jets with $p_{\mathrm{T}}>20$ (25) GeV and $|\eta|<4.5$ (2.5) are considered in this analysis for final states involving $b(t)$ quarks.

Jets containing particles from the hadronisation of a b-quark (b-jets) are tagged using a multivariate algorithm [43, 44]. The b-tagging algorithm combines the measurement of several quantities distinguishing heavy quarks from light quarks based on their longer lifetime and heavier mass. These quantities include the distance of closest approach of tracks in the jet to the primary
event vertex, the number and position of secondary vertices formed by tracks within the jet, as well as the invariant mass associated with such vertices. The algorithm is trained on Monte Carlo (MC) simulations and its performance is calibrated using data. To optimize the sensitivity of this analysis, a requirement on the output of the b-tagging algorithm which provides a $60 \%(70 \%) b$-jet efficiency operating point is used in signal regions (SR) 1 and 2 (3 and 4) defined below. The corresponding misidentification probability is 15% (20\%) for c-jets, and less than 1% for light-quark jets. The aforementioned b-tagging efficiencies and misidentification probabilities were derived in a simulated $t \bar{t}$ sample with jet transverse momenta of $p_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.5$.

The missing transverse momentum, with magnitude $E_{\mathrm{T}}^{\mathrm{miss}}$, is defined as the negative vector sum of the transverse momenta of jets, muons, electrons, photons, and topological clusters not assigned to any reconstructed objects [45].

3 Event selection

Candidate signal events containing at least one high- p_{T} jet and large $E_{\mathrm{T}}^{\mathrm{miss}}$ are assigned to one of four orthogonal signal regions. The first two signal regions focus on events with DM produced in conjunction with one (SR1) or two (SR2) b-quarks in the final state. SR3 and SR4 target events in which DM is produced in conjunction with a $t \bar{t}$ pair, where either both top quarks decay hadronically (SR3) or one top quark decays hadronically and the other semileptonically (SR4). SR4 was

Table 2 Expected background and signal yields for $m_{\chi}=10 \mathrm{GeV}$ compared with observed yields in data for the various signal regions. For the b-FDM model, m_{ϕ} is 600 GeV . The row labeled "Total expected background" shows the sum of all background components. The quoted uncertainties include all statistical and systematic effects added in quadrature. The effective mass scale, M_{*}, is set to be $100 / 40 / 600 \mathrm{GeV}$ for the $\mathrm{D} 1 / \mathrm{C} 1 / \mathrm{D} 9$ operators, approximately corresponding to the expected limit. The probabilities of the background-only hypothesis, p-values, are also given. The last two lines show the observed and expected 95% CL upper limits on the number of beyond-the-SM events.

Background source	SR1	SR2	SR3	SR4
$Z(\nu \bar{\nu})+$ jets	190 ± 26	90 ± 25	1_{-1}^{+6}	-
$W(\ell \nu)+$ jets	133 ± 23	75 ± 13		
$t \bar{t}$	39 ± 5	71 ± 9	87 ± 11	2.9 ± 0.6
Single top	-	-	8 ± 3	0.7 ± 0.3
$t \bar{t}+Z / W$	22 ± 4	8 ± 1	-	1.4 ± 0.4
Diboson	440	264	-	0.8 ± 0.4
Total expected background	385 ± 35	245 ± 30	96 ± 13	7 ± 1
Data	10 ± 2	49 ± 8	28 ± 2	35 ± 5
Expected signal - D1	17 ± 2	61 ± 9	45 ± 4	51 ± 12
Expected signal - C1	147 ± 25	69 ± 12	2 ± 1	2 ± 1
Expected signal - D9	192 ± 24	61 ± 8	1.0 ± 0.2	-
Expected signal - b-FDM	0.09	0.29	0.24	0.18
$\boldsymbol{p - V a l u e}$	124	79	41	10
Allowed non SM events - Obs.	81	67	33	7
Allowed non SM events - Exp.				

developed for a top squark search by the ATLAS Collaboration and coincides with the "tNbC_mix" signal region described in Ref. [24]. The four signal regions provide the complementary information needed in case of observation of a signal.

Events assigned to SR1 and SR2 are required to pass a calorimeter-based $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger with a threshold of 80 GeV . To enrich the sample in $p p \rightarrow \chi \bar{\chi}+b(\bar{b})$, events are required to have a low jet multiplicity ($n_{\text {jets }}<5$), $E_{\mathrm{T}}^{\text {miss }}>300 \mathrm{GeV}$, and the most energetic b-tagged jet must have a $p_{\mathrm{T}}>100 \mathrm{GeV}$. The azimuthal separation between the directions of the jets and the missing transverse momentum is required to be more than 1.0 radian. Events with at least one identified muon or electron are discarded to reject leptonic decays of W and Z bosons. Events satisfying these selection criteria are assigned to SR1 provided that the jet multiplicity does not exceed two. Events are assigned to SR2 when at least three jets are reconstructed in the event and the second most energetic jet has $p_{\mathrm{T}}>100 \mathrm{GeV}$. If there is a second b-tagged jet it has to satisfy $p_{\mathrm{T}}>60 \mathrm{GeV}$.

Events assigned to SR3 are required to pass triggers specifically designed to select hadronic decays of top quark pairs. Such triggers require either five jets with $p_{\mathrm{T}} \geq 55 \mathrm{GeV}$ each or four jets with $p_{\mathrm{T}} \geq 45 \mathrm{GeV}$, of which one is tagged as a b-jet. To select $p p \rightarrow \chi \bar{\chi}+$ $t \bar{t}$ events, at least five reconstructed jets are required, of which at least two are b-tagged, and $E_{\mathrm{T}}^{\text {miss }}>200$ GeV . Furthermore, the azimuthal separation between the most energetic b-jet and the missing transverse momentum is required to be at least 1.6 radians. To reduce W / Z leptonic decays and leptonic top quark decays,
events with at least one identified muon or electron are discarded. To maximize the rejection of the abundant $t \bar{t}$ background, the Razor variable $R[33]$ is used. This variable utilizes both transverse and longitudinal information about the event to fully exploit the kinematics of the decay. To separate signal and background, $R>$ 0.75 is required.

To enrich the sample in $p p \rightarrow \chi \bar{\chi}+t \bar{t}$ with one semileptonic decay of the t quark, events assigned to SR4 use single-lepton or $E_{\mathrm{T}}^{\text {miss }}$ triggers, and require exactly one isolated lepton (electron or muon) with $p_{\mathrm{T}}>25 \mathrm{GeV}$, at least four high $-p_{\mathrm{T}}$ jets, where one jet is b-tagged with $p_{\mathrm{T}}>60 \mathrm{GeV}$. Events with $E_{\mathrm{T}}^{\text {miss }}>270$ GeV are selected when the transverse mass ${ }^{2}$ formed by the lepton and $E_{\mathrm{T}}^{\mathrm{miss}}, m_{\mathrm{T}}\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)$, exceeds 130 GeV and $E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}^{4 j}}>9 \sqrt{\mathrm{GeV}}$, with $H_{\mathrm{T}}^{4 j}=\sum_{i=1}^{4} p_{\mathrm{T}}\left(\right.$ jet $\left._{i}\right)$ and where the jets are ordered by decreasing p_{T}. The azimuthal angle between the missing transverse momentum and the two most energetic jets is required to be greater than 0.6 radians.

Special variables, such as the asymmetric transverse mass $a m_{\mathrm{T} 2}$ [29-31] and the topness variable [32], are

[^2]

Fig. 3 Comparison between data and expected SM background. (a), (b): $E_{\mathrm{T}}^{\mathrm{miss}}$ variable for SR 1 and SR 2 and for an example signal with the operator D9. (c): R variable for SR3 excluding the selection on R and for an example signal with the operator D1. (d): $E_{\mathrm{T}}^{\mathrm{miss}}$ variable for SR 4 excluding the selection on $E_{\mathrm{T}}^{\mathrm{miss}}$ and for an example signal with the operator D1. Other backgrounds are composed of diboson and multijet production. The expected signal for $\chi \bar{\chi}+b(\bar{b})$ (SR1, 2) and for $\chi \bar{\chi}+t \bar{t}$ (SR3, 4) production for $m_{\chi}=10 \mathrm{GeV}$ is given by the red line assuming $M_{*}=100 / 40 / 600 \mathrm{GeV}$ for the D1/C1/D9 operators, respectively. The final selection requirements are indicated by an arrow. The error bars represent the statistical uncertainty. The dashed area shows the systematic uncertainty on the background estimation. Events with values exceeding the range presented are included in the highest bin.
used to reject the dileptonic $t \bar{t}$ component of the background. Details can be found in Ref. [24]. The diboson background is suppressed by a requirement on the three-jet invariant mass $\left(m_{j j j}<360 \mathrm{GeV}\right)$ [24]. A τ veto rejects $t \bar{t}$ events with hadronically decaying τ leptons in the final state. Additional selection criteria [24] on the angles between the lepton and the various jets are imposed to further reduce the $t \bar{t}$ background. Table 1 provides an overview of the selections applied in all four signal regions.

The product of the detector acceptance A and the reconstruction efficiency ϵ for the selections described above varies between 0.1% and 8% depending on the signal region, operator, and specific channel considered. SR1 and SR2 have the highest efficiencies ($A \times \epsilon>$ 2%) for the D9 operator, while SR3 and SR4 are most efficient for the D1 and C1 operators ($A \times \epsilon>1 \%$).

The dominant background for SR1 and SR2 is due to $Z \rightarrow \nu \bar{\nu}$ events produced in conjunction with one or more jets. This irreducible background is estimated from data using two control regions (CRs). The first CR exploits $Z+$ jets events with $Z \rightarrow \mu^{+} \mu^{-}$, while the second uses $\gamma+$ jets events for which the production at high transverse momentum $\left(p_{\mathrm{T}}^{\gamma}>M_{Z}\right)$ mimics that of $Z+$ jets [46]. The $\gamma+$ jets control region substantially increases the number of events at large missing transverse momentum. The transverse momentum of the dimuon pair or photon is added vectorially to the $E_{\mathrm{T}}^{\text {miss }}$ of the event to simulate the $Z \rightarrow \nu \bar{\nu}$ background. Corrections to compensate for the differences in efficiency and acceptance between the $Z(\nu \bar{\nu})+$ jets and $Z\left(\mu^{+} \mu^{-}\right)+$jets or $\gamma+$ jets are derived from data using control regions without b-tagged jets before applying any requirements on the missing transverse momentum. Remaining kinematic selections correspond to the ones described in

Tab. 1. A muon control region is chosen because the energy loss of muons in the detector is comparatively small. The systematic uncertainties introduced by this data-driven procedure on the $Z(\nu \bar{\nu})+$ jets background are approximately 10%, mainly from the flavour composition of background processes, kinematic differences between the control and signal regions and relative normalizations of backgrounds.

Production of $W / Z+$ jets with subsequent leptonic decays of W and to a much smaller degree Z is also a substantial source of background for SR1 and SR2 when the resulting charged leptons fail to be identified or if the W or Z bosons decay to τ leptons. These contributions are estimated from $Z\left(\ell^{+} \ell^{-}\right)+$jets and $W(\ell \nu)+$ jets MC samples generated using ALPGEN2.3 [47] with the CTEQ6L1 [48] parton distribution function (PDF) set. The procedure used for the normalization of this sample is described in reference [49]. These samples are generated with up to five light partons (u, d, s) and one c quark or two heavy quarks (c, b) per event. $W+b$ production is highly suppressed and therefore negligible. A control region enriched in $W(\ell \nu)+$ jets events is selected by adding a lepton requirement to the selection and is used to validate the estimate of this background. The purity of $W(\ell \nu)+$ jets in the control region for SR1 (SR2) is $67 \%(47 \%)$. After full selection the contribution of $b(c)$-quarks to the dominant $W(\ell \nu)+$ jets background is approximately 39% (38\%) for SR1 and $52 \%(37 \%)$ for SR2. The systematic uncertainty on this background is approximately 20%. Finally, the small contribution from $t \bar{t}$ is estimated using MC samples and validated in data control regions before applying signal selection requirements. The $t \bar{t}$ process is selected with very high purity by requiring events with one lepton and large jet multiplicities.

The dominant source of background for SR3 and SR4 is $t \bar{t}$ events. In SR3, this contribution is estimated from data using a control region not overlapping with SR4 and largely dominated by $t \bar{t}$ events with one of the two top quarks decaying semileptonically. The fivejets requirement is relaxed to three jets. Additionally, the event is required to contain exactly one lepton with $p_{\mathrm{T}}^{e(\mu)}>30(25) \mathrm{GeV}$ and must fullfil $E_{\mathrm{T}}^{\text {miss }}+m_{\mathrm{T}}>$ 25 (30) GeV for the electron (muon) channel. The potential signal contribution to this selection is less than 0.1%. The uncertainties are small because the SR3 data control region uses a kinematic region similar to the signal region with the lepton veto and jet multiplicity being the main difference. These effects were studied and considered as systematic uncertainties. Dominant uncertainties are related to jets and the top quark momentum distribution. Corrections to compensate for the differences in efficiency and acceptance between hadronic
and semileptonic top decays are derived from MC samples generated using the POWHEG BOX generator [50] interfaced with JIMMY4.31 [51] with the next-to-leadingorder (NLO) PDF set CT10 [52]. The systematic uncertainty on the $t \bar{t}$ background in SR3 of approximately 7% is derived by studying corrections for the top quark momentum distribution, and shower modelling by interfacing the same generator with PYTHIA6 [53, 54].

In SR4, the $t \bar{t}$ background is estimated from data using a control region obtained by requiring $60 \mathrm{GeV}<$ $m_{\mathrm{T}}<90 \mathrm{GeV}$ and loosening the selection criteria on $E_{\mathrm{T}}^{\mathrm{miss}}, a m_{\mathrm{T} 2}$, and $E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}^{4 j}}$. A similar selection, but applying an inverted b-tagging requirement, is used to estimate the $W(\ell \nu)+$ jets background. The uncertainty on the $t \bar{t}$ background is estimated to be approximately 20% [24], which is larger than the uncertainty in SR3 due to the limited statistics. These uncertainties are evaluated by varying the renormalisation and factorisation scale of the simulations, comparing alternative PDF sets, and studying the effects of different shower generators and of ISR and final-state radiation.

Additional sources of background, which include singletop, $t \bar{t}+Z / W$, and diboson production, are estimated in all signal regions using simulations and NLO cross sections $[55,56]$. The single-top (s-channel) and $W t$ background is generated using the POWHEG generator. The single-top t-channel is generated with ACERMC3.8 [57] interfaced with PYTHIA6. Associated production of $t \bar{t}$ and a vector boson (W, Z) are generated with MADGRAPH5 [58] with up to two additional partons interfaced with PYTHIA6. The cross-sections for $t \bar{t}$ production in association with a $W(Z)$ boson are determined using the MSTW2008 NLO (CTEQ6.6M) PDF sets. The diboson samples are generated using HERWIG6.520 [59,60] and JIMMY4.31 with the CTEQ6L1 PDF set. The multijet background is estimated using data-driven methods [61] and is found to be negligible in all signal regions after full selection.

Object reconstruction efficiencies in simulated events are corrected to reproduce the performance measured in data. The systematic uncertainty of the background estimates derived from simulation combines the uncertainties on the efficiency of the b-tagging algorithm, the uncertainties on the determination of the energy scale and resolution of the jet energy and $E_{\mathrm{T}}^{\mathrm{miss}}$, the theoretical uncertainty on the various cross-sections, changes in the shapes of distributions used to extrapolate event counts from control regions to the signal region, data driven corrections and the PDF uncertainties. Overall, the systematic uncertainty on the background estimated from simulation is calculated to be between 12% and 18%, depending on the signal region.

Fig. 4 Lower limits on M_{*} at 90% CL for the SR1 (red), SR2 (black), SR3 (green), and SR4 (blue) as a function of m_{χ} for the operators (a) D1, (b) C1, and (c) D9. Solid lines and markers indicate the validity range of the effective field theory assuming couplings $g_{q} g_{\chi}<4 \pi$, the dashed lines and hollow makers represent the full collider constraints.

The simulation of the signal samples of $p p \rightarrow \chi \bar{\chi}+$ $b(\bar{b}), p p \rightarrow \chi \bar{\chi}+t \bar{t}$, and b-FDM employs the MADGRAPH5 generator interfaced with PYTHIA6 using the CTEQ6L1 PDF. Samples are generated for operators D1, C1, and D9, assuming $M_{*}=1 \mathrm{TeV}$ and m_{χ} between 10 GeV and 1300 GeV . Samples for the b-FDM model are generated for m_{χ} values between 1 GeV and 1300 GeV and mediator masses, m_{ϕ}, between 5 GeV and 3000 GeV . The instrumental uncertainties on the simulated signal yields for $\mathrm{D} 1, \mathrm{C} 1$, and D9 operators are between 11% and 15%, depending on the signal region. The equivalent uncertainties for the b-FDM model range between $6 \%-16 \%$ depending on m_{χ} and the mediator mass. The uncertainties from the PDF are computed by comparing the rates obtained with the default PDF set (CTEQ6L1) with those obtained with two alternative sets (MSTW2008LO and NNPDF21LO $[62,63])$. The uncertainties on the signal acceptance from PDF and scale variations are estimated to be approximately 10% for the D1, C1, and D9 operators for $m_{\chi}=10 \mathrm{GeV}$ and approximately 6% for b-FDM models.

The validity of the effective field theory assumption depends on the momentum transfer of the process modelled, which should be below the energy scale of the underlying interactions [64]. To account for this, the momentum transfer $m(\chi \chi)=Q_{\text {tr }}$ in the events is required to be less than the energy scale probed. Specifically, Q_{tr} must be smaller than the mass M of the heavy mediator. For an ultraviolet completion this implies $M_{*}=M / \sqrt{g_{q} g_{\chi}}$. Along with perturbativity of the couplings $g_{q} g_{\chi}<4 \pi$ this leads to the following validity requirements on MC truth level: $Q_{\mathrm{tr}}<4 \pi\left(M_{*}^{3} / m_{q}\right)^{1 / 2}$ (D1), $Q_{\mathrm{tr}}<4 \pi M_{*}$ (D9), $Q_{\mathrm{tr} r}<(4 \pi)^{2} M_{*}^{2} / m_{q}$ (C1).

4 Results

Table 2 shows the expected background from various sources in the four signal regions as well as the observed yields in data. The expected signal yields for the operators D1, C1, and D9, as well as for the b-FDM model are also shown. The probabilities of the backgroundonly hypothesis, p-values, for the signal regions SR1, SR2, SR3, and SR4 are $0.09,0.29,0.24$, and 0.18 , respectively. As no significant excess is observed, limits on the signal yield are set using a profile likelihood ratio test following the $C L_{s}$ prescription [65]. Also given is the 95% confidence level (CL) upper limit on the number of beyond-the-SM events. The yields for the b FDM model are obtained assuming $m_{\chi}=10 \mathrm{GeV}$ and a mediator mass $m_{\phi}=600 \mathrm{GeV}$. The limit on M_{*} for a given assumption on m_{χ} is determined by varying M_{*} and scaling the number of signal events predicted by the corresponding sample generated with $M_{*}=1 \mathrm{TeV}$ until it is equal to the observed upper limit on beyond-theSM events. The corresponding production cross-section for DM produced via the D1 operator in association with $b(t)$-quarks and $m_{\chi}=10 \mathrm{GeV}$ is 38 (221) fb. The cross-section for b-FDM models with $m_{\phi}=600 \mathrm{GeV}$ and $m_{\chi}=10 \mathrm{GeV}$ is 134 fb . The signal efficiency is independent of M_{*}.

