

Autor:

Atidivya Kumar Patra

Orientador:
Luis Veloso

Coorientador:
Francisco Afonso

Supervisor:

Rita Carreira
Andre Oliveira

Data: October 2017

Study and Development of Cross-Platform

Cloogy Mobile Application for VPS – Virtual

Power Solutions.

Relatório apresentado com vista à obtenção do grau de Mestre no âmbito da

realização do ciclo de estudos de Mestrado em Informática Aplicada

ESTGOH
Escola Superior de Tecnologia e Gestão
de Oliveira do Hospital

i

iii

Acknowledgments

Firstly, I would like to thank my supervisors from the university, Professor Luis Veloso

and Professor Francisco Afonso. Our discussions, their critical remarks, and, of course

their overall support and encouragements helped me to complete my work on time.

Next, my gratitude goes to Rita Carreira and Andre Oliveira, my supervisors from Virtual

Power Solutions, for their help and support. I sincerely thank for the time and effort Andre

and Rita have put in during my internship period. Special thank you to Pedro Marques

for providing small and vital inputs into my development, Mario Pereira for helping me

out to deploy my prototype into Apple devices, and, David Fernandes, for helping me out

throughout my internship period. I would also like to thank the other colleagues from

VPS for making the time spent together very enjoyable, and I wish them all good luck

with their own careers.

From Instituto Pedro Nunes, I would like to thank my new friends Celia Pedro, Mariana

Coelho, Mariana Valenca, Ana Almeida and, Joel Jegundo for making my lunch breaks

memorable.

I would like to thank my parents for supporting me throughout my stay in Portugal, for

believing in me, and providing me with the means to study, even though it took a bit

longer than anticipated.

And last, but certainly not least, I would like to thank my fiancé, Lamha Bhatnagar, for

being there for me, listening to my endless, over detailed explanations of my problems

and for eagerly waiting for me to come back to India.

September 2017, Coimbra

Atidivya Kumar Patra

iv

v

Resumo

A energia renovável e a conservação de energia tornaram-se tópicos importantes nos

últimos anos. As empresas têm realizado esforços para reduzir o consumo de energia

através da otimização de dispositivos e da conscientização dos consumidores sobre o seu

uso.

Para contribuir com este esforço, a Virtual Power Solutions (VPS) fornece uma solução

onde os proprietários / utilizadores de edifícios obtêm visibilidade e controle em tempo

real dos seus aparelhos elétricos instalados na sua residência. A VPS alcançou com

sucesso a gestão de procura, e a tecnologia de automação de edifícios numa única

aplicação móvel designada por Cloogy. Esta aplicação fornece aos consumidores de

energia e aos seus parceiros a capacidade de verificar e controlar o consumo de energia

em tempo real, permitindo reduzir o nível de consumo ao mínimo sem comprometer as

operações do dia a dia.

Atualmente, a Cloogy tem suas aplicações móveis disponíveis para Android, iOS e

Windows Phone com funcionalidades semelhantes. Deste modo, porem cada aplicação

requer diferentes linguagens de programação para cada plataforma, o que envolve um

custo para manter essas diferentes plataformas. Por esta razão, para a presente tese, a VPS

appresentou o objetivo de desenvolver uma aplicação móvel híbrida, que se baseará numa

base de código único e terá acesso a todas as APIs da plataforma.

Diferentes tipos de ferramentas de desenvolvimento estão disponíveis para construir uma

aplicação híbrida. Depois de definir os requisitos funcionais e não-funcionais, um

protótipo de aplicação híbrida foi construído usando o Ionic Framework, que consiste

numa das Frameworks de código aberto os disponíveis para construir aplicações móveis

híbridas. Com a ajuda desta framework, uma aplicação móvel pode ser criada usando um

conjunto de tecnologias da web, como JavaScript, HTML e CSS, e implementada o

aplicativo em todas as principais plataformas, como Android e iOS.

O protótipo construído nos permite-nos aceder a dados de consumo através do nosso

smartphone ou tablet a partir de uma localização remota com a ajuda da iEnergy3 API da

VPS. As principais características oferecidas pelo protótipo são a monitorização do

consumo de energia através de registros e dados em tempo real, e a verificação dos

indicadores de consumo como desempenho, média diária, previsões, etc. O protótipo

também fornece pegadas ecológicas, conjuntamente com indicadores de consumo, e é

capaz de controlar e agendar períodos de consumo de eletricidade a partir de um local

remoto.

Palavras-chave

Android, API, Cloogy, CSS, Energia, HTML, Hibrido, iOS.

vii

Abstract

Renewable energy and energy conservation have become important topics during the

recent few years. Efforts have been made by enterprises to reduce energy consumption

by optimizing devices and making consumer aware of their usage.

To contribute to this effort, Virtual Power Solutions (VPS) provides a solution where

building owners/users get a real-time visibility and control over their electrical appliances

installed in the residential house. VPS has successfully achieved bringing demand

management and building automation technology together into a single mobile

application named Cloogy. This application provides energy consumers and their partners

with an ability to see and control their energy consumption in real-time by allowing them

to reduce the consumption level to the minimum without compromising day to day

operations.

Currently, Cloogy has its mobile applications available for Android, iOS and Windows

Phone with similar functionalities. This way, each application requires different

independent platform programming languages which involves a cost to maintain these

different platforms. Therefore, in this thesis, VPS has come up with a goal to develop a

hybrid mobile application which will be based on the single code base and will have

access to all platform APIs.

Different types of development tools are available to build a hybrid application. After

going through all functional and non-functional requirements, a hybrid application

prototype was build using Ionic Frameworks, which is one of the open source frameworks

to build hybrid mobile applications. With the help of this framework, mobile applications

can be build using one set of web technologies like JavaScript, HTML, and CSS and

deployed across all major platforms like Android and iOS.

The prototype built allows us to access consumption data through our smartphone or

tablet, from a remote location with the help of iEnergy3 API from VPS. The main features

offered by the prototype are monitoring energy consumption through logs and the real-

time data, check consumption indicators like performance, daily average, forecasts, etc.

The prototype also provides ecological footprints along with consumption indicators and

it is capable of controlling and scheduling periods of electricity consumption from a

remote location.

Keywords

Android, API, Cloogy, CSS, Energy, HTML, Hybrid, iOS.

ix

Index

1. Introduction ... 1

1.1. Motivation ... 1

1.2. Problem Statement .. 2

1.3. Objectives .. 3

1.4. Approach ... 3

1.5. Structure of the Report .. 3

2. State of the Art... 5

2.1. Cloogy ... 5
2.2.1. Energy Consumption Management ... 5
2.2.2. Installation and Operation ... 6

2.2. Types of Mobile Applications ... 7
2.2.1. Native Applications ... 8
2.2.2. Mobile Web Applications ... 10
2.2.3. Hybrid Applications .. 12

2.3. Cross-Platform Development Tools .. 13
2.3.1. The Criteria for Development Tool Selection ... 14
2.3.2. Overview of Cross-Platform Development Tools ... 15
2.3.3. The Selection of Ionic with Apache Cordova ... 18

2.4. Summary ... 22

3. Planning ... 23

3.1. Initial Plan ... 23

3.2. Final Plan .. 24

4. Objectives and Methodologies .. 25

4.1. Functional Requirements ... 25

4.2. Use Cases .. 26
4.2.1. Dashboard ... 27
4.2.2. Electricity .. 28
4.2.3. Plugs .. 29
4.2.4. Settings .. 30

4.3. Non-Functional Requirements .. 30

4.4. RESTful Web Services .. 31

4.5. Overview of iEnergy3 Platform .. 32
4.5.1. iEnergy3 API ... 33
4.5.2. iEnergy3 API Operations .. 34

4.6. The Development Stack .. 36
4.6.1. AngularJS .. 36
4.6.2. Apache Cordova / PhoneGap .. 37
4.6.3. Ionic Framework ... 38

5. Developed Work .. 41

5.1. Project Folder Structure .. 41

5.2. Front-End .. 42
5.2.1. Application Structure .. 43

x

5.2.2. Routes .. 48
5.2.3. JavaScript Libraries ... 54
5.2.4. AngularJS Filters ... 57

5.3. User Interfaces... 60

6. Conclusions .. 65

6.1. Results ... 65

6.2. Strengths .. 65

6.3. Limitations .. 67

6.4. Future Work .. 68

Bibliography .. 69

Appendix A: Developers Manual ... 73

Appendix B: User Manual .. 75

xi

Figures List

Figure 2-1 Features of Cloogy Application (from [4]) ... 6
Figure 2-3 The Cloogy Functional Architecture (from [4]) ... 7
Figure 2-4 Comparison between native, mobile websites, and hybrid application architectures

(from [5]) .. 7
Figure 2-5 Horizontal swiping on Financial Times`s web application (from [8]) 10
Figure 2-6 Global Mobile OS Market share as of 2016 (from [11]). .. 14
Figure 2-7 Size break of a hello world application developed using Xamarin (adapted from [22]

). .. 19
Figure 2-8 Comparison Poll Results between Ionic, PhoneGap & Xamarin as of October 2017

(from [26]) ... 21
Figure 3-1 Initial Project Plan in a Gantt Chart for Cross Platform Cloogy Application. 24
Figure 4-1 Use Case Diagram for Cross-Platform Cloogy Application Prototype 26
Figure 4-2 iEnergy3 Platform Architecture (from [31]) ... 32
Figure 4-3 Command response in POSTMAN to get the device resource by providing the device

ID .. 34
Figure 4-4 Snapshot from POSTMAN where request headers has been provided along with the

requests. ... 35
Figure 4-5 Snapshot of request body provided while creating a session with an API 35
Figure 4-6 Response Body Snapshot from POSTMAN after successful creation of session with

iEnergy3 API ... 36
Figure 4-7 AngularJS MVC design pattern (from [33]) .. 37
Figure 4-8 Card view code snippet from Ionic Documentation (from [24]) 38
Figure 4-9 Ionic Developer’s Community at a glance (from [24]) ... 39
Figure 5-1 Default Project Structure created by Ionic .. 41
Figure 5-2 Project Folder structure of the front-end of the application for VPS......................... 43
Figure 5-3 Snapshot of the index.html file which includes all JavaScript files and other plugin 44
Figure 5-4 outside.html represents the outside GUI of the application. 44
Figure 5-5 login.html file where the login form is designed for the application 45
Figure 5-6 inside.html file presenting the tab view of the application. 45
Figure 5-7 Implementation of delegate methods in JavaScript file of plugs controller. 47
Figure 5-8 Implementation of ion-slide-box in the views of the application 47
Figure 5-9 config method where $stateProvider and $urlRouterProvider are injected as

dependencies. .. 49
Figure 5-10 Ready-made tabs template from Ionic Framework (adapted from [24]) 50
Figure 5-11 Route for electricity screen .. 51
Figure 5-12 StateParameters defined for the consumption module screen. 52
Figure 5-13 Usage of parameters as links while in a view of an application 53
Figure 5-14 Consumption view of water cooler where we can see value passed as a parameter

along with URL. .. 53
Figure 5-15 Live data transmitted from message server to the front-end (from [39]). 54
Figure 5-16 Dashboard Module from android and iOS respectively. ... 55
Figure 5-17 Consumption module of one of the plugs where chart.js has been implemented 56
Figure 5-18 Consumption module of electricity module where it has been compared with historic

data .. 56
Figure 5-19 Configuration method for ionic time and date picker .. 57
Figure 5-20 Create, view, edit and delete operations snippet from schedule module of the

application. .. 58
Figure 5-21 Calendar week bitmap plotting in schedule module .. 58
Figure 5-22 Usage of Angular Filter in schedule module of the application. 59
Figure 5-23 Custom application filter for week bit map ... 59
Figure 5-24 Decimal to binary conversion .. 60
Figure 5-25 Custom filter code for the week bit map using angular.filter(). 60

xii

Figure 5-26 Snapshot of the application prototype asking for change API address in both OS (left:

