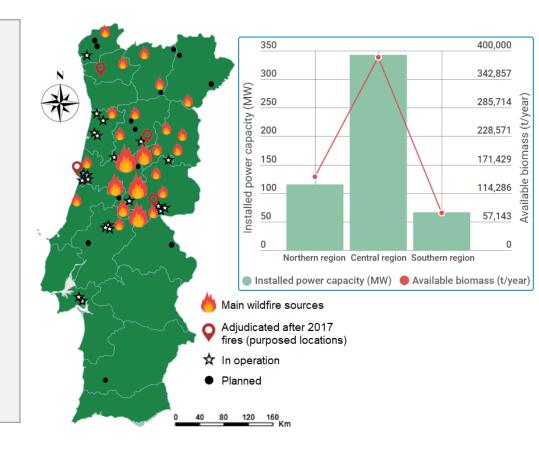


C3i
Coordenação
Interdisciplinar
Investigação
Inovação
IPPortalegre

Comparative techno-economic assessment of gasification and combustion technologies in dealing with agroforestry biomass blends

João Cardoso^a, Valter Silva^a, Daniela Eusébio^a

^aC3i, Polytechnic Institute of Portalegre, Portugal

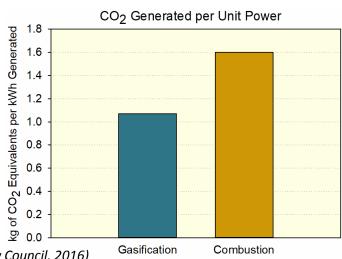

Portalegre, September 20th 2018

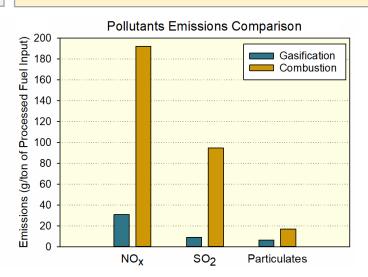
Outline

- Biomass Power Generation in Portugal: Current Scenario
- Combustion vs Gasification
- Key Ideas
- Techno-Economic Assessment
- Economic Model
 - Economic Model Development
 - Project Cash Flows
- Economic Model Results
 - Financial Indicators
 - Monte Carlo Sensitivity Analysis
- Environmental Impact Assessment
- Main Conclusions

Biomass Power Generation in Portugal: Current Scenario

- In 2017, devastating wildfires swept central and northern regions of Portugal with great human life loss, burning a total area 442.418 ha.
- As a response, the Portuguese Government approved the establishment of new forest <u>biomass combustion power plants</u>.
- Most of the current installed power capacity is established mainly in the <u>central region</u> due to the higher quantities of biomass available.
- Presently, the national grid accounts a total of <u>12 dedicated thermal</u> power plants and <u>9 cogeneration plants</u>.


Combustion


VS

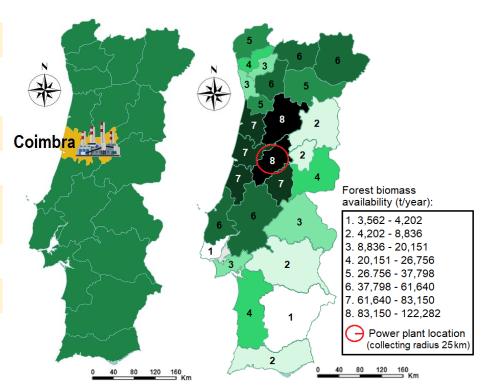
Gasification

- Lower initial capital investments;
- Lower efficiencies;
- Produces much higher concentration of noxious emissions;
- Well understood technology remains as one of the most widely used processes to supply heat and electricity to industrial processes.

- Higher initial capital investments;
- Higher efficiencies allow reducing the biomass fuel input;
- Cleaner production allowing to meet the current high pollutant emission standards;
- Still subject to increased risk due to the lack of standardization.