Figure 3 shows the $E_{\mathrm{T}}^{\text {miss }}$ distributions for (a) SR1, (b) SR2, and (d) SR4 and (c) the R variable for SR3.

Figure 4 shows the 90% CL exclusion curves for the effective mass scale M_{*} as a function of m_{χ}. The results for the operators D1, C1, and D9 are presented individually for all four signal regions. The best limits on the D1 and C1 operators are obtained using SR4, while SR1 provides the best limits on the D9 operator, as shown in Fig. 4. These limits are then converted into limits on the χ-nucleon cross-section [12]. Figures 5

Fig. 5 Upper limits at $90 \% \mathrm{CL}$ on the spin-independent χ nucleon cross-section $\left(\sigma_{\chi-\mathrm{N}}^{\mathrm{SI}}\right)$ for the scalar operator D1 (red) as a function of m_{χ}. The yellow and green curves represent the exclusion limits recently set by the LUX and Super-CDMS collaborations $[6,7,66]$. The coupling is assumed to be $g_{q} g_{\chi}=$ $g=4 \pi$.
and 6 show the corresponding 90% CL exclusion curves for the spin-independent and spin-dependent χ-nucleon cross-section for the scalar (D1) and tensor (D9) operators as a function of m_{χ} for the strongest results obtained in any signal region. The most stringent limits set by direct detection experiments [6-9] are also shown. Only m_{χ} where more then 90% of the events fulfill the effective field theory validity constraints are shown in Figs. 5 and 6.

The limits shown are especially strong in the lowmass region where several collaborations [28,67-69] have recently claimed possible observations of DM. The results reported in this article represent the first ATLAS limits on the scalar operator C1 and they significantly improve the sensitivity to χ-nucleon interactions mediated by the scalar operator D1 compared to previous ATLAS results [14, 16, 18, 19].

Figure 7 shows the exclusion curves observed and expected for the b-FDM model as a function of the mediator and DM masses. For each point in $\left(m_{\chi}, m_{\phi}\right)$, the signal region with the best expected sensitivity is used, with SR1 dominating over the other signal regions. For a DM particle of approximately 35 GeV , as suggested by the interpretation of data recorded by the Fermi-LAT collaboration, mediator masses between approximately 300 GeV and 500 GeV are excluded at 95% CL.

Fig. 6 Upper limits at 90% CL on the spin-dependent χ nucleon cross-section ($\sigma_{\chi-\mathrm{N}}^{\mathrm{SD}}$) for the tensor operator D9 (red) as a function of m_{χ}. The yellow and green curves represent the exclusion limits recently set by the COUPP and PICASSO collaborations $[8,9,66]$. The coupling is assumed to be $g_{q} g_{\chi}=$ $g=4 \pi$.

Fig. 7 Exclusion contour at 95% CL for the b-FDM model from combined results of SR1 and SR2. The expected limit is given by the dashed line, and the yellow band indicates the $\pm 1 \sigma$ uncertainty. The observed limit, largely dominated by SR1, is given by the solid red line. The region beneath the curve indicating the observed limit is excluded.

5 Conclusions

In summary, this article reports a search for dark-matter pair production in association with bottom or top quarks. The analysis is performed using $20.3 \mathrm{fb}^{-1}$ of $p p$ collisions collected at $\sqrt{s}=8 \mathrm{TeV}$ by the ATLAS de-
tector at the LHC. The results are interpreted in the framework of an effective field theory to set stringent limits on scalar and tensor interactions between Standard Model and DM particles. The data are found to be consistent with the Standard Model expectations, and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between DM and Standard Model particles. The exclusion limits are strongest at low DM masses. The limit on the χ-nucleon cross-section mediated by the D1 operator is improved significantly with respect to previously published ATLAS results by obtaining sensitivities of approximately $\sigma_{\chi-\mathrm{N}}^{\mathrm{SI}}=10^{-42} \mathrm{~cm}^{2}$ for $m_{\chi}=10 \mathrm{GeV}$. Constraints on b-Flavoured Dark Matter models, suitable to explain a possible signal of annihilating DM, are also presented. The excluded regions depend on m_{χ} and m_{ϕ}. For $m_{\chi}=35 \mathrm{GeV}$, mediator particles with $m_{\phi}=300-500 \mathrm{GeV}$ are excluded.

Acknowledgements

We would like to thank Tongyan Lin (University of Chicago) for helpful discussions about the models presented and the interplay between collider DM constraints and direct and indirect DM experiments.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Soci-
ety and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFNCNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

1. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)
2. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005), arXiv:hep-ph/0404175
3. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rept. 267, 195 (1996), arXiv:hep-ph/9506380 [hep-ph]
4. J. Binney, S. Tremaine (1993), arXiv:astro-ph/9304010 [astro-ph]
5. G. Steigman, M. S. Turner, Nucl. Phys. B 253, 375 (1985)
6. D. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 112, 091303 (2014), arXiv:1310.8214 [astro-ph.CO]
7. R. Agnese, et al. (SuperCDMS Collaboration), Phys. Rev. Lett. 112, 041302 (2014), arXiv:1309.3259 [physics.ins-det]
8. E. Behnke, et al. (COUPP Collaboration), Phys. Rev. D 86, 052001 (2012), arXiv:1204.3094 [astro-ph.CO]
9. S. Archambault, et al. (PICASSO Collaboration), Phys. Lett. B 711, 153 (2012), arXiv:1202.1240 [hep-ex]
10. M. Beltran, et al., JHEP 1009, 037 (2010), arXiv:1002.4137 [hep-ph]
11. P. J. Fox, et al., Phys. Rev. D 85, 056011 (2012), arXiv:1109.4398 [hep-ph]
12. J. Goodman, et al., Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783 [hep-ph]
13. T. Aaltonen, et al. (CDF Collaboration), Phys. Rev. Lett. 108, 211804 (2012), arXiv:1203.0742 [hep-ex]
14. ATLAS Collaboration, JHEP 1304, 075 (2013), arXiv:1210.4491 [hep-ex]
15. CMS Collaboration, JHEP 1209, 094 (2012), arXiv:1206.5663 [hep-ex]
16. ATLAS Collaboration, Phys. Rev. Lett. 110, 011802 (2013), arXiv:1209.4625 [hep-ex]
17. CMS Collaboration, Phys. Rev. Lett. 108, 261803 (2012), arXiv:1204.0821 [hep-ex]
18. ATLAS Collaboration, Phys. Rev. Lett. 112, 041802 (2014), arXiv:1309.4017 [hep-ex]
19. ATLAS Collaboration, Phys. Rev. D 90, 012004 (2014), arXiv:1404.0051 [hep-ex]
20. ATLAS Collaboration, JHEP 1409, 037 (2014), arXiv:1407.7494 [hep-ex]
21. CMS Collaboration (2014), arXiv:1408.2745 [hep-ex]
22. CMS Collaboration (2014), arXiv:1408.3583 [hep-ex]
23. T. Lin, E. W. Kolb, L.-T. Wang, Phys. Rev. D 88, 6, 063510 (2013), arXiv:1303.6638 [hep-ph]
24. ATLAS Collaboration (2014), arXiv:1407.0583 [hep-ex]
25. G. D'Ambrosio, et al., Nucl.Phys. B645, 155 (2002), arXiv:hep-ph/0207036 [hep-ph]
26. A. Buras, et al., Phys. Lett. B 500, 161 (2001), arXiv:hep-ph/0007085 [hep-ph]
27. P. Agrawal, et al., Phys.Rev. D90, 063512 (2014), arXiv:1404.1373 [hep-ph]
28. T. Daylan, et al. (2014), arXiv:1402.6703 [astro-ph.HE]
29. Y. Bai, et al., JHEP 1207, 110 (2012), arXiv:1203.4813 [hep-ph]
30. A. J. Barr, B. Gripaios, C. G. Lester, JHEP 0911, 096 (2009), arXiv:0908.3779 [hep-ph]
31. P. Konar, et al., JHEP 1004, 086 (2010), arXiv:0911.4126 [hep-ph]
32. M. L. Graesser, J. Shelton, Phys. Rev. Lett. 111, 12, 121802 (2013), arXiv:1212.4495 [hep-ph]
33. C. Rogan (2010), arXiv:1006.2727 [hep-ph]
34. ATLAS Collaboration, JINST 3, S08003 (2008)
35. ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013), arXiv:1302.4393 [hep-ex]
36. ATLAS Collaboration (2014), arXiv:1407.3935 [hep-ex]
37. ATLAS Collaboration, Eur. Phys. J. C 74, 2941 (2014), arXiv:1404.2240 [hep-ex]
38. ATLAS Collaboration, Eur. Phys. J. C74, 10, 3071 (2014), arXiv:1407.5063 [hep-ex]
39. M. Cacciari, G. P. Salam, G. Soyez, JHEP 0804, 063 (2008), arXiv:0802.1189 [hep-ph]
40. ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013), arXiv:1112.6426 [hep-ex]
41. ATLAS collaboration, Eur. Phys. J. C 73, 2304 (2013), arXiv:1112.6426 [hep-ex]
42. ATLAS Collaboration (2014), arXiv:1406.0076 [hep-ex]
43. ATLAS Collaboration, ATLAS-CONF-2014-004 (2014), http://cds.cern.ch/record/1664335
44. ATLAS Collaboration, ATLAS-CONF-2014-046 (2014), http://cds.cern.ch/record/1741020
45. ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012), arXiv:1108.5602 [hep-ex]
46. S. Ask, et al., JHEP 1110, 058 (2011), arXiv:1107.2803 [hep-ph]
47. M. Mangano, et al., JHEP 0307, 001 (2003), arXiv:hepph/0206293
48. J. Pumplin, et al., JHEP 0207, 012 (2002), arXiv:hepph/0201195 [hep-ph]
49. A. Collaboration, Phys.Rev. D90, 072004 (2014), arXiv:1407.0371 [hep-ex]
50. S. Alioli, et al., JHEP 1006, 043 (2010), arXiv:1002.2581 [hep-ph]
51. J. Butterworth, et al., Z. Phys. C 72, 637 (1996), hepph/9601371
52. H.-L. Lai, et al., Phys. Rev. D 82, 074024 (2010), arXiv:1007.2241 [hep-ph]
53. T. Sjöstrand, et al., JHEP 0605, 026 (2006), arXiv:hepph/0603175
54. ATLAS Collaboration, ATL-PHYS-PUB-2011-014 (2011), http://cds.cern.ch/record/1400677
55. J. M. Campbell, R. K. Ellis, JHEP 1207, 052 (2012), arXiv:1204.5678 [hep-ph]
56. M. Garzelli, A. Kardos, C. Papadopoulos, et al., JHEP 1211, 056 (2012), arXiv:1208.2665 [hep-ph]
57. B. P. Kersevan, et al., Comput. Phys. Commun. 184, 919 (2013), arXiv:hep-ph/0405247 [hep-ph]
58. J. Alwall, et al., JHEP 1106, 128 (2011), arXiv:1106.0522 [hep-ph]
59. G. Corcella, et al., JHEP 0101, 010 (2001), arXiv:hepph/0011363
60. G. Marchesini, et al., Comput. Phys. Commun. 67, 465 (1992)
61. ATLAS Collaboration, Phys. Rev. D 86, 092002 (2012), arXiv:1208.4688 [hep-ex]
62. A. D. Martin, et al., Eur. Phys. J. C 63, 189 (2009), arXiv:0901.0002 [hep-ph]
63. R. D. Ball, et al. (NNPDF Collaboration), Nucl. Phys. B 855, 153 (2012), arXiv:1107.2652 [hep-ph]
64. G. Busoni, et al., Phys. Lett. B 728, 412 (2014), arXiv:1307.2253 [hep-ph]
65. A. L. Read, J. Phys. G 28, 2693 (2002)
66. R. Gaitskell, et al., http://dmtools.brown.edu/
67. R. Bernabei, et al. (DAMA/LIBRA Collaboration), Eur. Phys. J. C 67, 39 (2010), arXiv:1002.1028 [astroph.GA]
68. C. Aalseth, et al. (COGENT Collaboration), Phys. Rev. Lett. 107, 141301 (2011), arXiv:1106.0650 [astro-ph.CO]
69. R. Agnese, et al. (CDMS Collaboration), Phys. Rev. Lett. 111, 251301 (2013), arXiv:1304.4279 [hep-ex]

AUX FIG. 1 Lower limits on M_{*} at 95% CL for the SR1 (red), SR2 (black), SR3 (green), and SR4 (blue) as a function of m_{χ} for the operators (a) D1, (b) C1, and (c) D9. Solid lines and markers indicate the validity range of the effective field theory assuming couplings $g_{q} g_{\chi}<4 \pi$, the dashed lines and hollow markers represent the full collider constraints.

Table 3 Expected number of signal events for selected signal samples as a function of m_{χ} and m_{ϕ}, if applicable. The uncertainties correspond to statistical and systematic uncertainties added in quadrature. The mass scale M_{*} is set to be $100 / 40 / 600 \mathrm{GeV}$ for the D1/C1/D9 operators, corresponding to approximately the expected limit.

Signal sample	$m_{\chi}[\mathrm{GeV}]$	SR1	SR2	SR3	SR4
Expected signal - D1	100	8 ± 1	32 ± 6	24 ± 2	28 ± 4
Expected signal - D1	200	6 ± 1	18 ± 3	12 ± 1	17 ± 2
Expected signal - D1	700	0.12 ± 0.02	0.6 ± 0.1	0.42 ± 0.03	0.7 ± 0.1
Expected signal - C1	100	9 ± 1	45 ± 7	25 ± 2	24 ± 6
Expected signal - C1	200	2.8 ± 0.5	15 ± 3	9 ± 1	11 ± 2
Expected signal - C1	700	0.04 ± 0.01	0.19 ± 0.03	0.12 ± 0.01	0.18 ± 0.02
Expected signal - D9	100	107 ± 17	57 ± 10	1.8 ± 0.2	1.5 ± 0.4
Expected signal - D9	200	72 ± 11	44 ± 7	1.3 ± 0.1	1.0 ± 0.2
Expected signal - D9		700	7 ± 1	5 ± 1	0.16 ± 0.01
	$m_{\chi}[\mathrm{GeV}]$	$m_{\phi}[\mathrm{GeV}]$	SR1	SR2	SR3
Expected signal - b-FDM	35	300	168 ± 23	95 ± 14	-
Expected signal - b-FDM	35	600	83 ± 10	44 ± 5	-
Expected signal - b-FDM	200	600	36 ± 4	31 ± 4	-
Expected signal -b-FDM	1	600	964 ± 122	288 ± 40	-

AUX FIG. 2 Lower limits on M_{*} for the scalar operators C1 (blue) and D1 (red) and the tensor coupling D9 (black) as a function of m_{χ} for (a) SR1, (b) SR2, (c) SR3, and d) SR4. The solid lines represent the observed limits. The green (yellow) areas show the 1σ (2σ) regions around the expected limits (dotted lines).

Table 4 Product of detector acceptance A and reconstruction efficiency $\epsilon(\mathrm{A} \times \epsilon)$ for selected signal samples. Acceptances and efficiencies are independent of the mass scale M_{*}.

Signal sample	$m_{\chi}[\mathrm{GeV}]$	SR1	SR2	SR3	SR4
D1	100	0.26%	1.0%	0.91%	1.1%
D1	200	0.26%	1.1%	0.83%	1.1%
D1	700	0.26%	1.4%	1.0%	1.7%
C1	100	0.19%	0.90%	0.60%	0.60%
C1	200	0.20%	1.1%	0.78%	0.90%
C1	700	0.28%	1.5%	0.99%	1.6%
D9	100	3.7%	2.0%	2.0%	1.8%
D9	200	5.5%	3.3%	2.2%	1.9%
D9	700	10.0%	7.6%	2.7%	2.2%
b-FDM	$m_{\chi}[\mathrm{GeV}]$	$m_{\phi}[\mathrm{GeV}]$	SR1	SR2	SR3
b-FDM	35	300	1.6%	0.90%	-
b-FDM	35	600	11.0%	5.7%	-
b-FDM	200	600	15.0%	14.0%	-

AUX FIG. 3 Comparison between limits on $\sigma_{\chi-\mathrm{N}}$ for the D1 operator obtained in this work and those previously published by ATLAS in [14]. ATLAS limits are set at 95% CL The ATLAS curves shown correspond to the D1 operator. The coupling is assumed to be $g_{q} g_{\chi}=g=4 \pi$.

AUX FIG. 4 Comparison between limits on $\sigma_{\chi-\mathrm{N}}$ for the D9 operator obtained in this work and those previously published by ATLAS in [14]. ATLAS limits are set at 95% CL The ATLAS curves shown correspond to the D9 operator. The coupling is assumed to be $g_{q} g_{\chi}=g=4 \pi$.

AUX FIG. 5 Exclusion contour for the b-FDM model. The expected limit is given by the dashed line, and the yellow band indicates the $\pm 1 \sigma$ uncertainty. The observed limit is given by the solid red line. The region beneath the observed curve is excluded. The signal region (SR) leading to best expected results are indicated for each DM mass and operator.

Table 5 Production cross sections σ for selected samples. The cross sections for the effective field theory operators correspond to the coupling strengths probed.

Signal sample	$m_{\chi}[\mathrm{GeV}]$	$\sigma(p p \rightarrow \chi \bar{\chi}+b(b))[\mathrm{pb}]$	$\sigma(p p \rightarrow \chi \bar{\chi}+t \bar{t})[\mathrm{pb}]$
D1	100	0.022	0.13
D1	200	0.009	0.073
D1	700	0.00010	0.002
C1	100	0.048	0.20
C1	200	0.011	0.060
C1	700	0.000042	0.00057
D9	100	0.14	0.0044
D9	200	0.063	0.0028
D9	700	0.003	0.00028
$[\mathrm{GeV}]$			
b-FDM	$m_{\phi}[\mathrm{GeV}]$	$\sigma[\mathrm{pb}]$	
b-FDM	35	300	0.53
b-FDM	35	600	0.039
b-FDM	200	600	0.012

AUX FIG. 6 Lower limits on M_{*} at 95% CL for the scalar operators C1 (blue) and D1 (red) and the tensor coupling D9 (black) as a function of m_{χ} for (a) SR1, (b) SR2, (c) SR3, and (d) SR4. The solid lines represent the observed limits. The green (yellow) areas show the $1 \sigma(2 \sigma)$ regions around the expected limits (dotted lines).

AUX FIG. 7 Spin-independent 95% CL upper limits on the DM-Nucleon cross section ($\left.\sigma_{\chi-\mathrm{N}}^{\mathrm{SI}}\right)$ for the scalar operator D1 (red) as a function of m_{χ}. The yellow and green curves represent the 90% CL exclusion limits set by the LUX and Super-CDMS collaborations. The coupling is assumed to be $g_{q} g_{\chi}=g=4 \pi$.

