
[Escreva aqui]

[Atraia a atenção do seu leitor colocando uma boa citação no documento ou utilize este espaço para enfatizar um

ponto chave. Para colocar esta caixa de texto noutro local da página, arraste-a.]

JOSÉ DIOGO CANDEIAS DE MAGALHÃES

REINFORCEMENT LEARNING:
The application to Autonomous Biomimetic

Underwater Vehicles control

Dissertação para obtenção do grau de Mestre em

Ciências Militares Navais, na especialidade de

Engenharia Naval – Ramo de Armas e eletrónica

Alfeite

2018

[Escreva aqui]

[Escreva aqui]

JOSÉ DIOGO CANDEIAS DE MAGALHÃES

REINFORCEMENT LEARNING:
The application to Autonomous Biomimetic

Underwater Vehicles control

Dissertação para obtenção do grau de Mestre em Ciências

Militares Navais, na especialidade de Engenharia Naval – Ramo
de Armas e eletrónica

Orientação de: Professor Doutor Bruno Duarte Damas

 O Aluno Mestrando O Orientador

 ______________________ ______________________

ASPOF EN-AEL José Diogo Candeias de Professor Doutor Bruno Duarte

Magalhães Damas

Alfeite
2018

[Escreva aqui]

�You can never cross the ocean until you have the courage to lose sight of the shore.�

- Christopher Columbus

I

II

Acknowledgments

The process of making a thesis is not easy and it would be impossible if it would be

done alone. So, I would like to thank all the people that directly or indirectly helped

me �nish this road.

First of all, to all my family, that watched me grow for all these years and did all

they could to keep my head held high and faced in the right direction.

To all my friends, that raised me o� the ground so many times and were always

available to talk and keeping my mind sane.

And last but not least, to my tutor Prof. Bruno Damas that were always there if I

needed help and showed me di�erent types of solutions to my problems when I didn't

had any.

III

IV

Abstract

In the last few years, the curiosity for studying the nature and its processes has

been increasing in such a way, that the Human being has been trying to mimic its

behaviors to try and solve everyday problems, and in relation to conventional methods

solutions, some interesting results have been achieved by utilizing this new approach.

The international project SABUVIS, the project responsible for the idea of the

content studied in this work, main objective is to use this new approach for intelligence,

surveillance and reconnaissance of the surface and underwater picture, by using vehicles

that mimic the movement of animals like �sh and seals. Controlling this types of

vehicles it's not trivial: due to its complex kinematics and dynamics making it hard to

analytically derive controllers that can e�ciently perform a given task, such as reaching

a given position in a minimum time.

The objective of this document is to evaluate the results of the application of

Arti�cial Intelligence (AI) in automatic biomimetic underwater vehicles (BUVs), by

using a Reinforcement Learning algorithm (Q-learning), so that this type of vehicles

are capable of reaching a desired position in a e�cient way, providing a new way to

control this new type of vehicles in which the algorithm is in constant learning.

Keywords: BUV, Arti�cial Intelligence, Reinforcement Learning, Q-learning.

V

VI

Resumo

Nos últimos anos, a curiosidade pelo estudo da natureza e os seus processos tem

vindo a aumentar, ao ponto de o ser Humano tentar imitar os seus comportamentos

para tentar resolver os problemas que são enfrentados no dia a dia. Com este novo

processo, têm surgido alguns resultados interessantes em relação às soluções obtidas

pelos métodos convencionais.

O conteúdo deste trabalho insere-se no projeto internacional SABUVIS que tem

como objetivo principal a utilização deste processo para inteligência e reconhecimento

de panorâmicas de superfície e sub-superfície, através de veículos subaquáticos que

imitam a locomoção de animais como o peixe e a foca. No entanto, o controlo do movi-

mento destes veículos não é trivial: devido às suas complexas equações de cinemática

e dinâmica é complicado derivar controladores que sejam e�cientes para executarem

uma tarefa simples, tal como deslocar-se até a um ponto num mínimo tempo possível.

Este documento tem como objetivo a avaliação de resultados da aplicação de In-

teligência Arti�cial em veículos biomiméticos automáticos de subsuperfície (BUVs),

através de um algoritmo de aprendizagem por reforço (Q-learning), para que este tipo

de veículos sejam capaz de se deslocar até um ponto alvo de uma forma e�caz providên-

ciando, assim, uma nova forma de locomução para BUVs que permite que o algoritmo

se encontre em constante aprendizagem.

Palavras chave: BUV, Inteligência Arti�cial, Aprendizagem por Reforço, Q-learning.

VII

VIII

Contents

1 Introduction 1

2 Related Work 5

2.1 Unmanned Underwater Vehicles . 5

2.1.1 UUVs in the Navy . 5

2.2 Biommimetics . 8

2.3 Project SABUVIS . 11

3 Reinforcement Learning 15

3.1 Q-Learning . 19

4 De�nition and problem analysis 21

4.1 Objective . 21

4.2 Problem de�nition . 21

4.2.1 State S . 21

4.2.2 Action A . 22

4.2.3 Reward R . 22

4.3 Simulator . 23

4.4 LSTS toolchain . 25

5 Implementation 29

5.1 First approach . 29

5.2 Change of variables . 33

5.3 Decision Parameters . 36

5.3.1 Step-sized parameter . 37

5.3.2 Discounted factor parameter . 38

5.3.3 ε-greedy implementation . 40

5.4 Final implementation . 42

6 Future work 45

49

IX

X

Glossary

AI Arti�cial Intelligence

APA American Psychological Association

AUV Autonomous Underwater Vehicle

BUV Biomimetic Underwater Vehicle

CINAV Centro de Investigação Naval

CN3 Communication/Navigation Network Nodes

DP Dynamic Programming

DMS3 Destacamento de Mergulhadores Sapadores no3

FEUP Faculdade de Engenharias da Universidade do Porto

ID Inspection/Identi�cation

IMC Inter-Module Communication

IOP Institute of Physics

ISR Intelligence, Surveillance and Reconnaissance

LSTS Laboratório de Sistemas e Tecnologia Subaquática

MCM Mine Counter Measures

MDP Markov Decision Process

NRL Naval Research Lab

NUWC Naval Undersea Weapons Center

ROV Remotely Operated Vehicle

RL Reinforcement Learning

SABUVIS Swarm of Biomimetic Underwater Vehicles for Underwater Intelligence,

Surveillance and Reconnaissance

SMPD Semi-Markov Decision Process

TCS Time Critical Strike

UAV Unmanned Aerial Vehicle

US United States

UUV Unmanned Underwater Vehicle

XI

XII

De�nitions

Automation Process or procedure performed without human assistance.

Autonomy The time it takes for a battery to completely deplete.

XIII

XIV

1 Introduction

Biomimetics is a �eld that has been gaining an exponential popularity throughout

the years (Lepora, Verschure, & Prescott, 2013). The study of biomimetic vehicles

has been a point of interest in the military context due to its furtive capabilities: the

ability of camou�age within the environment and they take even better interest for the

Navy, because when comparing to conventional vehicles, they have a unique acoustic

signature that will be much harder to identify by other acoustic sensors.

However, biomimetic vehicles come with one big problem: it isn't a trivial task to

control such complex systems. Let's compare the process of implementing the control-

lers in a conventional vehicle, e.g. a car, and a biomimetic vehicle, e.g. a dog, by trying

to execute the simple task: "move forward".

For the car-like vehicle, such task shouldn't be a problem, the only inputs needed

would be a frequency and direction of rotation for the motors in each of the four wheels,

that operate independently from each other, and the car would start moving forward.

The same task isn't that simple anymore when trying to control four legs for the

dog-like vehicle. First of all, every leg would be composed of joints, which by itself

will increase the number of inputs per leg. Secondly, if the legs operate independently

from each other, the dog would most likely fall over, because the legs depend on one

another, therefore, they need to cooperate with each other in order for the vehicle to

execute the task given. This cooperation makes it much harder to map situations into

actions for the controllers.

The objective of this work is to solve this type of problem via Reinforcement Lear-

ning, an AI algorithm that is capable of mapping states into actions, only by evaluating

its interactions with the environment, without any previous knowledge of its surroun-

dings. This eases the work done by humans, because there is no need to worry about

programming every action to perform every possible state, leaving the algorithm lear-

ning from itself, by trial and error, to �nd an e�cient group of actions that ful�lls the

objective given.

1

Fig. 1: The agent-environment interaction

My master thesis is the motivation of this written study, from a Weapons and Elec-

tronics Engineering course in the Portuguese Naval Academy, coordinated by Centro

de Investigação Naval (CINAV), which is the organism responsible for the development

and investigation in the Naval Academy.

Also, this study is part of an international project "Swarm of Biomimetic Un-

derwater Vehicles for Underwater Intelligence, Surveillance and Reconnaissance (ISR)

(SABUVIS)", whose main objective, as mentioned by its name, is to use Biomimetic

Underwater Vehicles (BUVs) in missions for stealth data collection and surveillance.

This project will also measure the acoustic signature and the electrical e�ciency

of the biomimetic vehicle, in order to compare it to convectional vehicles. There is

no proof that this robots produce less noise than conventional vehicles, thus one more

reason for this project to be implemented.

This work will be divided in three main points. First, a brief survey where it will

be presented the relevant moments for the history of biomimetics and the technologies

already existing in the area.

The main part consists in the description of the processes that the simulator, a

model of the kinematics and dynamics of the BUV in a software program explained in

the De�nition and problem analysis section, and the algorithm have been through until

they reached their �nal form. In this section will be presented some chosen graphics

that show the implementation and evolution of the algorithm.

And last, but not least, the evaluation of the results obtained while testing the al-

gorithm. Were we will try to reach an answer to see if this type of Arti�cial Intelligence

2

is viable to control the movement of BUVs. It will also be explained the positive and

negative aspects encountered during the making of this study.

In this work the references system used will be the American Psychological Associ-

ation (APA) system.

3

4

2 Related Work

2.1 Unmanned Underwater Vehicles

Earth surface is covered by more than two-thirds of water, and yet, we know so litle

about what misteries these vast seas hide. It is only natural for Human curiosity to

kick in, and make us think about ways to explore this unknown part of the earth. This

leads to Autonomous Underwater Vehicles (AUVs) that have been evolving in the last

years, in terms of computing power, allowing for even more complex missions, and the

amount of energy stored on board for longer missions, with the bene�t of not having

to risk human lives in the process (Yuh, 2000).

Unmanned Underwater Vehicle (UUV) is the designation given to any vehicle that

operates underwater without human occupants. UUVs are divided in two catego-

ries: Remotely Operated Vehicles (ROVs), remotely controlled by a human (Christ &

Wernli Sr, 2013), and AUVs, controlled without any direct human input (Paull, Saeedi,

Seto, & Li, 2014). Due to AUVs relying on autonomous control they are more complex

and more expensive compared to ROVs (Siciliano & Khatib, 2016).

Since water does not allow radio-frequency transmission and has an insu�cient

bandwidth by acoustic transmission for direct control, using UUVs provides some chal-

lenges like position uncertainty and noisy communication. Another challenge caused

by water is the non linearity of the mapping between thruster command and generated

force.

Besides all this challenges UUVs are very versatile and can o�er capabilities in many

areas especially when the mission may threaten to risk human life. Therefore, they are

well suited for military operations where the human life risk is eminent.

2.1.1 UUVs in the Navy

The US Navy identi�es �ve major bene�ts to using modern unmanned vehicles in

maritime surface and sub-surface applications:

5

• Unmanned vehicles are far less expensive to operate and maintain than manned

vehicles;

• Automated sensors are able to maintain near-constant awareness and coverage of

an environment;

• Near-constant surveillance means persistence in data collection, enabling a better

understanding of long-term behavior patterns and trends;

• Unmanned platforms also promise to improve productivity, as they allow manned

platforms to pursue tasks elsewhere;

• Unmanned platforms keep human sailors and expensive manned platforms away

from danger.

UUVs can be used in di�erent applications and missions such as:

• Intelligence Surveillance and Reconnaissance (ISR) - (e.g. SHRIMP) (Muljowidodo,

Adi, Budiyono, Prayogo, et al., 2009);

• Mine Countermeasures (MCM) - (e.g. REMUS) (Stokey et al., 2001);

• Anti-Submarine Warfare (Nicolai, 2002);

• Inspection/Identi�cation (ID) - (e.g. DRIP) (Miller, 1996);

• Oceanography/Hydrography (Evans, Smith, Martin, & Wong, 1999);

• Communication/Navigation Network Nodes (CN3) (Barron, 1998);

• Payload Delivery (Brown & Clark, 2010);

• Time Critical Strike (TCS) (Lala & Harper, 1994).

In the Portuguese Navy there are the SEACon UUVs, developed by Laboratório

de Sistemas e Tecnologia Subaquática (LSTS) of Faculdade de Engenharia da Univer-

sidade do Porto (FEUP). In the ambit of the project SEACon, three vehicles were

delivered to the Portuguese Navy. This vehicles are operated by the Destacamento

de Mergulhadores Sapadores no3 (DMS3). The DSM3 has the responsibility of the

operation of the UUVs due to its missions, such as:

6

Fig. 2: SHRIMP ROV

Fig. 3: REMUS AUV

• Recognize and disarm explosives;

• Coordinate, conduct and execute sea rescue operations;

• Participate in operations of castaways rescue and recuperation of small crafts;

• Support Civil Protection services in case of a disaster;

• Cooperate with the responsible entities in the economic activities surveillance,

related to sea exploration;

• Cooperate with the responsible entities in the suppression of illegal activities of

narcotics tra�c;

• Cooperate with the responsible entities in the scienti�c study of the aquatic

environment;

• Perform searches, analysis and cleaning of waterways with access to disembark

locations.

7

Fig. 4: DRIP UUV

Fig. 5: SEACon vehicle

Where the SEACon are prepared to be deployed in MCM, search and rescue, sur-

veillance of objects in the bottom of the sea and scienti�c study missions (Silva, 2017).

The SEACon are cylindrical vehicles, with a torpedo shape, divided into three

sections: front, mid and tail section. The three sections can be separated and it is

possible to install di�erent type of sensors, depending on the type of mission.

2.2 Biommimetics

The de�nition of Biomimetics is �nding solutions for problems by mimicking nature

systems, models and elements. For many years, humans have been studying nature

behaviors to surpass their own challenges, like building a �ying vehicle by having as a

8

model �ying birds. Although the �nal products (airplanes and helicopters) aren't that

similar to the initial study model, due to nature complex systems, robust, autonomous,

and e�cient solutions (minimizing the cost for maximum gain), that are completely

adapted to the environment.

Biomimetics is multidisciplinary and it needs a good cooperation between all its

�elds to create a good end result that performs a given task.

An explosive growth in the research of biomimetics has been happening in the

last few years, the number of papers that are published has been doubling every 3

years. It started around 1950s with less than 100 each year, reaching currently around

3000 publications per year. Besides, the studies in this area are still increasing and

it is expected that its growth continues in the future (Lepora, Verschure, & Prescott,

2013).

One of the early examples of a biomimetic implementation is the material Velcro,

invented by the Belgian named Georges de Mestral, that examined and studied the

morphology of tiny plants burrs, that after walk with his dog, were adhered to its fur.

There are various types of biomimetics robots being studied today, one of those exam-

ples is the study of shape-shifting robots, studied by the Professor Maarja Krussma

(Lepora, Mura, Krapp, Verschure, & Prescott, 2013).

For AUVs, one of the crucial aspects is the movement, that is divided into three

types of environments: air, ground and water. On ground, there are various types

of mechanisms like legged (Nelson & Quinn, 1999) and worm-like crawling (Gonzalez-

Gomez, Aguayo, & Boemo, 2005) and snake robots (Shugen, 2001), �apping-wing �ight

movement (Kim, Song, & Ahn, 2012) to travel through air and swimming (Szymak,

Morawski, & Malec, 2012) to journey through the water.