Key Ideas

- Given the recent events, there is an urge to <u>investigate the sustainability and</u>
 <u>feasibility</u> of the installation and operation of new biomass power plants.
- ii. Considering gasification's technical and environmental advantages, efforts should be made to <u>assess the feasibility in deploying a biomass gasification system</u> in Portugal instead of a traditional forest biomass combustion systems.
- iii. With the biomass-to-energy quota increase, rational resources implementations must be considered in order to guarantee the biomass feedstock demands.
- iv. <u>Agroforestry biomass blends</u> allows to maintain a stable biomass supply avoiding disruption by providing supplementary resource options.

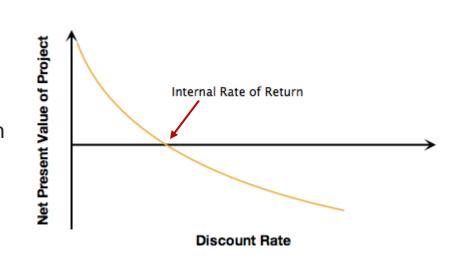

Techno-Economic Assessment

Technical and operational baselines:

Location	Coimbra District
Installed Power	11 MW
Project Lifetime	25 years
Biomass Average Consumption	115,500 t/year
Biomass Cost	35 €/t
Area of Influence (radius)	25 km
Annual Electricity Production	78,436.72 MWh
Sales of Electricity	121.34 €/MWh
Number of Workers	16
	Biomass storage and treatment park

Gasification power plant main components

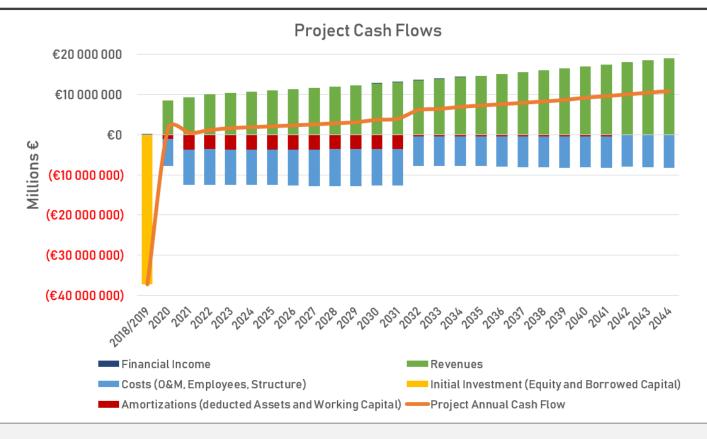
Biomass storage and treatment park
Biomass bubbling fluidized bed gasifier
Gas cooling and cleaning system
Gas turbine and generator
Electrical substation
Control room


Economic Model Development

• NPV (Net Present Value) indicates the profitability of investment projects by summing all inflows and outflows of cash over the project lifetime.

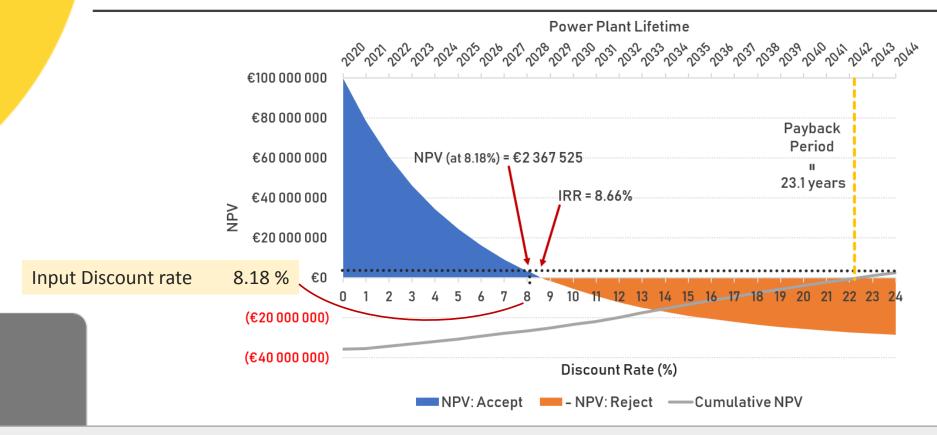
$$NPV(i,N) = \sum_{t=0}^{N} \frac{C_t}{(1+i)^t}$$