AUX FIG. 8 Spin-dependent 95% CL upper limits on the DM-Nucleon cross section $\left(\sigma_{\chi-\mathrm{N}}^{\mathrm{SD}}\right)$ for the tensor operator D9 (red) as a function of m_{χ}. The yellow and green curves represent the 90% CL exclusion limits set by the COUPP and PICASSO collaborations. The coupling is assumed to be $g_{q} g_{\chi}=g=4 \pi$.

The ATLAS Collaboration

G. Aad ${ }^{85}$, B. Abbott ${ }^{113}$, J. Abdallah ${ }^{152}$, S. Abdel Khalek ${ }^{117}$, O. Abdinov ${ }^{11}$, R. Aben ${ }^{107}$, B. Abi ${ }^{114}$, M. Abolins ${ }^{90}$ O.S. AbouZeid ${ }^{159}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{30}$, Y. Abulaiti ${ }^{147 a, 147 b}$, B.S. Acharya ${ }^{165 a, 165 b, a}$, L. Adamczyk ${ }^{38 a}$, D.L. Adams ${ }^{25}$, J. Adelman ${ }^{108}$, S. Adomeit ${ }^{100}$, T. Adye ${ }^{131}$, T. Agatonovic-Jovin ${ }^{13 a}$, J.A. Aguilar-Saavedra ${ }^{126 a, 126 f}$, M. Agustoni ${ }^{17}$, S.P. Ahlen ${ }^{22}$, F. Ahmadov ${ }^{65, b}$, G. Aielli ${ }^{134 a, 134 b}$, H. Akerstedt ${ }^{147 a, 147 b}$, T.P.A. Åkesson ${ }^{81}$, G. Akimoto ${ }^{156}$, A.V. Akimov ${ }^{96}$, G.L. Alberghi ${ }^{20 a}, 20 \mathrm{~b}$, J. Albert ${ }^{170}$, S. Albrand ${ }^{55}$, M.J. Alconada Verzini ${ }^{71}$, M. Aleksa ${ }^{30}$, I.N. Aleksandrov ${ }^{65}$, C. Alexa ${ }^{26 a}$, G. Alexander ${ }^{154}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{113}$, G. Alimonti ${ }^{91 \mathrm{a}}$, L. Alio ${ }^{85}$, J. Alison ${ }^{31}$, B.M.M. Allbrooke ${ }^{18}$, L.J. Allison ${ }^{72}$, P.P. Allport ${ }^{74}$, A. Aloisio ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, A. Alonso ${ }^{36}$, F. Alonso ${ }^{71}$, C. Alpigiani ${ }^{76}$, A. Altheimer ${ }^{35}$, B. Alvarez Gonzalez ${ }^{90}$, M.G. Alviggi ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, K. Amako ${ }^{66}$, Y. Amaral Coutinho ${ }^{24 \mathrm{a}}$, C. Amelung ${ }^{23}$, D. Amidei ${ }^{89}$, S.P. Amor Dos Santos ${ }^{126 a, 126 c}$, A. Amorim ${ }^{126 a, 126 b}$, S. Amoroso ${ }^{48}$, N. Amram ${ }^{154}$, G. Amundsen ${ }^{23}$, C. Anastopoulos ${ }^{140}$, L.S. Ancu ${ }^{49}$, N. Andari ${ }^{30}$, T. Andeen ${ }^{35}$, C.F. Anders ${ }^{58 b}$, G. Anders ${ }^{30}$, K.J. Anderson ${ }^{31}$, A. Andreazza ${ }^{91 \text { a }}$, 91 b , V. Andrei ${ }^{58 \mathrm{a}}$, X.S. Anduaga ${ }^{71}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{107}$, P. Anger ${ }^{44}$, A. Angerami ${ }^{35}$, F. Anghinolfi ${ }^{30}$, A.V. Anisenkov ${ }^{109, c}$, N. Anjos ${ }^{12}$, A. Annovi ${ }^{47}$ A. Antonaki ${ }^{9}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{98}$, J. Antos ${ }^{145 b}$, F. Anulli ${ }^{133 a}$, M. Aoki ${ }^{66}$, L. Aperio Bella ${ }^{18}$, R. Apolle ${ }^{120, d}$, G. Arabidze ${ }^{90}$, I. Aracena ${ }^{144}$, Y. Arai ${ }^{66}$, J.P. Araque ${ }^{126 a}$, A.T.H. Arce ${ }^{45}$, F.A. Arduh ${ }^{71}$, J-F. Arguin ${ }^{95}$, S. Argyropoulos ${ }^{42}$, M. Arik ${ }^{19 a}$, A.J. Armbruster ${ }^{30}$, O. Arnaez ${ }^{30}$, V. Arnal ${ }^{82}$, H. Arnold ${ }^{48}$, M. Arratia ${ }^{28}$, O. Arslan ${ }^{21}$, A. Artamonov ${ }^{97}$, G. Artoni ${ }^{23}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{42}$, A. Ashkenazi ${ }^{154}$, B. Åsman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Asquith ${ }^{150}$, K. Assamagan ${ }^{25}$, R. Astalos ${ }^{145 \mathrm{a}}$ M. Atkinson ${ }^{166}$, N.B. Atlay ${ }^{142}$, B. Auerbach ${ }^{6}$, K. Augsten ${ }^{128}$, M. Aurousseau ${ }^{146 b}$, G. Avolio ${ }^{30}$, B. Axen ${ }^{15}$, G. Azuelos ${ }^{95, e}$, Y. Azuma ${ }^{156}$, M.A. Baak 30, A.E. Baas ${ }^{58 a}$, C. Bacci ${ }^{135 a, 135 b}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{155}$, M. Backes ${ }^{30}$, M. Backhaus ${ }^{30}$, E. Badescu ${ }^{26 a}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 a, 133 b}$, Y. Bai ${ }^{33 a}$, T. Bain ${ }^{35}$, J.T. Baines ${ }^{131}$, O.K. Baker ${ }^{177}$, P. Balek ${ }^{129}$, F. Balli ${ }^{137}$, E. Banas ${ }^{39}$, Sw. Banerjee ${ }^{174}$, A.A.E. Bannoura ${ }^{176}$, H.S. Bansil ${ }^{18}$, L. Barak ${ }^{173}$, S.P. Baranov ${ }^{96}$, E.L. Barberio ${ }^{88}$, D. Barberis ${ }^{50 a, 50 b}$, M. Barbero ${ }^{85}$, T. Barillari ${ }^{101}$, M. Barisonzi ${ }^{176}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{28}$, S.L. Barnes ${ }^{84}$, B.M. Barnett ${ }^{131}$, R.M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 a}$, G. Barone ${ }^{49}$, A.J. Barr ${ }^{120}$, F. Barreiro ${ }^{82}$, J. Barreiro Guimarães da Costa 57, R. Bartoldus ${ }^{144}$, A.E. Barton ${ }^{72}$, P. Bartos ${ }^{145 a}$, V. Bartsch ${ }^{150}$, A. Bassalat ${ }^{117}$, A. Basye ${ }^{166}$, R.L. Bates ${ }^{53}$, S.J. Batista ${ }^{159}$, J.R. Batley ${ }^{28}$, M. Battaglia ${ }^{138}$, M. Battistin ${ }^{30}$, F. Bauer ${ }^{137}$, H.S. Bawa ${ }^{144, f}$, J.B. Beacham ${ }^{110}$, M.D. Beattie ${ }^{72}$, T. Beau ${ }^{80}$, P.H. Beauchemin ${ }^{162}$, R. Beccherle ${ }^{124 a, 124 b}$, P. Bechtle ${ }^{21}$, H.P. Beck ${ }^{17, g}$, K. Becker ${ }^{120}$, S. Becker ${ }^{100}$, M. Beckingham ${ }^{171}$, C. Becot 117, A.J. Beddall ${ }^{19 \mathrm{c}}$, A. Beddall ${ }^{19 \mathrm{c}}$, S. Bedikian ${ }^{177}$, V.A. Bednyakov ${ }^{65}$, C.P. Bee ${ }^{149}$, L.J. Beemster ${ }^{107}$, T.A. Beermann ${ }^{176}$, M. Begel ${ }^{25}$, K. Behr ${ }^{120}$, C. Belanger-Champagne ${ }^{87}$, P.J. Bell ${ }^{49}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{20 a}$, A. Bellerive ${ }^{29}$, M. Bellomo ${ }^{86}$, K. Belotskiy ${ }^{98}$, O. Beltramello ${ }^{30}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 a}$, K. Bendtz ${ }^{147 a, 147 b}$, N. Benekos ${ }^{166}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{49}$, J.A. Benitez Garcia ${ }^{160 b}$, D.P. Benjamin ${ }^{45}$, J.R. Bensinger ${ }^{23}$, S. Bentvelsen ${ }^{107}$, D. Berge ${ }^{107}$, E. Bergeaas Kuutmann ${ }^{167}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{170}$, J. Beringer ${ }^{15}$, C. Bernard ${ }^{22}$, P. Bernat ${ }^{78}$, C. Bernius ${ }^{110}$, F.U. Bernlochner ${ }^{21}$, T. Berry ${ }^{77}$, P. Berta ${ }^{129}$, C. Bertella ${ }^{83}$, G. Bertoli ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, C. Bertsche ${ }^{113}$, D. Bertsche ${ }^{113}$, M.I. Besana ${ }^{91 a^{\prime}}$ G.J. Besjes ${ }^{106}$, O. Bessidskaia Bylund ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Bessner ${ }^{42}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{48}$, S. Bethke ${ }^{101}$, W. Bhimji ${ }^{46}$ R.M. Bianchi ${ }^{125}$, L. Bianchini ${ }^{23}$, M. Bianco ${ }^{30}$, O. Biebel ${ }^{100}$, S.P. Bieniek ${ }^{78}$, K. Bierwagen ${ }^{54}$, J. Biesiada ${ }^{15}$, M. Biglietti ${ }^{135 a}$, J. Bilbao De Mendizabal ${ }^{49}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{54}$, S. Binet ${ }^{117}$, A. Bingul ${ }^{19 \mathrm{c}}$, C. Bini ${ }^{133 a, 133 b}$, C.W. Black ${ }^{151}$, J.E. Black ${ }^{144}$, K.M. Black ${ }^{22}$, D. Blackburn ${ }^{139}$, R.E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, T. Blazek ${ }^{145 a}$, I. Bloch ${ }^{42}$, C. Blocker ${ }^{23}$, W. Blum ${ }^{83, *}$, U. Blumenschein ${ }^{54}$, G.J. Bobbink ${ }^{107}$, V.S. Bobrovnikov ${ }^{109, c}$, S.S. Bocchetta ${ }^{81}$, A. Bocci ${ }^{45}$, C. Bock ${ }^{100}$, C.R. Boddy ${ }^{120}$, M. Boehler ${ }^{48}$, T.T. Boek ${ }^{176}$, J.A. Bogaerts ${ }^{30}$, A.G. Bogdanchikov ${ }^{109}$, A. Bogouch ${ }^{92, *}$, C. Bohm ${ }^{147 a}$, V. Boisvert ${ }^{77}$, T. Bold ${ }^{38 a}$, V. Boldea ${ }^{26 a}$, A.S. Boldyrev ${ }^{99}$, M. Bomben ${ }^{80}$, M. Bona ${ }^{76}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{130}$, G. Borissov ${ }^{72}$, M. Borri ${ }^{84}$, S. Borroni ${ }^{42}$, J. Bortfeldt ${ }^{100}$, V. Bortolotto ${ }^{60 a}$, K. Bos ${ }^{107}$, D. Boscherini ${ }^{20 a}$, M. Bosman ${ }^{12}$, H. Boterenbrood ${ }^{107}$, J. Boudreau ${ }^{125}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{72}$, D. Boumediene ${ }^{34}$, C. Bourdarios ${ }^{117}$, N. Bousson ${ }^{114}$, S. Boutouil ${ }^{136 d}$, A. Boveia ${ }^{31}$, J. Boyd ${ }^{30}$, I.R. Boyko ${ }^{65}$, I. Bozic ${ }^{13 a}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{15}$, O. Brandt ${ }^{58 \mathrm{a}}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{86}$, J.E. Brau ${ }^{116}$, H.M. Braun ${ }^{176, *}$, S.F. Brazzale ${ }^{165 a, 165 \mathrm{c}}$, B. Brelier ${ }^{159}$, K. Brendlinger ${ }^{122}$, A.J. Brennan ${ }^{88}$, R. Brenner ${ }^{167}$, S. Bressler ${ }^{173}$, K. Bristow ${ }^{146 \mathrm{c}}$, T.M. Bristow ${ }^{46}$, D. Britton ${ }^{53}$, F.M. Brochu ${ }^{28}$, I. Brock 21, R. Brock ${ }^{90}$, J. Bronner ${ }^{101}$, G. Brooijmans ${ }^{35}$, T. Brooks ${ }^{77}$, W.K. Brooks ${ }^{32 b}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{116}$, J. Brown ${ }^{55}$, P.A. Bruckman de Renstrom ${ }^{39}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{48}$, S. Brunet ${ }^{61}$, A. Bruni ${ }^{20 a}$, G. Bruni ${ }^{20 a}$, M. Bruschi ${ }^{20 a}$, L. Bryngemark ${ }^{81}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{143}$, F. Bucci ${ }^{49}$, P. Buchholz ${ }^{142}$, A.G. Buckley ${ }^{53}$, S.I. Buda ${ }^{26 a}$, I.A. Budagov ${ }^{65}$, F. Buehrer ${ }^{48}$, L. Bugge ${ }^{119}$, M.K. Bugge ${ }^{119}$, O. Bulekov ${ }^{98}$, A.C. Bundock ${ }^{74}$, H. Burckhart ${ }^{30}$, S. Burdin ${ }^{74}$, B. Burghgrave ${ }^{108}$, S. Burke ${ }^{131}$, I. Burmeister ${ }^{43}$, E. Busato ${ }^{34}$, D. Büscher ${ }^{48}$, V. Büscher ${ }^{83}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{167}$, B. Butler ${ }^{57}$, J.M. Butler ${ }^{22}$, A.I. Butt ${ }^{3}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{78}$, P. Butti ${ }^{107}$, W. Buttinger ${ }^{28}$, A. Buzatu ${ }^{53}$, M. Byszewski ${ }^{10}$, S. Cabrera Urbán ${ }^{168}$, D. Caforio ${ }^{20 a}, 20$ b , O. Cakir ${ }^{4 a}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{137}$, G. Calderini ${ }^{80}$, P. Calfayan ${ }^{100}$, L.P. Caloba ${ }^{24 a}$, D. Calvet ${ }^{34}$, S. Calvet ${ }^{34}$, R. Camacho Toro ${ }^{49}$, S. Camarda ${ }^{42}$, D. Cameron ${ }^{119}$, L.M. Caminada ${ }^{15}$, R. Caminal Armadans ${ }^{12}$, S. Campana ${ }^{30}$, M. Campanelli ${ }^{78}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, A. Canepa ${ }^{160 \mathrm{a}}$, M. Cano Bret 76, J. Cantero ${ }^{82}$, R. Cantrill ${ }^{126 a}$, T. Cao ${ }^{40}$, M.D.M. Capeans Garrido ${ }^{30}$, I. Caprini ${ }^{26 a}$, M. Caprini ${ }^{26 a}$, M. Capua ${ }^{37 a, 37 b}$, R. Caputo ${ }^{83}$, R. Cardarelli ${ }^{134 a}$, T. Carli ${ }^{30}$, G. Carlino ${ }^{104 a}$,
L. Carminati ${ }^{91 a, 91 b}$, S. Caron ${ }^{106}$, E. Carquin ${ }^{32 a}$, G.D. Carrillo-Montoya ${ }^{146 c}$, J.R. Carter ${ }^{28}$, J. Carvalho ${ }^{126 a, 126 c}$, D. Casadei ${ }^{78}$, M.P. Casado ${ }^{12}$, M. Casolino ${ }^{12}$, E. Castaneda-Miranda ${ }^{146 \mathrm{~b}}$, A. Castelli ${ }^{107}$, V. Castillo Gimenez ${ }^{168}$, N.F. Castro ${ }^{126 a}$, P. Catastini ${ }^{57}$, A. Catinaccio ${ }^{30}$, J.R. Catmore ${ }^{119}$, A. Cattai ${ }^{30}$, G. Cattani ${ }^{134 a, 134 b}$, J. Caudron ${ }^{83}$ V. Cavaliere ${ }^{166}$, D. Cavalli ${ }^{91 \mathrm{a}}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, F. Ceradini ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, B.C. Cerio ${ }^{45}$, K. Cerny ${ }^{129}$, A.S. Cerqueira ${ }^{24 b}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{76}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{30}$, A. Cervelli ${ }^{17}$, S.A. Cetin ${ }^{19 b}$, A. Chafaq ${ }^{136 a}$, D. Chakraborty ${ }^{108}$, I. Chalupkova ${ }^{129}$, P. Chang ${ }^{166}$, B. Chapleau ${ }^{87}$, J.D. Chapman ${ }^{28}$, D. Charfeddine ${ }^{117}$, D.G. Charlton ${ }^{18}$, C.C. Chau ${ }^{159}$, C.A. Chavez Barajas ${ }^{150}$, S. Cheatham ${ }^{153}$, A. Chegwidden ${ }^{90}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{160 a}$, G.A. Chelkov ${ }^{65, h}$, M.A. Chelstowska ${ }^{89}$, C. Chen ${ }^{64}$, H. Chen ${ }^{25}$, K. Chen ${ }^{149}$, L. Chen ${ }^{33 \mathrm{~d}, i}$, S. Chen ${ }^{33 \mathrm{c}}$, X. Chen ${ }^{33 f^{\prime}}$, Y. Chen ${ }^{67}$, H.C. Cheng ${ }^{89}$, Y. Cheng ${ }^{31}$, A. Cheplakov ${ }^{65}$, E. Cheremushkina ${ }^{130}$, R. Cherkaoui El Moursli ${ }^{136 e}$,
V. Chernyatin ${ }^{25, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{47}$, G. Chiefari ${ }^{104 a, 104 b}$, J.T. Childers ${ }^{6}$, A. Chilingarov ${ }^{72}$, G. Chiodini ${ }^{73 a}$, A.S. Chisholm ${ }^{18}$, R.T. Chislett ${ }^{78}$, A. Chitan ${ }^{26 a}$, M.V. Chizhov ${ }^{65}$, S. Chouridou ${ }^{9}$, B.K.B. Chow ${ }^{100}$, D. Chromek-Burckhart ${ }^{30}$, M.L. Chu ${ }^{152}$, J. Chudoba ${ }^{127}$, J.J. Chwastowski ${ }^{39}$, L. Chytka ${ }^{115}$, G. Ciapetti ${ }^{133 a, 133 b}$, A.K. Ciftci ${ }^{4 a}$, R. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca ${ }^{53}$, V. Cindro ${ }^{75}$, A. Ciocio ${ }^{15}$, Z.H. Citron ${ }^{173}$, M. Citterio ${ }^{91 a}$, M. Ciubancan ${ }^{26 a}$, A. Clark ${ }^{49}$, P.J. Clark ${ }^{46}$, R.N. Clarke ${ }^{15}$, W. Cleland ${ }^{125}$, J.C. Clemens ${ }^{85}$, C. Clement ${ }^{147 a, 147 b}$, Y. Coadou ${ }^{85}$, M. Cobal ${ }^{165 \mathrm{a}, 165 \mathrm{c}}$, A. Coccaro ${ }^{139}$, J. Cochran ${ }^{64}$, L. Coffey ${ }^{23}$, J.G. Cogan ${ }^{144}$, B. Cole ${ }^{35}$, S. Cole ${ }^{108}$, A.P. Colijn ${ }^{107}$, J. Collot ${ }^{55}$, T. Colombo ${ }^{58 \mathrm{c}}$, G. Compostella ${ }^{101}$, P. Conde Muiño ${ }^{126 a, 126 b}$, E. Coniavitis ${ }^{48}$, S.H. Connell ${ }^{146 \mathrm{~b}}$, I.A. Connelly ${ }^{77}$, S.M. Consonni ${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{26 \mathrm{a}}$, C. Conta ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$, G. Conti ${ }^{57}$, F. Conventi ${ }^{104 a, j}$, M. Cooke ${ }^{15}$, B.D. Cooper ${ }^{78}$, A.M. Cooper-Sarkar ${ }^{120}$, N.J. Cooper-Smith ${ }^{77}$, K. Copic ${ }^{15}$, T. Cornelissen ${ }^{176}$, M. Corradi ${ }^{20 a}$, F. Corriveau ${ }^{87, k}$, A. Corso-Radu ${ }^{164}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{101}$, G. Costa ${ }^{91 a}$, M.J. Costa ${ }^{168}$, D. Costanzo ${ }^{140}$, D. Côté ${ }^{8}$, G. Cottin ${ }^{28}$, G. Cowan ${ }^{77}$, B.E. Cox ${ }^{84}$, K. Cranmer ${ }^{110}$, G. Cree ${ }^{29}$, S. Crépé-Renaudin ${ }^{55}$, F. Crescioli ${ }^{80}$, W.A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{120}$, M. Cristinziani ${ }^{21}$, V. Croft ${ }^{106}$, G. Crosetti ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{177}$, M. Curatolo ${ }^{47}$, C. Cuthbert ${ }^{151}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{3}$, S. D'Auria ${ }^{53}$, M. D'Onofrio ${ }^{74}$, M.J. Da Cunha Sargedas De Sousa ${ }^{126 a, 126 b}$, C. Da Via ${ }^{84}$, W. Dabrowski ${ }^{38 \mathrm{a}}$, A. Dafinca ${ }^{120}$, T. Dai ${ }^{89}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{95}$, C. Dallapiccola ${ }^{86}$, M. Dam ${ }^{36}$, A.C. Daniells ${ }^{18}$, M. Danninger ${ }^{169}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{48}$, G. Darbo ${ }^{50 a}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{74}$, A. Dattagupta ${ }^{61}$, W. Davey ${ }^{21}$, C. David ${ }^{170}$, T. Davidek ${ }^{129}$, E. Davies ${ }^{120, d}$, M. Davies ${ }^{154}$, O. Davignon ${ }^{80}$, A.R. Davison ${ }^{78}$, P. Davison ${ }^{78}$, Y. Davygora ${ }^{58 a}$, E. Dawe ${ }^{143}$, I. Dawson ${ }^{140}$, R.K. Daya-Ishmukhametova ${ }^{86}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{104 a}$, S. De Castro ${ }^{20 a}, 20 \mathrm{~b}$, S. De Cecco ${ }^{80}$, N. De Groot ${ }^{106}$, P. de Jong ${ }^{107}$, H. De la Torre ${ }^{82}$, F. De Lorenzi ${ }^{64}$, L. De Nooij ${ }^{107}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{150}$, A. De Santo ${ }^{150}$, J.B. De Vivie De Regie ${ }^{117}$, W.J. Dearnaley ${ }^{72}$, R. Debbe ${ }^{25}$, C. Debenedetti ${ }^{138}$, B. Dechenaux ${ }^{55}$, D.V. Dedovich ${ }^{65}$, I. Deigaard ${ }^{107}$, J. Del Peso ${ }^{82}$, T. Del Prete ${ }^{124 a, 124 b}$, F. Deliot ${ }^{137}$, C.M. Delitzsch ${ }^{49}$, M. Deliyergiyev ${ }^{75}$, A. Dell'Acqua ${ }^{30}$, L. Dell'Asta ${ }^{22}$, M. Dell’Orso ${ }^{124 a, 124 b}$, M. Della Pietra ${ }^{104 a, j}$, D. della Volpe ${ }^{49}$, M. Delmastro ${ }^{5}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{107}$, D.A. DeMarco ${ }^{159}$, S. Demers ${ }^{177}$, M. Demichev ${ }^{65}$, A. Demilly ${ }^{80}$, S.P. Denisov ${ }^{130}$, D. Derendarz ${ }^{39}$, J.E. Derkaoui ${ }^{136 \mathrm{~d}}$, F. Derue ${ }^{80}$, P. Dervan ${ }^{74}$, K. Desch ${ }^{21}$, C. Deterre ${ }^{42}$, P.O. Deviveiros ${ }^{30}$, A. Dewhurst ${ }^{131}$, S. Dhaliwal ${ }^{107}$, A. Di Ciaccio ${ }^{134 a, 134 b}$, L. Di Ciaccio ${ }^{5}$, A. Di Domenico ${ }^{133 a, 133 b}$, C. Di Donato ${ }^{104 a, 104 b}$, A. Di Girolamo ${ }^{30}$, B. Di Girolamo ${ }^{30}$, A. Di Mattia ${ }^{153}$, B. Di Micco ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, R. Di Nardo ${ }^{47}$, A. Di Simone ${ }^{48}$, R. Di Sipio ${ }^{20 a}, 20 b$, D. Di Valentino ${ }^{29}$, F.A. Dias ${ }^{46}$, M.A. Diaz ${ }^{32 a}$, E.B. Diehl ${ }^{89}$, J. Dietrich ${ }^{16}$, T.A. Dietzsch ${ }^{58 a}$, S. Diglio ${ }^{85}$, A. Dimitrievska ${ }^{13 a}$, J. Dingfelder ${ }^{21}$, P. Dita ${ }^{26 a}$, S. Dita ${ }^{26 a}$, F. Dittus ${ }^{30}$, F. Djama ${ }^{85}$, T. Djobava ${ }^{51 b}$, J.I. Djuvsland ${ }^{58 a}$, M.A.B. do Vale ${ }^{24 \mathrm{c}}$, D. Dobos 30, C. Doglioni ${ }^{49}$, T. Doherty ${ }^{53}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{129}$, Z. Dolezal ${ }^{129}$,
B.A. Dolgoshein ${ }^{98, *}$, M. Donadelli ${ }^{24 \mathrm{~d}}$, S. Donati ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, P. Dondero ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$, J. Donini ${ }^{34}$, J. Dopke ${ }^{131}$, A. Doria ${ }^{104 \mathrm{a}}$, M.T. Dova ${ }^{71}$, A.T. Doyle ${ }^{53}$, M. Dris ${ }^{10}$, J. Dubbert ${ }^{89}$, S. Dube ${ }^{15}$, E. Dubreuil ${ }^{34}$, E. Duchovni ${ }^{173}$, G. Duckeck ${ }^{100}$, O.A. Ducu ${ }^{26 a}$, D. Duda ${ }^{176}$, A. Dudarev ${ }^{30}$, F. Dudziak ${ }^{64}$, L. Duflot ${ }^{117}$, L. Duguid ${ }^{77}$, M. Dührssen ${ }^{30}$, M. Dunford ${ }^{58 \text { a }}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{52}$, A. Durglishvili ${ }^{51 b}$, D. Duschinger ${ }^{44}$, M. Dwuznik ${ }^{38 a}$, M. Dyndal ${ }^{38 a}$, J. Ebke ${ }^{100}$, W. Edson ${ }^{2}$, N.C. Edwards ${ }^{46}$, W. Ehrenfeld ${ }^{21}$, T. Eifert ${ }^{30}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{167}$, M. El Kacimi ${ }^{136 c}$, M. Ellert ${ }^{167}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{83}$, N. Ellis ${ }^{30}$, J. Elmsheuser ${ }^{100}$, M. Elsing ${ }^{30}$, D. Emeliyanov ${ }^{131}$, Y. Enari ${ }^{156}$, O.C. Endner ${ }^{83}$, M. Endo ${ }^{118}$, R. Engelmann ${ }^{149}$, J. Erdmann ${ }^{177}$, A. Ereditato ${ }^{17}$, D. Eriksson ${ }^{147 a}$, G. Ernis ${ }^{176}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{25}$, J. Ernwein ${ }^{137}$, D. Errede ${ }^{166}$, S. Errede ${ }^{166}$, E. Ertel ${ }^{83}$, M. Escalier ${ }^{117}$, H. Esch ${ }^{43}$, C. Escobar ${ }^{125}$, B. Esposito ${ }^{47}$, A.I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{61}$, A. Ezhilov ${ }^{123}$, L. Fabbri ${ }^{20 a}{ }^{20 b}$, G. Facini ${ }^{31}$, R.M. Fakhrutdinov ${ }^{130}$, S. Falciano ${ }^{133 a}$, R.J. Falla ${ }^{78}$, J. Faltova ${ }^{129}$, Y. Fang ${ }^{33 a}$, M. Fanti ${ }^{91 a, 91 b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 a}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{15}$, S.M. Farrington ${ }^{171}$, P. Farthouat ${ }^{30}$, F. Fassi ${ }^{136 e}$, P. Fassnacht ${ }^{30}$, D. Fassouliotis ${ }^{9}$, A. Favareto ${ }^{50 a}$, 50 b , L. Fayard ${ }^{117}$, P. Federic ${ }^{145 \mathrm{a}}$, O.L. Fedin ${ }^{123, l}$, W. Fedorko ${ }^{169}$, S. Feigl 30, L. Feligioni ${ }^{85}$, C. Feng ${ }^{33 d}$, E.J. Feng ${ }^{6}$, H. Feng ${ }^{89}$, A.B. Fenyuk ${ }^{130}$, S. Fernandez Perez ${ }^{30}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, A. Ferrari ${ }^{167}$, P. Ferrari ${ }^{107}$, R. Ferrari ${ }^{121 a}$, D.E. Ferreira de Lima ${ }^{53}$, A. Ferrer ${ }^{168}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{89}$, A. Ferretto Parodi ${ }^{50 a}{ }^{5} 50$ b , M. Fiascaris ${ }^{31}$, F. Fiedler ${ }^{83}$, A. Filipčič ${ }^{75}$, M. Filipuzzi ${ }^{42}$, F. Filthaut ${ }^{106}$, M. Fincke-Keeler ${ }^{170}$, K.D. Finelli ${ }^{151}$, M.C.N. Fiolhais ${ }^{126 a}, 126 c$, L. Fiorini ${ }^{168}$, A. Firan ${ }^{40}$, A. Fischer ${ }^{2}$, J. Fischer ${ }^{176}$, W.C. Fisher ${ }^{90}$, E.A. Fitzgerald ${ }^{23}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{89}$, S. Fleischmann ${ }^{176}$, G.T. Fletcher ${ }^{140}$, G. Fletcher ${ }^{76}$, T. Flick ${ }^{176}$, A. Floderus ${ }^{81}$, L.R. Flores Castillo ${ }^{60 a}$, M.J. Flowerdew ${ }^{101}$, A. Formica ${ }^{137}$, A. Forti ${ }^{84}$, D. Fortin ${ }^{160 a}$, D. Fournier ${ }^{117}$, H. Fox ${ }^{72}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{80}$, M. Franchini ${ }^{20 a}$, 20b , S. Franchino ${ }^{30}$, D. Francis ${ }^{30}$, L. Franconi ${ }^{119}$, M. Franklin ${ }^{57}$, M. Fraternali ${ }^{121 a, 121 b}$, S.T. French ${ }^{28}$, C. Friedrich ${ }^{42}$, F. Friedrich ${ }^{44}$, D. Froidevaux ${ }^{30}$, J.A. Frost ${ }^{120}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{83}$, B.G. Fulsom ${ }^{144}$, J. Fuster ${ }^{168}$, C. Gabaldon ${ }^{55}$, O. Gabizon ${ }^{176}$, A. Gabrielli ${ }^{20 a}, 20 b$, A. Gabrielli ${ }^{133 a, 133 b}$, S. Gadatsch ${ }^{107}$, S. Gadomski ${ }^{49}$,
G. Gagliardi ${ }^{50 a, 50 b}$, P. Gagnon ${ }^{61}$, C. Galea ${ }^{106}$, B. Galhardo ${ }^{126 a, 126 c}$, E.J. Gallas ${ }^{120}$, B.J. Gallop ${ }^{131}$, P. Gallus ${ }^{128}$, G. Galster ${ }^{36}$, K.K. Gan ${ }^{111}$, J. Gao ${ }^{33 b, i}$, Y.S. Gao ${ }^{144, f}$, F.M. Garay Walls ${ }^{46}$, F. Garberson ${ }^{177}$, C. García ${ }^{168}$,
J.E. García Navarro ${ }^{168}$, M. Garcia-Sciveres ${ }^{15}$, R.W. Gardner ${ }^{31}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{30}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{121 a}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{95}$, P. Gauzzi ${ }^{133 a, 133 b}$, I.L. Gavrilenko ${ }^{96}$, C. Gay ${ }^{169}$, G. Gaycken ${ }^{21}$, E.N. Gazis ${ }^{10}$, P. Ge ${ }^{33 d}$, Z. Gecse ${ }^{169}$, C.N.P. Gee ${ }^{131}$, D.A.A. Geerts ${ }^{107}$, Ch. Geich-Gimbel ${ }^{21}$, K. Gellerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M.H. Genest ${ }^{55}$, S. Gentile ${ }^{133 a, 133 b}$, M. George ${ }^{54}$, S. George ${ }^{77}$, D. Gerbaudo ${ }^{164}$, A. Gershon ${ }^{154}$, H. Ghazlane ${ }^{136 b}$, N. Ghodbane ${ }^{34}$, B. Giacobbe ${ }^{20 \mathrm{a}}$, S. Giagu ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, V. Giangiobbe ${ }^{12}$, P. Giannetti ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, F. Gianotti ${ }^{30}$, B. Gibbard ${ }^{25}$, S.M. Gibson ${ }^{77}$, M. Gilchriese ${ }^{15}$, T.P.S. Gillam ${ }^{28}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{34}$, D.M. Gingrich ${ }^{3, e}$, N. Giokaris ${ }^{9}$,
M.P. Giordani ${ }^{165 \mathrm{a}, 165 \mathrm{c}}$, R. Giordano ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, F.M. Giorgi ${ }^{20 a}$, F.M. Giorgi ${ }^{16}$, P.F. Giraud ${ }^{137}$, D. Giugni ${ }^{91 a}$, C. Giuliani ${ }^{48}$, M. Giulini ${ }^{58 b}$, B.K. Gjelsten ${ }^{119}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155}$, E.L. Gkougkousis ${ }^{117}$, L.K. Gladilin ${ }^{99}$, C. Glasman ${ }^{82}$, J. Glatzer ${ }^{30}$, P.C.F. Glaysher ${ }^{46}$, A. Glazov ${ }^{42}$, G.L. Glonti ${ }^{62}$, M. Goblirsch-Kolb ${ }^{101}$, J.R. Goddard ${ }^{76}$, J. Godlewski ${ }^{30}$, C. Goeringer ${ }^{83}$, S. Goldfarb ${ }^{89}$, T. Golling ${ }^{177}$, D. Golubkov ${ }^{130}$, A. Gomes ${ }^{126 a, 126 b, 126 d}$, L.S. Gomez Fajardo ${ }^{42}$,
R. Gonçalo ${ }^{126 a}$, J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, L. Gonella ${ }^{21}$, S. González de la Hoz ${ }^{168}$, G. Gonzalez Parra ${ }^{12}$, S. Gonzalez-Sevilla ${ }^{49}$, L. Goossens ${ }^{30}$, P.A. Gorbounov ${ }^{97}$, H.A. Gordon ${ }^{25}$, I. Gorelov ${ }^{105}$, B. Gorini ${ }^{30}$, E. Gorini ${ }^{73 a}, 73 \mathrm{~b}$, A. Gorišek ${ }^{75}$, E. Gornicki ${ }^{39}$, A.T. Goshaw ${ }^{45}$, C. Gössling ${ }^{43}$, M.I. Gostkin ${ }^{65}$, M. Gouighri ${ }^{136 a}$, D. Goujdami ${ }^{136 c}$, M.P. Goulette ${ }^{49}$, A.G. Goussiou ${ }^{139}$, C. Goy ${ }^{5}$, E. Gozani ${ }^{153}$, H.M.X. Grabas ${ }^{138}$, L. Graber ${ }^{54}$, I. Grabowska-Bold ${ }^{38 a}$,
P. Grafström ${ }^{20 a}, 20 \mathrm{~b}$, K-J. Grahn ${ }^{42}$, J. Gramling ${ }^{49}$, E. Gramstad ${ }^{119}$, S. Grancagnolo ${ }^{16}$, V. Grassi ${ }^{149}$, V. Gratchev ${ }^{123}$ H.M. Gray ${ }^{30}$, E. Graziani ${ }^{135 a}$, O.G. Grebenyuk ${ }^{123}$, Z.D. Greenwood ${ }^{79, m}$, K. Gregersen ${ }^{78}$, I.M. Gregor ${ }^{42}$, P. Grenier ${ }^{144}$ J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{138}$, K. Grimm ${ }^{72}$, S. Grinstein ${ }^{12, n}$, Ph. Gris ${ }^{34}$, Y.V. Grishkevich ${ }^{99}$, J.-F. Grivaz ${ }^{117}$, J.P. Grohs ${ }^{44}$, A. Grohsjean ${ }^{42}$, E. Gross ${ }^{173}$, J. Grosse-Knetter ${ }^{54}$, G.C. Grossi ${ }^{134 a, 134 b}$, Z.J. Grout ${ }^{150}$, L. Guan ${ }^{33 b}$, J. Guenther ${ }^{128}$ F. Guescini ${ }^{49}$, D. Guest ${ }^{177}$, O. Gueta ${ }^{154}$, C. Guicheney ${ }^{34}$, E. Guido ${ }^{50 a, 50 b}$, T. Guillemin ${ }^{117}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{53}$, C. Gumpert ${ }^{44}$, J. Guo ${ }^{35}$, S. Gupta ${ }^{120}$, P. Gutierrez ${ }^{113}$, N.G. Gutierrez Ortiz ${ }^{53}$, C. Gutschow ${ }^{78}$, N. Guttman ${ }^{154}$ C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{120}$, C.B. Gwilliam ${ }^{74}$, A. Haas ${ }^{110}$, C. Haber ${ }^{15}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, P. Haefner ${ }^{21}$ S. Hageböck ${ }^{21}$, Z. Hajduk ${ }^{39}$, H. Hakobyan ${ }^{178}$, M. Haleem ${ }^{42}$, D. Hall ${ }^{120}$, G. Halladjian ${ }^{90}$, G.D. Hallewell ${ }^{85}$, K. Hamacher ${ }^{176}$ P. Hamal ${ }^{115}$, K. Hamano ${ }^{170}$, M. Hamer ${ }^{54}$, A. Hamilton ${ }^{146 a}$, S. Hamilton ${ }^{162}$, G.N. Hamity ${ }^{146 c}$, P.G. Hamnett ${ }^{42}$, L. Han ${ }^{33 b}$, K. Hanagaki ${ }^{118}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{15}$, P. Hanke ${ }^{58 a}$, R. Hanna ${ }^{137}$, J.B. Hansen ${ }^{36}$, J.D. Hansen ${ }^{36}$, P.H. Hansen ${ }^{36}$, K. Hara ${ }^{161}$, A.S. Hard ${ }^{174}$, T. Harenberg ${ }^{176}$, F. Hariri ${ }^{117}$, S. Harkusha ${ }^{92}$, D. Harper ${ }^{89}$, R.D. Harrington ${ }^{46}$, O.M. Harris ${ }^{139}$, P.F. Harrison ${ }^{171}$, F. Hartjes ${ }^{107}$, M. Hasegawa ${ }^{67}$, S. Hasegawa ${ }^{103}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{113}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{17}$, M. Hauschild ${ }^{30}$, R. Hauser ${ }^{90}$, M. Havranek ${ }^{127}$, C.M. Hawkes ${ }^{18}$, R.J. Hawkings ${ }^{30}$, A.D. Hawkins ${ }^{81}$, T. Hayashi ${ }^{161}$, D. Hayden ${ }^{90}$, C.P. Hays ${ }^{120}$, J.M. Hays ${ }^{76}$, H.S. Hayward ${ }^{74}$, S.J. Haywood ${ }^{131}$, S.J. Head ${ }^{18}$, T. Heck ${ }^{83}$, V. Hedberg ${ }^{81}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{122}$, T. Heim ${ }^{176}$, B. Heinemann ${ }^{15}$, L. Heinrich ${ }^{110}$, J. Hejbal ${ }^{127}$, L. Helary ${ }^{22}$, C. Heller ${ }^{100}$, M. Heller ${ }^{30}$, S. Hellman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Hellmich ${ }^{21}$, C. Helsens ${ }^{30}$, J. Henderson ${ }^{120}$, R.C.W. Henderson ${ }^{72}$, Y. Heng ${ }^{174}$, C. Hengler ${ }^{42}$, A. Henrichs ${ }^{177}$, A.M. Henriques Correia ${ }^{30}$, S. Henrot-Versille ${ }^{117}$, G.H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{168}$, R. Herrberg-Schubert ${ }^{16}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{100}$, L. Hervas ${ }^{30}$, G.G. Hesketh ${ }^{78}$, N.P. Hessey ${ }^{107}$, R. Hickling ${ }^{76}$, E. Higón-Rodriguez ${ }^{168}$, E. Hill ${ }^{170}$, J.C. Hill ${ }^{28}$, K.H. Hiller ${ }^{42}$, S.J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{122}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{176}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{107}$, M.C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{30}$, M.R. Hoeferkamp ${ }^{105}$, F. Hoenig ${ }^{100}$, D. Hoffmann ${ }^{85}$, M. Hohlfeld ${ }^{83}$, T.R. Holmes ${ }^{15}$, T.M. Hong ${ }^{122}$, L. Hooft van Huysduynen ${ }^{110}$, W.H. Hopkins ${ }^{116}$, Y. Horii ${ }^{103}$, A.J. Horton ${ }^{143}$, J-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 a}$, J. Howard ${ }^{120}$ J. Howarth ${ }^{42}$, M. Hrabovsky ${ }^{115}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{117}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{93}$, C. Hsu ${ }^{146 c}$, P.J. Hsu ${ }^{152}$, S.