The US Department of Defense has initiated some of the �rst e�orts to the unders-

tanding of natural biological systems as a base model to future engineering systems,

being the the earliest work made by the Navy dating back to late 1950s (Siochi et al.,

2002).

9

(a) Ground movement mechanism (legged crawling, worm-like crawling and snake-like, res-

pectively)

(b) Air movement mechanism (�apping-wing)

(c) Water movement mechanism (swimming)

Fig. 6: Biomimetic inspired robots

10

US Navy researches revolves around surface ships, the development of carbon na-

notubes and organic composites for electronic and structural applications. There are

two main research labs in the Navy working on Biomimetics: Naval Research Lab

(NRL) working on biosensors (Thompson, 2005), self-assembly (Zhang, Marini, Hwang,

& Santoso, 2002), and molecular engineering (Shchukin, Sukhorukov, Price, & Lvov,

2005); Naval Undersea Weapons Center (NUWC) that its interested in novel biomime-

tic propulsion techniques and hydrodynamic �ow control, small-scale, semi-autonomous

undersea probes.

Controlling this types of vehicles it's not trivial: due to its complex kinematics and

dynamics making it hard to analytically derive controllers that can e�ciently perform

a given task, such as reaching a given position target in a minimum time. Hence, the

need of an AI that learns by itself by its interactions with the environment, in order

to easy the work of human programmers that had to do the controllers, of this type of

vehicles, hand made.

2.3 Project SABUVIS

The work present in this document is part of an international project SABUVIS,

whose main objective is to use BUVs in missions for stealth data collection and surveil-

lance, where Portugal, Poland and Germany are the countries part of the consortium.

In Portugal the collaborators are: OceanScan, LSTS and CINAV.

OceanScan is a leading international equipment company providing technology to

the oil and gas, defense, petrochemical, renewables and nuclear industries and it can

also supply personnel, one person or complete teams of surveyors to o�shore survey

and ROV markets. OceanScan is the one responsible to build the robot for the project

SABUVIS.

Laboratório de Sistemas e Tecnologia Subaquática (LSTS) is an interdisciplinary

research laboratory in Faculdade de Engenharia da Universidade do Porto (FEUP),

established in 1997 and it is specialized on the design, construction, and operation of

unmanned underwater, surface and air vehicles and on the development of tools and

11

Fig. 7: Fish-like BUV 3D model

Fig. 8: Models for the controllers of a seal-like tail, �sh-like tail and �ns, respectively

technologies for the deployment of networked vehicle systems. LSTS is responsible for

developing the software that will run on vehicle of the project.

Centro de Investigação Naval (CINAV) belongs to Escola Naval and has the mission

of promoting the research, development and innovation in areas of great importance to

the Portuguese Navy. It is responsible of developing the low level controllers and the

Arti�cial Intelligence for the robot.

The SABUVIS project is divided into three types of vehicles:

• BUV 1 - A remotely controlled underwater vehicle mimicking a seal. The seal-like

vehicle is composed by two lateral �ns and a tail that is composed by two smaller

�ippers, trying to simulate a breaststroke or "frog"stroke style of swimming. It

is being developed by the Poland Navy School;

• BUV 2 - It is also a remotely controlled vehicle, but this time mimicking a �sh.

The �sh-like vehicle is integrated by two lateral �ns and by a tail, composed by

only one �ipper sectioned into two parts to give more �uidity to the movement.

It is being developed by Krakow university;

12

• BUV 3 - This underwater vehicle as similar shape as the above two, however its

tail will be interchangeable between a �sh-like and a seal-like tail. And while the

the �rst two BUVs will be remotely controlled, some AI for the controllers will be

implemented on BUV 3 for study purposes. It is being developed by OceanScan,

LSTS and the Portugal Navy School.

These di�erent mechanical structures inspired by biological systems present a much

more complex kinematic structure that makes the task of controlling the motion of the

vehicle a non trivial one. For a �sh-like BUV, for example, it is not straightforward to

develop controllers that actuate in the �ns and tail of the vehicle in order to make it

follow a desired trajectory in an e�cient way. The purpose of this work is to develop

adaptive controllers for these kind of vehicles based on RL techniques.

13

14

3 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning that studies how agents

take actions in order to maximize their reward.

The beginning of RL happens when two main independent threads intertwine. One

concerning the learning experience by trial and error that was studied in the psychology

of animal learning, the other one concerning the use of value functions and dynamic

programming to solve the problem of optimal control. There is even a third thread, not

so independent from the others, concerning temporal-di�erence methods. The fusion

of this three threads produced the actual �eld of reinforcement learning.

RL is used in a large number of domains: continuous-time discounted algorithms

were employed for elevator scheduling, preventive maintenance problems are usually

semi-Markov decision problems (SMDPs) with an undiscounted objective function, a

SMDP with a discount factor was employed for a cell phone network-management

problem, and used in other domains (Gosavi, 2009).

The agent is the learner of the problem and everything that it can control directly,

it's him that is going to choose its actions in order to complete the objective given,

while the environment is everything that the agent can't control directly, although it

is going to be in�uenced by the agent actions. This changes in the environment are

going to be observed by the agent and will be the cause of its learning process.

In RL, an agent is supposed to choose its actions in a way to maximize an external

reward that it gets from its interactions with the environment: a positive reward is

given when it ful�lls certain conditions de�ned by the programmer, and a lower reward

is obtained when that condition is not met or partially met. In an episodic setting,

where the task is restarted after each end of an episode, the objective is to maximize

the total reward per episode, which is what happens in this experiment. This reward

is tightly linked to the desired behavior for the agent and should be chosen carefully as

the agent, will solely learn based on the rewards it gets. For instance, when learning

to navigate from a position to other the agent should get higher value rewards as it

gets closer to the desired position.

15

The agent and the environment may be modeled, while in a state s ∈ S and perform

actions a ∈ A, which can be multi-dimensional and be either discrete or continuous.

A state s has the important information of the situation to predict future states, in a

chess game a state could be the places of the pieces on the board. An action a is used

to change the state that the agent is in, for example moving the king piece to one of it

adjacent spaces in the example above. Following an action a there will be a new state

s'.

Each time an action is taken, the agent will receive a reward R, a scalar value based

on the state and new state. In the chess game: the agent receives 1 if the agent wins

the game, −1 if it loses and 0 for all the other states, for example.

The agent always tries to maximize the cumulative reward in the long run. If we

give the same importance to the reward expected throughout time, the function that

the agent tries to maximize, at the time step t (Sutton, Barto, et al., 1998), is given

by:

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT , (1)

where T is a �nal time step. This function is used when there is a notion of �nal

step, when the interactions between the agent and the environment can be separated

into subsequences, called episodes.

When it isn't possible to break the task into episodes, like on-going task, where the

�nal step is T =∞, this could easily turn the function that we are trying to maximize

to be in�nite. This introduces the concept of discounting, de�ned by the γ parameter,

0 ≤ γ ≤ 1, called the discounted rate, which determines the present value of future

rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+
∞∑
k=0

γkRt+k+1, (2)

16

A policy is a mapping from states to probabilities of selecting each possible action,

where π(a|s) is the probability of taking action a ∈ A if the agent is following the

policy π and is in the state s ∈ S.

The state-value function for policy π, vπ, gives us the value of a state s ∈ S under

a policy π. While the action-value function for policy π, qπ, gives the value of taking

action a in state s under that policy. Both this functions can be estimated from

experience.

We can express the relationship between the value state and the value of its next

states with the Bellman equation for vπ:

vπ =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)],∀s ∈ S, (3)

Most of the RL algorithms tend to estimate value functions (i.e. functions of states

or state-actions pairs) that estimate how good it is for the agent to be in a state or to

perform an action in a given state.

For MDPs, the state-value function (vπ) for policy π is de�ned by:

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt + k + 1|St = s],∀s ∈ S, (4)

where Eπ is the expected value of a random variable given that the agent follows

policy π.

And the action-value function (qπ) for policy π is de�ned by:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt + k + 1|St = s, At = a] (5)

Knowing the perfect model of the environment, an algorithm that can be used to

compute optimal policies is part of a collection de�ned by the term: dynamic program-

ming (DP).

17

The dynamic programming algorithms break the problem into a series of overlap-

ping sub-problems, and by combining solutions to those smaller sub-problems, it can

�nd the solution to bigger sub-problems.

Taking into consideration the property of value functions in dynamic programming,

that satisfy recursive relationships similar to (2):

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)],∀s ∈ S, (6)

There are various methods to solve this problem but the one being studied in this

work is the Q-learning algorithm.

In Reinforcement Learning, the agent tries to maximize its return in an unknown

environment by performing actions and getting rewards, trying to understand how

future rewards are a�ected by action it takes.

Markov Decision Process (MDP), or stochastic dynamic programs, are models for

sequential decision making when outcomes are uncertain (Puterman, 2014). MDP is a

good way to model this task:

• The agent has a �nite set S of states that it can perceive and a �nite set A of

actions that it can perform;

• The agent perceives the current state and chooses an action to execute;

• The environment responds with a return (good or bad) and a new state;

• The agent may not have access to what will happen when it chooses an action in

that state, but the only important information to decide is the action choice in

the current state.

If the probability distribution of future states is only dependable of the present

state, and not the on the ones that lead up to that state, it is said that the process has

the Markov property.

18

There are a lot of ways to implement the learning focus in this work we will only

focus on the Q-learning algorithm, a Reinforcement Learning algorithm that the agent

learns to assign values to state-action pairs.

3.1 Q-Learning

Q-Learning is a Reinforcement Learning algorithm that estimates, from its interac-

tion with the environment, the utility (calculate the maximum expected future reward)

of performing a given action in a particular state, given by Q(S, A) [6]. This policy can

be learned from this interaction, without the need to have a model for this environment,

using the update rule.

Q(S,A) = Q(S,A) + α[R + γmax
a
Q(S ′, a)−Q(S,A)] , (7)

where Q denotes the expected accumulated future reward obtained if action A is

performed in state S. S' is the observed next state after executing action A and R the

corresponding reward. 0< α ≤ 1 is a step-size parameter and 0< γ ≤ 1 denotes the

discount-rate factor: the lower this value the lesser the importance given to distant

future rewards, i.e, the more myopic the agent is regarding future rewards.

The learned action-value function, Q, directly approximates q∗, the optimal action-

value function, independent of the policy being followed, which leads to early conver-

gence proofs. This was the criteria of selection of the RL algorithm, due to the limited

time provided for this project.

Although the Q-learning algorithm is a tabular method working with discrete va-

lues of states and actions, there are other methods that work with continuous states,

like function approximation with tabular methods, and methods that work with both

continuous states and actions, such as: policy, improvement, PI2, PoWer, Reinforce,

that will not be studied here.

19

20

4 De�nition and problem analysis

This section serves as an introduction to the practical work done in this project,

de�ning the main objective and problem. While it also brie�y explains explain the

tools utilized during the process.

4.1 Objective

Has mention in section 2.2, controlling the movement of biomimetic vehicles is not

an easy task, due to the complex kinematics and dynamics of the nature mechanisms

that are being mimicked. So, instead of mapping every single state into an action,

what if the robot learned by itself to do so?

The objective of this work is to evaluate the performance of Reinforcement Learning

methods in a BUV, built by the national consortium, in order to make it possible for

the robot to follow a trajectory, de�ned by a various points, swimming in sequence,

from one point to the next.

4.2 Problem de�nition

In this work the objective is to make a �sh-like vehicle learn from itself through a

RL algorithm. The vehicle is composed by two lateral �ns and a simple �sh-like tail

sectioned in two parts.

In order to solve the problem above, the Q-learning algorithm will be used, and to

do so is necessary to de�ne how we are going to approach the problem.

4.2.1 State S

First, we need to determine the most relevant information at every moment, that

follows a Markov property, this information is called the state of the vehicle. State

being a possible situation that the robot can �nd itself into, from a group of possible

situations, this group is de�ned by be user.

21

It is important that this information is as simple as possible, but at the same time,

tries to summarize every past event that has future consequences for the task given,

for example, in a tic-tac-toe game it is only necessary to know how the board is �lled

(which spaces are �lled in with "X"or "O"or if they are empty) and which player's turn

is it, the order in which the board was �lled is not relevant for future plays.

There is another problem to take into consideration: the curse of dimensionality.

In machine learning, when trying to learn how to map states into actions in a high-

dimensional space, although it leads to a re�ned result, a vast amount of time is needed

to train that data, and grows in an exponential way.

The factors that are going to describe the state to this problem will be: the distance

to the goal and the angle in relation to the goal.

4.2.2 Action A

De�ning the actions is the second step. An action is how the vehicle is going to

change from one state to another, and it su�ers from the same curse of dimesionality

as the states.

The actions will be de�ned by the degrees of freedom that describe the movement

for each �n and tail section. These parameters are: the frequency, the mean value of

oscillation and the amplitude of oscillation, which are the same parameters that are

used to represent a waveform.

4.2.3 Reward R

At last, the robot needs to know if it is getting closer to ful�ll the task given, it is

possible to know that by de�ning the reward function.

Measuring the euclidean distance to the goal seems to be the best reward function.

It would be also important to take into consideration the roll angle, to try and maintain

the vehicle in a straight up position as much as possible.

22

4.3 Simulator

Has mentioned, the derivation of the kinematics and dynamics for BUVs is not an

easy task. A study for this type of equations was made by Polish Commander Piotr,

due to the SABUVIS project, for a �sh-like vehicle with two lateral �ns and a tail with

only one degree of freedom (not sectioned)(Szymak, 2016).

Mv̇ +D(v)v + g(η) = τ , (8)

• v - vector of linear and angular velocities in the movable system;

• η - vector of vehicle position coordinates and its Euler angles in the immovable

system;

• M - matrix of inertia (the sum of the matrices of the rigid body and the accom-

panying masses);

• D(v) - hydrodynamic damping matrix;

• g(η) - vector of restoring forces and moments of forces of gravity and buoyancy;

• τ - vector of control signals (the sum of vector of forces and moments of force

generated by propulsion system τp and by environmental disturbances τd)

In this simulator the �sh-like vehicle is compared to a point particle in a space where

the gravity and buoyancy forces are applied to the vehicle, and it will determine the

position and velocity of the vehicle when exterior forces, of the tail and �ns behavior,

are applied to it.

Although the real vehicle has two sections, the main objective of this work is to

study the viability of using a RL algorithm to solve this problem. It will be as, if the

second section of the tail would follow the movement of the �rst section, by not having

a frequency and the mean value of oscillation being 0.

Commander Piotr transferred those dynamics and kinematics to a software platform

MATLAB, where it receives the following inputs:

23

• F - the frequency of oscillation for the tail �n [rpm];

• K - medium oscillation value of the tail;

• F1 - the frequency of oscillation for the left �n [rpm];

• K1 - medium oscillation value of the left �n;

• F2 - the frequency of oscillation for the right �n [rpm];

• K2 - medium oscillation value of the right �n;

• T - simulation time;

• n - the number of iterations.

And were the output was a state vector, with the following variables:

• x - position in the x axis;

• y - position in the y axis;

• z - position in the z axis;

• u - velocity in the x axis;

• v - velocity in the y axis;

• w - velocity in the z axis;

• psi - yaw angle;

• theta - pitch angle;

• phi - roll angle;

In the simulation, due to the �sh-like robot being compared to a point particle,

it was considered that no trimming was done in terms of pitch and roll angle. This

parameters will only by in�uenced by the behavior of the tails and �ns.