Android, right: iOS). ... 61
Figure 5-27 Dashboard module from the application prototype (left: Android, right: iOS). 62
Figure 5-28 Electricity module from the application prototype (left: Android, right: iOS). 62
Figure 5-29 Code snippet of implementation of flex container property of CSS3...................... 63
Figure 5-30 Different functionalities snapshot of plugs module from iOS 64
Figure 5-31 Snapshot from iOS where Consumption module for electricity and plugs is presented

respectively. .. 64

xiii

Tables List

Table 2-1 Comparison Table: PhoneGap, Titanium, and Xamarin (from [14]) 18
Table 4-1Use Case for Dashboard Module ... 27
Table 4-2Use Case for Electricity Module .. 28
Table 4-3 Use Case for Plugs Module .. 29
Table 4-4 Possible Response Codes for a specific request to iEnergy3 API (from [31]) 33
Table 5-1 Delegate Methods for ion-slide-box from Ionic Framework (from [36]). 46
Table 5-2 Attributes from ion-slide-box directive by Ionic Framework (from [36]). 48
Table 5-3 Nested states brief description in Angular Routing .. 51

xv

Acronyms List

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CDN Content Delivery Network

CLI Command Line Interface

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheet

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JS JavaScript

JSON JavaScript Object Notations

JWT JSON Web Token

kWh Kilowatt hours

OS Operating System

PC Personal Computer

REST Representational State Transfer

SDK Software Development Kit

SVN Subversion

UI User Interface

URL Uniform Resource Locator

VPS Virtual Power Solutions

XML Extensible Markup Language

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

1

1. Introduction

This chapter introduces the motivation behind the research that has been carried out, along

with the structure of this thesis. It identifies the importance of having a cross-platform

application prototype for VPS. The prototype will be based on single code-base and will

have access to all platform APIs.

This chapter is further structured as follows: Section 1.1 presents the motivation of this

work, Section 1.2 describes the state of the problem, Section 1.3 states the objectives of

this thesis, Section 1.4 presents the approach adopted in the development and Section 1.5

outlines the structure of thesis by presenting an overview of the chapters.

1.1. Motivation
Cloogy mobile application is available on Android, iOS and Windows phone. These

operating systems have their own SDK to create mobile applications. The OS vendor has

their own preferred programming language that supports the development of native

applications. For example, iOS application development requires Objective C and Swift

which means the developer should have good knowledge of this preferred programming

language for the development, whereas Java is the preferred programming language for

Android mobile application development. Therefore, we can say that the applications

created using Java or Objective C programming language using the official SDK from

the vendor can be called native applications [1].

The main concern for an enterprise is to have a development team which is proficient in

all preferred programming languages, to maintain their mobile applications across all

platforms. This kind of multi-platform oriented team will involve higher costs for the

VPS.

The customers of Cloogy product will have different types of mobile devices. Therefore,

it is imperative for an enterprise like VPS to have a mobile application that would work

across all platforms. As mentioned earlier in this section, we should also understand it

involves higher costs to maintain an application across all platforms. Therefore, an ideal

solution to lower the cost would be a cross-platform mobile application which will work

on multiple operating systems with a single code-base.

This thesis is an effort to evaluate the possibility of having a cross-platform mobile

application for VPS which will work across all platforms at a lower cost. This thesis will

share all the experience and results from the development of cross-platform application

prototype. The main objective would be to first work on the prototype and then, later on,

the VPS management will be responsible for the final decision to develop the complete

application based the experience and the result of this work.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

2

1.2. Problem Statement

The specific research problem of this thesis is to examine if VPS can have a cross-

platform mobile application for Cloogy which will serve a better option than having

native application for Cloogy across all platforms. In other words, the possibility of

replacing the native applications in Android, iOS and Windows Phone with a cross-

platform mobile application for Cloogy. A few different variations of mobile applications

exist which will be discussed in detail in section 2.2. There are different methods to

develop mobile applications, and have different frameworks to develop mobile

applications. Each type of application is believed to be better or less suited to solve the

problem. In mobile application development, there are many frameworks available to

develop mobile applications. Enterprises that need a mobile application, have three

available options that are native application development, mobile web development or

hybrid application development [2].

Native applications are built using the device’s native programming language and they

only run on their designated platforms. For example, if Android applications cannot run

on iOS platforms and vice versa. Mobile web applications are web applications developed

to mimic the native applications of the hosting operating systems by executing in a web

browser on the host platform [3]. Mobile web applications run in the device’s browsers

and can operate across all platforms. For example, mobile web application works well on

platforms like Android platform, iOS platform, Blackberry platform, and Windows Phone

platform. When compared with native applications, the main difference is that the mobile

web applications are not installed in the device itself [2]. Hybrid mobile applications are

designed and developed using either web technologies like HTML5, CSS, JavaScript

APIs, that run inside a native application container or they have a specific programming

language based on the selected framework. For example, Xamarin, a hybrid application

development framework requires C# as the programming language for the development.

The key difference between hybrid applications from mobile web applications and native

applications, is that they are developed using standard web technologies, but they have

access to the native device APIs and hardware. Some of the well-known hybrid mobile

frameworks are PhoneGap, Ionic, Appcelerator, Xamarin and Appsresso [3]. Hybrid

applications bridges the gap between different mobile applications like native

applications, they can be uploaded in the application store, can have their own unique

application icon, and can take advantages of the mobile device features like GPS,

accelerometers, compass, list of contacts, battery icon and so on. Whereas web

applications, they rely on the HTML being rendered in the browser but do not have access

to the device features. With the hybrid application, the problem is solved as the

application is composed in a native frame and HTML/JavaScript is executed in WebView

creating a hybrid application of both native and mobile web applications [1] [2] [3].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

3

1.3. Objectives
Based on the motivation and problem statement above, the objectives of this thesis can

be defined as:

• Study the state of art of cross-platform mobile development frameworks.

• Overview of the VPS´s data server API which is iEnergy3 API.

• Research about cross-platform mobile development frameworks available.

• Select a framework to develop a hybrid application for VPS based on the

requirement of the existing native features.

• Development and deployment of the application prototype to emulators and real

devices for iOS and Android.

1.4. Approach
To conquer our objectives, the following approach was taken:

• Investigate frameworks for cross-platform mobile development.

• Define the user and application requirements, based on the research and identified

enterprise´s goals, and derive the architectural elements from those requirements.

• Integrate the architectural elements into an application design that supports the

desired functionality.

• Design and implement a proof of concept mobile application supported by the

framework.

1.5. Structure of the Report
The structure of this thesis reflects the order in which these issues have been dealt with

throughout the research and development process. This thesis is structured as follows:

• Chapter 2 gives the background of the research starting from introducing the

Cloogy application, types of mobile applications in the market and at the end

discussing about the development tools along with the selection of the tool.

• Chapter 3 presents the initial and final plan for the thesis with the help of Agile

methodology for mobile applications.

• Chapter 4 presents the requirements and non-functional requirements for the

development of the mobile application by following the principles of agile

methodologies. It also introduces some concepts behind RESTful web services,

iEnergy3 and its API operations. At the end of this chapter, the approaches of

different programming languages are discussed as these languages will be utilized

during the development phase.

• Chapter 5 represents the work, describing what kind of development has taken

place during internship period. Moreover, a detailed overview of the work along

with critical analysis of the results will be presented.

• Chapter 6 summarizes the work and presents its strengths and limitations.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

5

2. State of the Art

This chapter presents basic concepts on types of mobile experiences and cross-platform

mobile development tools available in the market.

Section 2.1 introduces the product Cloogy from VPS in detail, Section 2.2 discusses the

different type of mobile applications, and Section 2.3 presents a brief introduction to the

cross-platform development tools available for mobile applications.

2.1. Cloogy

Evaluating and measuring our energy consumption allows us to optimize it and reduce

our monthly bills, without lowering our comfort level. This is where the Cloogy comes

into play. It is a mobile application which provides user with an energy management

solution. This management solution allows user to monitor and control energy

consumption of a residential house. The main purpose of the application is to monitor

electrical equipment consumption individually, and control their usage time through

specially designed power plugs by VPS. The application combines data gathering devices

and visualize in its user interface. The application provides a platform to the user to

discover the areas where it can conserve energy. It provides ways to optimize electrical

appliances which will help the end user to put an end to waste and unnecessary costs. In

brief, below are the main features of the application [4].

• Determine the appliances working time frames, and turn them on and off.

• Know, in real-time, consumption and the savings achieved.

• With its intuitive applications and a web portal accessible from any computer,

tablet or smartphone it is easy to manage the home appliances and their

consumption.

Cloogy also offers an innovative Energy Management service which helps us to save

money on the electric bill and reduce our carbon footprint [4].

2.2.1. Energy Consumption Management

VPS provides different platforms of Cloogy, where the user can check the global

consumption of a residential house. The energy consumption management focuses on

below features:

• Monitoring: Monitor the overall energy consumption and each appliance

consumption

• Control: Control electrical appliance operation like turning the device on or off

from a remote location.

• Scheduling: Perform schedule operations on electrical appliances like appliance

operation period, eliminating standby consumption, and getting to know the

obtained energy savings from the appliances.

• Profile: Cloogy creates the profile for each user. This energy profile provides an

overview of the total energy consumption of the user in a dashboard.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

6

• Savings: The user has an option to save and track energy consumption progress

continuously.

• Reports: The application provides regular reports of energy consumption.

• Community: One of the benefits of the application is that it allows the user to

compare performance within the community.

Below Figure 2-1 summarizes in brief the energy consumption management features of

Cloogy.