-C. Hsu ${ }^{139}$, D. Hu^{35}, X. Hu^{89}, Y. Huang ${ }^{42}$, Z. Hubacek ${ }^{30}$, F. Hubaut ${ }^{85}$, F. Huegging ${ }^{21}$, T.B. Huffman ${ }^{120}$, E.W. Hughes ${ }^{35}$, G. Hughes ${ }^{72}$, M. Huhtinen ${ }^{30}$, T.A. Hülsing ${ }^{83}$, M. Hurwitz ${ }^{15}$, N. Huseynov ${ }^{65, b}$, J. Huston ${ }^{90}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{10}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{117}$, E. Ideal ${ }^{177}$, Z. Idrissi ${ }^{136 e}$, P. Iengo ${ }^{104 a}$, O. Igonkina ${ }^{107}$, T. Iizawa ${ }^{172}$, Y. Ikegami ${ }^{66}$, K. Ikematsu ${ }^{142}$, M. Ikeno ${ }^{66}$, Y. Ilchenko ${ }^{31, o}$, D. Iliadis ${ }^{155}$, N. Ilic ${ }^{159}$, Y. Inamaru ${ }^{67}$, T. Ince ${ }^{101}$, P. Ioannou ${ }^{9}$, M. Iodice ${ }^{135 \mathrm{a}}$, K. Iordanidou ${ }^{9}$, V. Ippolito ${ }^{57}$, A. Irles Quiles ${ }^{168}$, C. Isaksson ${ }^{167}$, M. Ishino ${ }^{68}$, M. Ishitsuka ${ }^{158}$, R. Ishmukhametov ${ }^{111}$, C. Issever ${ }^{120}$, S. Istin ${ }^{19 a}$, J.M. Iturbe Ponce ${ }^{84}$, R. Iuppa ${ }^{134 a, 134 b}$, J. Ivarsson ${ }^{81}$, W. Iwanski ${ }^{39}$, H. Iwasaki ${ }^{66}$, J.M. Izen ${ }^{41}$, V. Izzo $^{104 a}$, B. Jackson ${ }^{122}$, M. Jackson ${ }^{74}$, P. Jackson ${ }^{1}$, M.R. Jaekel ${ }^{30}$, V. Jain ${ }^{2}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{30}$, T. Jakoubek ${ }^{127}$, J. Jakubek ${ }^{128}$, D.O. Jamin ${ }^{152}$, D.K. Jana ${ }^{79}$, E. Jansen ${ }^{78}$, H. Jansen ${ }^{30}$, J. Janssen ${ }^{21}$, M. Janus ${ }^{171}$, G. Jarlskog ${ }^{81}$, N. Javadov ${ }^{65, b}$, T. Javůrek ${ }^{48}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{51 \mathrm{a}, p}$, G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{88}$, P. Jenni ${ }^{48, q}$, J. Jentzsch ${ }^{43}$, C. Jeske ${ }^{171}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{174}$, J. Jia ${ }^{149}$, Y. Jiang ${ }^{33 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{42}$, S. Jin ${ }^{33 \mathrm{a}}$, A. Jinaru ${ }^{26 \mathrm{a}}$, O. Jinnouchi ${ }^{158}$, M.D. Joergensen ${ }^{36}$, K.E. Johansson ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, P. Johansson ${ }^{140}$, K.A. Johns ${ }^{7}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{171}$, R.W.L. Jones ${ }^{72}$, T.J. Jones ${ }^{74}$, J. Jongmanns ${ }^{58 \mathrm{a}}$, P.M. Jorge ${ }^{126 a, 126 b}$, K.D. Joshi ${ }^{84}$, J. Jovicevic ${ }^{148}$, X. Ju ${ }^{174}$, C.A. Jung ${ }^{43}$, P. Jussel ${ }^{62}$, A. Juste Rozas ${ }^{12,}{ }^{2}$, M. Kaci ${ }^{168}$, A. Kaczmarska ${ }^{39}$, M. Kado ${ }^{117}$, H. Kagan ${ }^{111}$, M. Kagan ${ }^{144}$, E. Kajomovitz ${ }^{45}$, C.W. Kalderon ${ }^{120}$, S. Kama ${ }^{40}$, A. Kamenshchikov ${ }^{130}$, N. Kanaya ${ }^{156}$, M. Kaneda ${ }^{30}$, S. Kaneti ${ }^{28}$, V.A. Kantserov ${ }^{98}$, J. Kanzaki ${ }^{66}$, B. Kaplan ${ }^{110}$, A. Kapliy ${ }^{31}$, D. Kar ${ }^{53}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10}$, M.J. Kareem ${ }^{54}$, M. Karnevskiy ${ }^{83}$, S.N. Karpov ${ }^{65}$, Z.M. Karpova ${ }^{65}$, K. Karthik ${ }^{110}$, V. Kartvelishvili ${ }^{72}$, A.N. Karyukhin ${ }^{130}$, L. Kashif ${ }^{174}$, G. Kasieczka ${ }^{58 b}$, R.D. Kass ${ }^{111}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$, A. Katre ${ }^{49}$, J. Katzy ${ }^{42}$, V. Kaushik ${ }^{7}$, K. Kawagoe ${ }^{70}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{54}$, S. Kazama ${ }^{156}$, V.F. Kazanin ${ }^{109}$, M.Y. Kazarinov ${ }^{65}$, R. Keeler ${ }^{170}$, R. Kehoe ${ }^{40}$, M. Keil ${ }^{54}$, J.S. Keller ${ }^{42}$, J.J. Kempster ${ }^{77}$, H. Keoshkerian ${ }^{5}$, O. Kepka ${ }^{127}$, B.P. Kerševan ${ }^{75}$, S. Kersten ${ }^{176}$, K. Kessoku ${ }^{156}$, J. Keung ${ }^{159}$, R.A. Keyes ${ }^{87}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Khanov ${ }^{114}$, A. Kharlamov ${ }^{109}$, A. Khodinov ${ }^{98}$, A. Khomich ${ }^{58 \mathrm{a}}$, T.J. Khoo ${ }^{28}$, G. Khoriauli ${ }^{21}$, V. Khovanskiy ${ }^{97}$, E. Khramov ${ }^{65}$, J. Khubua ${ }^{51 b}$, H.Y. Kim ${ }^{8}$, H. Kim ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S.H. Kim ${ }^{161}$, N. Kimura ${ }^{155}$, O. Kind ${ }^{16}$, B.T. King ${ }^{74}$, M. King ${ }^{168}$, R.S.B. King ${ }^{120}$, S.B. King ${ }^{169}$, J. Kirk ${ }^{131}$, A.E. Kiryunin ${ }^{101}$, T. Kishimoto ${ }^{67}$, D. Kisielewska ${ }^{38 \mathrm{a}}$, F. Kiss ${ }^{48}$, K. Kiuchi ${ }^{161}$, E. Kladiva ${ }^{145 b}$, M. Klein ${ }^{74}$, U. Klein ${ }^{74}$, K. Kleinknecht ${ }^{83}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{25}$, R. Klingenberg ${ }^{43}$, J.A. Klinger ${ }^{84}$, T. Klioutchnikova ${ }^{30}$, P.F. Klok ${ }^{106}$, E.-E. Kluge ${ }^{58 \mathrm{a}}$ P. Kluit ${ }^{107}$, S. Kluth ${ }^{101}$, E. Kneringer ${ }^{62}$, E.B.F.G. Knoops ${ }^{85}$, A. Knue ${ }^{53}$, D. Kobayashi ${ }^{158}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{44}{ }^{\text {, }}$ M. Kocian ${ }^{144}$, P. Kodys ${ }^{129}$, T. Koffas ${ }^{29}$, E. Koffeman ${ }^{107}$, L.A. Kogan ${ }^{120}$, S. Kohlmann ${ }^{176}$, Z. Kohout ${ }^{128}$, T. Kohriki ${ }^{66}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{16}$, I. Koletsou ${ }^{5}$, J. Koll ${ }^{90}$, A.A. Komar ${ }^{96, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{66}$, N. Kondrashova ${ }^{42}$, K. Köneke ${ }^{48}$, A.C. König ${ }^{106}$, S. König ${ }^{83}$, T. Kono ${ }^{66, r}$, R. Konoplich ${ }^{110, s}$, N. Konstantinidis ${ }^{78}$, R. Kopeliansky ${ }^{153}$, S. Koperny ${ }^{38 \text { a }}$, L. Köpke ${ }^{83}$, A.K. Kopp ${ }^{48}$, K. Korcyl ${ }^{39}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{78}$, A.A. Korol ${ }^{109, c}$, I. Korolkov ${ }^{12}$, E.V. Korolkova ${ }^{140}$, V.A. Korotkov ${ }^{130}$, O. Kortner ${ }^{101}$, S. Kortner ${ }^{101}$, V.V. Kostyukhin ${ }^{21}$, V.M. Kotov ${ }^{65}$, A. Kotwal ${ }^{45}$, A. Kourkoumeli-Charalampidi ${ }^{155}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{25}$, A. Koutsman ${ }^{160 a}$, R. Kowalewski ${ }^{170}$, T.Z. Kowalski ${ }^{38 \mathrm{a}}$, W. Kozanecki ${ }^{137}$, A.S. Kozhin ${ }^{130}$, V.A. Kramarenko ${ }^{99}$, G. Kramberger ${ }^{75}$, D. Krasnopevtsev ${ }^{98}$, M.W. Krasny ${ }^{80}$, A. Krasznahorkay ${ }^{30}$, J.K. Kraus ${ }^{21}$, A. Kravchenko ${ }^{25}$, S. Kreiss ${ }^{110}$, M. Kretz ${ }^{58 \mathrm{c}}$, J. Kretzschmar ${ }^{74}$ K. Kreutzfeldt ${ }^{52}$, P. Krieger ${ }^{159}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{101}$, J. Kroll ${ }^{122}$, J. Kroseberg ${ }^{21}$, J. Krstic ${ }^{13 a}$, U. Kruchonak ${ }^{65}$, H. Krüger ${ }^{21}$, T. Kruker ${ }^{17}$, N. Krumnack ${ }^{64}$, Z.V. Krumshteyn ${ }^{65}$, A. Kruse ${ }^{174}$, M.C. Kruse ${ }^{45}$, M. Kruskal ${ }^{22}$, T. Kubota ${ }^{88}$, H. Kucuk ${ }^{78}$, S. Kuday ${ }^{4 \mathrm{c}}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 \mathrm{c}}$, A. Kuhl ${ }^{138}$, T. Kuhl ${ }^{42}$, V. Kukhtin ${ }^{65}$, Y. Kulchitsky ${ }^{92}$, S. Kuleshov ${ }^{32 b}$, M. Kuna ${ }^{133 a, 133 \mathrm{~b}}$, T. Kunigo ${ }^{68}$, A. Kupco ${ }^{127}$, H. Kurashige ${ }^{67}$, Y.A. Kurochkin ${ }^{92}$, R. Kurumida ${ }^{67}$, V. Kus ${ }^{127}$, E.S. Kuwertz ${ }^{148}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{115}$, D. Kyriazopoulos ${ }^{140}$, A. La Rosa ${ }^{49}$, L. La Rotonda ${ }^{37 a, 37 b}$, C. Lacasta ${ }^{168}$, F. Lacava ${ }^{133 a, 133 b}$, J. Lacey ${ }^{29}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{80}$, V.R. Lacuesta ${ }^{168}$, E. Ladygin ${ }^{65}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{80}$, T. Lagouri ${ }^{177}$, S. Lai ${ }^{48}$, H. Laier ${ }^{58 a}$, L. Lambourne ${ }^{78}$, S. Lammers ${ }^{61}$, C.L. Lampen ${ }^{7}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{76}$, V.S. Lang ${ }^{58 a}$, A.J. Lankford ${ }^{164}$, F. Lanni ${ }^{25}$, K. Lantzsch ${ }^{30}$, S. Laplace ${ }^{80}$, C. Lapoire ${ }^{21}$ J.F. Laporte ${ }^{137}$, T. Lari ${ }^{91 a}$, F. Lasagni Manghi ${ }^{20 a}{ }^{20 b}$, M. Lassnig ${ }^{30}$, P. Laurelli ${ }^{47}$, W. Lavrijsen ${ }^{15}$, A.T. Law ${ }^{138}$,
P. Laycock ${ }^{74}$, O. Le Dortz ${ }^{80}$, E. Le Guirriec ${ }^{85}$, E. Le Menedeu ${ }^{12}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{55}$, C.A. Lee ${ }^{146 \mathrm{~b}}$, H. Lee ${ }^{107}$, S.C. Lee ${ }^{152}$, L. Lee ${ }^{1}$, G. Lefebvre ${ }^{80}$, M. Lefebvre ${ }^{170}$, F. Legger ${ }^{100}$, C. Leggett ${ }^{15}$, A. Lehan ${ }^{74}$, G. Lehmann Miotto ${ }^{30}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{29}$, A. Leisos ${ }^{155}$, A.G. Leister ${ }^{177}$, M.A.L. Leite ${ }^{24 d}$, R. Leitner ${ }^{129}$, D. Lellouch ${ }^{173}$, B. Lemmer ${ }^{54}$, K.J.C. Leney ${ }^{78}$, T. Lenz ${ }^{21}$, G. Lenzen ${ }^{176}$, B. Lenzi ${ }^{30}$, R. Leone ${ }^{7}$, S. Leone ${ }^{124 a, 124 b}$ C. Leonidopoulos ${ }^{46}$, S. Leontsinis ${ }^{10}$, C. Leroy ${ }^{95}$, C.G. Lester ${ }^{28}$, C.M. Lester ${ }^{122}$, M. Levchenko ${ }^{123}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{89}$, L.J. Levinson ${ }^{173}$, M. Levy ${ }^{18}$, A. Lewis ${ }^{120}$, G.H. Lewis ${ }^{110}$, A.M. Leyko ${ }^{21}$, M. Leyton ${ }^{41}$, B. $\mathrm{Li}^{33 \mathrm{~b}, t}$, B. Li^{85}, H. Li^{149}, H.L. Li^{31}, L. Li^{45}, L. $\mathrm{Li}^{33 e}, \mathrm{~S} . \mathrm{Li}^{45}$, Y. $\mathrm{Li}^{33 \mathrm{c}, u}$, Z. Liang ${ }^{138}$, H. Liao ${ }^{34}$, B. Liberti ${ }^{134 \mathrm{a}}$, P. Lichard ${ }^{30}$, K. Lie ${ }^{166}$, J. Liebal ${ }^{21}$, W. Liebig ${ }^{14}$, C. Limbach ${ }^{21}$, A. Limosani ${ }^{151}$, S.C. $\operatorname{Lin}^{152, v}$, T.H. Lin ${ }^{83}$, F. Linde ${ }^{107}$, B.E. Lindquist ${ }^{149}$, J.T. Linnemann ${ }^{90}$, E. Lipeles ${ }^{122}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{42}$, T.M. Liss ${ }^{166}$, D. Lissauer ${ }^{25}$, A. Lister ${ }^{169}$, A.M. Litke ${ }^{138}$, B. Liu ${ }^{152}$, D. Liu ${ }^{152}$, J.B. $\operatorname{Liu}^{33 \mathrm{~b}}, \mathrm{~K} . \mathrm{Liu}^{33 \mathrm{~b}, w}$, L. Liu ${ }^{89}$, M. Liu ${ }^{45}$, M. Liu ${ }^{33 \mathrm{~b}}$, Y. Liu ${ }^{33 \mathrm{~b}}$, M. Livan ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{82}$, S.L. Lloyd ${ }^{76}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{42}$, P. Loch ${ }^{7}$, W.S. Lockman ${ }^{138}$, F.K. Loebinger ${ }^{84}$, A.E. Loevschall-Jensen ${ }^{36}$, A. Loginov ${ }^{177}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{42}$, M. Lokajicek ${ }^{127}$, V.P. Lombardo ${ }^{5}$, B.A. Long ${ }^{22}$, J.D. Long ${ }^{89}$, R.E. Long ${ }^{72}$, L. Lopes ${ }^{126 a}$, D. Lopez Mateos ${ }^{57}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{12}$, J. Lorenz ${ }^{100}$, N. Lorenzo Martinez ${ }^{61}$, M. Losada ${ }^{163}$, P. Loscutoff ${ }^{15}$, X. Lou ${ }^{41}$, A. Lounis ${ }^{117}$, J. Love ${ }^{6}$, P.A. Love ${ }^{72}$, A.J. Lowe ${ }^{144, f}$, F. Lu ${ }^{33 a}$, N. Lu ${ }^{89}$, H.J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 a, 133 b}$, A. Lucotte ${ }^{55}$, F. Luehring ${ }^{61}$, W. Lukas ${ }^{62}$, L. Luminari ${ }^{133 a}$, O. Lundberg ${ }^{147 a, 147 b, ~ B . ~ L u n d-J e n s e n ~}{ }^{148}$, M. Lungwitz ${ }^{83}$, D. Lynn 25, R. Lysak ${ }^{127}$, E. Lytken ${ }^{81}$, H. Ma ${ }^{25}$, L.L. Ma ${ }^{33 \mathrm{~d}}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{101}$, J. Machado Miguens ${ }^{126 a, 126 b}$, D. Macina ${ }^{30}$, D. Madaffari ${ }^{85}$, R. Madar ${ }^{48}$, H.J. Maddocks ${ }^{72}$, W.F. Mader ${ }^{44}$, A. Madsen ${ }^{167}$, M. Maeno ${ }^{8}$, T. Maeno ${ }^{25}$, A. Maevskiy ${ }^{99}$, E. Magradze ${ }^{54}$, K. Mahboubi ${ }^{48}$, J. Mahlstedt ${ }^{107}$, S. Mahmoud ${ }^{74}$, C. Maiani ${ }^{137}$,
 B. Malaescu ${ }^{80}$, Pa. Malecki ${ }^{39}$, V.P. Maleev ${ }^{123}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{63}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, V.M. Malyshev ${ }^{109}$, S. Malyukov ${ }^{30}$, J. Mamuzic ${ }^{13 \mathrm{~b}}$, B. Mandelli ${ }^{30}$, L. Mandelli ${ }^{91 a}$, I. Mandić ${ }^{75}$, R. Mandrysch ${ }^{63}$, J. Maneira ${ }^{126 a, 126 b}$, A. Manfredini ${ }^{101}$, L. Manhaes de Andrade Filho ${ }^{24 b}$, J.A. Manjarres Ramos ${ }^{160 b}$, A. Mann ${ }^{100}$, P.M. Manning ${ }^{138}$, A. Manousakis-Katsikakis ${ }^{9}$, B. Mansoulie ${ }^{137}$, R. Mantifel ${ }^{87}$, L. Mapelli ${ }^{30}$, L. March ${ }^{146 c}$,
J.F. Marchand ${ }^{29}$, G. Marchiori ${ }^{80}$, M. Marcisovsky ${ }^{127}$, C.P. Marino ${ }^{170}$, M. Marjanovic ${ }^{13 a}$, F. Marroquim ${ }^{24 a}$,
S.P. Marsden ${ }^{84}$, Z. Marshall ${ }^{15}$, L.F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{168}$, B. Martin ${ }^{30}$, B. Martin ${ }^{90}$, T.A. Martin ${ }^{171}$, V.J. Martin ${ }^{46}$, B. Martin dit Latour ${ }^{14}$, H. Martinez ${ }^{137}$, M. Martinez ${ }^{12, n}$, S. Martin-Haugh ${ }^{131}$, A.C. Martyniuk ${ }^{78}$, M. Marx ${ }^{139}$, F. Marzano ${ }^{133 a}$, A. Marzin ${ }^{30}$, L. Masetti ${ }^{83}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{96}$, J. Masik ${ }^{84}$, A.L. Maslennikov ${ }^{109, c}$, I. Massa ${ }^{20 a, 20 b}$, L. Massa ${ }^{20 a, 20 b}$, N. Massol ${ }^{5}$, P. Mastrandrea ${ }^{149}$, A. Mastroberardino ${ }^{37 a}$, 37 b , T. Masubuchi ${ }^{156}$, P. Mättig ${ }^{176}$, J. Mattmann ${ }^{83}$, J. Maurer ${ }^{26 a}$, S.J. Maxfield ${ }^{74}$, D.A. Maximov ${ }^{109, c}$, R. Mazini ${ }^{152}$, L. Mazzaferro ${ }^{134 a, 134 b}$, G. Mc Goldrick ${ }^{159}$, S.P. Mc Kee ${ }^{89}$, A. McCarn ${ }^{89}$, R.L. McCarthy ${ }^{149}$, T.G. McCarthy ${ }^{29}$, N.A. McCubbin ${ }^{131}$, K.W. McFarlane ${ }^{56, *}$, J.A. Mcfayden ${ }^{78}$, G. Mchedlidze ${ }^{54}$, S.J. McMahon ${ }^{131}$, R.A. McPherson ${ }^{170, k}$, J. Mechnich ${ }^{107}$, M. Medinnis ${ }^{42}$, S. Meehan ${ }^{31}$, S. Mehlhase ${ }^{100}$, A. Mehta ${ }^{74}$, K. Meier ${ }^{58 a}$, C. Meineck ${ }^{100}$, B. Meirose ${ }^{41}$, C. Melachrinos ${ }^{31}$ B.R. Mellado Garcia ${ }^{146 \mathrm{c}}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{20 a}, 20$ b , S. Menke ${ }^{101}$, E. Meoni ${ }^{162}$, K.M. Mercurio ${ }^{57}$, S. Mergelmeyer ${ }^{21}$, N. Meric ${ }^{137}$, P. Mermod ${ }^{49}$, L. Merola ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, C. Meroni ${ }^{91 \mathrm{a}}$, F.S. Merritt ${ }^{31}$, H. Merritt ${ }^{111}$, A. Messina ${ }^{30, y}$, J. Metcalfe ${ }^{25}$, A.S. Mete ${ }^{164}$, C. Meyer ${ }^{83}$, C. Meyer ${ }^{122}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{30}$, R.P. Middleton ${ }^{131}$, S. Migas ${ }^{74}$, S. Miglioranzi ${ }^{165 a, 165 c}$, L. Mijović ${ }^{21}$, G. Mikenberg ${ }^{173}$, M. Mikestikova ${ }^{127}$, M. Mikuž ${ }^{75}$, A. Milic ${ }^{30}$, D.W. Miller ${ }^{31}$, C. Mills ${ }^{46}$, A. Milov ${ }^{173}$, D.A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A.A. Minaenko ${ }^{130}$, Y. Minami ${ }^{156}$, I.A. Minashvili ${ }^{65}$, A.I. Mincer ${ }^{110}$, B. Mindur ${ }^{38 \mathrm{a}}$, M. Mineev ${ }^{65}$, Y. Ming ${ }^{174}$, L.M. Mir ${ }^{12}$, G. Mirabelli ${ }^{133 a}$, T. Mitani ${ }^{172}$, J. Mitrevski ${ }^{100}$, V.A. Mitsou ${ }^{168}$, A. Miucci ${ }^{49}$, P.S. Miyagawa ${ }^{140}$, J.U. Mjörnmark ${ }^{81}$, T. Moa ${ }^{147 a, 147 b}$, K. Mochizuki ${ }^{85}$, S. Mohapatra ${ }^{35}$, W. Mohr ${ }^{48}$, S. Molander ${ }^{147 a, 147 b}$, R. Moles-Valls ${ }^{168}$, K. Mönig ${ }^{42}$, C. Monini ${ }^{55}$, J. Monk ${ }^{36}$, E. Monnier ${ }^{85}$, J. Montejo Berlingen ${ }^{12}$, F. Monticelli ${ }^{71}$, S. Monzani ${ }^{133 a, 133 b, ~}$ R.W. Moore ${ }^{3}$, N. Morange ${ }^{63}$, D. Moreno ${ }^{163}$, M. Moreno Llácer ${ }^{54}$, P. Morettini ${ }^{50 a}$, M. Morgenstern ${ }^{44}$, M. Morii ${ }^{57}$, V. Morisbak ${ }^{119}$, S. Moritz ${ }^{83}$, A.K. Morley ${ }^{148}$, G. Mornacchi ${ }^{30}$, J.D. Morris ${ }^{76}$, A. Morton ${ }^{42}$, L. Morvaj ${ }^{103}$, H.G. Moser ${ }^{101}$, M. Mosidze ${ }^{51 b}$, J. Moss ${ }^{111}$, K. Motohashi ${ }^{158}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{25}$, S.V. Mouraviev ${ }^{96, *}$, E.J.W. Moyse ${ }^{86}$, S. Muanza ${ }^{85}$, R.D. Mudd ${ }^{18}$, F. Mueller ${ }^{58 a}$, J. Mueller ${ }^{125}$, K. Mueller ${ }^{21}$, T. Mueller ${ }^{28}$, T. Mueller ${ }^{83}$, D. Muenstermann ${ }^{49}$, Y. Munwes ${ }^{154}$, J.A. Murillo Quijada ${ }^{18}$, W.J. Murray ${ }^{171,131}$, H. Musheghyan ${ }^{54}$, E. Musto ${ }^{153}$, A.G. Myagkov ${ }^{130, z}$, M. Myska ${ }^{128}$, O. Nackenhorst ${ }^{54}$, J. Nadal ${ }^{54}$, K. Nagai ${ }^{120}$, R. Nagai ${ }^{158}$, Y. Nagai ${ }^{85}$, K. Nagano ${ }^{66}$, A. Nagarkar ${ }^{111}$, Y. Nagasaka ${ }^{59}$, K. Nagata ${ }^{161}$, M. Nagel ${ }^{101}$, A.M. Nairz ${ }^{30}$, Y. Nakahama ${ }^{30}$, K. Nakamura ${ }^{66}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{112}$, H. Namasivayam ${ }^{41}$, G. Nanava ${ }^{21}$, R.F. Naranjo Garcia ${ }^{42}$, R. Narayan ${ }^{58 b}$, T. Nattermann ${ }^{21}$, T. Naumann ${ }^{42}$, G. Navarro ${ }^{163}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{89}$, P.Yu. Nechaeva ${ }^{96}$, T.J. Neep ${ }^{84}$, P.D. Nef 144, A. Negri ${ }^{121 a}{ }^{121 b}$, G. Negri ${ }^{30}$, M. Negrini ${ }^{20 a}$, S. Nektarijevic ${ }^{49}$, C. Nellist ${ }^{117}$, A. Nelson ${ }^{164}$, T.K. Nelson ${ }^{144}$, S. Nemecek ${ }^{127}$, P. Nemethy ${ }^{110}$, A.A. Nepomuceno ${ }^{24 a}$, M. Nessi 30,aa , M.S. Neubauer ${ }^{166}$, M. Neumann ${ }^{176}$, R.M. Neves ${ }^{110}$, P. Nevski ${ }^{25}$, P.R. Newman ${ }^{18}$, D.H. Nguyen ${ }^{6}$, R.B. Nickerson ${ }^{120}$, R. Nicolaidou ${ }^{137}$, B. Nicquevert ${ }^{30}$, J. Nielsen ${ }^{138}$, N. Nikiforou ${ }^{35}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{130}, z$, I. Nikolic-Audit ${ }^{80}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{18}$, P. Nilsson ${ }^{25}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 a}$, R. Nisius ${ }^{101}$, T. Nobe ${ }^{158}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{118}$, I. Nomidis ${ }^{29}$, S. Norberg ${ }^{113}$, M. Nordberg ${ }^{30}$, O. Novgorodova ${ }^{44}$, S. Nowak ${ }^{101}$, M. Nozaki ${ }^{66}$, L. Nozka ${ }^{115}$, K. Ntekas ${ }^{10}$, G. Nunes Hanninger ${ }^{88}$, T. Nunnemann ${ }^{100}$, E. Nurse ${ }^{78}$, F. Nuti ${ }^{88}$, B.J. O'Brien ${ }^{46}$, F. O'grady ${ }^{7}$, D.C. O’Neil ${ }^{143}$, V. O’Shea ${ }^{53}$, F.G. Oakham ${ }^{29, e}$, H. Oberlack ${ }^{101}$, T. Obermann ${ }^{21}$, J. Ocariz ${ }^{80}$, A. Ochi ${ }^{67}$, I. Ochoa ${ }^{78}$, S. Oda ${ }^{70}$, S. Odaka ${ }^{66}$, H. Ogren ${ }^{61}$, A. Oh ${ }^{84}$, S.H. Oh ${ }^{45}$, C.C. Ohm ${ }^{15}$, H. Ohman ${ }^{167}$, H. Oide ${ }^{30}$, W. Okamura ${ }^{118}$, H. Okawa ${ }^{161}$, Y. Okumura ${ }^{31}$, T. Okuyama ${ }^{156}$, A. Olariu ${ }^{26 a}$, A.G. Olchevski ${ }^{65}$, S.A. Olivares Pino ${ }^{46}$, D. Oliveira Damazio ${ }^{25}$, E. Oliver Garcia ${ }^{168}$, A. Olszewski ${ }^{39}$, J. Olszowska ${ }^{39}$, A. Onofre ${ }^{126 a, 126 e}$, P.U.E. Onyisi ${ }^{31, o}$, C.J. Oram ${ }^{160 a}$, M.J. Oreglia ${ }^{31}$, Y. Oren ${ }^{154}$, D. Orestano ${ }^{135 a, 135 b}$, N. Orlando ${ }^{73 a, 73 b}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{159}$, B. Osculati ${ }^{50 a, 50 b}$, R. Ospanov ${ }^{122}$, G. Otero y Garzon ${ }^{27}$, H. Otono ${ }^{70}$, M. Ouchrif ${ }^{136 \mathrm{~d}}$, E.A. Ouellette ${ }^{170}$, F. Ould-Saada ${ }^{119}$, A. Ouraou ${ }^{137}$, K.P. Oussoren ${ }^{107}$, Q. Ouyang ${ }^{33 a}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{84}$, V.E. Ozcan ${ }^{19 a}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{120}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{48}$, S. Pagan Griso ${ }^{15}$, E. Paganis ${ }^{140}$, C. Pahl ${ }^{101}$, F. Paige ${ }^{25}$ P. Pais ${ }^{86}$, K. Pajchel ${ }^{119}$, G. Palacino ${ }^{160 b}$, S. Palestini ${ }^{30}$, M. Palka ${ }^{38 b}$, D. Pallin ${ }^{34}$, A. Palma ${ }^{126 a, 126 b}$, J.D. Palmer ${ }^{18}$, Y.B. Pan ${ }^{174}$, E. Panagiotopoulou ${ }^{10}$, J.G. Panduro Vazquez ${ }^{77}$, P. Pani ${ }^{107}$, N. Panikashvili ${ }^{89}$, S. Panitkin ${ }^{25}$, D. Pantea ${ }^{26 a}$, L. Paolozzi ${ }^{134 a, 134 b}$, Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{155}$,
M.A. Parker ${ }^{28}$, F. Parodi ${ }^{50 a, 50 b}$, J.A. Parsons ${ }^{35}$, U. Parzefall ${ }^{48}$, E. Pasqualucci ${ }^{133 a}$, S. Passaggio ${ }^{50 a}$, A. Passeri ${ }^{135 a}$, F. Pastore ${ }^{135 a, 135 b, *}$, Fr. Pastore ${ }^{77}$, G. Pásztor ${ }^{29}$, S. Pataraia ${ }^{176}$, N.D. Patel ${ }^{151}$, J.R. Pater ${ }^{84}$, S. Patricelli ${ }^{104 a, 104 b}$, T. Pauly ${ }^{30}$, J. Pearce ${ }^{170}$, L.E. Pedersen ${ }^{36}$, M. Pedersen ${ }^{119}$, S. Pedraza Lopez ${ }^{168}$, R. Pedro ${ }^{126 a, 126 b}$, S.V. Peleganchuk ${ }^{109}$, D. Pelikan ${ }^{167}$, H. Peng ${ }^{33 b}$, B. Penning ${ }^{31}$, J. Penwell ${ }^{61}$, D.V. Perepelitsa ${ }^{25}$, E. Perez Codina ${ }^{160 a}$,
M.T. Pérez García-Estañ ${ }^{168}$, L. Perini ${ }^{91 a, 91 b}$, H. Pernegger ${ }^{30}$, S. Perrella ${ }^{104 a, 104 b}$, R. Perrino ${ }^{73 a}$, R. Peschke ${ }^{42}$, V.D. Peshekhonov ${ }^{65}$, K. Peters ${ }^{30}$, R.F.Y. Peters ${ }^{84}$, B.A. Petersen ${ }^{30}$, T.C. Petersen ${ }^{36}$, E. Petit ${ }^{42}$, A. Petridis ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Petridou ${ }^{155}$, E. Petrolo ${ }^{133 a}$, F. Petrucci ${ }^{135 a, 135 b}$, N.E. Pettersson ${ }^{158}$, R. Pezoa ${ }^{32 b}$, P.W. Phillips ${ }^{131}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{171}$, A. Picazio ${ }^{49}$, E. Piccaro ${ }^{76}$, M. Piccinini ${ }^{20 a}, 20 b$, M.A. Pickering ${ }^{120}$, R. Piegaia ${ }^{27}$, D.T. Pignotti ${ }^{111}$, J.E. Pilcher ${ }^{31}$, A.D. Pilkington ${ }^{78}$, J. Pina ${ }^{126 a, 126 b, 126 d}$, M. Pinamonti ${ }^{165 a, 165 c, a b}$, A. Pinder ${ }^{120}$, J.L. Pinfold ${ }^{3}$, A. Pingel ${ }^{36}$, B. Pinto ${ }^{126 a}$, S. Pires ${ }^{80}$, M. Pitt ${ }^{173}$, C. Pizio ${ }^{91 a, 91 b}$, L. Plazak ${ }^{145 a}$, M.-A. Pleier ${ }^{25}$, V. Pleskot ${ }^{129}$, E. Plotnikova ${ }^{65}$, P. Plucinski ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Pluth ${ }^{64}$, S. Poddar ${ }^{58 \mathrm{a}}$, F. Podlyski ${ }^{34}$, R. Poettgen ${ }^{83}$, L. Poggioli ${ }^{117}$, D. Pohl ${ }^{21}$, M. Pohl ${ }^{49}$, G. Polesello ${ }^{121 a}$, A. Policicchio ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{20 a}$, C.S. Pollard ${ }^{53}$, V. Polychronakos ${ }^{25}$, K. Pommès ${ }^{30}$, L. Pontecorvo ${ }^{133 \mathrm{a}}$, B.G. Pope 90, G.A. Popeneciu ${ }^{26 \mathrm{~b}}$, D.S. Popovic ${ }^{13 \mathrm{a}}$, A. Poppleton ${ }^{30}$, X. Portell Bueso ${ }^{12}$, S. Pospisil ${ }^{128}$, K. Potamianos ${ }^{15}$, I.N. Potrap ${ }^{65}$, C.J. Potter ${ }^{150}$, C.T. Potter ${ }^{116}$, G. Poulard ${ }^{30}$, J. Poveda ${ }^{61}$, V. Pozdnyakov ${ }^{65}$, P. Pralavorio ${ }^{85}$, A. Pranko ${ }^{15}$, S. Prasad ${ }^{30}$, R. Pravahan ${ }^{8}$, S. Prell ${ }^{64}$, D. Price ${ }^{84}$, J. Price ${ }^{74}$, L.E. Price ${ }^{6}$, D. Prieur ${ }^{125}$, M. Primavera ${ }^{73 \mathrm{a}}$, M. Proissl ${ }^{46}$, K. Prokofiev ${ }^{47}$, F. Prokoshin ${ }^{32 \mathrm{~b}}$, E. Protopapadaki ${ }^{137}$, S. Protopopescu ${ }^{25}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{38 a}$, H. Przysiezniak ${ }^{5}$, E. Ptacek ${ }^{116}$, D. Puddu ${ }^{135 a, 135 b}$, E. Pueschel ${ }^{86}$, D. Puldon ${ }^{149}$, M. Purohit ${ }^{25, a c}$, P. Puzo ${ }^{117}$, J. Qian ${ }^{89}$, G. Qin ${ }^{53}$, Y. Qin ${ }^{84}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{15}$, W.B. Quayle ${ }^{165 \mathrm{a}, 165 \mathrm{~b}}$, M. Queitsch-Maitland ${ }^{84}$, D. Quilty ${ }^{53}$, A. Qureshi ${ }^{160 b}$, V. Radeka ${ }^{25}$, V. Radescu ${ }^{42}$, S.K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{116}$, P. Rados ${ }^{88}$, F. Ragusa ${ }^{91 a, 91 b}$, G. Rahal ${ }^{179}$, S. Rajagopalan ${ }^{25}$, M. Rammensee ${ }^{30}$, C. Rangel-Smith ${ }^{167}$, K. Rao ${ }^{164}$, F. Rauscher ${ }^{100}$, T.C. Rave ${ }^{48}$, T. Ravenscroft ${ }^{53}$, M. Raymond ${ }^{30}$, A.L. Read 119, N.P. Readioff ${ }^{74}$, D.M. Rebuzzi ${ }^{121 a, 121 b}$, A. Redelbach ${ }^{175}$, G. Redlinger ${ }^{25}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{41}$, L. Rehnisch ${ }^{16}$, H. Reisin ${ }^{27}$, M. Relich ${ }^{164}$, C. Rembser ${ }^{30}$, H. Ren ${ }^{33 a}$, Z.L. Ren ${ }^{152}$, A. Renaud ${ }^{117}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{91 a}$, O.L. Rezanova ${ }^{109, c}$, P. Reznicek ${ }^{129}$, R. Rezvani ${ }^{95}$, R. Richter ${ }^{101}$, M. Ridel ${ }^{80}$, P. Rieck ${ }^{16}$, J. Rieger ${ }^{54}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{121 a, 121 b}$, L. Rinaldi ${ }^{20 a}$, E. Ritsch ${ }^{62}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{114}$, E. Rizvi ${ }^{76}$, S.H. Robertson ${ }^{87, k}$, A. Robichaud-Veronneau ${ }^{87}$, D. Robinson ${ }^{28}$, J.E.M. Robinson ${ }^{84}$, A. Robson ${ }^{53}$, C. Roda $^{124 a, 124 \mathrm{~b}}$, L. Rodrigues ${ }^{30}$, S. Roe 30, O. Røhne ${ }^{119}$, S. Rolli ${ }^{162}$, A. Romaniouk ${ }^{98}$, M. Romano ${ }^{20 a, 20 b}$, E. Romero Adam ${ }^{168}$, N. Rompotis ${ }^{139}$, M. Ronzani ${ }^{48}$, L. Roos ${ }^{80}$, E. Ros^{168}, S. Rosati ${ }^{133 a}$, K. Rosbach ${ }^{49}$, M. Rose ${ }^{77}$, P. Rose ${ }^{138}$, P.L. Rosendahl ${ }^{14}$, O. Rosenthal ${ }^{142}$, V. Rossetti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, E. Rossi ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$, L.P. Rossi ${ }^{50 \mathrm{a}}$, R. Rosten ${ }^{139}$, M. Rotaru ${ }^{26 a}$, I. Roth ${ }^{173}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{117}$, C.R. Royon ${ }^{137}$, A. Rozanov ${ }^{85}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{12}$, I. Rubinskiy ${ }^{42}$, V.I. Rud ${ }^{99}$, C. Rudolph ${ }^{44}$, M.S. Rudolph ${ }^{159}$, F. Rühr ${ }^{48}$, A. Ruiz-Martinez ${ }^{30}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{65}$, A. Ruschke ${ }^{100}$, H.L. Russell ${ }^{139}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{48}$, Y.F. Ryabov ${ }^{123}$, M. Rybar ${ }^{129}$, G. Rybkin ${ }^{117}$, N.C. Ryder ${ }^{120}$, A.F. Saavedra ${ }^{151}$, G. Sabato ${ }^{107}$, S. Sacerdoti ${ }^{27}$, A. Saddique ${ }^{3}$, I. Sadeh ${ }^{154}$, H.F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{65}$, F. Safai Tehrani ${ }^{133 a}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{172}$, G. Salamanna ${ }^{135 a, 135 b}$, A. Salamon ${ }^{134 a}$, M. Saleem ${ }^{113}$, D. Salek ${ }^{107}$, P.H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{101}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{168}$, D. Salvatore ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{106}$, A. Salzburger ${ }^{30}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{104 a, 104 b}$, J. Sánchez ${ }^{168}$, V. Sanchez Martinez ${ }^{168}$, H. Sandaker ${ }^{14}$, R.L. Sandbach ${ }^{76}$, H.G. Sander ${ }^{83}$, M.P. Sanders ${ }^{100}$, M. Sandhoff ${ }^{176}$, T. Sandoval ${ }^{28}$, C. Sandoval ${ }^{163}$, R. Sandstroem ${ }^{101}$, D.P.C. Sankey ${ }^{131}$, A. Sansoni ${ }^{47}$, C. Santoni ${ }^{34}$, R. Santonico ${ }^{134 a, 134 b}$, H. Santos ${ }^{126 a}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{125}$, A. Sapronov ${ }^{65}$, J.G. Saraiva ${ }^{126 a, 126 d}$, B. Sarrazin ${ }^{21}$, G. Sartisohn ${ }^{176}$, O. Sasaki ${ }^{66}$, Y. Sasaki ${ }^{156}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, P. Savard ${ }^{159, e}$, D.O. Savu ${ }^{30}$, C. Sawyer ${ }^{120}$, L. Sawyer ${ }^{79, m}$, D.H. Saxon ${ }^{53}$, J. Saxon ${ }^{31}$, C. Sbarra ${ }^{20 a}$, A. Sbrizzi ${ }^{20 a, 20 b}$, T. Scanlon ${ }^{78}$, D.A. Scannicchio ${ }^{164}$, M. Scarcella ${ }^{151}$, V. Scarfone ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, J. Schaarschmidt ${ }^{173}$, P. Schacht ${ }^{101}$, D. Schaefer ${ }^{30}$, R. Schaefer ${ }^{42}$, S. Schaepe ${ }^{21}$, S. Schaetzel ${ }^{58 b}$, U. Schäfer ${ }^{83}$, A.C. Schaffer ${ }^{117}$, D. Schaile ${ }^{100}$, R.D. Schamberger ${ }^{149}$, V. Scharf ${ }^{58 a}$, V.A. Schegelsky ${ }^{123}$, D. Scheirich ${ }^{129}$, M. Schernau ${ }^{164}$, M.I. Scherzer ${ }^{35}$, C. Schiavi ${ }^{50 a, 50 b}$, J. Schieck ${ }^{100}$, C. Schillo ${ }^{48}$, M. Schioppa ${ }^{37 a}$, 37b, S. Schlenker ${ }^{30}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{30}$, C. Schmitt ${ }^{83}$, S. Schmitt ${ }^{58 b}$, B. Schneider ${ }^{17}$, Y.J. Schnellbach ${ }^{74}$, U. Schnoor ${ }^{44}$, L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{58 b}$, B.D. Schoenrock ${ }^{90}$, A.L.S. Schorlemmer ${ }^{54}$, M. Schott ${ }^{83}$, D. Schouten ${ }^{160 a}$, J. Schovancova ${ }^{25}$, S. Schramm ${ }^{159}$, M. Schreyer ${ }^{175}$, C. Schroeder ${ }^{83}$, N. Schuh ${ }^{83}$, M.J. Schultens ${ }^{21}$, H.-C. Schultz-Coulon ${ }^{58 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{84}$, A. Schwartzman ${ }^{144}$, T.A. Schwarz ${ }^{89}$, Ph. Schwegler ${ }^{101}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{90}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{21}$, M. Schwoerer ${ }^{5}$, F.G. Sciacca ${ }^{17}$, E. Scifo ${ }^{117}$, G. Sciolla ${ }^{23}$, F. Scuri ${ }^{124 a, 124 b, ~ F . ~ S c u t t i ~}{ }^{21}$, J. Searcy ${ }^{89}$, G. Sedov ${ }^{42}$, E. Sedykh ${ }^{123}$, P. Seema ${ }^{21}$, S.C. Seidel ${ }^{105}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{128}$, J.M. Seixas ${ }^{24 a}$, G. Sekhniaidze ${ }^{104 a}$, S.J. Sekula ${ }^{40}$, K.E. Selbach ${ }^{46}$, D.M. Seliverstov ${ }^{123, *}$, G. Sellers ${ }^{74}$, N. Semprini-Cesari ${ }^{20 a, 20 b}$, C. Serfon ${ }^{30}$, L. Serin ${ }^{117}$, L. Serkin ${ }^{54}$, T. Serre ${ }^{85}$, R. Seuster ${ }^{160 a}$, H. Severini ${ }^{113}$, T. Sfiligoj ${ }^{75}$, F. Sforza ${ }^{101}$, A. Sfyrla ${ }^{30}$, E. Shabalina ${ }^{54}$, M. Shamim ${ }^{116}$, L.Y. Shan ${ }^{33 \mathrm{a}}$, R. Shang ${ }^{166}$, J.T. Shank ${ }^{22}$, M. Shapiro ${ }^{15}$, P.B. Shatalov ${ }^{97}$, K. Shaw ${ }^{165 a, 165 \mathrm{~b}}$, C.Y. Shehu ${ }^{150}$, P. Sherwood ${ }^{78}$, L. Shi ${ }^{152, a d}$, S. Shimizu ${ }^{67}$, C.O. Shimmin ${ }^{164}$, M. Shimojima ${ }^{102}$, M. Shiyakova ${ }^{65}$, A. Shmeleva ${ }^{96}$, D. Shoaleh Saadi ${ }^{95}$, M.J. Shochet ${ }^{31}$, D. Short ${ }^{120}$, S. Shrestha ${ }^{111}$, E. Shulga ${ }^{98}$, M.A. Shupe ${ }^{7}$, S. Shushkevich ${ }^{42}$, P. Sicho ${ }^{127}$, O. Sidiropoulou ${ }^{155}$, D. Sidorov ${ }^{114}$, A. Sidoti ${ }^{133 a}$, F. Siegert ${ }^{44}$, Dj. Sijacki ${ }^{13 a}$, J. Silva ${ }^{126 a, 126 d}$, Y. Silver ${ }^{154}$, D. Silverstein ${ }^{144}$,