24

Fig. 9: Simulation run with default input values

By running the simulator for the �rst time, with the default input parameters (F

= 1000, K = 0, F1 = 1000, K1 = 0, F2 = 1000 and K2 = 0), we can observe that,

with this parameters, the robot navigates in a straight line raising its altitude (in the

z axis) due to its buoyancy. 9.

4.4 LSTS toolchain

With the code up and running and tested in MATLAB, it is necessary to translate

it to the language that will run on the software that runs on the vehicle.

LSTS created the software toolchain Neptus-IMC-DUNE that will be implemented

in the project SABUVIS. During the realization of this thesis, it was given one week

with LSTS to learn their toolchain, and it was dived in three main parts: DUNE, IMC

and Neptus (Pinto et al., 2013).

DUNE is the on-board software running on the vehicle, it has a C++ programming

environment and it is responsible for navigation, code for control and access to sensors

and actuators. It is CPU architecture and operating system independent. Due to its

versatility, it also runs in Manta communication gateways. It also has the advantage

of running in small memories (16 megabytes).

Inter-Module Communication (IMC) protocol is a message oriented protocol to

build interconnect systems of vehicles, sensors and human operators that pursue com-

25

Fig. 10: LSTS toolchain, Neptus-IMC-Neptus

mon goals. It provides shared set of messages, abstracting from hardware and com-

munication heterogeneity, that can be serialized and transferred over di�erent means.

It allows di�erent tasks, from sensor drivers to guidance controllers, that run indepen-

dently from each other on separate threads or processes, to exchange data using the

message bus mechanism.

Neptus is a command, control, communications and intelligence framework for ope-

rations with vehicles, systems and human operators. It provides a coherent visual

interface to command all the classes of autonomous vehicles and sensors.

Di�erent types of geographical data can be used while planning, including S57

charts, tiled raster images from various sources and user-de�ned features. Plans can

be simulated and validated before execution according to vehicle capabilities (battery

endurance, maneuver support, sensors, etc). It is also able to visualize real-time data

from multiple vehicles and after the mission it is possible to compile its results or from

individual plan execution for review and analysis, for future adjustments.

26

Fig. 11: Neptus human operator interface

27

28

5 Implementation

In this chapter, will try and consist on a critical analysis of the results obtained

by the simulator. This is not a trivial problem, because there are to many open

parameters that will in�uence the convergence of the algorithm, like the actualization

time, simulation time per episode, step-sized parameter, discounted factor and the

probability of exploration (ε-greedy).

The line of thought of this work was to begin using a very similar structure, of

inputs and out puts, of the Commander Piotr work, and as it begins to show some

good results, start changing the structure to make it more user friendly and limiting

some variables in order to try and simulate the most real environment possible.

The performance measure that is going to be utilized to evaluate this results is

the accumulative reward, which is a sum of all the rewards obtained in each iteration

throughout each episode.

5.1 First approach

The tabular nature of the vanilla Q-Learning algorithm requires a discretized set of

actions and states, there are modi�ed version of this algorithm that accept continuous

states and actions. Taking advantage of the inputs de�ned by Commander Piotr in

his simulator (where the maximum frequency for the tail and �ns was 3000 rpm and

minimum 0 rpm and by giving an arbitrary numbers to the deviation, because it was

not de�ned in Commander Piotr work the deviation interval), with respect to actions

we de�ne A as the variables whose columns contain the discretized action values for

each component of the action vector

A =

3000 500 3000 500 3000 500

2250 250 2250 250 2250 250

1500 0 1500 0 1500 0

750 −250 750 −250 750 −250

0 −500 0 −500 0 −500

29

where each column represents F, K, F1, K1, F2 and K2 respectively. This way, we

have a set of 56 di�erent actions from where to choose at each iteration.

We consider the state to be the position in each axis, in meters, and the vehicle

angle in the xy plane (in radians). The state variables S, that contain that discrete

values, is then de�ned as

S =

1 1 1 0.6

2 2 2 1.2
...

...
...

...

10 10 10 6

 ,

where each column contains the possible values for x, y, z, in steps of 1, and the

yaw angle, in steps of 0.6, respectively. This makes 104 distinct states.

The objective of this simulation is to reach a goal point and stay there. To ful�ll

it, the reward function is de�ned as

R = −
√
x2 + y2 + z2 (9)

so that the reward will be higher the closer it gets to the goal.

The reward had to be made negative due to Q, that is initialized with zeros. By

making it negative, it is guaranteed that each action is selected at least one time for

each state, in the in�nite number of episodes.

The simulation is divided by episodes. Each episode starts the vehicle in the same

position with a, approximately, 4 meter distance to goal and with the vehicle pointed

at it, each episode it has 200 iterations, each one representing 0.1 seconds, and it

end when 20 seconds have passed, starting a new episode. This time was based when

running the simulator given by Commander Piotr results, we took into consideration

the time it took to travel a set distance and added a more time so that is possible for

the algorithm to learn from its mistakes.

30

Fig. 12: First 10 episodes of the program

The graphics above show one of the trajectories of the vehicle, in a 3D dimension

and 2D x0y axis, its altitude during the episode and its accumulative reward in the

past episodes. The red star being the starting position and the green star the goal.

It is noted that the accumulative reward has already started to converge, which

means that is starting to reach a satisfactory solution, but it is taking a long time to

do it because of the dimension of the state and action variables and also some MATLAB

functions (e.g. interp1) that took 0.5 seconds per episode to run. This algorithm run

for 5 days.

This �rst approach was made by trying to keep it simple. This way, we ended up

using the inputs and outputs already de�ned in the simulator provided by Commander

Piotr and working our way based on that. It was a test to see if this type of algorithms

was capable of controlling BUVs.

As shown in the Figure 12, in the top down view, the "�sh"is swimming away from

the goal, and in the altitude graphic its proven that the robot doesn't know how to

try and maintain its altitude or try to submerge when passed its desired z value, it is

just �oating away at the moment. But in the last graphic of the �gure 3 (accumulative

reward), the robot is still doing very random movements trying every possible action, at

31

Fig. 13: 80000th episode

least once, for every state. The algorithm hasn't started "learning", because it doesn't

have enough data to know which are the best actions, or the least worse actions, to

take for a state.

In Figure 13, the "�sh"is already trying to reach the goal as fast as possible in is top

down view, however due to its momentum, it ends up passing it, realizing at the end

of the episode that it isn't receiving the best reward that it could get at the moment,

and if it keeps getting way of the goal it will only get worse, which can be proven by

the almost 90 degree left turn at the end of the trajectory, that means that the robot

is trying to return to goal. We can observe some good learning progresses as well in

the altitude graphic, because it is already maintaining its altitude near the goal's.

The proof of success of this work is shown in the accumulative reward graphic, it

is very evident that it is converging and reaching very satisfactory solutions.

With this results it is proven that is possible to use this type of algorithm to

the control of the BUVs, but it is done in a very simple method. In the second

implementation was used a di�erent notation for the action variables that although is

a more complex one to implement, it is more intuitive to Humans to understand: a

sine wave.

32

5.2 Change of variables

De�ning the the states by a 3D axis and the vehicle yaw compared to the goal

doesn't take advantage of the space symmetry, for example, in a 2D axis if the goal

was in the position x = 5 and y = 5, and the vehicle was in the state x = 3 and y = 4,

by the previous state variables (and that the vehicle was always pointed at the goal) it

would be a di�erent state than x = 6 and y = 2, while in distance to the goal it would

be same state, due to its symmetry.

To take advantage of the symmetry factor, lets de�ne the new state variables as the

discrete distance to the goal in 0 to 10 meters, and by the discrete relative yaw and

pitch angles relative to the goal position.

S =

−90 −90 0

−60 −60 1

−30 −30 2

−10 −10 3

−5 −5 4

0 0 5

5 5 6

10 10 7

30 30 8

60 60 9

90 90 10

,

This way we were able to reduce to size of the state variables to 113 in comparison

to the last de�nition of state variables.

Action variables de�ned in frequency and deviation are not intuitive for the human

being to understand. So for an easy understanding of the output signal to the control-

lers, it was decided to transform frequency and deviation into a a waveform signal, i.e.

amplitude, frequency and o�set.

33

To apply this concept it was necessary to change the internal simulation code by re-

moving MATLAB functions that were generating amplitude values based on frequency

and deviation.

Being A de�ned by the following table:

750 1500 3000 Frequency

0 10 -10 30 -30 Deviation

0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 0 2.5 Amplitude

Table 1: New action variables

In this table for each represented frequency we are able to select one deviation value

that can assume two or three values of amplitude. We have now 39 di�erent actions

for each �n and tail, having a total of 393 sets of actions possible.

It was not necessary to utilize all the previous action variables options, for example,

by having the option to select an amplitude of 0 it is redundant to choose a frequency

of 0.

By applying this change we actually increase the number of action sets relative to

the �rst de�nition of A, but since the number of states were drastically decreased, the

total combination of the new states and actions variables (113× 393) is still lower than

the �rst implementation (104 × 56).

With a lower number of the state and action pair, the speed of convergence will

increase. And by changing the simulation code, removing the interp1 functions, that

were one of the causes for long time necessary for the program to run, it will also

contribute to the increase of the speed of convergence.

Where in the left and right �n oscillation, the left �n is represented by the green

line and the right �n by the red one.

Although the new changes of variables are able to reach a satisfactory solution faster

than the �rst approach, there is a problem with using a sine wave as an action input.

34

Fig. 14: Test with the new state and action variables

Between to di�erent actions there might be a continuity problem, because the position

where the tail or �ns were left is not necessarily the point were they are meant to start

in the next action, and can lead to situations illustrated in the �gure below.

Fig. 15: Continuity problem

To try and solve this kind of problem we are to �nd a transitory state that can

link the end position of one action to the starting position of the other. The solution

that was brought to light, was using a sine wave with a �xed frequency (the maximum

frequency value presented by Commander Piotr in his simulation, 3000 mHz), fast

enough so that this state doesn't take too long, no o�-set and an amplitude and capable

of reaching of every possible position (an amplitude of 35, for example) that the �ns

and tails can take. Resulting the sine wave:

35

y = 35sin(2π3) (10)

By knowing the last point of the last action, it is possible to �nd the phase of the

transitory sine wave that has the same value. After that the transitory sine wave will

proceed normally until it value is the same as the starting value of the second action

to take. An example is shown in the �gure below:

Fig. 16: Solution for the continuity problem

The change of variable was a success, it proved that after all the changes the

algorithm still converges, making inputs more user friendly and it is easy to identify

the behavior of the tail and �ns. Although it is starting to converge at the same time

as the previous variables, it is giving a lower reward to worst action-sate pairs, while

taking advantage of the symmetry of the space, turning some positions relative to goal

ambiguous.

5.3 Decision Parameters

In this subsection, the results of some tests will be shown in order to try and decide

a base value for the open parameters described previously: actualization time, simula-

tion time per episode, step-sized parameter, discounted factor and the probability of

exploration.

The actualization time will have a preset value of 0.1 seconds. Although some test

were realized it was not possible to obtain representative images, due to the total time

required for the accumulative reward to start converging.

36

5.3.1 Step-sized parameter

The step-sized parameter or learning rate (α) is a value between 0< α ≤ 1, and as

the name describes is the factor that determines the rate at which the functions learns.

In this tests we gave the values α = 0.5 and α = 0.9.

The results are as follows:

Fig. 17: Test with Alpha = 0.5

We can observe that in the beginning of each test the accumulative reward as a

similar behavior, because it is the phase that the algorithm is testing every possible

action at least once in each state to initialize the utility number of each action-state

pair for future comparison.

We can see that α = 0.9 is converging faster than α = 0.5. The higher the step-sized

parameter the higher negative value will be given to the worst actions, therefore it will

take a longer time for the algorithm to visit them again.

This way at the end of the tests, the α = 0.9 is already taking one of the best set

of actions to achieve its goal while α = 0.5 is still visiting some worst actions.

37

Fig. 18: Test with Alpha = 0.9

With this we have chosen the step-sized parameter α = 0.8, although 0.9 is supposed

to give better accumulative reward lets not forget that in the real environment the

utility value of the action-state pairs have little �uctuations, so we must not take the

�rst worst action has guaranteed to be one bad action forever.

5.3.2 Discounted factor parameter

The discount factor (γ) is a parameter, with a value between 0< γ ≤ 1, which

represents how much future events lose their value according to how far away in time

they are.

A discount factor of 0 would mean that only the immediate rewards were taken into

consideration. The higher your discount factor, the farther the rewards will propagate

through time.

In this implementation we are only taking into consideration one action into the

future and, for the tests, we gave the values γ = 0.3 and γ = 0.7.

The program run for a day and the results are as follows:

As said in the previous evaluation the accumulative reward starts by being similar,

but at around 300000 episodes we can see that γ = 0.7, the one gives a higher factor

38

Fig. 19: Test with Gamma = 0.3

Fig. 20: Test with Gamma = 0.7

39

to future actions than γ = 0.3, is already starting to converge to a reasonable solution,

but it is still a bit way from a satisfactory solution, while the one that gives an higher

importance to the actions taken in the moment is still searching and updating in the

low rewards (worst actions) of the action-state pairs.

Although γ = 0.7 presented better results, the water is not a stable environment

so the future action may not have the utility that was predicted. In this case, we will

give the same importance to the actions taken in moment and predicted actions in the

future, be using the value γ = 0.5.

5.3.3 ε-greedy implementation

Is it the best to the agent always choose the action with the maximum return in a

certain state? Is one of the questions that were made in Reinforcement Learning, and

the answer is no (Sutton and Barto, 1998, Bertsekas and Tsitsiklis, 1996).

The studies done in this area prove that the algorithm takes a little bit longer

to start converging but converges faster to the �nal return value and it has a better

accumulative reward in the end, if it has a low probability of choosing a random action

in each time step.

This introduces two new concepts: exploitation, when the agent chooses the ac-

tion with the highest return value, and exploitation, when the agent picks the action

randomly.

One of the great challenges of the Reinforcement Learning is to �nd a balance

between exploration and exploitation.

In this ε-greedy implementation, where ε is the probability of choosing a random

action, we will try the same algorithm with two di�erent values of ε, 0.05 and 0.15.

The program run for three days and the results are the following:

As we it is possible to observe, no convergence of the accumulative reward started

to occur in both situations. It was expected for the accumulative reward to take longer

40

Fig. 21: Test with Epsilon = 0.05

Fig. 22: Test with Epsilon = 0.15

41

to start converging at the beginning, but not reaching roughly 700000 episodes without

doing so.

With this results, it was decided for the Q-learning algorithm to be completely

greedy, leaving behind the exploration.

5.4 Final implementation

In this �nal implementation, we took into consideration the results in the previous

step-sized, discounted factor and ε-greedy tests. Reaching the �nal values of α = 0.8,

γ = 0.5 and ε = 0.0.

It was also taken into consideration that the vehicle will have antennas in the upper

part of its model, so it is necessary for it to maintain a stable roll value. With this an

extra roll column, in degrees, was added to the state variables and a penalty in terms

of roll (θ) was added to the reward function.

Being the new S and R de�ned by:

S =

−90 −90 −90 0

−60 −60 −60 1

−30 −30 −30 2

−10 −10 −10 3

−5 −5 −5 4

0 0 0 5

5 5 5 6

10 10 10 7

30 30 30 8

60 60 60 9

90 90 90 10

,

R = −|θ|/11 ∗
√

∆x2 + ∆y2 + ∆z2
2

(11)

42

For the �nal implementation, instead of having a �xed starting position, the starting

position was generated randomly within �ve meters of the goal.

With this we made the program run for a whole week and the results are as followed:

Fig. 23: Final results

For the �nal evaluation we can con�rm by the trajectories (3D, top-down view and

altitude) that the algorithm is reaching a very good solution of locomotion, heading

directly to the goal but not so fast that it passes it, and its maintaining its altitude

in the same one as the goal, providing with the best rewards, although it isn't very

perceptible in the accumulative reward graphic, however we can observe that it started

to converge in the end.