Figure 2-1 Features of Cloogy Application (from [4])

2.2.2. Installation and Operation

Installation of Cloogy follows simple steps. To connect Cloogy in a residential house, one

of the first and foremost requirement is a good Internet connection with a free Ethernet

port. The user must know that at present, the Cloogy system does not support 3G internet

mobile broadband. The installation process begins with the installation of the clamp on

the electricity meter as shown in the below Figure 2-2. This clamp is connected to a device

called transmitter which sends the data collected by the Clamp to the Cloogy hub. This

Cloogy hub receives the data from the transmitter and other Clamps, and then it is

responsible for sending it to the main server of VPS. The hub stores the complete energy

data and when requested by Cloogy interface, it transmits the data with the help of a router

as shown in the below Figure 2-2. All appliances must be connected to the Cloogy power

plugs for monitoring and scheduling operations. The power plugs interact with the hub

for all the operations. There are different monitoring platforms for Cloogy like it can be

personal computer, tablet, smartphone or it can be a simple Cloogy display which shows

information about consumption in real time [4].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

7

Figure 2-2 The Cloogy Functional Architecture (from [4])

2.2. Types of Mobile Applications

As discussed in the first chapter of the thesis, in Section 1.2, there are different methods

to develop mobile applications which will be discussed in this section to better

understanding. The types of mobile applications are as follows:

• Native Applications: written in the native programming language.

• Mobile Web Applications: website designed for mobile phone.

• Hybrid Applications: single code source having access to all platform APIs.

Below Figure 2-3 summarizes the comparison between native mobile and hybrid

application architectures.

Figure 2-3 Comparison between native, mobile websites, and hybrid application architectures (from [5])

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

8

2.2.1. Native Applications

As described earlier in Section 1.2 of the thesis, native applications are built using default

programming language according to the mobile platform. To build a native application

for iOS, the developer is required to use Objective C or Swift, Java for Android, or C# or

Visual Basic for Windows Phone. Then with the help of the platform SDK(API), the

application can communicate with the platform to access device data or to load data from

an external source using communication protocols [6].

To build a native application, one of the foremost requirement is the selection of the

development IDE software application that will provide developers with comprehensives

list of options to build software. It is mainly a code editor, or build automation tool with

debugging facilities. The development environment can be official or unofficial based on

the choice of the developer. Based on the comfort, and common practice, developer tends

to use different types of frameworks in their native application to make the development

process much easier [6].

Native application has series of features such as it can access to push notifications, have

notifications for updates in the application which is considered one of the essentials for a

mobile application. Native applications can be downloaded from the application store.

For the usage and to make it easier, it has a designated icon on the menu of the mobile

device. Native application resides in the device where it has good access to device

functionalities such as GPS information, accelerometer, contacts, camera features, etc. It

can also be said that native application gives developer more options to build features as

they desire as they have deeper integration with the mobile device [6].

Moreover, native application works both online and offline, constantly been active at

background irrespective of whether the application is currently used by the user or not.

This help application to be up to date with new updates or modifications [6].

2.2.1.1. Advantages of Native Applications

Native application comes with several benefits when compared to the other type of mobile

application. Most of the time, the benefits of the native application are integrated with the

device platform.

• Good quality of graphics: Since the application is built using device`s native

language and installed in the device itself, the application offers good quality

graphics and animations. For business like game development, native applications

are recommended ahead of other types of applications.

• Application store distribution: Native applications are always recommended to

be distributed through their platform`s application store or the marketplace.

• Device Integration: Native application has full access to device`s hardware

starting from GPS information, contract list, camera to the microphone,

accelerometer. These access facilities are essential for applications that require

geographical location or device position like Google maps. It is also important to

know that hybrid application offers the same functionalities of device integration

whereas mobile web applications offer partial integration.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

9

2.2.1.2. Disadvantages of Native Applications

The disadvantages for a native application are generally the level of difficulties faced in

developing and maintaining them.

• No Portability: Native applications are not portable from one platform to another.

The mobile platforms are largely dominated by iOS and Android, while other

platforms like Blackberry, Windows Phones have a aminor share in the market.

Therefore, for business purpose, building an application just for one platform

exclude from all others. Building for all platforms requires time, resource and

cost.

• Platform Instability: It has been seen in the recent years that popular platform

today may disappear in just few years or may not be successful. For example,

Blackberry which dominated the mobile industry for many years, is currently

struggling to survive in the industry. Therefore, there is a risk factor of wasting

time, and cost for the companies who choose the native approach.

• Development Cost: The development cost varies depending upon the

requirement and application´s complexity. It can be said that native application

development is an expensive and time-consuming approach.

• Development Time: As mentioned in the above point, native application

development is a time-consuming approach. If a business looks for native

approach, time requirement increases depending upon the requirements and

application complexity. For example, a business which prefer cross-platform

development will save a lot of time when compared to business preferring

building native application across all platforms.

• Maintenance cost: While all types of mobile application require regular updates

and maintenance, native application requires most of the time when compared

with other two types. With new platform releases, the native application must be

regularly updated which increases the new work for the developers to duplicate

every change or update across all platforms.

Overall the benefits of the native applications are in the areas of graphics, application

store distribution, device integration whereas they are difficulties in the areas of

portability which is one of the main issues for businesses. Native application requires a

reasonable amount of time and cost for the development. In this scenario, hybrid

application development has an advantage over native as they also offer application

distribution and device integration which will be discussed in brief in the below Section

2.2.3 of this thesis. [3] [6] [7].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

10

2.2.2. Mobile Web Applications

Mobile web applications are not real applications. They can be termed as websites which

run on the mobile browsers and have an advantage of operating across all platforms.

Mobile web applications are not installed on the device, they are distributed via web.

Basically, a mobile web application is a static HTML/CSS/JavaScript page formatted for

a use on a mobile device [7] [8].

Mobile web applications lack a lot of the benefits that native applications provide.

However, they do have access to some essential features such as GPS, camera and phone

calling, which are often sufficient for many applications. With the help of browser

caching, it is possible to run the application offline. Other features such as push

notifications are currently inaccessible via web applications. Web development with

HTML5 gives all types of new features that can be implemented for developing a mobile

web application. For example, in 2011, Financial Times newspaper withdrew its native

application and launched web application for iPhone users with URL app.ft.com as shown

in the below Figure 2-4. This web application has all basic features of a native application

starting from swiping horizontally to move from one section to another, read newspaper

offline with the help browser caching, and many other features [8].

Figure 2-4 Horizontal swiping on Financial Times`s web application (from [8])

HTML5 plays an vital role in web development and is recommended from the W3C,

which is the official, non-profit organization that develops and maintains web standards.

HTML5 helps developers to modernize the capabilities of native web languages, so they

offer all possible functionality to create a competitive mobile web application. In current

days, dedicated mobile web applications and hybrid applications are dependent on

HTML5 along with the mobile web browsers for rendering the content on the mobile

device [3].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

11

2.2.2.1. Advantages of Mobile Web Applications

Mobile websites enjoy several benefits, primarily in the level of work effort and

compatibility on the devices across all platforms.

• Stability: As discussed in the above section 2.2.1.2, native applications have

platform instability as there are new versions launched every year. However,

mobile web applications eliminate this problem. In the present, where the mobile

device technologies and operating systems keeps on changing, the web is the only

constant. It is not controlled by any company and it won´t disappear in few years.

The mobile web application can be shared and operated on all mobile device

operating systems.

• Cross-Platform: Unlike native applications, web applications can work across all

mobile platforms and operating systems. There is no requirement for different

applications to run on platforms like iOS, Android, Blackberry, and Windows

Phone. It is the application which will work everywhere. Since mobile web

applications runs on the browser of the device, it will run if there are new

platforms developed in the future.

• Lower Development Cost: If a business already developed websites, they have

the skills to develop mobile web applications. Unlike with native development,

they do not require new developers with specific skillsets which would increase

the development cost to the business.

• Simple Maintenance: Since the application runs on every platform, the

maintenance consumes less time. One change in the single application will reflect

across all platforms.

• Instant Updates: Since mobile web applications are not installed on the device

itself, all updates instantly reflect in the application when changed at the backend

of the application. Unlike native applications, the user is not asked to update the

application frequently.

2.2.2.2. Disadvantages of Mobile Web Applications

As described in Section 2.2.2., mobile web applications run inside the browser of the

device, which is one of the major cause of limitations and disadvantages for this type of

mobile applications.

• Limited graphics: When compared with native applications, mobile web

applications are not able to handle heavy graphics seamlessly even though they

are suited for displaying every type of content on the application. For industries

which are into gaming business, selection of mobile web application approach for

their business will be a wrong choice as games need a good user interface.

• Limited device integration: Even with the rise of HTML5, mobile web

applications cannot access the device`s contact list or deliver push notifications.

However, they have a capability of accessing hardware sensors like GPS,

accelerometer, and so on with few limitations.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

12

At the end, mobile web applications offer limited advantage over native applications like

cross-platform, low-risk option for the companies. Unlike native applications, mobile

web applications are not restricted to one specific platform. Features like cross-platform

make mobile web applications simple and inexpensive option from the other two types of

mobile application development options. Unless business is looking for a complete device

integration or applications with heavy graphics, mobile web applications would be an

ideal choice [2] [3] [7] [8].

2.2.3. Hybrid Applications

The combination of native and mobile web applications can be termed as a hybrid

application. The development language for hybrid applications depends upon the

selection of the framework. However, most hybrid applications are developed using

JavaScript, HTML, and CSS. Frameworks like Xamarin from Microsoft requires C# for

the development. It all depends upon the business for the selection of development tool.

The hybrid application developed using web technologies uses the same code which is

written for developing a website. One good advantage of having hybrid applications over

mobile web applications is that they run as an application rather than a mobile web

application running inside device browser. It is a combination of web and native

application which can be deployed across all platforms. With this feature, hybrid

applications can allow a large number of users to access the application. Hybrid

applications usually rely on the HTML which is rendered in a browser, which is further

wrapped in a platform-specific shell. With this shell, hybrid applications have native

qualities like device integration, application installation, and platform`s application

store/market distributions [2] [7] [8] [9] [10].

2.2.2.3.1. Advantages of Hybrid Applications

• Inexpensive cross-platform development: Hybrid application development is

not simpler when compared with mobile web applications. However, they are

cheaper than building a native application which will be deployed across all

platforms. The hybrid application has a web application which is wrapped in

platform-specific native wrappers.

• Native-like: The hybrid code base is wrapped in platform-specific wrapper with

the help of the framework. It gives native application look and feel as it runs as a

mobile application in the WebView of device’s browser. Like native, hybrid

applications are installed on the device itself and work as a native application.

• Device integration: Hybrid development tools provide full device access

including the native only features like camera, microphone, and address book.

Business looking to deploy their applications across all platforms, will have access

to all native-like features in every device.