• IRR (Internal Rate of Return) is the discount rate at which the NPV of all cash flows equal to zero.


$$NPV(IRR, N) = \sum_{t=0}^{N} \frac{C_t}{(1 + IRR)^t} = 0$$

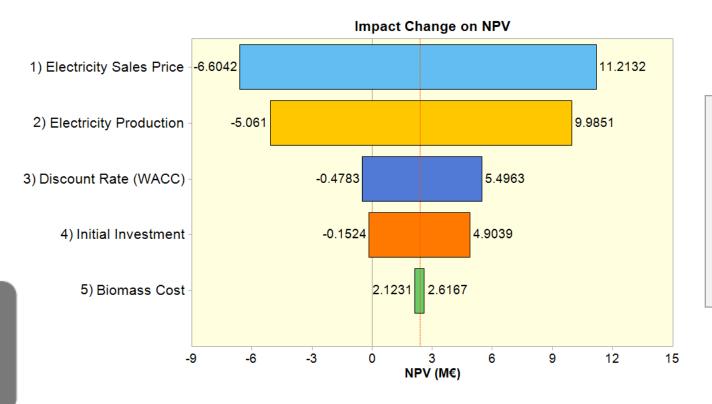
 PBP (Payback Period) is the time required to reclaim the initial capital investments, shorter the PBP, stronger the financial feasibility will be.

$$PBP = Years \ before \ full \ recovery + \frac{Cumulative \ NPV \ at \ the \ end \ of \ the \ year}{Total \ annual \ cash \ flow \ during \ the \ year}$$


Economic Model *Project Cash Flows*

- The initial outlay of about <u>37 M€</u>, indeed reflects the dimension of cost expenses needed to start the project.
- Only by 2022, the power plant is assumed to operate at cruising speed, maintaining its production output of 78,436.72 MWh/year.
- At the end of <u>22 years of exploration</u>, the power plant will be debt free with no more amortizations expenses to consider.

Economic Model Results


Financial Indicators

- What makes the project feasible?
 - A positive NPV, an IRR greater than the discount rate, and a PBP inferior to the power plant lifetime.
- World Bank Group typical benchmarks for biomass projects: positive NPV, IRR greater than 10%, and PBP inferior to 10 years.

Economic Model Results *Monte Carlo Sensitivity Analysis*

Monte Carlo allows performing the risk analysis of the project by simulating a range of possible outcomes for a number of scenarios, assessing decision-making over uncertainty.

- <u>Electricity sales price</u> and <u>electricity production</u> showed considerable impact change on NPV.
- <u>Biomass cost</u> is the least impactful, and even in a worsening price scenario it still manages to achieve a positive NPV revenue.

Environmental Impact Assessment

Estimated annual emissions in (t/year)

	CO ₂	CO	NO_x	SO ₂
Projected 11 MW biomass gasification power plant	202,799.80	467.84	382.62	19.82

- The estimated emissions results for the projected biomass power plant go in hand with the estimations in the literature.
- <u>Emissions control is simpler in gasification</u> since the syngas comes at higher temperatures and pressures as compared to the combustion's exhaust gases, promoting the easier removal of pollutants and traces of contaminants.
- The gasification's higher efficiencies allows saving on operation costs while decreasing the greenhouse gas emissions, helping the Portuguese Government to meet ever stricter EU pollution standards.

Main Conclusions

- i. Overall, the economic model presents a <u>positive prospect of admitting the</u>
 <u>feasibility</u> of setting the project in the region under current market conditions.
- ii. Despite the viability of the project and affordable risk provided by the economic model calculations, the <u>attractiveness of the venture may not convince investors</u> <u>less willing to take risks</u>.
- iii. <u>Gasification provides competing advantages</u> as compared to combustion systems, particularly in what comes to greenhouse gas emissions control.
- iv. However, disadvantages as high initial costs and lack of standardization have been delaying gasification to stand as a highly commercial technology.

Thank you for your attention!