The only variable that is not possible to read here is the roll, which has a minor

importance to reach the objective in the simulation, but it will be a great help in the

real environment to keep the antennas straight up and available for communications.

With this �nal evaluation the vehicle ful�lled its objective of reaching the goal in

20 seconds, �guring out how to move its tail and �ns to move in the direction of the

goal, but in a cautious way in order to remain near it the longest time possible for a

better reward, which is a really good solution.

43

44

6 Future work

Portugal joined the SABUVIS project one year after it started, due to some political

problems. Therefore, the construction of the real model was also delayed and it isn't

completed yet, which prevented from experimenting with the algorithm in the real

vehicle and study its behavior.

One of the objectives of this work was to see how would the algorithm adapt from

a simulation environment to a real one and trying to adapt to a tail with two degrees

of liberty, which was not possible. Maybe, in a near future it will be.

And it is the last �nal step missing in the SABUVIS.

As we all know, the space is described by continuous variables. The discretization

of the action and state variables is the biggest problem in the Q-learning algorithm,

that can lead to some approximation errors. To surpass this downside, there will be

a future study in di�erent types of Reinforcement Learning algorithm based on policy

improvement or function approximation, such as PI2 or PoWER.

Another important aspect of this work is the time it takes to learn. By the expe-

riences described in previous chapters, the algorithm took a considerable amount of

time to start to converge to a satisfactory solution, from one to seven days depending

on the number of states and actions.

In this work, the existence of obstacles was not taken into consideration. So if the

vehicle �nds some kind of wall between his starting position and his goal, if it was

already trained in simulation without any kind of obstacle, it will take a long time to

overcome it. To try and solve this problem, it may be necessary to train the algorithm

to detect and surpass this kind of trials as well or , by simply detecting an obstacle

generate a new goal in order to surpass it.

It is important to take into consideration that the vehicle will have to surface every

once in a while, to communicate via Wi-Fi or satellite, to correct its position by GPS,

after a long period of inertial navigation, or receive new orders to abort his mission or

change the destination goal.

45

The algorithm didn't learn this type of functions that are established in the software

of other UUV's made by LSTS.

46

Conclusion

With this work it was proved that is possible to control Biomimetic Underwater

Vehicles with Reinforcement Learning algorithms.

In one hand, it has its limitations, like the long time it takes to learn in the simu-

lation phase and in the real phase if an obstacle appears it will take a long time to

overcome it, besides this situation will have an e�ect in its learning experience.

One the other hand, it is a much easier way to control biomimetic vehicles than by

doing it remotely or by programming handmade controllers, due to the robot learning

from itself, therefore there is no need to programming the controllers that are not

intuitive.

The SABUVIS project is at its end due date and there is still some vehicle models

to �nish and to test the algorithm in the real environment, to see if there are any

adjustments to be made.

This project had a lot of problems because the algorithm tests were too time consu-

ming. For each parameter test the algorithm took one or more days to run and for the

�nal implementation run it took a whole week, due to MATLAB heavy processing and

the dimension of the state and action variables, all of tests had to be run separately.

And with each time a bug was detected in the code, all of the tests had to be run all

over again, leaving the state of this project idle during that time.

This work was an introduction to the world of robotics, an area that is gaining

more and more in�uence in the daily life and had it is a subject that I want to study

in the future.

It opened my vision to the scienti�c world, by publishing an article in the Institute

of Physics (IOP) magazine and presenting it in the opening ceremony at the Seaconf

realized in the Romanian Naval Academy.

47

48

References

Barron, T. D. (1998, May 5). Apparatus for interconnecting an underwater vehicle and

a free �oating communications pod. Google Patents. (US Patent 5,748,102)

Brown, C., & Clark, R. P. (2010). Using a novel vehicle conceptual design utility to

evaluate a long-range, large payload uuv. In Oceans 2010 (pp. 1�10).

Christ, R. D., & Wernli Sr, R. L. (2013). The rov manual: a user guide for remotely

operated vehicles. Butterworth-Heinemann.

Evans, J., Smith, J., Martin, P., & Wong, Y. (1999). Beach and near-shore crawling

uuv for oceanographic measurements. In Oceans'99 mts/ieee. riding the crest

into the 21st century (Vol. 3, pp. 1300�1306).

Gonzalez-Gomez, J., Aguayo, E., & Boemo, E. (2005). Locomotion of a modular worm-

like robot using a fpga-based embedded microblaze soft-processor. In Climbing

and walking robots (pp. 869�878). Springer.

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances.

INFORMS Journal on Computing , 21 (2), 178�192.

Kim, H.-J., Song, S.-H., & Ahn, S.-H. (2012). A turtle-like swimming robot using

a smart soft composite (ssc) structure. Smart Materials and Structures , 22 (1),

014007.

Lala, J. H., & Harper, R. E. (1994). Architectural principles for safety-critical real-time

applications. Proceedings of the IEEE , 82 (1), 25�40.

Lepora, N. F., Mura, A., Krapp, H. G., Verschure, P. F., & Prescott, T. J. (2013). Bio-

mimetic and biohybrid systems: Second international conference, living machines

2013, london, uk, july 29�august 2, 2013, proceedings (Vol. 8064). Springer.

Lepora, N. F., Verschure, P., & Prescott, T. J. (2013). The state of the art in biomi-

metics. Bioinspiration & biomimetics , 8 (1), 013001.

Miller, D. P. (1996). Design of a small, cheap uuv for under-ship inspection and salvage.

In Autonomous underwater vehicle technology, 1996. auv'96., proceedings of the

1996 symposium on (pp. 18�20).

49

Muljowidodo, K., Adi, N., Budiyono, A., Prayogo, N., et al. (2009). Design of shrimp

rov for surveillance and mine sweeper.

Nelson, G. M., & Quinn, R. D. (1999). Posture control of a cockroach-like robot. IEEE

Control Systems , 19 (2), 9�14.

Nicolai, L. M. (2002, June 25). Anti-submarine warfare uav and method of use thereof.

Google Patents. (US Patent 6,409,122)

Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). Auv navigation and localization: A

review. IEEE Journal of Oceanic Engineering , 39 (1), 131�149.

Pinto, J., Dias, P. S., Martins, R., Fortuna, J., Marques, E., & Sousa, J. (2013). The

lsts toolchain for networked vehicle systems. In Oceans-bergen, 2013 mts/ieee

(pp. 1�9).

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

Shchukin, D. G., Sukhorukov, G. B., Price, R. R., & Lvov, Y. M. (2005). Halloysite

nanotubes as biomimetic nanoreactors. Small , 1 (5), 510�513.

Shugen. (2001). Analysis of creeping locomotion of a snake-like robot. Advanced

Robotics , 15 (2), 205�224.

Siciliano, B., & Khatib, O. (2016). Springer handbook of robotics. Springer.

Silva, H. V. d. (2017). Desenvolvimento de um sistema de lançamento e recolha dos

auvs seacon através dos submarinos da classe tridente (Unpublished doctoral

dissertation).

Siochi, E. J., Anders Jr, J. B., Cox, D. E., Jegley, D. C., Fox, R. L., & Katzberg, S. J.

(2002). Biomimetics for nasa langley research center: year 2000 report of �ndings

from a six-month survey.

Stokey, R., Austin, T., Allen, B., Forrester, N., Gi�ord, E., Goldsborough, R., . . .

von Alt, C. (2001). Very shallow water mine countermeasures using the remus

auv: a practical approach yielding accurate results. In Oceans, 2001. mts/ieee

conference and exhibition (Vol. 1, pp. 149�156).

Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An introduction.

MIT press.

Szymak, P. (2016). Mathematical model of underwater vehicle with undulating pro-

50

pulsion. In Mathematics and computers in sciences and in industry (mcsi), 2016

third international conference on (pp. 269�274).

Szymak, P., Morawski, M., & Malec, M. (2012). Conception of research on bionic un-

derwater vehicle with undulating propulsion. In Solid state phenomena (Vol. 180,

pp. 160�167).

Thompson, R. B. (2005). Fluorescence sensors and biosensors. CRC Press.

Yuh, J. (2000). Design and control of autonomous underwater robots: A survey.

Autonomous Robots , 8 (1), 7�24.

Zhang, S., Marini, D. M., Hwang, W., & Santoso, S. (2002). Design of nanostructu-

red biological materials through self-assembly of peptides and proteins. Current

opinion in chemical biology , 6 (6), 865�871.

51

52

Annexes

Annexe A - Submitted Article for the IOP magazine

Annexe B - Q-learning MATLAB code

53

54

Reinforcement Learning: The Application to Autonomous

Biomimetic Underwater Vehicles Control

J Magalhães1, B Damas1 and V Lobo1
1 CINAV, Portuguese Navy Research Center, Almada, Portugal

E-mail: candeias.magalhaes@marinha.pt

Abstract. The Autonomous Biomimetic Vehicles have been increasing in popularity in the past few

years. Controlling such type of vehicles is not trivial: due to its complex dynamics and kinematics, it

is complex to analytically derive controllers that can efficiently perform a given task, such as reaching

a given position target in a minimum time. In this paper we will evaluate the results of the

implementation of a reinforcement algorithm in autonomous biomimetic underwater vehicles,

providing a new way to control this type of vehicles in which the algorithm is in constant learning.

1. Introduction and motivation

Biomimetics is a field where various principles are applied to mimic biological processes, such as
the humanoids robotics field where human-like robots are developed [1]. In the context of
underwater vehicles the kinematics and dynamics of the vehicles try to emulate the motion of
different sea creatures.

The study of autonomous Biomimetic Underwater Vehicles (BUV) have been increasing in the
past few years in a military context due to its furtive locomotion capabilities: they have the ability
to camouflage within the environment and a silent undulating propulsion that generates a very
different acoustic signature when compared to conventional Unmanned Underwater Vehicles
(UUV) [2].

Figure 1. 3D model of fish-like vehicle

This work is part of the international project "Swarm of Biomimetic Underwater Vehicles for
Underwater Intelligence, Surveillance and Reconnaissance (ISR)" (SABUVIS), whose main
objective is to use BUVs in missions for stealth data collection and surveillance, where Portugal,
Poland and Germany and the countries part of the consortium. Where the Portugal collaborators
are Escola Naval, LSTS and OceanScan.

Under this project two different vehicles are being built, one mimicking a fish (Figure 1) and
the other replicating a seal. Both vehicles have the same basics characteristics, similar form, two

side fins and a tail, the major differences being their size and tail. The seal-like tail is composed by
two smaller tails that mirror the movement of each other, trying to mimic a breaststroke or “frog”
stroke style of swimming, while the fish-like tail is a simple tail sectioned in two parts to give more
fluidity.

Figure 2. Seal-like vehicle during tests

Under this project the generated acoustic noise developed by the BUVs, as well as their
autonomy capabilities, will be measured and compared to conventional UUVs.

These different mechanical structures that are inspired in biological systems present a much
more complex kinematic structure that makes the task of controlling the motion of the vehicle a
non trivial one. For a fish-like BUV [3], for example, it is not straightforward to develop controllers
that actuate the fins and the tail of the vehicle in order to make it follow a desired trajectory in an
efficient way [4][5].

Figure 3. Model of the seal-like tail, fish-like tail and fins models, respectively

The purpose of this work is to develop adaptive controllers for these kind of vehicles based on
Reinforcement Learning (RL) techniques. Reinforcement learning is an Artificial Intelligence
technique, also biologically inspired, that revolves around "trial and error” theory. In RL an agent
is supposed to choose its actions in a way to maximize an external reward that it gets from its
interaction with the environment: a positive reward is given when it fulfills certain conditions
defined by the programmer, and a lower reward is obtained when that condition is not met. This
reward is tightly linked to the desired behaviour for the agent and should be chosen carefully as
the agent, or robot, will solely learn based on the rewards it gets. For instance, when learning to
navigate from a position to other the agent should get higher value rewards as it gets closer to the
desired position.

To learn to perform a given task the agent has an internal policy that maps states to actions.
Given the history of visited states, associated performed actions and received rewards the agent
continuously adapts its policy in order to maximize its expected accumulated reward in the long
run, this way progressively starting to exploit the actions that get the higher positive rewards,
until it reaches the best way to perform the task.

There is no need to worry about programming every action to perform in every possible state
when using a RL scheme, as these actions are learned from trial and error; it is even possible to
the algorithm to adapt to unexpected situations, because the agent will teach itself in a continuous
process of adaptation. This is a major advantage of using RL schemes when compared to
traditional controllers, where a good knowledge of the process to control is typically needed.

2. Reinforcement learning in underwater biomimetic vehicles control

To implement a RL controller in the BUVs the work will be divided in two different stages. In the
first stage a simulator will be developed and the RL algorithms will be tested and applied in a
simulated environment. As the BUV will learn how to control its movements from scratch, the
learning phase will start in such a simulated environment to prevent actuator wear, collisions and
other damage to the physical robot that would inevitable result from the initial exploratory
random movements it would perform in this phase. Afterwards, when the simulated robot can
already control its movement in a satisfactory way, the learned model will be transferred to the
real vehicle, where it will undergo a second learning phase. Such adaptation is required to take
into account the differences between the simulated and the real environment.

2.1. BUV Q-learning simulation

Q-Learning is a Reinforcement Learning algorithm that estimates, from its interaction with the
environment, the utility of performing a given action in a particular state, given by Q(S, A) [6]. This
policy can be learned from this interaction, without the need to have a model for this environment,
using the update rule.

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)], (1)

where Q denotes the expected accumulated future reward obtained if action A is performed in
state S. S' is the observed next state after executing action A and R the corresponding reward. 0 <
𝛼 ≤ 1 is a step-size parameter and 0 < 𝛾 ≤ 1 denotes the discount-rate factor: the lower this
value the lesser the importance given to distant future rewards, i.e, the more myopic the agent is
regarding future rewards.

The vehicle in training is a fish-like composed by two lateral fins, one on each side, and one tail.
Each motor is actuated by a sinusoidal signal with variable frequency (F) [mHz] and deflection
(K), the average value in which the tail or fins cycle around, where F and K denote the tail variables,
F1 and K1 the left fin and F2 and K2 for right fin. Together these 6 controlled variables define the
action vector [7].

The tabular nature of the vanilla Q-Learning algorithm requires a discretized set of actions and
states. With respect to actions we define A as the variables whose columns contain the discretized
action values for each component of the action vector

A =

[

3000 500 3000
2250 250 2250
1500 0 1500

500 3000 500
250 2250 250
0 1500 0

750 −250 750
0 −500 0

−250 750 −250
−500 0 −500]

 ,

where each column represents F, K, F1, K1, F2 and K2 respectively and where we set F = F1 = F2,
in steps of 750, and K = K1 = K2, in steps of 250. This way, we have a set of 56 different actions
from where to choose at each iteration.

We consider the state to be the position in each axis, in meters, and the vehicle angle in the xy
plane (in radians). The state variables S, that contain that discrete values, is then defined as

S =

[

1 1
2 2
⋮ ⋮

1 0.6
2 1.2
⋮ ⋮

9 9
10 10

9 5.4
10 6]

,

where each column contains the possible values for x, y, z, in steps of 1, and ψ, in steps of 0.6,
respectively. This makes 104 distinct states.

The objective of this simulation is to reach a goal point and stay there. To fulfill it, the reward
function is defined as

𝑅 = − √∆𝑥2 + ∆𝑦2 + ∆𝑧2,

so that the reward will be higher the closest it gets to the goal.