• Marketplace distribution: It an advantage over mobile web applications, hybrid

applications can be distributed to consumers through platform-specific

applications store or marketplace.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

13

2.2.2.3.2. Disadvantages of Hybrid Applications

• Limited graphics: Like mobile web applications, hybrid applications have less

graphical capabilities when compared with native applications. However, in

recent years, there has been an improvement in the user interface designs with

new development frameworks like ionic.

• Web view limitations: Since hybrid applications run on the device browser, the

UI performance is tied with the version of the platform`s browser installed in the

device.

• Increases dependency on third-party APIs: If there is a new release of the

mobile operating system, the developer is dependent on the supplier on the new

API to be released. The devices will not be supported without new API, which

will run the new operating systems.

While mobile web applications are the simplest solution for mobile application

development, hybrid applications can be termed as the best option. Hybrid applications

suit the requirement of the business who are looking to develop simple mobile

applications across all platforms, combined with marketplace/application distribution and

device integration. Hybrid applications will allow businesses to bridge the gaps between

native and mobile web applications [2] [7] [8] [9] [10].

2.3. Cross-Platform Development Tools

Before moving forward to understand the development tools available for the cross-

platform development, it is imperative to understand the current trend of technology

usage. The tradition of using desktop computers is fading away with the rise of the mobile

application. To build a cross-platform application, it is required to understand the degree

of challenges where a single code should be developed which can be utilized or can be

adopted to any native platform or operating system. Android is considered to have the

most extensive OS market share as of 2016 [11]. The complete market share of mobile

operating systems can be picturized in the below pie chart in below Figure 2-5.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

14

Figure 2-5 Global Mobile OS Market share as of 2016 (from [11]).

There is a demand for mobile operating systems. Therefore, technology enterprises, such

as Apple, Microsoft, Nokia, Symbian, and Google are working towards improving the

performance of their respective operating systems. Each enterprise has its own product to

fit in the market. The developers who are looking to build cross-platform mobile

application face challenges because each operating system has its own language, different

APIs, and different IDEs. To overcome this problem, there are cross-platform

development tools available which provide developers with the possibility to develop

source code once and run it across different platforms [12]. The benefits gained by

developers working on cross-platform development tools are:

• Reduced of required development skills: There is reduction of required

programming skills for developers as they will have common programming

language across all platforms.

• Reduction of coding: The source code will be written once and will be compiled

in all platforms. Hence, unlike native, there is reduction of amount of coding.

• Decrement of API knowledge: The API will be used by the selected tool. No

requirement to know API of each OS.

• Greater ease of development: The development will be easier when compared

to the effort required for native development.

2.3.1. The Criteria for Development Tool Selection

The criteria for development tool selection are based on predetermined requirements

which can be decided by comparing all the development tools available in the market.

Later, the selection of the framework can be done by analysing if the frameworks has

fulfilled all predetermined requirements. This way, it helps a developer to understand

which tool will be suitable for their desired goal [12] [13]. Below mentioned

requirements are based on and have been influenced by various resources [2] [7] [8] [9]

[10] [12] [13].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

15

• Platform Support: This criterion examines if the framework supports all major

operating systems. The application developed using this framework should be

successfully deployed across major platforms like iOS, Android and Windows

Phone.

• License and Costs: License and cost are one of the most importance criterion. It

examines if the framework in question is an open source or is there any licensing

cost involved to work on the framework.

• Access to platform-specific features: The framework should have access to

platform specific features like GPS or camera, platform functionalities like

contacts and notifications.

• Look and feel: The appearance of a mobile application is a continuous process

which can be achieved even after the complete development of a functional

application. However, it gives to the developer an added advantage if the

framework inherently supports a native look and feel. Most of the businesses are

seeking native features in their hybrid application.

• Application speed: At the end, consumers are looking for an application which

will have good start-up time with good responsiveness to all application

functionalities.

• Application distribution: The application should be easy to distribute through

application store or platform designated marketplace. It is important as most of

the user feel secure if they have an option to install the application from the official

distribution channel.

• Development Environment: The framework should support good IDEs along

with emulator/simulator, debugger and various other features and functionalities.

• Code Reuse: The more amount of time spent on changes/code rewrite should be

less when compared with implementing same functionalities on different native

platforms. The worse can be a situation where the selected framework does not

stand by its name of cross-platform development tool if the code base cannot be

deployed across all platforms.

• Learning curve: This criterion will examine if there is any requirement of

additional learning of new technologies or programming language.

• Documentation and Tutorials: Detailed documentation with a good number of

tutorials, sample examples, codes along with active framework community play

crucial role while selecting the framework.

2.3.2. Overview of Cross-Platform Development Tools

During the research, the most common and popular frameworks identified were

Appcelerator Titanium, Xamarin, and Apache Cordova. All these frameworks answer the

questions raised and help us to develop a hybrid application for multiple platforms. It is

imperative to look deeply into these frameworks about technical, business and

philosophical aspects so that it helps to understand which framework will suit the

requirement defined by VPS [7] [12] [14] [15].

In this section of the chapter, we will discuss in detail about each mentioned development

tool for selecting one framework to develop our hybrid application for VPS.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

16

Apache Cordova/Adobe PhoneGap

Apache Cordova which is formerly known as PhoneGap is a framework for mobile

application development. Nitobi created this framework, but, later it was acquired by

Adobe Systems in 2011. Adobe systems later released an open source version of the

software with a name Apache Cordova. Cordova was created to help developers to build

mobile applications using web technologies like JavaScript, HTML and CSS rather than

using platform specific programming language [16]. Basically, Cordova helps developers

to wrap applications written using web technologies into the native applications.

Moreover, open-source software is built with the help of many components and

extensions. Cordova is a hybrid application, which means it is a mixture of native and

web-based applications. Cordova renders the UI of the application via a WebView of

device browser whereas web-based applications lacks support of HTML in implementing

some of the functions. Since Cordova is an open-source framework, there are possibilities

for the programmers to develop their own plug-ins. There is no restriction on the usage

of IDE (such as XCode for iOS, Android Studio for Android) to develop an application

using Cordova. Developers are free to use their own IDEs Atom, Sublime, Visual Studio

Code, etc. This feature of the software helps developer to develop the code-base on

multiple platforms rather than restricting them to use specific PC’s operating systems.

There are cases where not all IDE’s are compatible with PC’s OS. The code base

developed using Cordova is open for new changes according to the requirements which

is an advantage as a Cross-Platform development tool [12] [17].

Cordova lacks in the UI quality as the application is rendered on the WebView. The quality

purely depends upon the version of the browser installed in the device. Latest and updated

browser versions provide better quality whereas the lower versions lack in this field.

Different browsers on different platforms have their own limitations which affects the UI

quality. There are security restrictions in place by platforms where some of the native

functionalities cannot be implemented. For example, iOS does not allow Cordova to

access iOS compass which restricts some development projects [17].

Titanium

Titanium framework was launched in 2006 with a beta version excluding Android and

iOS. These two frameworks were added in 2009 and the full version was released.

Applications can be developed using programming languages like JavaScript with

additional support from PHP, Ruby, and Python. Like Cordova, Titanium allows

developers to access native features, UI modules and other optional modules [12] [17].

According to the official document from the company, the re-usability percentage of

code-base across all platforms is around 70-80% [18]. The rendering of the application is

executed natively as most of the application is developed using native code. Titanium is

recommended for building interactive applications. This framework is not suitable for

building application with a heavy amount of graphics. The IDE for Titanium is its own

development studio. There are extensions available for Eclipse IDE. The company claims

that 90% of the native functionalities can be achieved and there is possibility of covering

the remaining 10% for programmers to develop their own native APIs with this

framework [19]. A good proficiency in JavaScript will increase the ease of use of the

framework. Nonetheless, the framework lacks support in the developer’s community. The

number of coders are lesser when compared with other cross-platform development tools.

The official documentation is far from complete and it is not equipped with the right

amount of information. The documentation from the framework does not provide proper

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

17

information if coders wish to develop their own native API to access some restricted

native functionalities. It is also recommended to be aware of the Titanium architecture

before starting development process [12] [17].

Xamarin

Hybrid applications built using Xamarin are purely based on C# and .NET. According to

the official documentation from Xamarin, 75% of the code-base can be shared across all

platforms. If the UI design is built using Xamarin.Forms, the usability of code-base

increases up to 100%. Xamarin is based on open-source Mono .NET framework, which

allows Microsoft to deploy applications across all platforms like iOS, Android, and

Windows Phone. Xamarin further provides two mobile development environments,

Xamarin.iOS (formerly known as MonoTouch), and Xamarin.Android (formerly known

as MonoDroid). Applications can be built using Xamarin’s own IDE which is known as

Xamarin Studio or using Microsoft’s Visual Studio. To keep the application native, the

UI layer is different for every platform, and the UI must be developed using the specific

native API. Xamarin allows programmers to develop an iOS application on Windows

platform using Visual Studio which is an advantage over other development tools. The

IDE of Xamarin is compatible to add additional plug-ins and components. The fallouts of

this framework start from debugging. For example, XCode simulator is required to debug

iOS applications. Further, to design the UI for iOS applications, the XCode’s layout and

storyboard editor are required. Resources, components, and libraries helps developers to

add the required native functionalities in an easier way. However, most of these resources

are not compatible with Xamarin which makes the development task quite tedious. For

example, to implement simple slide menu library into the application, it requires right

amount of code whereas, in other frameworks, they have inbuilt functions or ready-made

templates. Here, the official documentation and online resources lacks behind from other

frameworks [12] [17] [20] [21].

Table 2-1 summarizes and compares frameworks discussed in this section. It starts from

the platform supported by them to the businesses who have adopted these frameworks to

implement their respective hybrid applications.

 PhoneGap Titanium Xamarin

Platform Support
iOS, Android,
Windows,
Blackberry

Android, iOS &
Blackberry

iOS, Android &
Windows

Programming
Language

JavaScript
JavaScript, HTML5,
CSS

C#

Opensource Yes Yes No

UI Web UI Native Native

Web Standard
Support

Yes No No

DOM Support Yes No Yes

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

18

Native Performance No Yes Yes

Access to Device API Limited Full Full

Used By
IBM, Intel, Sony,
Mozilla

Cisco, VMware,
Safegaurd Properties,
Mistubishi Electric

GitHub, Microsoft,
Foursquare, Expensify,
Dow Jones

Table 2-1 Comparison Table: PhoneGap, Titanium, and Xamarin (from [14])

2.3.3. The Selection of Ionic with Apache Cordova

The above overview of top three cross-platform development tools will help us to move

forward selecting one of them to build our hybrid Cloogy application. Going through the

research, we understand that each framework has its own unique advantage and

disadvantage. For example, Cordova provides good access to device APIs across all

platforms along with easy environment setup for the development process. Titanium helps

to build native like application with JavaScript and if developers are comfortable with C#

and .NET framework, Xamarin would be also one good choice to develop hybrid

application. It has also been observed during the research that the cross-platform mobile

application development is dynamic in nature. The rate of new updates is quite high in

this field of mobile computing. One must be updated with all new features and research

which constantly changes with respect to time. Moreover, it is essential to understand that

the overall conclusion to select the framework can be only be based on the subjective

analysis of the tutorial blogs, official webpages of the frameworks and the research

papers. The overview of the frameworks does not include any practical conclusions on

the frameworks. There is no practical implementation of each of the framework to decide

the best possible option to develop Cloogy Hybrid application. Above research

information in section 2.3.2, is collected from the developer’s community, and user

experiences.