S.B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{128}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13 a}$, S. Simion ${ }^{117}$, E. Simioni ${ }^{83}$, B. Simmons ${ }^{78}$, D. Simon ${ }^{34}$, R. Simoniello ${ }^{91 a, 91 b}$, P. Sinervo ${ }^{159}$, N.B. Sinev ${ }^{116}$, G. Siragusa ${ }^{175}$, A. Sircar ${ }^{79}$, A.N. Sisakyan ${ }^{65, *}$, S.Yu. Sivoklokov ${ }^{99}$ J. Sjölin ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.B. Sjursen ${ }^{14}$, H.P. Skottowe ${ }^{57}$, P. Skubic ${ }^{113}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{128}$, M. Slawinska ${ }^{107}$, K. Sliwa ${ }^{162}$, V. Smakhtin ${ }^{173}$, B.H. Smart ${ }^{46}$, L. Smestad ${ }^{14}$, S.Yu. Smirnov ${ }^{98}$, Y. Smirnov ${ }^{98}$, L.N. Smirnova ${ }^{99, a e, ~ O . ~ S m i r n o v a ~}{ }^{81}$, K.M. Smith ${ }^{53}$, M. Smizanska ${ }^{72}$, K. Smolek ${ }^{128}$, A.A. Snesarev ${ }^{96}$, G. Snidero ${ }^{76}$, S. Snyder ${ }^{25}$, R. Sobie ${ }^{170, k}$, F. Socher ${ }^{44}$, A. Soffer ${ }^{154}$, D.A. Soh ${ }^{152, a d}$, C.A. Solans ${ }^{30}$, M. Solar ${ }^{128}$, J. Solc ${ }^{128}$, E.Yu. Soldatov ${ }^{98}$, U. Soldevila ${ }^{168}$, A.A. Solodkov ${ }^{130}$, A. Soloshenko ${ }^{65}$, O.V. Solovyanov ${ }^{130}$, V. Solovyev ${ }^{123}$, P. Sommer ${ }^{48}$, H.Y. Song ${ }^{33 b}$, N. Soni ${ }^{1}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{128}$, B. Sopko ${ }^{128}$, V. Sopko ${ }^{128}$, V. Sorin ${ }^{12}$, M. Sosebee ${ }^{8}$, R. Soualah ${ }^{165 a, 165 c}$, P. Soueid ${ }^{95}$, A.M. Soukharev ${ }^{109, c}$, D. South ${ }^{42}$, S. Spagnolo ${ }^{73 a, 73 b}$, F. Spanò ${ }^{77}$, W.R. Spearman ${ }^{57}$, F. Spettel ${ }^{101}$, R. Spighi ${ }^{20 a}$, G. Spigo ${ }^{30}$, L.A. Spiller ${ }^{88}$, M. Spousta ${ }^{129}$, T. Spreitzer ${ }^{159}$, R.D. St. Denis ${ }^{53, *}$, S. Staerz ${ }^{44}$, J. Stahlman ${ }^{122}$, R. Stamen ${ }^{58 \text { a }}$, S. Stamm ${ }^{16}$, E. Stanecka ${ }^{39}$, R.W. Stanek ${ }^{6}$,
C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{42}$, M.M. Stanitzki ${ }^{42}$, S. Stapnes ${ }^{119}$, E.A. Starchenko ${ }^{130}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{127}$, P. Starovoitov ${ }^{42}$, R. Staszewski ${ }^{39}$, P. Stavina ${ }^{145 a, *}$, P. Steinberg ${ }^{25}$, B. Stelzer ${ }^{143}$, H.J. Stelzer ${ }^{30}$, O. Stelzer-Chilton ${ }^{160 a}$, H. Stenzel ${ }^{52}$, S. Stern ${ }^{101}$, G.A. Stewart ${ }^{53}$, J.A. Stillings ${ }^{21}$, M.C. Stockton ${ }^{87}$, M. Stoebe ${ }^{87}$, G. Stoicea ${ }^{26 a}$, P. Stolte ${ }^{54}$, S. Stonjek ${ }^{101}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{44}$, M.E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 a, 147 b}$,
A. Strandlie ${ }^{119}$, E. Strauss ${ }^{144}$, M. Strauss ${ }^{113}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{175}$, D.M. Strom ${ }^{116}$, R. Stroynowski ${ }^{40}$, A. Strubig ${ }^{106}$, S.A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N.A. Styles ${ }^{42}$, D. Su ${ }^{144}$, J. Su ${ }^{125}$, R. Subramaniam ${ }^{79}$, A. Succurro ${ }^{12}$, Y. Sugaya ${ }^{118}$, C. Suhr ${ }^{108}$, M. Suk ${ }^{128}$, V.V. Sulin ${ }^{96}$, S. Sultansoy ${ }^{4 d}$, T. Sumida ${ }^{68}$, S. Sun ${ }^{57}$, X. Sun ${ }^{33 a}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{150}$, G. Susinno ${ }^{37 a, 37 b}$, M.R. Sutton ${ }^{150}$, Y. Suzuki ${ }^{66}$, M. Svatos ${ }^{127}$, S. Swedish ${ }^{169}$, M. Swiatlowski ${ }^{144}$, I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{129}$, D. Ta 90, C. Taccini ${ }^{135 a, 135 b}$, K. Tackmann ${ }^{42}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{164}$, R. Tafirout ${ }^{160 a}$, N. Taiblum ${ }^{154}$, H. Takai ${ }^{25}$, R. Takashima ${ }^{69}$, H. Takeda ${ }^{67}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{66}$, M. Talby ${ }^{85}$, A.A. Talyshev ${ }^{109,}{ }^{\prime}$, J.Y.C. Tam ${ }^{175}$, K.G. Tan ${ }^{88}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{117}$, S. Tanaka ${ }^{132}$, S. Tanaka ${ }^{66}$, A.J. Tanasijczuk ${ }^{143}$, B.B. Tannenwald ${ }^{111}$, N. Tannoury ${ }^{21}$, S. Tapprogge ${ }^{83}$, S. Tarem ${ }^{153}$, F. Tarrade ${ }^{29}$, G.F. Tartarelli ${ }^{91 a}$, P. Tas ${ }^{129}$, M. Tasevsky ${ }^{127}$, T. Tashiro ${ }^{68}$, E. Tassi ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, A. Tavares Delgado ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, F.E. Taylor ${ }^{94}$, G.N. Taylor ${ }^{88}$, W. Taylor ${ }^{160 b}$, F.A. Teischinger ${ }^{30}$, M. Teixeira Dias Castanheira ${ }^{76}$, P. Teixeira-Dias ${ }^{77}$, K.K. Temming ${ }^{48}$, H. Ten Kate ${ }^{30}$, P.K. Teng ${ }^{152}$, J.J. Teoh ${ }^{118}$, S. Terada ${ }^{66}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{82}$, S. Terzo ${ }^{101}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{159, k}$, J. Therhaag ${ }^{21}$, T. Theveneaux-Pelzer ${ }^{34}$, J.P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{77}$, E.N. Thompson ${ }^{35}$, P.D. Thompson ${ }^{18}$, P.D. Thompson ${ }^{159}$, R.J. Thompson ${ }^{84}$, A.S. Thompson ${ }^{53}$, L.A. Thomsen ${ }^{36}$, E. Thomson ${ }^{122}$, M. Thomson ${ }^{28}$, W.M. Thong ${ }^{88}$, R.P. Thun ${ }^{89, *}$, F. Tian 35, M.J. Tibbetts ${ }^{15}$, V.O. Tikhomirov ${ }^{96, a f}$, Yu.A. Tikhonov ${ }^{109}, c$, S. Timoshenko ${ }^{98}$,
E. Tiouchichine ${ }^{85}$, P. Tipton ${ }^{177}$, S. Tisserant ${ }^{85}$, T. Todorov ${ }^{5}$, S. Todorova-Nova ${ }^{129}$, J. Tojo ${ }^{70}$, S. Tokár ${ }^{145 a}$,
K. Tokushuku ${ }^{66}$, K. Tollefson ${ }^{90}$, E. Tolley ${ }^{57}$, L. Tomlinson ${ }^{84}$, M. Tomoto ${ }^{103}$, L. Tompkins ${ }^{31}$, K. Toms ${ }^{105}$, N.D. Topilin ${ }^{65}$, E. Torrence ${ }^{116}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{168}$, J. Toth ${ }^{85}$,ag , F. Touchard ${ }^{85}$, D.R. Tovey ${ }^{140}$, H.L. Tran ${ }^{117}$, T. Trefzger ${ }^{175}$, L. Tremblet ${ }^{30}$, A. Tricoli ${ }^{30}$, I.M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{80}$, M.F. Tripiana ${ }^{12}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{91 \mathrm{a}}$, M. Trottier-McDonald ${ }^{15}$, M. Trovatelli ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, P. True ${ }^{90}$, M. Trzebinski ${ }^{39}$, A. Trzupek ${ }^{39}$, C. Tsarouchas ${ }^{30}$, J.C-L. Tseng ${ }^{120}$, P.V. Tsiareshka ${ }^{92}$, D. Tsionou ${ }^{137}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51 \mathrm{a}}$, I.I. Tsukerman ${ }^{97}$, V. Tsulaia ${ }^{15}$, S. Tsuno ${ }^{66}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{26 a}$, V. Tudorache ${ }^{26 a}$, A.N. Tuna ${ }^{122}$, S.A. Tupputi ${ }^{20 a, 20 b}$, S. Turchikhin ${ }^{99, a e}$, D. Turecek ${ }^{128}$, I. Turk Cakir ${ }^{4 \mathrm{c}}$, R. Turra ${ }^{91 a, 91 \mathrm{~b}}$, A.J. Turvey ${ }^{40}$, P.M. Tuts ${ }^{35}$, A. Tykhonov ${ }^{49}$, M. Tylmad ${ }^{147 a, 147 b}$, M. Tyndel ${ }^{131}$, K. Uchida ${ }^{21}$, I. Ueda ${ }^{156}$, R. Ueno ${ }^{29}$, M. Ughetto ${ }^{85}$, M. Ugland ${ }^{14}$, M. Uhlenbrock ${ }^{21}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{30}$, A. Undrus ${ }^{25}$, G. Unel ${ }^{164}$, F.C. Ungaro ${ }^{48}$, Y. Unno ${ }^{66}$, C. Unverdorben ${ }^{100}$, J. Urban ${ }^{145 b}$, D. Urbaniec ${ }^{35}$, P. Urquijo ${ }^{88}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{62}$, L. Vacavant ${ }^{85}$, V. Vacek ${ }^{128}$, B. Vachon ${ }^{87}$, N. Valencic ${ }^{107}$, S. Valentinetti ${ }^{20 a, 20 b^{2}}$, A. Valero ${ }^{168}$, L. Valery ${ }^{34}$, S. Valkar ${ }^{129}$, E. Valladolid Gallego ${ }^{168}$, S. Vallecorsa ${ }^{49}$, J.A. Valls Ferrer ${ }^{168}$, W. Van Den Wollenberg ${ }^{107}$, P.C. Van Der Deijl ${ }^{107}$, R. van der Geer ${ }^{107}$, H. van der Graaf ${ }^{107}$, R. Van Der Leeuw ${ }^{107}$, D. van der Ster 30, N. van Eldik ${ }^{30}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{107}$, M.C. van Woerden ${ }^{30}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{30}$, R. Vanguri ${ }^{122}$, A. Vaniachine ${ }^{6}$, P. Vankov ${ }^{42}$, F. Vannucci ${ }^{80}$, G. Vardanyan ${ }^{178}$, R. Vari ${ }^{133 a}$, E.W. Varnes ${ }^{7}$, T. Varol ${ }^{86}$, D. Varouchas ${ }^{80}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{151}$, F. Vazeille ${ }^{34}$, T. Vazquez Schroeder ${ }^{54}$, J. Veatch ${ }^{7}$, F. Veloso ${ }^{126 a, 126 c}$, T. Velz ${ }^{21}$, S. Veneziano ${ }^{133 a}$, A. Ventura ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, D. Ventura ${ }^{86}$, M. Venturi ${ }^{170}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{23}$, V. Vercesi ${ }^{121 a}$, M. Verducci ${ }^{133 a, 133 b}$, W. Verkerke ${ }^{107}$, J.C. Vermeulen ${ }^{107}$, A. Vest ${ }^{44}$, M.C. Vetterli ${ }^{143, e}$, O. Viazlo ${ }^{81}$, I. Vichou ${ }^{166}$, T. Vickey ${ }^{146 c, a h}$, O.E. Vickey Boeriu ${ }^{146 c}$, G.H.A. Viehhauser ${ }^{120}$, S. Viel ${ }^{169}$, R. Vigne ${ }^{30}$, M. Villa ${ }^{20 a}, 20 b$, M. Villaplana Perez ${ }^{91 a}$, 91 b , E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{29}$, V.B. Vinogradov ${ }^{65}$, J. Virzi ${ }^{15}$, I. Vivarelli ${ }^{150}$, F. Vives Vaque ${ }^{3}$, S. Vlachos ${ }^{10}$, D. Vladoiu ${ }^{100}$, M. Vlasak ${ }^{128}$, A. Vogel ${ }^{21}$, M. Vogel ${ }^{32 \mathrm{a}}$, P. Vokac 128, G. Volpi ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}, \mathrm{M}$. Volpi 88, H. von der Schmitt ${ }^{101}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{21}$, V. Vorobel ${ }^{129}$, K. Vorobev ${ }^{98}$, M. Vos 168, R. Voss 30, J.H. Vossebeld ${ }^{74}$, N. Vranjes ${ }^{137}$, M. Vranjes Milosavljevic ${ }^{13 a}$, V. Vrba ${ }^{127}$, M. Vreeswijk ${ }^{107}$, T. Vu Anh ${ }^{48}$, R. Vuillermet ${ }^{30}$, I. Vukotic ${ }^{31}$, Z. Vykydal ${ }^{128}$, P. Wagner ${ }^{21}$, W. Wagner ${ }^{176}$, H. Wahlberg ${ }^{71}$, S. Wahrmund ${ }^{44}$, J. Wakabayashi ${ }^{103}$, J. Walder ${ }^{72}$, R. Walker ${ }^{100}$, W. Walkowiak ${ }^{142}$, R. Wall ${ }^{177}$, P. Waller ${ }^{74}$, B. Walsh ${ }^{177}$, C. Wang ${ }^{33 \mathrm{c}}$, C. Wang ${ }^{45}$, F. Wang ${ }^{174}$, H. Wang ${ }^{15}$, H. Wang ${ }^{40}$, J. Wang ${ }^{42}$, J. Wang ${ }^{33 a}$, K. Wang ${ }^{87}$, R. Wang ${ }^{105}$, S.M. Wang ${ }^{152}$, T. Wang ${ }^{21}$, X. Wang ${ }^{177}$, C. Wanotayaroj ${ }^{116}$, A. Warburton ${ }^{87}$, C.P. Ward ${ }^{28}$, D.R. Wardrope ${ }^{78}$, M. Warsinsky ${ }^{48}$, A. Washbrook ${ }^{46}$, C. Wasicki ${ }^{42}$, P.M. Watkins ${ }^{18}$, A.T. Watson ${ }^{18}$, I.J. Watson ${ }^{151}$, M.F. Watson ${ }^{18}$, G. Watts ${ }^{139}$, S. Watts ${ }^{84}$, B.M. Waugh ${ }^{78}$, S. Webb ${ }^{84}$, M.S. Weber ${ }^{17}$, S.W. Weber ${ }^{175}$, J.S. Webster ${ }^{31}$, A.R. Weidberg ${ }^{120}$, B. Weinert ${ }^{61}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Weits ${ }^{107}$, P.S. Wells ${ }^{30}$, T. Wenaus ${ }^{25}$, D. Wendland ${ }^{16}$, Z. Weng ${ }^{152, a d}$, T. Wengler ${ }^{30}$, S. Wenig ${ }^{30}$, N. Wermes ${ }^{21}$, M. Werner ${ }^{48}$, P. Werner ${ }^{30}$, M. Wessels ${ }^{58 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{29}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{32 b}$, S. White ${ }^{124 a, 124 b}$, D. Whiteson ${ }^{164}$, D. Wicke ${ }^{176}$, F.J. Wickens ${ }^{131}$, W. Wiedenmann ${ }^{174}$, M. Wielers ${ }^{131}$, P. Wienemann ${ }^{21}$, C. Wiglesworth ${ }^{36}$, L.A.M. Wiik-Fuchs ${ }^{21}$, P.A. Wijeratne ${ }^{78}$, A. Wildauer ${ }^{101}$, M.A. Wildt ${ }^{42, a i}$, H.G. Wilkens ${ }^{30}$, H.H. Williams ${ }^{122}$, S. Williams ${ }^{28}$, C. Willis ${ }^{90}$, S. Willocq ${ }^{86}$, A. Wilson ${ }^{89}$, J.A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{116}$, B.T. Winter ${ }^{21}$, M. Wittgen ${ }^{144}$, T. Wittig ${ }^{43}$, J. Wittkowski ${ }^{100}$, S.J. Wollstadt ${ }^{83}$, M.W. Wolter ${ }^{39}$, H. Wolters ${ }^{126 a, 126 c}$, B.K. Wosiek ${ }^{39}$, J. Wotschack ${ }^{30}$, M.J. Woudstra ${ }^{84}$, K.W. Wozniak ${ }^{39}$, M. Wright ${ }^{53}$, M. Wu^{55}, S.L. Wu^{174}, X. Wu^{49}, Y. Wu ${ }^{89}$, E. Wulf ${ }^{35}$, T.R. Wyatt ${ }^{84}$, B.M. Wynne ${ }^{46}$, S. Xella ${ }^{36}$, M. Xiao ${ }^{137}$, D. Xu ${ }^{33 a}$, L. Xu ${ }^{33 b, a j}$, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 b, a k}$, R. Yakabe ${ }^{67}$, M. Yamada ${ }^{66}$, H. Yamaguchi ${ }^{156}$, Y. Yamaguchi ${ }^{118}$, A. Yamamoto ${ }^{66}$, S. Yamamoto ${ }^{156}$, T. Yamamura ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{103}$, Y. Yamazaki ${ }^{67}$, Z. Yan ${ }^{22}$, H. Yang ${ }^{33 e}$, H. Yang ${ }^{174}$, Y. Yang ${ }^{111}$, S. Yanush ${ }^{93}$, L. Yao ${ }^{33 a}$, W-M. Yao ${ }^{15}$, Y. Yasu ${ }^{66}$, E. Yatsenko ${ }^{42}$, K.H. Yau Wong ${ }^{21}$, J. Ye ${ }^{40}$, S. Ye^{25}, I. Yeletskikh ${ }^{65}$, A.L. Yen ${ }^{57}$, E. Yildirim ${ }^{42}$, M. Yilmaz ${ }^{4 \mathrm{~b}}$, R. Yoosoofmiya ${ }^{125}$, K. Yorita ${ }^{172}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{156}$, C. Young ${ }^{144}$, C.J.S. Young ${ }^{30}$, S. Youssef ${ }^{22}$, D.R. Yu ${ }^{15}$, J. Yu ${ }^{8}$, J.M. Yu ${ }^{89}$, J. Yu ${ }^{114}$, L. Yuan ${ }^{67}$, A. Yurkewicz ${ }^{108}$, I. Yusuff ${ }^{28, a l}$, B. Zabinski ${ }^{39}$, R. Zaidan ${ }^{63}$, A.M. Zaitsev ${ }^{130, z}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{23}$, L. Zanello ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, D. Zanzi ${ }^{88}$, C. Zeitnitz ${ }^{176}$, M. Zeman ${ }^{128}$, A. Zemla ${ }^{38 \mathrm{a}}$, K. Zengel ${ }^{23}$, O. Zenin ${ }^{130}$, T. Ženiš ${ }^{145 \mathrm{a}}$, D. Zerwas ${ }^{117}$, G. Zevi della Porta ${ }^{57}$, D. Zhang ${ }^{89}$, F. Zhang ${ }^{174}$, H. Zhang ${ }^{90}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{152}$, R. Zhang ${ }^{33 b}$, X. Zhang ${ }^{33 d}$, Z. Zhang ${ }^{117}$, X. Zhao ${ }^{40}$, Y. Zhao ${ }^{33 \mathrm{~d}}$, Z. Zhao ${ }^{33 b}$, A. Zhemchugov ${ }^{65}$, J. Zhong ${ }^{120}$, B. Zhou ${ }^{89}$, L. Zhou ${ }^{35}$, L. Zhou ${ }^{40}$, N. Zhou ${ }^{164}$, C.G. Zhu ${ }^{33 d}$, H. Zhu ${ }^{33 \mathrm{a}}$, J. Zhu ${ }^{89}$, Y. Zhu ${ }^{33 \mathrm{~b}}$, X. Zhuang ${ }^{33 \mathrm{a}}$, K. Zhukov ${ }^{96}$, A. Zibell ${ }^{175}$,
D. Zieminska ${ }^{61}$, N.I. Zimine ${ }^{65}$, C. Zimmermann ${ }^{83}$, R. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{48}$, Z. Zinonos ${ }^{54}$, M. Ziolkowski ${ }^{142}$, G. Zobernig ${ }^{174}$, A. Zoccoli ${ }^{20 a}, 20$ b , M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{104 a, 104 b}$, V. Zutshi ${ }^{108}$, L. Zwalinski ${ }^{30}$.
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Gazi University, Ankara; (c) Istanbul
Aydin University, Istanbul; ${ }^{(d)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States of America
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c)
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }_{21}$ Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }_{25}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and
Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica
Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
${ }^{31}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
${ }^{34}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{44}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy

[^3][^4]162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison WI, United States of America
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven CT, United States of America
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{d}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{e}$ Also at TRIUMF, Vancouver BC, Canada
f Also at Department of Physics, California State University, Fresno CA, United States of America
${ }_{g}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{h}$ Also at Tomsk State University, Tomsk, Russia
${ }^{i}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{j}$ Also at Università di Napoli Parthenope, Napoli, Italy
${ }^{k}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{l}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{m}$ Also at Louisiana Tech University, Ruston LA, United States of America
${ }^{n}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{\circ}$ Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
${ }^{p}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
q Also at CERN, Geneva, Switzerland
r Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
s Also at Manhattan College, New York NY, United States of America
${ }^{t}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{u}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{w}$ Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }_{x}$ Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
${ }^{y}$ Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
z Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{a a}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{a b}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
${ }^{a c}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ad Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
ae Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
af Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{a g}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a h}$ Also at Department of Physics, Oxford University, Oxford, United Kingdom
${ }^{a i}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
aj Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{a k}$ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
al Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased

[^0]: (C) 2015 CERN for the benefit of the ATLAS Collaboration.

 Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

[^1]: 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector, and the z-axis along the beam line. The x-axis points from the IP to the centre of the LHC ring, and the y axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam line. The pseudorapidity η is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. Observables labeled "transverse" are projected into the $x-y$ plane.

[^2]: ${ }^{2}$ Since the longitudinal component of the momentum of the neutrinos is not measured, the measured properties of the W boson candidates are limited to their transverse momentum and transverse mass, defined as $m_{\mathrm{T}}=\sqrt{\left(E_{\mathrm{T}}^{\mathrm{miss}}+p_{\mathrm{T}}^{\ell}\right)^{2}-\left(E_{x}^{\mathrm{miss}}+p_{x}^{\ell}\right)^{2}-\left(E_{y}^{\mathrm{miss}}+p_{y}^{\ell}\right)^{2}}$ where $E_{\mathrm{T}}^{\mathrm{miss}}$ is the magnitude of the missing transverse momentum vector, p_{T}^{ℓ} is the transverse momentum of the lepton and p_{x}^{ℓ} and p_{y}^{ℓ} ($E_{x}^{\text {miss }}$ and $E_{y}^{\text {miss }}$) are the magnitude of the x and y components of the lepton momentum (missing transverse momentum) respectively.

[^3]: Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
 Section de Physique, Université de Genève, Geneva, Switzerland
 ${ }^{(a)}$ INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics nstitute, Tbilisi State University, Tbilisi, Georgia
 2 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 4 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
 Department of Physics, Hampton University, Hampton VA, United States of America
 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
 8 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut,
 Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität
 Heidelberg, Mannheim, Germany
 59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
 ${ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
 ${ }^{61}$ Department of Physics, Indiana University, Bloomington IN, United States of America
 62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
 ${ }^{63}$ University of Iowa, Iowa City IA, United States of America
 64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
 Graduate School of Science, Kobe University, Kobe, Japan
 Faculty of Science, Kyoto University, Kyoto, Japan
 Kyoto University of Education, Kyoto, Japan
 Department of Physics, Kyushu University, Fukuoka, Japan
 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
 Physics Department, Lancaster University, Lancaster, United Kingdom
 ${ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
 Department of Physics and Astronomy, University College London, London, United Kingdom
 ${ }^{9}$ Louisiana Tech University, Ruston LA, United States of America
 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
 81 Fysiska institutionen, Lunds universitet, Lund, Sweden
 82 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
 83 Institut für Physik, Universität Mainz, Mainz, Germany
 84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
 85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
 ${ }^{86}$ Department of Physics, University of Massachusetts, Amherst MA, United States of America
 87 Department of Physics, McGill University, Montreal QC, Canada
 88 School of Physics, University of Melbourne, Victoria, Australia
 89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
 90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
 91 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
 92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
 ${ }^{93}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
 94 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
 95 Group of Particle Physics, University of Montreal, Montreal QC, Canada
 96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
 97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
 98 National Research Nuclear University MEPhI, Moscow, Russia
 99 D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
 100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
 101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
 102 Nagasaki Institute of Applied Science, Nagasaki, Japan
 103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
 104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
 105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
 106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

[^4]: 107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
 108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
 109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
 110 Department of Physics, New York University, New York NY, United States of America
 111 Ohio State University, Columbus OH, United States of America
 112 Faculty of Science, Okayama University, Okayama, Japan
 113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
 114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
 115 Palacký University, RCPTM, Olomouc, Czech Republic
 116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
 117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
 118 Graduate School of Science, Osaka University, Osaka, Japan
 119 Department of Physics, University of Oslo, Oslo, Norway
 120 Department of Physics, Oxford University, Oxford, United Kingdom
 121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
 122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
 123 Petersburg Nuclear Physics Institute, Gatchina, Russia
 124 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
 126 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
 127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
 128 Czech Technical University in Prague, Praha, Czech Republic
 129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
 130 State Research Center Institute for High Energy Physics, Protvino, Russia
 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
 132 Ritsumeikan University, Kusatsu, Shiga, Japan
 133 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
 134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
 135 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
 136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
 ${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
 138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
 139 Department of Physics, University of Washington, Seattle WA, United States of America
 140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
 141 Department of Physics, Shinshu University, Nagano, Japan
 142 Fachbereich Physik, Universität Siegen, Siegen, Germany
 143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
 144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
 145 (a) Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; (b) Department of Subnuclear
 Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
 146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of
 Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
 147 (a) Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
 148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
 149 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of
 America
 150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
 151 School of Physics, University of Sydney, Sydney, Australia
 152 Institute of Physics, Academia Sinica, Taipei, Taiwan
 153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
 154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
 155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
 156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
 157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
 158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
 159 Department of Physics, University of Toronto, Toronto ON, Canada
 160 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
 161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