The reward had to be made negative due to Q, that is initialized with zeros, selecting the action
with the maximum value to the present and future state. By making it negative, it is guaranteed
that each action is selected at least one time for each state, in the infinite number of episodes.

The simulation is divided by episodes. Each episode starts the vehicle in a random position
with a 4 meter distance to goal and with the vehicle pointed at it, each episode it has 200 iterations,
each one representing 0.1 seconds, and it end when 20 seconds have passed, starting a new
episode.

Figure 4. Graphics of early results of the Q-learning algorithm

The graphics above show one of the trajectories of the vehicle, in a 3D dimension and 2D x0y
axis, its altitude during the episode and its accumulative reward in the past episodes. The red star
being the starting position and the green star the goal.

It is noted that the accumulative reward has already started to converge, which means that is
starting to reach a satisfactory solution, but it is taking a long time to do it.

2.2. LSTS

The Laboratório de Sistemas e Tecnologia Subaquática (LSTS) is an interdisciplinary research
laboratory part of Faculdade de Engenharia da Universidade do Porto (FEUP) that specializes on
the design, construction and operation of unmanned underwater, surface and air vehicles and on
the development of tools and technologies for the deployment of networked vehicle systems.

LSTS created the software toolchain Neptus-IMC-DUNE that will be present in the project
SABUVIS. DUNE is the system for vehicle on-board software, it has a C++ programming
environment and it is responsible for navigation, code for control and access to sensors and
actuators; IMC is the communication protocol; Neptus is a command, control, communications
and intelligence framework for operations with vehicles, systems and human operators.

Figure 5. LSTS toolchain, Neptus-IMC-DUNE

In the project SABUVIS, LSTS is responsible for the integration of software and sensors on the
vehicle.

3. Conclusions and future work

The convergence of the Q-learning algorithm shows us that we are headed in the right direction
with these results, we can already see that the simulation is trying to reach the goal as soon as
possible, also it is already starting to learn to turn back and try to return to the goal to obtain a
better reward. There are still some problems like needing an adjust in the state variables to
decrease the convergence time and the main problem being the discretization of the values. A
different approach may resort to function approximation or algorithms based on policy
improvement {e.g., 𝑃𝐼2 or POWER), in order to circumvent the discretization of the state and
action space. We also expect to implement the algorithm in the physical BUV, using the software
toolchain that runs on the vehicle developed by FEUP.

References
[1] BAR-COHEN, Yoseph, "Biomometics: Biological Inspired Technologies", California, Jet Propulsion Laboratory (JPL),

 California Institute of Technology, 2006
[2] LISTEWNIK, K., "Sound Silencing Problem of Underwater Vehicles", in Solid State Phenomena, Vol. 196, Trans Tech

 Publications, 2013, pp. 212-219
[3] LOW, K. H., “Modelling and parametric study of modular undulating fin rays for fish robots”, in Mechanism and

 Machine Theory, Vol. 44, 2009, pp. 615–632
[4] COLGATE, J. E. and LYNCH, K. M., "Mechanics and Control of Swimming: A Review", in IEEE Journal of Oceanic

 Engineering, Vol. 29, No. 3, 2004, pp. 660-673
[5] MALEC, M. et al., "Analysis of Parameters of Traveling Wave Impact on the Speed of Biomimetic Underwater

 Vehicle", in Solid State Phenomena, Vol. 210, Trans Tech Publications, 2014, pp. 273-279
[6] BARTO, Andrew G. and SUTTON, Richard S., Reinforcement Learning: An introduction, 1st edition, Cambridge, MIT,

 1998
[7] SZYMAK Piotr, "Mathematical model of underwater vehicle with undulating propulsion", Poland, Polish Naval

 Academy, Institute of Electrical Engineering and Automatics

Annexe B - Q-learning MATLAB code

1 f unc t i on tau = Fins (ogon_czest , ogon_kat ,OX_ampl, p_lewa_czest , p_lewa_kat ,

PLX_ampl , p_prawa_czest , p_prawa_kat ,PPX_ampl, i , dt ,Vx) ;

2

3 %measured r o t a t i on v e l o c i t y f o r t a i l f i n [Hz]

4 ocz_pom=[3000

5 1500

6 1200

7 900

8 600

9 300

10 0] ;

11 %measured average thrus t o f t a i l f i n [N]

12 oxsr_pom=[18

13 12 .8

14 6 .4

15 2 .4

16 1 .2

17 0 .4

18 0] ;

19 %measured amplitude o f t a i l f i n o s c i l l a t i o n [N]

20 oxampl_pom=[14.2

21 8 .2

22 6 .2

23 3 .2

24 1 .2

25 0 .6

26 0] ;

27

28 %measured r o t a t i on v e l o c i t y f o r s i d e f i n s [Hz]

29 pcz_pom=[3000

30 1500

31 1200

32 900

33 600

34 300

35 0] ;

61

36

37 %measured average thrus t o f s i d e f i n [N]

38 pxsr_pom=[8

39 6 .2

40 3 .2

41 1 .2

42 0 .5

43 0 .15

44 0] ;

45 %measured amplitude o f s i d e f i n s o s c i l l a t i o n [N]

46 pxampl_pom=[5.2

47 3 .2

48 2 .2

49 1 .2

50 0 .4

51 0 .2

52 0] ;

53

54 %constant s

55 przekladnia_ogon = 12 ; przekladnia_pletwa = 12 ;

56 ogoncz = ogon_czest /60/ przekladnia_ogon ;

57 prawacz = p_prawa_czest /60/ przekladnia_pletwa ;

58 l ewacz = p_lewa_czest /60/ przekladnia_pletwa ;

59 r1 = 0 . 1 ; r2 = 0 . 4 ; %d i s t an c e s from o r i g i n to . . . e t c

60 r3 = 0 . 3 ; r4 = 0 . 1 3 ;

61 xG=0;

62 %thrus t generated by s i d e and t a i l f i n s

63 OX_sr = in t e rp1 (ocz_pom , oxsr_pom , ogon_czest , ' l i n e a r ') ;

64 %OX_ampl = in t e rp1 (ocz_pom , oxampl_pom , ogon_czest , ' l i n e a r ') ;

65 OX = OX_sr + OX_ampl ∗ s ind (i /dt∗ogoncz) ;

66 PLX_sr = in t e rp1 (pcz_pom , pxsr_pom , p_lewa_czest , ' l i n e a r ') ;

67 %PLX_ampl = in t e rp1 (pcz_pom , pxampl_pom , p_lewa_czest , ' l i n e a r ') ;

68 PLX = PLX_sr + PLX_ampl ∗ s ind (i /dt∗ l ewacz) ;

69 PPX_sr = in t e rp1 (pcz_pom , pxsr_pom , p_prawa_czest , ' l i n e a r ') ;

70 %PPX_ampl = in t e rp1 (pcz_pom , pxampl_pom , p_prawa_czest , ' l i n e a r ') ;

71 PPX = PPX_sr + PPX_ampl ∗ s ind (i /dt∗prawacz) ;

72 %X, Y, N generated by t a i l f i n

62

73 ogonX = OX ∗ cosd (ogon_kat) ;

74 ogonY = OX ∗ s ind (ogon_kat) ;

75 promien1 = sq r t (((r1+(r2 ∗ cosd (ogon_kat))) ^2)+((s ind (ogon_kat) ∗ r2) ^2)) ;

76 beta = atand ((s ind (ogon_kat) ∗ r2) /(r1+(cosd (ogon_kat) ∗ r2))) ;

77 ogonN = promien1 ∗ ogonY ∗ cosd (beta) ∗ (−1) ;

78 %X, Z , N, M generated by s i d e f i n s

79 pletwaLX = PLX ∗ cosd (p_lewa_kat) ;

80 pletwaLZ = PLX ∗ s ind (p_lewa_kat) ;

81 pletwaLN = r4 ∗ pletwaLX ;

82 pletwaLM = r3 ∗ pletwaLZ ∗ (−1) ;

83 pletwaPX = PPX ∗ cosd (p_prawa_kat) ;

84 pletwaPZ = PPX ∗ s ind (p_prawa_kat) ;

85 pletwaPN = r4 ∗ pletwaPX ;

86 pletwaPM = r3 ∗ pletwaPZ ∗ (−1) ;

87 %s id e f i n as a rudder

88 xvx=0.014; xvxx=0.91;

89 Opor_pletwa = 0 ; D = 0 ;

90 beta = 90−(atand (r4 / r3)) ;

91 r = sq r t ((r3 ^2)+(r4 ^2)) ;

92 i f ((p_prawa_czest==0)&&(p_prawa_kat==90)) ,

93 D = xvx + (xvxx∗abs (Vx)) ;

94 Opor_pletwa = cosd (beta) ∗D∗ r ;

95 end %r i gh t s i d e f i n

96 i f ((p_lewa_czest==0)&&(p_lewa_kat==90)) ,

97 D = xvx + (xvxx∗abs (Vx)) ;

98 Opor_pletwa = cosd (beta) ∗D∗ r ∗(−1) ;

99 end %l e f t s i d e f i n

100

101 tau=[(ogonX+pletwaLX+pletwaPX−D) ,ogonY , (pletwaLZ+pletwaPZ) , 0 , (pletwaLM+

pletwaPM) , (ogonN−pletwaPN+pletwaLN−Opor_pletwa)] ' ; %

1 f unc t i on n i = In t e g r a t i on (nider , ni0 , dt)

2

3 ni = ni0 + dt∗ n ide r ;

1 f unc t i on n ide r = Dynamics (ni , tau , dt)

2

3 u = ni (1) ;

63

4 v = ni (2) ;

5 w = ni (3) ;

6 p = ni (4) ;

7 q = ni (5) ;

8 r = ni (6) ;

9 x = ni (7) ;

10 y = ni (8) ;

11 z = ni (9) ;

12 phi = ni (10) ;

13 theta =ni (11) ;

14 p s i =ni (12) ;

15 ve l =[u v w p q r] ' ;

16

17 m = 45 ; Ix = 0 . 7 3 ; Iy = 7 . 7 2 ; I z = 7 . 7 2 ;

18 Xup = 4 . 5 ; Yup = 59 ; Zup = 59 ; Kup = 0 ; Mup = 11 . 2 ; Nup = 11 . 2 ;

19 MRB = [

20 m 0 0 0 0

0

21 0 m 0 0 0

0

22 0 0 m 0 0

0

23 0 0 0 Ix 0

0

24 0 0 0 0

Iy 0

25 0 0 0 0 0

Iz] ;

26 MA = [

27 Xup 0 0 0 0

0

28 0 Yup 0 0 0

0

29 0 0 Zup 0 0

0

30 0 0 0 Kup 0

0

64

31 0 0 0 0

Mup 0

32 0 0 0 0 0

Nup] ;

33 M = MRB + MA;

34 invM = inv (M) ;

35

36 Xu = 0 . 0894 ; Xuu = 5 . 7 2 ; Yv = 1 . 9 ; Yvv = 18 . 5 8 ; Zw = 1 . 9 ; Zww = 18 . 5 8 ;

37 Kp = 0 ; Kpp = 0 ; Mq = 0 . 8 ; Mqq = 11 ; Nr = 0 . 7 ; Nrr = 10 ;

38 D11=Xu+(Xuu∗abs (u)) ;

39 D22=Yv+(Yvv∗abs (v)) ;

40 D33=Zw+(Zww∗abs (w)) ;

41 D44=Kp+(Kpp∗abs (p)) ;

42 D55=Mq+(Mqq∗abs (q)) ;

43 D66=Nr+(Nrr∗abs (r)) ;

44 D = [

45 D11 0 0

0 0 0

46 0 D22 0 0

0 0

47 0 0 D33

0 0 0

48 0 0 0 D44

0 0

49 0 0 0

0 D55 0

50 0 0 0 0

0 D66] ;

51

52 x0 = 0 ; y0 = 0 ; z0 = 0 ; P = 450 ; B = 460 ;

53 xB = 0 ; yB = 0 ; zB = 0 ; xG = 0 ; yG = 0 ; zG = 0 ;

54 G = [

55 (P−B) ∗ s i n (theta)

56 (P−B) ∗ cos (theta) ∗ s i n (phi)

57 −(P−B) ∗ cos (theta) ∗ cos (phi)

58 0

59 −(zG∗P+zB∗B) ∗ s i n (theta) ∗ cos (phi) + (xG∗P+xB∗B) ∗ cos (theta)

65

∗ cos (phi)

60 0] ;

61

62 n ide r = invM∗(tau+G−D∗ ve l) ;

1 f unc t i on ve l_g loba l = Transformation (ve l_loca l , n i)

2 u = ni (1) ;

3 v = ni (2) ;

4 w = ni (3) ;

5 p = ni (4) ;

6 q = ni (5) ;

7 r = ni (6) ;

8 phi = ni (10) ;

9 theta =ni (11) ;

10 p s i =ni (12) ;

11

12 c1=cos (phi) ; s1=s i n (phi) ;

13 c2=cos (theta) ; s2=s i n (theta) ; t2=tan (theta) ;

14 c3=cos (p s i) ; s3=s i n (p s i) ;

15

16 LG=[

17 c3∗ c2 c3∗ s2 ∗ s1−s3 ∗ c1 s3 ∗ s1+c3∗ c1∗ s2 0

0 0

18 s3 ∗ c2 c3∗ c1+s3 ∗ s1 ∗ s2 s2 ∗ s3 ∗c1−c3∗ s1 0

0 0

19 −s2 c2∗ s1 c2∗ c1

0 0 0

20 0 0 0

1 s1 ∗ t2

c1∗ t2

21 0 0 0

0 c1

−s1

22 0 0 0

0 s1 /c2

c1/c2] ;

23

24 ve l_g loba l=LG∗ ve l_ lo ca l ;

66

1 f unc t i on n i = SIM_BUV(ni ,F ,K,A, F1 ,K1,A1 , F2 ,K2,A2)

2

3 warning o f f ;

4

5 rad = 180/ p i ;

6 T = 0 . 5 ; %s imu la t i on time

7 %InitData=I n i t i a l ;

8 T_global = 0 ;

9 dt = 1/18 ;

10 %ni = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ; %s t a t e vec to r

11 %ni=[u v w p q r x y z phi theta p s i]

12 n ide r = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ; %d e r i v a t i v e s o f s t a t e vec to r

13 tau = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ; %vec to r o f f o r c e s and moments tau

= [X Y Z K M N]

14 N = c e i l (T/dt) ; %number o f s imu la t i on

s t ep s

15 Vp = 0 . 0 ; %sea cur rent [m/ s]

16 AlfaP = 0 ∗ pi /180 ; % [deg]

17

18 %simula t i on

19 f o r i =1:(N+1)

20 %parameters f o r f i n s o s c i l l a t i o n

21 %F−f r equency o f t a i l f i n o s c i l l a t i o n , K−t a i l f i n d e f l e c t i o n

22 %F1−f r equency o f l e f t s i d e f i n o s c i l l a t i o n , K1− l e f t s i d e f i n

d e f l e c t i o n

23 %F2−f r equency o f r i g h t s i d e f i n o s c i l l a t i o n , K2−r i g h t s i d e f i n

d e f l e c t i o n

24 %F = 1000 ; K = 0 ; F1 = 1000 ; K1 = 0 ; F2 = 1000 ; K2 = 0 ;

25

26 tau = Fins (F ,K,A, F1 ,K1,A1 , F2 ,K2,A2 , i , dt , n i (1)) ;

27 n ide r = Dynamics (ni , tau , dt) ;

28 vel_0 = ni (1 : 6) ;

29 ve l_ lo ca l = In t e g r a t i on (nider , vel_0 , dt) ;

30 %sea cur rent

31 uP = Vp∗ cos (AlfaP−ni (12)−pi) ;

32 vP = Vp∗ s i n (AlfaP−ni (12)−pi) ;