The best conclusion could only be drawn from the practical results. However, since the

technology changes every month, it would not be advisable to spend a reasonable amount

of time proving which framework will be best suited for Cloogy hybrid application.

Therefore, based on the research and the results from different authors, and blogs, we can

move forward with our final comparison to select the framework.

Going deep into the world of Apache Cordova ecosystem, we were introduced to wide

range of new frameworks and tools like Ionic, Onsen UI, Telerik platform, App Builder

IDE and more. As we already discussed in previous chapters about hybrid mobile

applications, they are like web applications. Both use the same set of web technologies

like HTML, CSS, and JavaScript. However, the slight difference between hybrid and

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

19

web-based application is in the way they are hosted on a mobile device. Hybrid

application target the WebView which is hosted inside a native container instead of

running on a mobile browser. Cordova provides APIs for accessing device`s

accelerometer, contacts, camera and more. Applications are built using HTML, CSS,

JavaScript which are later packed by Cordova to target platform SDKs. After successful

built, the mobile application run like any kind of native application on the device. In the

later part, we also learn that Cordova is not an application framework. It can be termed

as wrapping framework which can be used to create a hybrid application. The main

functionality of Cordova is that it serves as a layer between JavaScript and the native

functionalities of the mobile device.

On the other hand, Titanium is framework used to create real native applications using

JavaScript code, which is recompiled into native code. When compared to Ionic, Titanium

will create a real native application whereas Ionic creates hybrid application served in

WebView of the device browser. However, Titanium suffers from memory leaks. The

company never fixed this issue, even after several years [12] [17].

It also has been noticed that frameworks like Xamarin and Titanium have limited access

to open source libraries. This way, they utilize platform specific APIs, which will not help

to a great extend to build a single code base [12] [17].

It has also been learned that these frameworks are not suitable for applications with heavy

graphics as the loading time is slighter slower compared to Cordova. Considering the type

of framework and complexities offered by them, the applications built on Xamarin and

Titanium have typically larger size than native ones. According to the below Figure 2-6,

in native application development approach of Xamarin, we can notice that a simple hello

world application can take up to 16MB of space where much of it is associated with

libraries, content, runtime and base class library assemblies [22].

Figure 2-6 Size break of a hello world application developed using Xamarin (adapted from [22]).

Cordova requires much work to make an application look neat, user-friendly and more

native like. To fill this gap, new frameworks have been released into the cross-platform

development market. Some of the popular frameworks which uses Cordova as its cross-

compiler are Ionic, Onsen UI, Famo.us and AppGyyer.

Within this race of popularity, Ionic is emerging as a winner to create native mobile

applications. Unlike Titanium, Ionic framework utilizes AngularJS which is later

wrapped into Cordova framework. This is an easier approach than using Xamarin or

Titanium. Now according to the VPS requirement, the ideal framework for developing

Cloogy prototype would be the one which has a simple approach for development, ease

to develop with good speed and should be a single code base. In this case, Ionic uses the

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

20

power of Angular which is developed by Google, and Cordova by Apache respectively.

The front-end code could be used to deploy on any platform which can adapt to Cordova

features. Regarding the cost of development and the speed, Ionic wins the battle as it is

an open source which means there is no cost involved whereas the discussion is still active

regarding Xamarin as an open-source. It is believed that Xamarin is free along with a

purchase of Visual Studio. The only thing here is that we need to have developers who

are flexible with programming languages [23] [24].

As discussed in the section 2.3.2, debugging is an integral part of any software

development cycle. Researching further about the debugging options, we can understand

that, Xamarin takes more time compared to Ionic. We need to be patient to debug or test

codes in Xamarin whereas Ionic is fast with the help of a ripple emulator. For Xamarin,

pushing out code into an iOS device requires several seconds of compilation time and

further, it takes more time to deploy the application on the device whereas Ionic`s ripple

emulator provides zero-compilation, sub-second feedback times. This feature alone

significantly increased the development speed [15] [25].

Angular from Google is a very popular framework for creating both mobile and web

applications. Features of Angular like extending the syntax of HTML to include

components and data binding gives a free hand to a developer working on a cross platform

application [15] [25].

At last, what is more important for a developer is a great support from the developer

community. No developer is born genius who do not wish to be part of a worldwide

developer community while working on a project. Developer communities help the

developer to grow, share experiences and most important work/fix/contribute to

issues/bugs in the frameworks. It is a great way to be in touch with the world of developers

in the times when technology changes every month, every day or even every minute.

Ionic offers great support for its own services and development tools. Ionic also has the

biggest community in comparison to other frameworks. Ionic benefits are discussed more

in detail in the coming chapters of the thesis [15] [25]. To get an overall decision for the

selection of the framework, it would be good idea to check results from a recent poll that

was consulted from stackshare.com as shown in the below Figure 2-7. The poll provides

results of popularity between Ionic, PhoneGap & Xamarin.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

21

Figure 2-7 Comparison Poll Results between Ionic, PhoneGap & Xamarin as of October 2017 (from [26])

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

22

2.4. Summary

Based on the research results, author’s contributions, research papers, user and developer

communities’ experiences, Ionic could be one of the suitable framework to develop

Cloogy hybrid application. The following are the reasons for Choosing Ionic framework:

• Beautiful front-end framework for developing cross-platform mobile applications

in HTML, JavaScript, and CSS

• Well supported by Apache Cordova and Google’s Angular JS.

• It is an open-source software licensed under MIT.

• The right amount of resources for UI and theme design.

• Supports MVC pattern.

• Suitable for enterprise applications with heavy graphics.

• Code re-usability across all platforms.

• Easy debugging options across all platforms.

• Good worldwide community across the globe.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

23

3. Planning

Project planning is an important and fundamental task. It will help developers to identify

necessary resources, to fulfill project requirements and accomplish goals within the

timeframe available.

Top-down approach is one of the popular and standard approaches for project planning.

Here, project requirements are defined and later these requirements are divided into

smaller tasks/modules. Small modules will help the development team to estimate the

time required to complete the project. This way, the software developers are measured on

the ability to predict the future and be right on their predictions [27]. Project planning

works around two questions and they are as follows:

1. What are the tasks?

2. How long will the tasks take?

By answering the above two questions, we can implement the top-down approach. It

means to break down problems/tasks into smaller tasks to encounter the problem [27].

In this chapter, Section 3.1 presents the initial plan of the project and section 3.2 presents

the final plan of the project in a Gantt Chart using Microsoft Project 2016 software.

3.1. Initial Plan

In this section, the initial plan is presented using Scrum from agile methodology

framework. By following scrum, the inputs were taken from VPS who acts as a product

owner. With the help of the inputs, a product backlog is created as shown in the below

Figure 3-1. The product backlog is a list of required features, functionalities and other

aspects of the hybrid application. After developing the product backlog, a sprint planning

is scheduled with VPS development team and supervisors. In this meeting, sprint backlog

is created by dividing the tasks into smaller modules. And then, the development process

starts with the first module [28].

There is a constant interaction within the VPS development team and with the supervisors

of the organization for which the application is developed. The supervisors/development

team of VPS has the flexibility to request modifications even at the later stages of

development which is quite important to meet expected UI of the Cloogy application in

both Android and iOS. This methodology allows breaking down many requirements into

manageable modules, and thus enables maximum utilization of resources. Therefore,

according to the initial review of the existing Cloogy application both in android and iOS,

we have defined our application development cycle into four main modules.

These stages can be termed as follows:

• Application Requirements.

• Application Design.

• Application Development.

• Application Demonstration.

Based on the above four mentioned stages, the Gantt Chart is prepared to create an initial

plan for the development of the application which is shown below in figure 3-1.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

24

Figure 3-1 Initial Project Plan in a Gantt Chart for Cross Platform Cloogy Application.

3.2. Final Plan

The project was developed according to the initial plan proposed in above figure 3-1. The

final demonstration of the prototype was planned on July 31, 2017, as seen in the above

figure 3-1. However, due to professional commitments of supervisors at VPS, the final

prototype was demonstrated on August 2, 2017, a delay of 2 days from the initial plan.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

25

4. Objectives and Methodologies

This chapter clarifies the goals of the internship and how they are achieved by

understanding the requirements for the development discovered using Agile SDLC

model. These requirements are extracted from the use case scenarios of the existing

Cloogy application. These scenarios describe the usage of the current Cloogy application

available in Android, Windows Phone, and iOS.

The application consists of two active components, the iEnergy3 API, and the mobile

application which acts as an interface to the user.

iEnergy3 API conforms to the RESTful principles of the HTTP protocol. It provides a

friendly, robust and predictable development environment. In this chapter, we will

understand the RESTful principles of HTTP protocols in brief. Also, there will be a

section in this chapter where we will go through iEnergy3 API and its operations.

Moreover, this chapter will provide brief information about a set of systematic methods,

frameworks, programming languages in this project.

Section 4.1 discusses the functional requirements of the project, whereas section 4.3

discusses the non-functional requirements. Section 4.2 presents the use cases based on

the functional requirements discussed in section 4.1. Section 4.4 introduces RESTful web

services, section 4.5 provides an overview of the iEnergy3 platform, and at the end,

section 4.6 gives an overview of the web technologies to be utilized in this project.

4.1. Functional Requirements

Regarding the functionality of the Cloogy application, several use case scenarios have

been identified. These are recognized by analyzing the existing Cloogy native application,

which has been developed separately for Android, Windows Phone and iOS.

The native application of Cloogy is designed to evaluate and measure household energy

consumptions. It allows residents to optimize and reduce monthly bills, without lowering

the comfort level. By analyzing the native application of Cloogy, we defined the below

use cases for our cross-platform prototype. The prototype will be built from the start, by

first implementing the existing native features into the cross-platform prototype.

• The user can monitor the global consumption and the consumption of the

electrical appliances that are connected to the Power Plugs.

• The user can control the electrical appliances by turning them on and off remotely.

• The application eliminates standby consumption by allowing to schedule the

usage time of the appliances.

• The user can check their energy consumption profile.

• It has a built-in feature to present contracted tariff analysis to know if it suits the

profile of the user.