33 ve l_ lo ca l (1) = ve l_ lo ca l (1)+uP ;

67

34 ve l_ lo ca l (2) = ve l_ lo ca l (2)+vP ;

35 ve l_g loba l = Transformation (ve l_loca l , n i) ; %v e l o c i t y

t rans fo rmat ion to g l oba l coo rd inate system

36 coord_0 = ni (7 : 1 2) ;

37 coord_global = In t e g r a t i on (ve l_global , coord_0 , dt) ;

38 ni=[ve l_ lo ca l

39 coord_global] ;

40 T_global=T_global+dt ;

41 %data f o r f i g u r e s

42 %W(i , :) = [time u w x y z theta p s i

X Y Z N] ;

43 W(i , :) = [(i ∗dt) , n i (1) , n i (3) , n i (7) , n i (8) , n i (9) , (n i (11) ∗ rad) , (n i (12) ∗

rad) , tau (1) , tau (2) , tau (3) , tau (6)] ;

44 end

45

46 %save ' data . txt ' W −a s c i i ; %data f o r f i g u r e s

47 %BUV = f i g u r e ; %p lo t o f f i g u r e s

48 %subplot (3 , 2 , [1 3]) ; p l o t (W(: , 4) ,W(: , 6) , ' r ') ; x l ab e l (' x [m] ') ; y l ab e l (' z

[m] ') ; g r i d ;

49 %subplot (3 , 2 , 2) ; p lo t3 (W(: , 4) ,W(: , 5) ,W(: , 6) , ' r ') ; x l ab e l (' x [m] ') ;

y l ab e l (' y [m] ') ; z l a b e l (' z [m] ') ; g r i d ;

50 %subplot (3 , 2 , 5) ; p l o t (W(: , 1) ,W(: , 2) , ' g ' , W(: , 1) ,W(: , 3) , ' b ') ; x l ab e l (' t [

s] ') ; y l ab e l (' u , w [m/ s] ') ; g r i d ; l egend (' u ' , 'w') ;

51 %subplot (3 , 2 , 4) ; p l o t (W(: , 1) ,W(: , 7) , ' r ' , W(: , 1) ,W(: , 8) , ' c ') ; x l ab e l (' t [s

] ') ; y l ab e l (' \ theta , \ p s i [deg] ') ; g r i d ; l egend ('\ theta ' , '\ ps i ') ;

52 %subplot (3 , 2 , 6) ; p l o t (W(: , 1) ,W(: , 9) , 'm' , W(: , 1) ,W(: , 1 2) , ' k ') ; x l ab e l (' t [

s] ') ; y l ab e l ('X, N [N] ') ; g r i d ; l egend ('X' , 'N') ;

1 c l c ; c l o s e a l l ;

2 c l e a r ;

3

4 % sta t e matrix

5 %S = [1 : 1 0 ; 1 : 1 0 ; 1 : 1 0 ; 0 . 6 : 0 . 6 : 6] ;

6

7 % sta t e v a r i a b l e s

8 S = [0 : 1 0 ; −90 −60 −30 −10 −5 0 5 10 30 60 90 ; −90 −60 −30 −10 −5 0 5 10

30 60 90 ; −90 −60 −30 −10 −5 0 5 10 30 60 9 0] ;

68

9

10 vps i = [0 . 6 : 0 . 6 : 6] ;

11

12 % act i on matrix

13 %A =

[0 : 750 : 3000 ; −500 : 2 50 : 500 ; 0 : 7 50 : 3 000 ; −500 : 250 : 500 ; 0 : 7 50 : 3 000 ; −500 : 2 50 : 500] ;

14

15 % act i on v a r i a b l e s

16 Aa = [750 1500 30 00] ;

17 Ab = [0 0 0 10 10 10 −10 −10 −10 30 30 −30 −30];

18 Ac = [0 2 .5 5 0 2 .5 5 0 2 .5 5 0 2 .5 0 2 . 5] ;

19

20 % bui ld a s t a t e ac t i on matrix by f i nd i n g a l l v a l i d s t a t e s

21 %Q = zero s (10000 ,15625) ;

22

23 %new Q

24 Q = ze ro s (1331 ,59319) ;

25

26 %ni= [u v w p q r x y z phi theta p s i]

27 ni = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ; %s t a t e vec to r

28

29 % lea rn i ng ra t e s e t t i n g s

30 alpha = 0 . 8 ;

31 gamma = 0 . 5 ;

32

33 GOAL = [5 , 5 , 5] ;

34 xg = 5 ;

35 yg = 5 ;

36 zg = 5 ;

37 NUM_ITERATIONS = 100000;

38 T = 0 ;

39 f l a g = 0 ;

40 i = 1 ;

41 rad = 180/ p i ;

42

43 %fo r i =1:NUM_ITERATIONS

69

44 whi le f l a g == 0

45

46 %ni= [u v w p q r x y z phi theta p s i]

47 ni = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ; %s t a t e vec to r

48

49 % s t a r t i n g po s i t i o n

50 X = randn (3 , 1) ;

51 Y = X / sq r t (X'∗X) ∗ 4 ;

52 ni (7 : 9) = Y + 5 ;

53 x = round (n i (7)) ; sx = x ;

54 y = round (n i (8)) ; sy = y ;

55 z = round (n i (9)) ; sz = z ;

56 T = 0 ;

57 r = 0 ;

58

59

60 x = 3 ; sx = 3 ; n i (7) = 3 ;

61 y = 7 ; sy = 7 ; n i (8) = 7 ;

62 z = 7 ; sz = 7 ; n i (9) = 7 ;

63

64 j = 1 ;

65 W(j , 1) = ni (7) ;

66 W(j , 2) = ni (8) ;

67 W(j , 3) = ni (9) ;

68 Rol l = ni (10) ;

69 p s i = ni (12) ;

70 W(j , 4) = 0 ;

71 W(j , 5) = 0 ;

72 W(j , 6) = 0 ;

73

74 D = sqr t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2) ;

75

76

77 % s t a r t pointed to goa l

78 i f x − xg > 0

79 ni (12) = pi + atan ((y−yg) /(x−xg)) ;

80 e l s e i f x − xg < 0

70

81 ni (12) = atan ((y−yg) /(x − xg)) ;

82 e l s e i f x − xg == 0 && y − yg > 0

83 ni (12) = 3∗ pi /4 ;

84 e l s e

85 ni (12) = pi /2 ;

86 end

87 % ps i = ni (12) ;

88 % % ni (12) = − pi /4 ; %rad f o r 135 degree s

89 %

90 % dps i = abs (vps i − ni (12)) ;

91 % minpsi = min (dps i) ;

92 % fo r a = 1:10

93 % i f dps i (a) == minpsi p s i = vps i (a) ; end

94 % end

95 % ps i = round (p s i /0 . 6) ;

96

97 % transform va lues to i n d i c e s

98 % D

99 D = sqr t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2) ;

100 iD = round (D) ;

101 i f iD > 10

102 iD = 10 ;

103 end

104

105 %PSI

106 dx = x − xg ;

107 dy = y − yg ;

108 d = sq r t (dx^2 + dy^2) ;

109 i f dx <= 0 && dy <= 0

110 ps i g = as in (abs (dx) /d) ;

111 e l s e i f dx <= 0 && dy > 0

112 ps i g = as in (abs (dy) /d) + pi /2 ;

113 e l s e i f dx > 0 && dy > 0

114 ps i g = as in (abs (dx) /d) + pi ;

115 e l s e

116 ps i g = as in (abs (dy) /d) + 3∗ pi /2 ;

117 end

71

118 Az = ps i g − ni (12) ;

119 mAz = [−90 −60 −30 −10 −5 0 5 10 30 60 9 0] ;

120 [Az , iAz] = min (abs (mAz−Az∗ rad)) ;

121

122 %PITCH

123 dz = z − zg ;

124 i f dz >= 0

125 thetag = − as in (abs (dz) /D) ;

126 e l s e

127 thetag = as in (abs (dz) /D) ;

128 end

129 Pch = thetag − ni (11) ;

130 mPch = [−90 −60 −30 −10 −5 0 5 10 30 60 9 0] ;

131 [Pch , iPch] = min (abs (mPch−Pch∗ rad)) ;

132

133 %ROLL

134 mRoll = [−90 −60 −30 −10 −5 0 5 10 30 60 9 0] ;

135 [Rol l , i R o l l] = min (abs (mRoll−Rol l ∗ rad)) ;

136

137 % transform matr iz x , y , z

138 %iQ = (x + y ∗ 10 + z ∗ 10∗10 + ps i ∗10∗10∗10) − 1110 ;

139

140 % new trans fo rmat ion matr iz D, Az , Pch , ? Rol l ?

141 iQ = (iD + iAz ∗ 11 + iPch ∗11∗11) − 132 ;

142

143 s t a tu s = [x , y , z] ;

144 countAct ions = 0 ;

145

146 whi le T < 10

147 % record the cur rent s t a t e o f the robot f o r use l a t e r

148 % prvx = x ; prvy = y ; prvz = z ; prvps i = ps i ;

149 prvD = D; prvyAz = Az ; prvPch = Pch ; prvRol l = Rol l ;

150 prviQ = iQ ;

151

152 % s e l e c t an ac t i on value

153 % which has the maximum value o f Q in i t

154 % i f more than one a c t i on s has same value then s e l e c t randomly

72

from them

155 [val , index] = max(Q(iQ , :)) ;

156 [xx , yy] = f i nd (Q(iQ , :) == val) ;

157 i f s i z e (yy , 1) > 1

158 index = 1+round (rand ∗(s i z e (yy , 1)−1)) ;

159 ac t i on = yy (index , 1) ;

160 e l s e

161 ac t i on = index ;

162 end

163

164 % % transform ac t i on s

165 % d = act i on + 3905 ;

166 % A1 = rem(d , 5) ;

167 % i f A1 == 0

168 % A1 = 5 ;

169 % end

170 % d = d − A1 ; F = A(1 ,A1) ;

171 % A2 = rem(d , 25) /5 ;

172 % i f A2 == 0

173 % A2 = 5 ;

174 % end

175 % d = d − A2∗5 ; K = A(2 ,A2) ;

176 % A3 = rem(d , 125) /25 ;

177 % i f A3 == 0

178 % A3 = 5 ;

179 % end

180 % d = d − A3∗25 ; F1 = A(3 ,A3) ;

181 % A4 = rem(d , 625) /125 ;

182 % i f A4 == 0

183 % A4 = 5 ;

184 % end

185 % d = d − A4∗125 ; K1 = A(4 ,A4) ;

186 % A5 = rem(d , 3125) /625 ;

187 % i f A5 == 0

188 % A5 = 5 ;

189 % end

190 % d = d − A5∗625 ; F2 = A(5 ,A5) ;

73

191 % A6 = rem(d , 15625) /3125 ;

192 % i f A6 == 0

193 % A6 = 5 ;

194 % end

195 % K2 = A(6 ,A6) ;

196

197 p = act i on ;

198 %Assoc ia t e va lue s to the ones in the S v a r i a b l e s

199 iF = rem(p , 3) ;

200 p = p − iF ;

201 i f iF == 0 iF = 3 ; end

202 F = Aa(iF) ;

203

204 iKA = rem(p , 3 9) /3 ;

205 p = p − iKA∗3 ;

206 i f iKA == 0 iKA = 13 ; end

207 K = Ab(iKA) ;

208 A = Ac(iKA) ;

209

210 iF = rem(p , 117) /39 ;

211 p = p − iF ∗39 ;

212 i f iF == 0 iF = 3 ; end

213 F1 = Aa(iF) ;

214

215 iKA = rem(p ,1521) /117 ;

216 p = p − iKA∗117 ;

217 i f iKA == 0 iKA = 13 ; end

218 K1 = Ab(iKA) ;

219 A1 = Ac(iKA) ;

220

221 iF = rem(p ,4563) /1521 ;

222 p = p − iF ∗1521 ;

223 i f iF == 0 iF = 3 ; end

224 F2 = Aa(iF) ;

225

226 iKA = rem(p ,59319) /4563 ;

227 i f iKA == 0 iKA = 13 ; end

74

228 K2 = Ab(iKA) ;

229 A2 = Ac(iKA) ;

230

231

232 % do the s e l e c t e d ac t i on

233 j = j + 1 ;

234 ni = SIM_BUV(ni ,F ,K,A, F1 ,K1,A1 , F2 ,K2,A2) ;

235 T = T + 0 . 5 ;

236

237 % adquire p o s i t i o n

238 x = ni (7) ; W(j , 1) = ni (7) ;

239 y = ni (8) ; W(j , 2) = ni (8) ;

240 z = ni (9) ; W(j , 3) = ni (9) ;

241 Rol l = ni (10) ;

242 W(j , 4) = A∗ s ind (2∗ pi ∗F∗T)+K;

243 Test = A∗ s ind (2∗ pi ∗F∗T)+K;

244 W(j , 5) = A1∗ s ind (2∗ pi ∗F1∗T)+K1 ;

245 W(j , 6) = A2∗ s ind (2∗ pi ∗F2∗T)+K2 ;

246

247

248 % dps i = abs (vps i − ni (12)) ;

249 % minpsi = min (dps i) ;

250 % fo r a = 1:10

251 % i f dps i (a) == minpsi p s i = vps i (a) ; end

252 % end

253 % ps i = round (p s i /0 . 6) ;

254

255

256 s t a tu s = [x , y , z] ;

257

258 %se t (lnh , 'X[m] ' ,W(: , 1) , 'Y[m] ' ,W(: , 2) , 'Z [m] ' ,W(: , 3)) % change the

l i n e data

259

260 % transform matr iz x , y , z

261 % xyz = (x + y ∗ 10 + z ∗ 10∗10 + ps i ∗10∗10∗10) − 1110 ;

262

263 % new trans fo rmat ion matr iz D, Az , Pch , ? Rol l ?

75

264 iQ = (iD + iAz ∗ 11 + iPch ∗11∗11) − 132 ;

265

266 % count the a c t i on s r equ i r ed to reach the goa l

267 countAct ions = countAct ions + 1 ;

268

269 % reward func t i on

270 % R = − (s q r t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2)) ^2;

271 R = − (s q r t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2)) ^2;

272 i f R == 0 %| | f l a g == 1

273 f l a g = 1 ;

274 %R = 0 ;

275 end

276 r = r + R;

277

278 % update in fo rmat ion f o r robot in Q f o r l a t e r use

279 Q(prviQ , ac t i on) = Q(prviQ , ac t i on) + alpha ∗(R+gamma∗max(Q(iQ , :)) −

Q(prviQ , ac t i on)) ;

280 end

281

282 % i f r < −3000

283 % Re(i) = −3000;

284 % e l s e

285 Re(i) = r ;

286 % end

287

288 i f rem(i , 1 0) == 0

289 i

290 end

291

292 i f rem(i , 1 00) == 0 | | i == 10 %| | i == 100 | | i == 1000

293 c l o s e ;

294 BUV = f i g u r e ;

295 subplot (2 , 3 , 1) ; p l o t3 (W(: , 1) ,W(: , 2) ,W(: , 3) , ' r ') ; x l ab e l (' x [m] ') ;

y l ab e l (' y [m] ') ; z l a b e l (' z [m] ') ; g r i d ;

296 hold on ; p lo t3 (5 , 5 , 5 , ' g∗ ') ; hold on ; p lo t3 (sx , sy , sz , ' r ∗ ') ;

297 subplot (2 , 3 , 2) ; p l o t (W(: , 1) ,W(: , 2) , ' r ') ; x l ab e l (' x [m] ') ; y l ab e l ('

y [m] ') ;

76

298 hold on ; p l o t (5 , 5 , ' g∗ ') ; hold on ; p l o t (sx , sy , ' r ∗ ') ;

299 subplot (2 , 3 , 4) ; p l o t (W(: , 4) , ' r ') ; y l ab e l (' Ta i l Fin ') ;

300 subplot (2 , 3 , 5) ; p l o t (W(: , 5) , ' r ') ; x l ab e l (' O s c i l a t i on ') ; y l ab e l ('

Le f t and Right Fin ') ; hold on ; p l o t (W(: , 6) , ' g ') ;

301 subplot (2 , 3 , 3) ; p l o t (W(: , 3) , ' r ') ; x l ab e l ('Time s t ep s (0 . 5 s) p/

ep i sode ') ; y l ab e l (' z [m] ') ; hold on ; p l o t (14 , ' g ') ;

302 subplot (2 , 3 , 6) ; p l o t (Re (:) , ' r ') ; x l ab e l ('N o f Episodes ') ; y l ab e l ('

Total reward ') ;

303 drawnow

304 end

305

306 i f f l a g == 1

307 c l o s e ;

308 META = f i g u r e ;

309 subplot (2 , 3 , 1) ; p l o t3 (W(: , 1) ,W(: , 2) ,W(: , 3) , ' r ') ; x l ab e l (' x [m] ') ;

y l ab e l (' y [m] ') ; z l a b e l (' z [m] ') ; g r i d ;

310 hold on ; p lo t3 (5 , 5 , 5 , ' g∗ ') ; hold on ; p lo t3 (sx , sy , sz , ' r ∗ ') ;

311 subplot (2 , 3 , 2) ; p l o t (W(: , 1) ,W(: , 2) , ' r ') ; x l ab e l (' x [m] ') ; y l ab e l ('

y [m] ') ;

312 hold on ; p l o t (5 , 5 , ' g∗ ') ; hold on ; p l o t (sx , sy , ' r ∗ ') ;

313 subplot (2 , 3 , 4) ; p l o t (W(: , 4) , ' r ') ; y l ab e l (' Ta i l Fin ') ;

314 subplot (2 , 3 , 5) ; p l o t (W(: , 5) , ' r ') ; x l ab e l (' O s c i l a t i on ') ; y l ab e l ('

Le f t and Right Fin ') ; hold on ; p l o t (W(: , 6) , ' g ') ;

315 subplot (2 , 3 , 3) ; p l o t (W(: , 3) , ' r ') ; x l ab e l ('Time s t ep s (0 . 5 s) p/

ep i sode ') ; y l ab e l (' z [m] ') ; hold on ; p l o t (14 , ' g ') ;

316 subplot (2 , 3 , 6) ; p l o t (Re (:) , ' r ') ; x l ab e l ('N o f Episodes ') ; y l ab e l ('

Total reward ') ;

317 drawnow

318 end

319

320 i t e ra t i onCount (i , 1) = countAct ions ;

321 i = i + 1 ;

322 f l a g = 0 ;

323

324 end

77

Annexe C - Q-learning C++ code

1

2 #de f i n e _USE_MATH_DEFINES

3

4 #inc lude " s tda fx . h"

5 #inc lude <iostream>

6 #inc lude <Eigen/Dense>

7 #inc lude <math . h>

8

9 us ing namespace Eigen ;

10 us ing namespace std ;

11

12

13 MatrixXd In t e g r a t i on (MatrixXd nider , MatrixXd ni_0 , f l o a t dt)

14 {

15 MatrixXd ve l_ lo ca l (6 , 1) ;

16 ve l_ lo ca l = ni_0 + dt ∗ n ide r ;

17 re turn ve l_ lo ca l ;

18 }

19

20 MatrixXd Dynamics (MatrixXd ni , MatrixXd tau , f l o a t dt)

21 {

22 f l o a t u , v , w, p , q , r , x , y , z , phi , theta , p s i ;

23 u = ni (1 , 1) ;

24 v = ni (2 , 1) ;

25 w = ni (3 , 1) ;

26 p = ni (4 , 1) ;

27 q = ni (5 , 1) ;

28 r = ni (6 , 1) ;

29 x = ni (7 , 1) ;

30 y = ni (8 , 1) ;

31 z = ni (9 , 1) ;

32 phi = ni (10 , 1) ;

33 theta = ni (11 , 1) ;

34 p s i = ni (12 , 1) ;

35 MatrixXd ve l (1 , 6) ;

36 ve l << u , v , w, p , q , r ;

78

37 ve l = ve l . t ranspose () ;

38

39 f l o a t m = 45 ; f l o a t Ix = 0 . 7 3 ; f l o a t Iy = 7 . 7 2 ;

40 f l o a t I z = 7 . 7 2 ; f l o a t Xup = 4 . 5 ; f l o a t Yup = 59 ;

41 f l o a t Zup = 59 ; f l o a t Kup = 0 ;

42 f l o a t Mup = 11 . 2 ; f l o a t Nup = 11 . 2 ;

43 MatrixXd MRB(6 , 6) ;

44 MRB << m, 0 , 0 , 0 , 0 , 0 ,

45 0 , m, 0 , 0 , 0 , 0 ,

46 0 , 0 , m, 0 , 0 , 0 ,

47 0 , 0 , 0 , Ix , 0 , 0 ,

48 0 , 0 , 0 , 0 , Iy , 0 ,

49 0 , 0 , 0 , 0 , 0 , I z ;

50 MatrixXd MA(6 , 6) ;

51 MA << Xup , 0 , 0 , 0 , 0 , 0 ,

52 0 , Yup , 0 , 0 , 0 , 0 ,

53 0 , 0 , Zup , 0 , 0 , 0 ,

54 0 , 0 , 0 , Kup , 0 , 0 ,

55 0 , 0 , 0 , 0 , Mup, 0 ,

56 0 , 0 , 0 , 0 , 0 , Nup ;

57 MatrixXd M(6 , 6) ;

58 M = MRB + MA;

59 MatrixXd invM ;

60 invM = M. inv e r s e () ;

61

62 f l o a t Xu = 0 . 0894 ; f l o a t Xuu = 5 . 7 2 ; f l o a t Yv = 1 . 9 ;

63 f l o a t Yvv = 18 . 5 8 ; f l o a t Zw = 1 . 9 ; f l o a t Zww = 18 . 5 8 ;

64 f l o a t Kp = 0 ; f l o a t Kpp = 0 ; f l o a t Mq = 0 . 8 ;

65 f l o a t Mqq = 11 ;

66 f l o a t Nr = 0 . 7 ; f l o a t Nrr = 10 ;

67 f l o a t D11 = Xu + (Xuu∗abs (u)) ;

68 f l o a t D22 = Yv + (Yvv∗abs (v)) ;

69 f l o a t D33 = Zw + (Zww∗abs (w)) ;

70 f l o a t D44 = Kp + (Kpp∗abs (p)) ;

71 f l o a t D55 = Mq + (Mqq∗abs (q)) ;

72 f l o a t D66 = Nr + (Nrr∗abs (r)) ;

73 MatrixXd D(6 , 6) ;

79

74 D << D11 , 0 , 0 , 0 , 0 , 0 ,

75 0 , D22 , 0 , 0 , 0 , 0 ,

76 0 , 0 , D33 , 0 , 0 , 0 ,

77 0 , 0 , 0 , D44 , 0 , 0 ,

78 0 , 0 , 0 , 0 , D55 , 0 ,

79 0 , 0 , 0 , 0 , 0 , D66 ;

80

81 f l o a t x0 = 0 ; f l o a t y0 = 0 ; f l o a t z0 = 0 ; f l o a t P = 450 ;

82 f l o a t B = 460 ; f l o a t xB = 0 ; f l o a t yB = 0 ; f l o a t zB = 0 ;

83 f l o a t xG = 0 ; f l o a t yG = 0 ; f l o a t zG = 0 ;

84 MatrixXd G(6 , 1) ;

85 G << (P − B) ∗ s i n (theta) ,

86 (P − B) ∗ cos (theta) ∗ s i n (phi) ,

87 −(P − B) ∗ cos (theta) ∗ cos (phi) ,

88 0 ,

89 −(zG∗P + zB ∗ B) ∗ s i n (theta) ∗ cos (phi)

90 + (xG∗P + xB ∗ B) ∗ cos (theta) ∗ cos (phi) ,

91 0 ;

92

93 MatrixXd n ide r (6 , 1) ;

94 n ide r = invM ∗ (tau + G − D ∗ ve l) ;

95 re turn n ide r ;

96 }

97

98 MatrixXd Transformation (MatrixXd ve l_loca l , MatrixXd ni)

99 {

100 f l o a t u , v , w, p , q , r , x , y , z , phi , theta , p s i ;

101 u = ni (1 , 1) ;

102 v = ni (2 , 1) ;

103 w = ni (3 , 1) ;

104 p = ni (4 , 1) ;

105 q = ni (5 , 1) ;

106 r = ni (6 , 1) ;

107 x = ni (7 , 1) ;

108 y = ni (8 , 1) ;

109 z = ni (9 , 1) ;

110 phi = ni (10 , 1) ;

80

111 theta = ni (11 , 1) ;

112 p s i = ni (12 , 1) ;

113

114 f l o a t c1 = cos (phi) ; f l o a t s1 = s i n (phi) ;

115 f l o a t c2 = cos (theta) ; f l o a t s2 = s i n (theta) ;

116 f l o a t t2 = tan (theta) ;

117 f l o a t c3 = cos (p s i) ; f l o a t s3 = s i n (p s i) ;

118

119 MatrixXd LG(6 , 6) ;

120 LG << c3 ∗ c2 , c3∗ s2 ∗ s1 − s3 ∗ c1 , s3 ∗ s1 + c3 ∗ c1∗ s2 ,

121 0 , 0 , 0 ,

122 s3 ∗c2 , c3∗ c1 + s3 ∗ s1 ∗ s2 ,

123 s2 ∗ s3 ∗ c1 − c3 ∗ s1 , 0 , 0 , 0 ,

124 −s2 , c2∗ s1 , c2∗c1 , 0 , 0 , 0 ,

125 0 , 0 , 0 , 1 , s1 ∗ t2 , c1∗ t2 ,

126 0 , 0 , 0 , 0 , c1 , −s1 ,

127 0 , 0 , 0 , 0 , s1 / c2 , c1 / c2 ;

128

129 MatrixXd ve l_g loba l (6 , 1) ;

130 ve l_g loba l = LG ∗ ve l_ lo ca l ;

131 re turn ve l_g loba l ;

132 }

133

134 MatrixXd Fins (f l o a t ogon_czest , f l o a t ogon_kat , f l o a t OX_ampl,

135 f l o a t p_lewa_czest , f l o a t p_lewa_kat , f l o a t PLX_ampl ,

136 f l o a t p_prawa_czest , f l o a t p_prawa_kat ,

137 f l o a t PPX_ampl, f l o a t i , f l o a t dt , f l o a t Vx)

138 {

139 MatrixXd oxsr_pom (3 , 1) ;

140 oxsr_pom << 18 ,

141 12 . 8 ,

142 1 . 8 ;

143 MatrixXd pxsr_pom(3 , 1) ;

144 pxsr_pom << 8 ,

145 6 . 2 ,

146 0 . 9 ;

147 f l o a t tc = ogon_czest / 750 ;

81

148 f l o a t t l = p_lewa_czest / 750 ;

149 f l o a t t r = p_prawa_czest / 750 ;

150

151 f l o a t przekladnia_ogon = 12 ;

152 f l o a t przekladnia_pletwa = 12 ;

153 f l o a t ogoncz = ogon_czest / 60 / przekladnia_ogon ;

154 f l o a t prawacz = p_prawa_czest / 60 / przekladnia_pletwa ;

155 f l o a t lewacz = p_lewa_czest / 60 / przekladnia_pletwa ;

156 f l o a t r1 = 0 . 1 ; f l o a t r2 = 0 . 4 ;

157 f l o a t r3 = 0 . 3 ; f l o a t r4 = 0 . 1 3 ;

158 f l o a t xG = 0 ;

159

160 f l o a t OX_sr = oxsr_pom(tc , 1) ;

161 f l o a t OX = OX_sr + OX_ampl

162 ∗ s i n (i / dt ∗ ogoncz ∗ M_PI/180) ;

163 f l o a t PLX_sr = pxsr_pom(t l , 1) ;

164 f l o a t PLX = PLX_sr + PLX_ampl

165 ∗ s i n (i / dt ∗ l ewacz ∗ M_PI/180) ;

166 f l o a t PPX_sr = pxsr_pom(tr , 1) ;

167 f l o a t PPX = PPX_sr + PPX_ampl

168 ∗ s i n (i / dt ∗ prawacz ∗ M_PI / 180) ;

169

170 f l o a t ogonX = OX ∗ cos (ogon_kat ∗ M_PI / 180) ;

171 f l o a t ogonY = OX ∗ s i n (ogon_kat ∗ M_PI / 180) ;

172 f l o a t promien1 = sq r t (pow((r1

173 + (r2 ∗ cos (ogon_kat ∗ M_PI / 180))) , 2)

174 + pow((s i n (ogon_kat ∗ M_PI / 180) ∗ r2) , 2)) ;

175 f l o a t beta = atan ((s i n (ogon_kat ∗ M_PI / 180) ∗ r2)

176 / (r1 + (cos (ogon_kat ∗ M_PI / 180) ∗ r2)) ∗ M_PI / 180) ;

177 f l o a t ogonN = promien1 ∗ ogonY ∗ cos (beta ∗ M_PI / 180)

178 ∗ (−1) ;

179

180 f l o a t pletwaLX = PLX ∗ cos (p_lewa_kat ∗ M_PI / 180) ;

181 f l o a t pletwaLZ = PLX ∗ s i n (p_lewa_kat ∗ M_PI / 180) ;

182 f l o a t pletwaLN = r4 ∗ pletwaLX ;

183 f l o a t pletwaLM = r3 ∗ pletwaLZ ∗ (−1) ;

184 f l o a t pletwaPX = PPX ∗ cos (p_prawa_kat ∗ M_PI / 180) ;

82

185 f l o a t pletwaPZ = PPX ∗ s i n (p_prawa_kat ∗ M_PI / 180) ;

186 f l o a t pletwaPN = r4 ∗ pletwaPX ;

187 f l o a t pletwaPM = r3 ∗ pletwaPZ ∗ (−1) ;

188

189 f l o a t xvx = 0 . 0 1 4 ; f l o a t xvxx = 0 . 9 1 ;

190 f l o a t Opor_pletwa = 0 ; f l o a t D = 0 ;

191 f l o a t beta = 90 − (atan (r4 / r3 ∗ M_PI / 180)) ;

192 f l o a t r = sq r t (pow(r3 , 2) + pow(r4 , 2)) ;

193

194 i f ((p_prawa_czest == 0) && (p_prawa_kat == 90))

195 {

196 D = xvx + (xvxx∗abs (Vx)) ;

197 Opor_pletwa = cos (beta ∗ M_PI / 180) ∗D∗ r ;

198 }

199 i f ((p_lewa_czest == 0) && (p_lewa_kat == 90))

200 {

201 D = xvx + (xvxx∗abs (Vx)) ;

202 Opor_pletwa = cos (beta ∗ M_PI / 180) ∗D∗ r ∗(−1) ;

203 }

204

205 MatrixXd tau (6 , 1) ;

206 tau << (ogonX + pletwaLX + pletwaPX − D) ,

207 ogonY ,

208 (pletwaLZ + pletwaPZ) ,

209 0 ,

210 (pletwaLM + pletwaPM) ,

211 (ogonN − pletwaPN + pletwaLN

212 − Opor_pletwa) ;

213

214 re turn tau ;

215 }

216

217 MatrixXd SIM_BUV(MatrixXd ni , f l o a t F , f l o a t K, f l o a t A,

218 f l o a t F1 , f l o a t K1, f l o a t A1 , f l o a t F2 , f l o a t K2, f l o a t A2)