• The user can check consumption reports about how much energy has been saved

and will be saved in future.

• The user can become part of a user`s community which allows them to benchmark

their performance within the network.

• One of the features of the application is that it let the user to define alerts for

unusual consumption.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

26

4.2. Use Cases

Before the actual implementation, it is important to know what are the use cases that we

must implement. Since the application is built from starting, below are the use cases

defined to understand the existing functionalities of the native application. The below use

case illustrated in the figure 4-1 is drawn based on the scenarios projected in section 4.1

Figure 4-1 Use Case Diagram for Cross-Platform Cloogy Application Prototype

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

27

4.2.1. Dashboard

The dashboard is the first interaction area for the user after logging into the application

with valid user credentials. The dashboard includes the most elementary function of the

Cloogy application that is to provide summarized information on what seeks. Therefore,

use case was defined in the below table 4-1 for dashboard module.

Table 4-1Use Case for Dashboard Module

Identifier UC - 01

Name Dashboard Module Management

Actor(s) User

Pre-condition User logs into the application

Post-Condition The user has valid user credentials

Main Flow(s)

1. The user is presented to the dashboard of the

application.

2. The application connects to the iEnergy3 API and

presents total power in use in terms of kilowatt at the top.

At the bottom, it presents currency utilised for today and

for the month.

3. The user has an option to set currency utilisation goal

for the month.

Alternative Flow(s)

1. The user is asked to provide correct user credentials if

enters incorrectly.

2. The can click on register user to create new Cloogy

account.

3. Forget password hyperlink can be clicked if user

forgets the password

4. The application is not able to connect to iEnergy3

API. User is asked to try login in after some time.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

28

4.2.2. Electricity

This is the second tab of the application where the user can view the electricity

consumption details for today, for the week, for the month and the year. Each tab will

have specific information about the current electricity consumption value captured by the

clamp connected to the electricity meter. The consumption values are presented for the

current date with a forecast projecting the consumption value by the end of the day.

Similarly, consumption values for the week, month and year are presented in this module

of the application. Therefore, below table 4-2 was defined for electricity module.

Table 4-2Use Case for Electricity Module

Identifier UC - 02

Name Electricity Module Management

Actor(s) User

Trigger
The 'electricity icon' in the tab menu of application is

selected.

Pre-condition
1. The application has started and is connected to the

iEnergy3 API from the server.

2. The `electricity icon` is active.

Post-Condition The application presents the electricity consumption

for the day, week, month and year.

Main Flow(s)

1. The application presents the user with electricity

consumption details retrieved from iEnergy3 API.

2. The user selects `chart icon` to view the

consumptions in form of a bar chart.

3. The user has an option to view the charts in terms of

now, daily, weekly, monthly and yearly.

4. The user has an option to compare the consumption

values from today`s date with corresponding last week

date in a line chart. Similar comparison can be drawn

for corresponding current value, weeks, month and

year.

5. The user can view the bar chart in terms of kilowatt

consumption or currency consumption for now, today,

week, month and year.

Alternative Flow(s)

The application is not able to connect to the iEnergy3

API to render the charts. Loading spinner is shown

until the connection has not been established with the

API.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

29

4.2.3. Plugs

The plug tab of the application displays a list of devices that are connected to Cloogy

power plugs. All the devices are connected to the power plugs so that the user can manage,

monitor and control the devices remotely with the help of the application. Each device

list has various information regarding energy consumption, schedules of the device, the

history, a toggle button to switch on or off the device, a display of current energy

consumed by the device and the total energy consumed for the day. Therefore, below

table 4-3 was defined for plugs module.

Table 4-3 Use Case for Plugs Module

Identifier UC - 03

Name Plugs Module Management

Actor(s) User

Trigger
The `cloogy power plug icon` in the tab menu of the

application is selected.

Pre-condition
1. The application has started and is connected to the

iEnergy3 API from the server.

2. The `cloogy power plug icon` is active.

Post-Condition
The application presents a list of devices that are

connected to the Cloogy power plugs.

Main Flow(s)

1. The application presents the list of the devices that are

connected to Cloogy power plug from the iEnergy3 API.

2. Each UI card design of plug presents today`s

consumption value in terms of currency and current

power utilised by the device.

3. The user toggles the device from power on to power

off or vice versa.

4. The user views consumption, history, schedule for

each of the devices in the list.

5. The user selects `chart icon` to view the consumptions

for the device in form of a bar chart.

6. The user views the charts in terms of now, daily,

weekly, monthly and yearly.

7. The user compares the consumption values from

today`s date with corresponding last week date in a line

chart. Similar comparison can be drawn for

corresponding current value, weeks, month and year.

8. The user views the bar chart in terms of kilowatt

consumption or currency consumption for now, today,

week, month and year.

9. The user clicks on `history` button which will present

timestamp for the activation (the time when device was

powered on or off).

10.The user clicks on `timer` icon to add future

activation/deactivation schedule for each of the devices

in the list.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

30

11.The user clicks on `edit` icon to change the icon or the

device name on the list.

Alternative Flow(s)
The application is not able to connect to the iEnergy3

API to render the charts. Loading spinner is shown until

the connection has not been established with the API.

4.2.4. Settings

The settings tab of the application is the last tab, where the copyrights and version details

of the application are shown on a list card. The same requirement was implemented in

our hybrid prototype.

4.3. Non-Functional Requirements

Non-functional requirement is a systematic approach to build quality into the software

applications. The applications must exhibit software qualities like performance, security,

maintainability, etc. [29]. Below are the defined non-functional requirements for the

cross-platform Cloogy mobile application prototype.

Performance

If not like a native application, the prototype should be good enough providing no

performance issues.

Maintainability

It should be easier for the developer to make changes to the application in the background

and later, make it available for the users. It should allow developers to maximize

efficiency, reliability and work on new native functionalities.

Security

The application will contain sensitive information about user`s energy consumption

information. The application should be capable of securing the information when

exchanging information, and through terminating the in-active sessions and asking the

user to login again to create a new session.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

31

Usability

According to the defined goals, the hybrid applications should have the same appearance

and behavior of existing native applications of VPS. The user should not get a feeling of

using different application of Cloogy in terms of native functionalities.

Portability

The hybrid code base should allow developers to re-use the code of the framework on

other platforms.

4.4. RESTful Web Services

Before proceeding further, it will be useful to go through basic concepts of RESTful web

services. The front-end hybrid application will be purely based on iEnergy3 API which

will conform to RESTful web services.

REST is defined as an architectural principle which helps developers to design web

services. These web services focus on system resources, which includes addressing of

resource states and transfers over HTTP protocol written in different programming

languages. Over the years, REST has been the front runner in web services. Famous

protocols and standards of REST which are widely used in the industry, are SOAP and

WSDL. These models are simpler in style and widely used by developers [30].

The REST web service follows four basic design principles which are as follows [30]:

• Use HTTP methods explicitly.

• Be stateless.

• Expose directory structure-like URIs.

• Transfer XML, JavaScript Object Notation(JSON), or both.

By following REST, developers need to use HTTP methods in a way that it should be

consistent with the protocol definition. The design principle of REST is based on one-to-

one mapping between CRUD operations and HTTP methods. To create a resource on the

server, developers need to use POST operation. To retrieve a resource from the server,

GET operation should be used. To change the state or update resource, PUT operation

should be utilized. Moreover, to remove or delete a resource, DELETE operation should

be utilized. Together, all the above four operations are known as CRUD operations of

REST principles [30].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

32

4.5. Overview of iEnergy3 Platform

The following architectural diagram of the iEnergy3 platform represents the interaction

between the server with the services channel and the other devices such as iHub, Cloogy,

iMod and Cloogy Home Appliance as shown in the below Figure 4-2.

According to VPS, communications servers are open, standards-based computing

systems that operate as a carrier-grade common platform for a wide range of

communications applications and allow equipment providers to add value at many levels

of the system architecture. The communication server follows HTTP protocol to interact

with the APIs which provides RESTful data service requests to the user interfaces [31].

Figure 4-2 iEnergy3 Platform Architecture (from [31])

The user interfaces include MyData which is a user interface dedicated for domestic

clients where all the data reports about the energy consumption are displayed,

Kisense is more oriented to business clients like buildings, industries etc. to analyses

energy consumption data in real time, providing vital information and knowledge so that

our company’s decision-making concerning energy management is easy and quickly

adapted. and the Back office to the iEnergy3 platform.

The services by the iEnergy3 platform are as follows:

• Data collector – Service responsible for querying the remote devices (hubs) for

historical data and store it on the database

• Configuration Updater – Service responsible for configuring the parameters and

variables on the remote devices

• Firmware updater – Service responsible for updating the firmware (i.e.

software) that runs on the remote devices.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

33

4.5.1. iEnergy3 API

The iEnergy3 API is provided by the iEnergy3 server of VPS to applications for usage.

The API conforms HTTP protocol which helps developers to build a system with machine

friendly, robust, and predictable interface. The data transmitted from the server uses

JSON data format. The server of iEnergy3 of VPS has four main concepts that are central

to data server platform [31]. These are as follows:

• Local: Local correspond to the physical location of the house or building where

the electricity metering hardware is installed.

• Unit: It is the hardware responsible for communicating with the server through a

TCP/IP connection. It is located at user´s residential house and is responsible for

receiving data reading from the devices.

• Device: This is the hardware which is being monitored. Devices read several

parameters starting from current, power, etc. and are responsible for sending the

collected data to the governing unit. Unit can have more than one device

associated with. Devices can be a socket plug which can be used to monitor

consumption of an appliance. It can also be a clamp which can be used to monitor

current on a specific wire. The communication between unit and device can be

wired or wireless.

• Tag: It is responsible for storing data readings of a specific device. There are

devices which measure current and power. For these devices, there will be two

tags associated with, one for current and another for power. Therefore, if a device

has more than one tag, then it can be said that it measures on more than one

parameters.

Most of the operations must be invoked using the HTTPS protocol. Once invoked, an

HTTP authorization header like “Authorization: ISA <session-token>”. The session

token is received as response after the successful session is created by the applications

[31].

Each request to iEnergy3 API gives specific response code in return. Below Table 4-4

lists the possible response code with their meaning.

Table 4-4 Possible Response Codes for a specific request to iEnergy3 API (from [31])

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

34

4.5.2. iEnergy3 API Operations

To perform API operations, we need to understand the basic implementation methods of

RESTful principles, where REST provides a way to access resources from an

environment [32]. In our scenario, if our front-end application needs any of the resources

from iEnergy3 API, then it needs to send a request to the server to access these resources.

To get the resources from the server, let us understand the key elements of RESTful

implementations which are as follows:

• Resources: The first key element is the resource itself. For example, the URL to

get list of devices connected to the power plugs is

http://origin.isaenergy.pt:6600/api/1.4/devices. Now to access device with id

1568 via REST, the application can issue the command as

http://origin.isaenergy.pt:6600/api/1.4/device/1568. This command tells the web

server to provide the details of a device whose ID would be 1568. The successful

response result can be seen in the below Figure 4-3. The result is presented using

POSTMAN which is a REST Client application where API`s can be called and

responses can be seen.

Figure 4-3 Command response in POSTMAN to get the device resource by providing the device ID

• Request Method: These describes what we want to do with the resource. An

application can issue a GET verb to instruct the endpoint it wants to get the data

from the server. However, there are many other CRUD operations available as

discussed in section 4.4 of this chapter. In the above case of the example,

http://origin.isaenergy.pt:6600/api/1.4/device/1568, the application is issuing a

GET method because it wants to get device details from the server for a device

with id 1568. The same can be seen in the Figure 4-3.

http://origin.isaenergy.pt:6600/api/1.4/devices
http://origin.isaenergy.pt:6600/api/1.4/device/1568
http://origin.isaenergy.pt:6600/api/1.4/device/1568

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

35

• Request Headers: These are the additional instructions which may be required to

be sent along with the request. For example, according to the requirement, we

need to describe how to process our message. To achieve this requirement,

Internet media types (IMT) which are previously known as Multipurpose Internet

Mail Extensions(MIME) can be used to make the messages self-descriptive.

Figure 4-4 Snapshot from POSTMAN where request headers has been provided along with the requests.

• Request Body: Here a dataset is sent with the request. For example, according to

the requirement, to create a session on the API, the CreateSession method logs a

user in the API by providing username and password in request body as seen in

the below Figure 4-5.

Figure 4-5 Snapshot of request body provided while creating a session with an API

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

36

• Response Body: This is the main body of the response. For example, after

successful authentication, the server returns a token which is later utilized to query

the server.

Figure 4-6 Response Body Snapshot from POSTMAN after successful creation of session with iEnergy3 API

4.6. The Development Stack

As we move forward understating more about the World Wide Web(WWW), we come

to know that it has a vast amount of resources, which are identified by URI`s and

interlinked by hypertexts links. These web resources are mainly text documents formatted

with Hypertext Markup Language (HTML). Later, these HTMLs are styled with

Cascading Style Sheets (CSS) and can be programmed with JavaScript to enhance the

user experience.

Since the development work is mainly focused on building cross platform mobile

applications sharing the same code base, it was imperative to carry out detailed research

about the selection of the framework. In section 2.3 of the second chapter, we understood

and analyzed different types of development tools available for the cross-platform

development and later, in the chapter, it was decided to develop our application using

Ionic Framework. Going forward, we will discuss the development stack in briefly which

will be utilized for the development process of the application. The selection of the

framework was based on the facts like popularity, community and contributor activities

(open source projects), learning curve and time and effort that is required to build a fully

functional cross platform mobile application.

4.6.1. AngularJS

AngularJS is one of the famous structural framework for developing web applications.

To build single page applications, AngularJS is one of the widely used framework. This

framework is maintained by Google and the community of AngularJS developers. There

are many advantages of using AngularJS like being able to structure the client-side codes

systematically using the Model View Controller (MVC) design architecture, data binding,

dependency injection, HTML extension via directives, etc. From the below figure 4-7,

we can understand that when the user starts the application, the controller selects the

suitable view to perform the requests. These requests invoke the methods created in

service or factory to retrieve data. In the other side, the service or factory calls WCF

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

37

RESTful services using HTTP protocols. After a successful request, the service or factory

provide a response in JSON to the caller which is later visualized in the view. One of

main advantages of using AngularJS is being able to organize the codes in smaller

modules. This enables the developer to maintain the code easily and reuse the same

module in multiple applications by injecting the modules in an application where it is

needed [33].

Figure 4-7 AngularJS MVC design pattern (from [33])

4.6.2. Apache Cordova / PhoneGap

The applications developed using web technologies like HTML, CSS and JavaScript, are

wrapped depending upon the platform with the help of Cordova. The functionalities

implemented in the mobile project using JavaScript and CSS are extended and

implemented in the real mobile device with the help of Cordova. In the end, the final

application can be termed as a hybrid application. It means neither the application will be

truly native or web-based, it will be a mix of both technologies where the layout of the

application is rendered via WebView instead of platforms’ native UI framework. Cordova

is the ecosystem for many new frameworks which helps developers to build hybrid

applications. All these frameworks are built on top of Cordova. For example, frameworks

like Visual Studio, Framework7, Intel XDK, Ionic and many more [16].

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

38

4.6.3. Ionic Framework

When it comes to the development of mobile applications using web technologies like

JavaScript, HTML and CSS, Ionic is one of the popular framework. This framework

provides all the required SDKs for developing a mobile application. Ionic has online

documentation which has sample codes to create mobile application designs. Ionic is

platform independent whereas native application development requires respective

development tools based on the platform. Unlike native, Ionic development process

consumes less time, and have direct access to device APIs in Cordova. To work with

Ionic, it is imperative to have good knowledge of AngularJS framework. Most of the

aspects of development in Ionic deals with AngularJS basic concepts like directives,

controllers and scope [34].

Ionic documentation guide for developers has a good number of templates like the one in

Figures 4-8, which helps developers to customize these templates according to the

requirement. This kind of documentation help developers to spend less time in designing

the application UI and make it easier to develop hybrid applications. Going through the

benefits of this framework, it is imperative to say that it is a 100% free and open source

project which is licensed under MIT [35]. Ionic helps to build cross-platform application

with one single code base. It helps to deploy the application across all major platforms

without any significant changes in the UI. Ionic offers around 70 native device features

starting from Bluetooth, Finger Print Authorization, and more with the help of Cordova

plugins. When it comes to empowering application with efficient accelerated transitions

and touch-optimized gestures, we notice that application built using Ionic do not face any

challenges in terms of speed and performance. As seen in the Figure 4-8, Ionic mobile

application development is clean and simple. It works well on all current mobile devices

and platforms.

Figure 4-8 Card view code snippet from Ionic Documentation (from [24])

One of the main advantages of this framework is that it uses AngularJS MVC architecture

for building single page applications which are optimized for the mobile devices.

Functionalities of the application are implemented using JavaScript along with CSS

components to provide aesthetic look and feel to the UI. To build, test, and deploy the

application, Ionic has its own CLI with simple commands powered by NodeJS.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

39

Compiling and redeploying applications is a tedious task when it comes to web

development. Ionic comes with a feature called live reload, which re-compiles the

application automatically once the application has been saved in the development

environment. Selection of the framework is a matter of choice of the developer and

popular frameworks do have a good developer community. These kind of developer

forums helps developers to grow and share their roadblocks with the other developers.

StackOverflow and GitHub are filled with common questions regarding development.

These two places are the best place to reach out for answers for development roadblocks

and frequent questions. Figure 4-9 summarizes the development community of this

framework.

Figure 4-9 Ionic Developer’s Community at a glance (from [24])

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

41

5. Developed Work

This chapter describes the implementation of the functional requirements defined in the

previous chapter. Moreover, it contains first impressions on the resulting application of

cross platform Cloogy mobile application.

As discussed in earlier chapters, the primary objective of this thesis is to replicate the

existing Cloogy application of VPS in Android, iOS and Windows Phone into a cross

platform mobile application prototype which will work across all platforms having a

single code base.

The development work of the thesis is to be able to leverage all technologies discussed in

chapter 4, to create the Cloogy application prototype.

The application will implement the concept of decoupled architecture where the back-end

and front-end are entirely detached and unaware of each other. They will communicate

with each other using iEnergy3 API which will try to conform to the RESTful web

services, thus providing a machine friendly, robust, and predictable interface to the user.

One important point to remember is that all data will be transmitted using the JSON data

format.

5.1. Project Folder Structure

After setting up the environment for Ionic, below project directory shown in the figure 5-

1 is created by default by the framework. It is essential for a developer to understand the

purpose of every directory and files before starting the development process.

Figure 5-1 Default Project Structure created by Ionic

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

42

The default project directory has many folders starting from hooks, to platforms, plugins,

resources, scss, and at the end, the www folder. Each folder has files associated with its

special purpose. Below is the overview of the folders in the project directory:

• hooks: this folder has the scripts which are triggered during the build process of

the application. These scripts have Cordova commands to build the application.

• platforms: platform specific folders are created inside this folder. If there is any

requirement to change some line of code for a specific platform, that operation

can be performed by searching the specific platform folder. The folder names are

based on the platform such as Android or iOS.

• plugins: this folder stores all Cordova plugins that will be used in the application.

• resources: any resources that are added to the application like icon or splash

screen are stored in this folder.

• scss: Ionic is usually built with sass. This folder will have the sass files.

• www: this is the main folder of the project where 99% of the development work

is carried out. Inside this folder we will have the below sub folders.

o css: files with CSS styling rules are written inside this folder

o img: this folder is responsible for storing the images of the project

o js: will have all JavaScript files.

o lib: library files are placed inside this folder

o templates: this folder will store the HTML files of the project

o index.html: this HTML file is the starting point of our hybrid application.

Along with folders mentioned above, and index.html, there are a few more files that are

created by default by Ionic. These are as follows:

• borerrc: this file is the bower configuration file.

• .editorconfig: is the file responsible for editor configuration

• .gitignore: Some part of the application can be hidden before pushing into Git

repository with the help of this file.

• gulpfile.js: automated tasks can be created in this file with the help of gulp task

manager

• config.xml: this is a xml file for Cordova configurations.

• Package.json: this JSON file has information about application, plugins, and

dependencies that are installed time to time with the help of NPM package

manager.

• package.json contains information about the application, dependencies and

plugins that are installed using NPM package manager.

5.2. Front-End

As discussed earlier in section 5.1 of this chapter, www is the main folder, where 99% of

work is done on this project. It is the folder which will have our front-end code. Figure 5-

2 presents the project folder structure created for our hybrid application for VPS. By going

through the use cases and the default angular project structure, below sub folders are

created under www folder.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

43

Figure 5-2 Project Folder structure of the front-end of the application for VPS.

In this chapter, we will discuss the developed work by breaking down the application in

several parts. To start with, one first aspect of the development is to create our views of

the application.

5.2.1. Application Structure

Index

The index.html file is the main file of the project which will serve different views and will

be the controller above everything else. All JavaScript and CSS files are linked to the

project through index.html file as shown in the below figure 5-3.

The sub folders under www are as

follows:

• controllers

• css

• img

• services

• views

along with index.html, manifest.json

and service-worker.js

In controller folder, we have all the

angular code required for the views

(HTML files) of the application.

The different views are created and

stored in views folder of our project.

Whereas css and img folders contains

the stylesheets and images required for

the application.

The lib folder is responsible for storing

all the plugins which will be utilized.