219 {

220 f l o a t rad = 180 / M_PI;

221 f l o a t T = 0 . 5 ;

83

222

223 f l o a t T_global = 0 ;

224 f l o a t dt = 1 / 1 8 . 0 ;

225

226 MatrixXd n ide r (6 , 1) ;

227 n ide r << 0 ,

228 0 ,

229 0 ,

230 0 ,

231 0 ,

232 0 ;

233

234 MatrixXd tau (6 , 1) ;

235 tau << 0 ,

236 0 ,

237 0 ,

238 0 ,

239 0 ,

240 0 ;

241

242 f l o a t N = c e i l (T / dt) ;

243 f l o a t Vp = 0 . 0 ;

244 f l o a t AlfaP = 0 ∗ M_PI / 180 ;

245

246 f o r (i n t i = 1 ; i <= N + 1 ; i++)

247 {

248 tau = Fins (F , K, A, F1 , K1, A1 , F2 , K2, A2 , i ,

249 dt , n i (1 , 1)) ;

250 n ide r = Dynamics (ni , tau , dt) ;

251 MatrixXd vel_0 (6 , 1) ;

252 vel_0 (1 , 1) = ni (1 , 1) ;

253 vel_0 (2 , 1) = ni (2 , 1) ;

254 vel_0 (3 , 1) = ni (3 , 1) ;

255 vel_0 (4 , 1) = ni (4 , 1) ;

256 vel_0 (5 , 1) = ni (5 , 1) ;

257 vel_0 (6 , 1) = ni (6 , 1) ;

258 MatrixXd ve l_ lo ca l (6 , 1) ;

84

259 ve l_ lo ca l = In t e g r a t i on (nider , vel_0 , dt) ;

260

261 f l o a t uP = Vp ∗ cos (AlfaP − ni (12 , 1) − M_PI) ;

262 f l o a t vP = Vp ∗ s i n (AlfaP − ni (12 , 1) − M_PI) ;

263 ve l_ lo ca l (1 , 1) = ve l_ lo ca l (1 , 1) + uP ;

264 ve l_ lo ca l (2 , 1) = ve l_ lo ca l (2 , 1) + vP ;

265 MatrixXd ve l_g loba l (6 , 1) ;

266 ve l_g loba l = Transformation (ve l_loca l , n i) ;

267 MatrixXd coord_0 (6 , 1) ;

268 coord_0 (1 , 1) = ni (7 , 1) ;

269 coord_0 (2 , 1) = ni (8 , 1) ;

270 coord_0 (3 , 1) = ni (9 , 1) ;

271 coord_0 (4 , 1) = ni (10 , 1) ;

272 coord_0 (5 , 1) = ni (11 , 1) ;

273 coord_0 (6 , 1) = ni (12 , 1) ;

274 MatrixXd coord_global (6 , 1) ;

275 coord_global = In t e g r a t i on (ve l_global ,

276 coord_0 , dt) ;

277 ni (1 , 1) = ve l_ lo ca l (1 , 1) ;

278 ni (2 , 1) = ve l_ lo ca l (2 , 1) ;

279 ni (3 , 1) = ve l_ lo ca l (3 , 1) ;

280 ni (4 , 1) = ve l_ lo ca l (4 , 1) ;

281 ni (5 , 1) = ve l_ lo ca l (5 , 1) ;

282 ni (6 , 1) = ve l_ lo ca l (6 , 1) ;

283 ni (7 , 1) = coord_global (1 , 1) ;

284 ni (8 , 1) = coord_global (2 , 1) ;

285 ni (9 , 1) = coord_global (3 , 1) ;

286 ni (10 , 1) = coord_global (4 , 1) ;

287 ni (11 , 1) = coord_global (5 , 1) ;

288 ni (12 , 1) = coord_global (6 , 1) ;

289 T_global = T_global + dt ;

290 }

291

292 re turn n i ;

293

294 }

295

85

296 i n t main ()

297 {

298 MatrixXd Aa(3 , 1) ;

299 Aa << 750 ,

300 1500 ,

301 3000 ;

302 MatrixXd Ab(13 , 1) ;

303 ni << 0 ,

304 0 ,

305 0 ,

306 10 ,

307 10 ,

308 10 ,

309 −10,

310 −10,

311 −10,

312 30 ,

313 30 ,

314 −30,

315 −30;

316 MatrixXd Ac(13 , 1) ;

317 Ac << 0 ,

318 2 . 5 ,

319 5 ,

320 0 ,

321 2 . 5 ,

322 5 ,

323 0 ,

324 2 . 5 ,

325 5 ,

326 0 ,

327 2 . 5 ,

328 0 ,

329 2 . 5 ;

330

331 MatrixXd Q(14641 , 59319) ;

332 Q << 0 ;

86

333 MatrixXd ni (12 , 1) ;

334 ni << 0 ,

335 0 ,

336 0 ,

337 0 ,

338 0 ,

339 0 ,

340 0 ,

341 0 ,

342 0 ,

343 0 ,

344 0 ,

345 0 ;

346 f l o a t alpha = 0 . 8 ;

347 f l o a t gamma = 0 . 5 ;

348 f l o a t E = 0 . 1 5 ;

349

350 T = 0 ;

351 f l o a t r = 0 ;

352

353 i n t xg = 5 ;

354 i n t yg = 5 ;

355 i n t zg = 5 ;

356

357 f l o a t T = 0 ;

358 i n t f l a g = 0 ;

359 i n t i = 0 ;

360 f l o a t = 180/3 . 14 ;

361

362 whi le (f l a g == 0)

363 do

364 {

365 ni << 0 ,

366 0 ,

367 0 ,

368 0 ,

369 0 ,

87

370 0 ,

371 0 ,

372 0 ,

373 0 ,

374 0 ,

375 0 ,

376 0 ;

377

378 i n t x = 3 ; i n t sx = 3 ; n i (7 , 1) = 3 ;

379 i n t y = 7 ; i n t sy = 7 ; n i (8 , 1) = 7 ;

380 i n t z = 7 ; i n t sz = 7 ; n i (9 , 1) = 7 ;

381

382 i n t j = 1 ;

383

384 f l o a t D = sq r t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2) ;

385 i n t iD = round (D) ;

386 i f (iD > 10)

387 {

388 iD = 10 ;

389 }

390

391 f l o a t dx = x − xg ;

392 f l o a t dy = y − yg ;

393 f l o a t p s i g ;

394 i f ((dx <= 0) && (dy <= 0))

395 {

396 ps i g = as in (abs (dx) /d) ;

397 }

398 e l s e i f ((dx <= 0) && (dy > 0))

399 {

400 ps i g = as in (abs (dy) /d) + 3 . 14/2 ;

401 }

402 e l s e i f ((dx > 0) && (dy > 0))

403 {

404 ps i g = as in (abs (dx) /d) + 3 . 1 4 ;

405 }

406 e l s e

88

407 {

408 ps i g = as in (abs (dy) /d) + 3∗3 . 14/2 ;

409 }

410 f l o a t pAz = ps i g − ni (12 , 1) ;

411 MatrixXd mAz(11 , 1) ;

412 mAz << −90,

413 −60,

414 −30,

415 −10,

416 −5,

417 0 ,

418 5 ,

419 10 ,

420 30 ,

421 60 ,

422 90 ;

423

424 f l o a t Az = 0 ;

425 f l o a t dAz = 360 ;

426 i n t iAz = 1 ;

427 f o r (i n t g = 1 ; g <= 11 ; g++)

428 {

429 i f (abs (mAz(g , 1) − pAz ∗ rad) <= dAz)

430 {

431 dAz = abs (mAz(g , 1) − pAz ∗ rad) ;

432 Az = mAz(g , 1) ;

433 iAz = g ;

434 }

435 }

436

437 f l o a t dz = z − zg ;

438 f l o a t thetag ;

439 i f (dz >= 0)

440 {

441 thetag = − as in (abs (dz) /D) ;

442 }

443 e l s e

89

444 {

445 thetag = as in (abs (dz) /D) ;

446 }

447 f l o a t pPch = thetag − ni (11 , 1) ;

448 MatrixXd mPch(11 , 1) ;

449 mPch << −90,

450 −60,

451 −30,

452 −10,

453 −5,

454 0 ,

455 5 ,

456 10 ,

457 30 ,

458 60 ,

459 90 ;

460

461 f l o a t Pch = 0 ;

462 f l o a t dPch = 360 ;

463 i n t iPch = 1 ;

464 f o r (i n t g = 1 ; g <= 11 ; g++)

465 {

466 i f (abs (mPch(g , 1) − pPch ∗ rad) <= dPch)

467 {

468 dPch = abs (mPch(g , 1)

469 − pPch ∗ rad) ;

470 Pch = mPch(g , 1) ;

471 iPch = g ;

472 }

473 }

474

475 MatrixXd mRoll (11 , 1) ;

476 mRoll << −90,

477 −60,

478 −30,

479 −10,

480 −5,

90

481 0 ,

482 5 ,

483 10 ,

484 30 ,

485 60 ,

486 90 ;

487

488 f l o a t pRol l = ni (10 , 1) ;

489 f l o a t Rol l = 0 ;

490 f l o a t dRol l = 360 ;

491 i n t iRo l l = 1 ;

492 f o r (i n t g = 1 ; g <= 11 ; g++)

493 {

494 i f (abs (mRoll (g , 1) − pRol l ∗ rad)

495 <= dRol l)

496 {

497 dRol l = abs (mRoll (g , 1)

498 − pRol l ∗ rad) ;

499 Rol l = mRoll (g , 1) ;

500 i R o l l = g ;

501 }

502 }

503

504 i n t iQ = (iD + iAz ∗ 11 + iPch ∗11∗11

505 + iRo l l ∗11∗11∗11)− 1463 ;

506

507 whi le (T < 10)

508 do

509 {

510 i n t prviQ = iQ ;

511

512 f l o a t maxQ = 0 ;

513 i n t ac t i on = 0 ;

514

515 f l o a t rnd = (rand () % 101) / 1 00 . 0 ;

516

517 i f (rnd < E)

91

518 {

519 ac t i on = rand () % 58319 + 1 ;

520 }

521 e l s e

522 {

523 f o r (i n t g = 1 ; g <= 59319; g++)

524 {

525 i f (Q(iQ , g) >= maxQ)

526 {

527 maxQ = Q(iQ , g) ;

528 ac t i on = g ;

529 }

530 }

531 }

532

533 i n t p = act i on ;

534

535 f l o a t iF = p%3;

536 p = p − iF ;

537 i f (iF == 0) { iF = 3 ;}

538 f l o a t F = Aa(iF , 1) ;

539

540 f l o a t iKA = p%39/3;

541 p = p − iKA∗3 ;

542 i f (iKA == 0) {iKA = 13;}

543 f l o a t K = Ab(iKA , 1) ;

544 f l o a t A = Ac(iKA , 1) ;

545

546 iF = p%117/39;

547 p = p − iF ∗117 ;

548 i f (iF == 0) { iF = 3 ;}

549 f l o a t F1 = Aa(iF , 1) ;

550

551 iKA = p%1521/117;

552 p = p − iKA∗117 ;

553 i f (iKA == 0) {iKA = 13;}

554 f l o a t K1 = Ab(iKA , 1) ;

92

555 f l o a t A1 = Ac(iKA , 1) ;

556

557 iF = p%4563/1521;

558 p = p − iF ∗1521 ;

559 i f (iF == 0) { iF = 3 ;}

560 f l o a t F2 = Aa(iF , 1) ;

561

562 iKA = p%59319/4563;

563 p = p − iKA∗4563 ;

564 i f (iKA == 0) {iKA = 13;}

565 f l o a t K2 = Ab(iKA , 1) ;

566 f l o a t A2 = Ac(iKA , 1) ;

567

568 j = j + 1 ;

569 ni = SIM_BUV(ni , F , K, A, F1 , K1, A1 ,

570 F2 , K2, A2) ;

571 T = T + 0 . 5 ;

572

573 f l o a t D = sq r t ((x−xg)^2 + (y−yg)^2

574 + (z−zg) ^2) ;

575 i n t iD = round (D) ;

576 i f (iD > 10)

577 {

578 iD = 10 ;

579 }

580

581 f l o a t dx = x − xg ;

582 f l o a t dy = y − yg ;

583 f l o a t p s i g ;

584 i f ((dx <= 0) && (dy <= 0))

585 {

586 ps i g = as in (abs (dx) /d) ;

587 }

588 e l s e i f ((dx <= 0) && (dy > 0))

589 {

590 ps i g = as in (abs (dy) /d) + 3 . 14/2 ;

591 }

93

592 e l s e i f ((dx > 0) && (dy > 0))

593 {

594 ps i g = as in (abs (dx) /d) + 3 . 1 4 ;

595 }

596 e l s e

597 {

598 ps i g = as in (abs (dy) /d)

599 + 3∗3 . 14/2 ;

600 }

601 f l o a t pAz = ps i g − ni (12 , 1) ;

602 f l o a t Az = 0 ;

603 f l o a t dAz = 360 ;

604 i n t iAz = 1 ;

605 f o r (i n t g = 1 ; g <= 11 ; g++)

606 {

607 i f (abs (mAz(g , 1) − pAz ∗ rad)

608 <= dAz)

609 {

610 dAz = abs (mAz(g , 1)

611 − pAz ∗ rad) ;

612 Az = mAz(g , 1) ;

613 iAz = g ;

614 }

615 }

616

617 f l o a t dz = z − zg ;

618 f l o a t thetag ;

619 i f (dz >= 0)

620 {

621 thetag = − as in (abs (dz) /D) ;

622 }

623 e l s e

624 {

625 thetag = as in (abs (dz) /D) ;

626 }

627 f l o a t pPch = thetag − ni (11 , 1) ;

628 f l o a t Pch = 0 ;

94

629 f l o a t dPch = 360 ;

630 i n t iPch = 1 ;

631 f o r (i n t g = 1 ; g <= 11 ; g++)

632 {

633 i f (abs (mPch(g , 1) − pPch ∗ rad)

634 <= dPch)

635 {

636 dPch = abs (mPch(g , 1)

637 − pPch ∗ rad) ;

638 Pch = mPch(g , 1) ;

639 iPch = g ;

640 }

641 }

642

643 MatrixXd mRoll (11 , 1) ;

644 mRoll << −90,

645 −60,

646 −30,

647 −10,

648 −5,

649 0 ,

650 5 ,

651 10 ,

652 30 ,

653 60 ,

654 90 ;

655

656 f l o a t pRol l = ni (10 , 1) ;

657 f l o a t Rol l = 0 ;

658 f l o a t dRol l = 360 ;

659 i n t iRo l l = 1 ;

660 f o r (i n t g = 1 ; g <= 11 ; g++)

661 {

662 i f (abs (mRoll (g , 1)

663 − pRol l ∗ rad) <= dRol l)

664 {

665 dRol l = abs (mRoll (g , 1)

95

666 − pRol l ∗ rad) ;

667 Rol l = mRoll (g , 1) ;

668 i R o l l = g ;

669 }

670 }

671

672 iQ = (iD + iAz ∗ 11 + iPch ∗11∗11

673 + iRo l l ∗11∗11∗11) − 1463 ;

674

675 f l o a t R = − (abs (Rol l) /10+1)∗

676 (s q r t ((x−xg)^2 + (y−yg)^2 + (z−zg) ^2)) ^2;

677 r = r + R;

678

679 Q(prviQ , ac t i on) = Q(prviQ , ac t i on)

680 + alpha ∗(R + gamma∗maxQ − Q(prviQ , ac t i on)) ;

681 }

682 }

683 re turn 0 ;

684 }

96