In the end, the service folder is created

for service or factory files which will

help to get the data via $http requests.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

44

Figure 5-3 Snapshot of the index.html file which includes all JavaScript files and other plugin

The index.html is also responsible linking Cordova and other useful plugins in the project.

There are plugins for rendering charts in the application, improve the UI of the

application, and others which are added to the project as seen the figure 5-3 from code

line number 38. Some of the plugins use CDN to have a secure path like Bootstrap plugin

at code line number 39. The path for the controllers and the services starts from code line

number 59.

Outside

The outside.html file is the boilerplate view for a navigation stack outside of the logged

in area of the application. The code snippet for outside.html can be seen in below figure

5-4.

Figure 5-4 outside.html represents the outside GUI of the application.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

45

Login

The next view of the application is the login.html, which holds the input fields according

to the requirement along with Sign In button and two hyperlinks for forget password and

create a new account as shown in the below figure 5-5.

Figure 5-5 login.html file where the login form is designed for the application

Inside

Once the user logs into the application with successful authentication, the next view of

the application is presented using inside.html file. In this HTML file, the tab UI is created

by utilizing Ionics’s <ion-tab> HTML tags. The tabs that are designed for the application

prototype are presented under <ion-view> tag as shown in the below figure 5-6.

Figure 5-6 inside.html file presenting the tab view of the application.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

46

As discussed in chapter 4, there are four main components of the application which are

dashboard, electricity, plugs and settings. According to the requirement by VPS, these

four components were created using tab-view for each component as shown in the above

figure 5-6 from code line 4 to 18.

Using Slide Box

Once the user logs into the application, four different views should be presented to the

user. These views are:

• Dashboard: first interaction screen for the user providing summarized

information about energy.

• Electricity: screen is presenting energy consumption captured by the clamp.

• Plugs: screen is presenting energy consumption for each of the devices.

• Settings: the last screen of the application presenting the build version along with

copyright information of the application.

The mentioned views should be implemented in a slide-box UI according to the

requirement of the VPS. To accomplish the task, the ion-slide-box directive from Ionic

was implemented in our project. It is a simple directive that helps the developer to create

slide-box UI in a mobile application. This slide box will contain pages that can be changed

by swiping the content screen of the application. The ion-slide-box directive has few

delegate methods for controlling the UI behaviour. The behaviours are listed in the below

table 5-1. To implement the UI design, <ion-slide-box> container and <ion-slide> tag

are placed inside the container view as shown in the below figure 5-8 [36].

Table 5-1 Delegate Methods for ion-slide-box from Ionic Framework (from [36]).

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

47

The ion-slide-box directive is injected into the controller which will help to add additional

delegation methods to our view. In below figure 5-7, the $ionicSlideBoxDelegate is

injected into our application controller to control the UI navigation for the list of devices.

With this, a list of devices connected to the Cloogy power plugs are presented in a slide

UI design. This UI is implemented keeping the requirements as a priority.

Figure 5-7 Implementation of delegate methods in JavaScript file of plugs controller.

To implement the slide box for the view of the application, the device list is created with

the help of <ion-slide-box> along with attributes provided by the framework.

Figure 5-8 Implementation of ion-slide-box in the views of the application

Each attribute helps the developer to control the behaviour as discussed above in this

section of the chapter. The below table 5-2 adapted from the tutorial blog [36], provides

a brief description of each attribute provided by the framework.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

48

Table 5-2 Attributes from ion-slide-box directive by Ionic Framework (from [36]).

5.2.2. Routes

Applications built using Ionic framework have a feature to track navigation history. This

feature helps application to enter and exit views of the application correctly. The

transition between the views adopts platform’s specific transition style. Each platform has

their own UI design and style. Ionic quickly adapt the platform transition style and there

is no requirement to change the code base for specific platforms. Since Ionic is based on

the Angular ecosystem, it uses Angular UI Router module where application interfaces

are organized into various states. Angular UI router has a powerful UI state manager

which helps developers to the bound nested and parallel views. This helps to add more

than one template on a single page. In this feature, it is not compulsory to bound each

state with URL. Additionally, adding more flexibility to routes of the application, data

can be pushed to each state with Angular UI router manager [24].

Usage

In this section of the chapter, we will understand how the router works in our project. As

discussed in the earlier sections, Ionic comes along with AngularUI router, thus we can

directly use $stateProvider and $urlRouterProvider in our config method to make use of

the AngularUI router.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

49

The $stateProvider object features the state method that allows us to define granular

application states that may or may not coincide with changes to the URL. The

$urlRouterProvider is an object that gives you control over how the browser's location is

managed and observed. In the context of the UI Router, $urlRouterProvider is used to

help define a catch-all navigation scenario.

After setting up the workspace, we notice that the first JavaScript file which is created by

Ionic by default is the app.js. However, it is the best practice to create separate JavaScript

files for each view following the MVC architecture by Angular. In our project, the routing

of the application is developed under new JavaScript file called routes.js under the path

www/controllers/routes.js. A config method is created where $stateProvider and

$urlRouterProvider are injected as dependencies as shown in the below figure 5-7.

Figure 5-9 config method where $stateProvider and $urlRouterProvider are injected as dependencies.

The state method of $stateProvider is used to declare the routes. The first argument of

the state method is the name of the state and second argument contains the router

configuration. This router configuration has URL which renders the template when URL

is triggered. Each state of the application is defined by providing a unique name which

informs the framework to find its markup for the view. From the code line number 158,

present in figure 5-9, we see that the outside state is defined by providing the root location

of the URL and a value for the templateUrl property. Angular UI routing provides a

feature called state-centric routing, which helps the application to load the contents of

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

50

outside.html into the ui-view placeholder whenever the user navigates to the root of the

application.

Moving ahead, we observe that in the above code in the figure 5-9, we can see that the

first state of the application is the outside which is the navigation stack outside of the

logged in area of the application prototype. Therefore, in the project, we have the below

main views that were created according to the use cases of the prototype:

• Outside: outside of the logged in area of the application

• Login: allow users to provide their user credentials for authentication

• Inside: inside of the logged in area of the application

Nested States

As discussed in chapter 4, the four main components, dashboard, electricity, plugs, and

settings are to be designed as tab views. Ionic helps in this requirement by providing a

template. The tab view is designed according to the requirement, and VPS provides the

icons used in the tab view. The Ionic template for tab view can be seen in the below figure

5-10.

Figure 5-10 Ready-made tabs template from Ionic Framework (adapted from [24])

To have user to navigate through these tabs, nested states from angular routing can be

applied to the application so that the user can easily navigate from one view to another.

For example, the inside.electricity state is set up to load the markup of the electricity.html

page into the ui-view placeholder. The stance includes a dot(.) between inside and

electricity to denote a parent and child relationship among the states. Beyond doing a

basic operation, ElectricityController is also associated to the view scoped at the level of

the DOM element as shown in the below figure 5-11 that hosts the ui-view directive.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

51

Figure 5-11 Route for electricity screen

To summarize the above-mentioned points, below table 5-3 provides the breakdown of

each part of the state represents.

Table 5-3 Nested states brief description in Angular Routing

Object Key Description

url The URL route that can be accessed via href properties

templateUrl The path to view template HTML file

controller The controller to be used in the view

URL Parameters

Understanding the energy consumption of a residential house is the major outcome of the

Cloogy application. To visualize energy consumptions in forms of charts, present current

energy consumptions and future energy consumption predictions, it requires a unique

technology which will permit to retrieve all important data from a power plug and later

to visualize it in the front end of the application.

Monitoring electricity consumption (logs and the real-time data), check consumption

indicators (performance, daily average, forecast) and other functionalities are the critical

and main functionality of the application. Each hardware associated with Cloogy has its

unique ID. These unique identifiers help developer implement specific functionalities to

each hardware connected to Cloogy. For example, a Cloogy power plug, which is

connected to a residential device will have the following IDs:

• Device ID

• Tag IDs

▪ Active Energy Tag ID

▪ Actuation State Tag ID

▪ Active Power Tag ID

These IDs will help the front-end application to query the server with HTTP requests to

get the data. This data in the form of JSON can later be visualized in the front end to carry

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

52

out all the functionalities. In Angular, $stateParams is an object having a key URL

parameter. This object helps to provide individual parts in navigation URLs to controllers

or services [37]. With this feature of $stateParams, our objective to pass unique actuation

IDs is accomplished. For example, when the user tries to view the consumption details of

water cooler device, it was required to pass the unique actuation ID of this device. This

actuation ID received at the controller as a $stateParams, and will be used to query

iEnergy3 API to get consumption data for the water cooler.

Basic Parameters

To pass actuation IDs to the views, basic parameter method from Angular UI routing is

implemented in our project. URLs can have dynamic parts which are called parameters.

Angular provides various options to define necessary parameters [37]. One of them is

implemented in our application as shown in the below figure 5-13.

Figure 5-12 StateParameters defined for the consumption module screen.

The defined URL `/inside/consumption/: energyID`, contains: energyID which will

capture the energy tag ID for the device. This will be later passed to the controller as an

object as a key, which will be captured by $stateParams service in the controller, and

later could be used to query the server API.

Using Parameters in Links

The URL link along with parameters are created by state name which acts as a function.

Then this URL is passed as an object with parameter names as keys [37]. Executing this

action, a proper href will be generated. For example, using the above state which has

specified: energyID as a parameter (in code line number of 239 in below figure 5-12), a

link is created as shown in the code line number 35 of figure 5-13 below.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

53

Figure 5-13 Usage of parameters as links while in a view of an application

After successful routing, parameter value will be captured and passed through the URL.

The value for: energyID will be the tag ID which will be passed in the URL as shown in

the below figure 5-14.

Figure 5-14 Consumption view of water cooler where we can see value passed as a parameter along with URL.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

54

5.2.3. JavaScript Libraries

As discussed in chapter 3 of the thesis, an initial plan was created for the complete

development process with the help of agile methodology. This approach promotes

adaptive planning with continuous improvements. One of the main ideas behind this

approach was to define project tasks starting with the project goal and then to break down

into smaller planning chunks which will be called modules. Since we had four major

views of the application prototype, the modules were defined as:

▪ Dashboard Module;

▪ Electricity Module;

▪ Plugs Module and;

▪ Setting Module.

Each of the above defined modules was defined separately and developed in different

time interval keeping the functional requirements in place. Each module required specific

JavaScript library to design the UI part of the application. These libraries were very

helpful to visualize the JSON response into the front-end of the application.

Oboe.js

Dashboard module is the first interface with which the user is going to interact after

successfully logging into the prototype. One of the main aspects of this interface was the

ability to display active power received from the clamp. As discussed in the second

chapter of the thesis, a clamp is installed on the electricity meter of the residential house,

which is responsible for gathering and sending data to the transmitter. From there, it is

the transmitter responsibility to forward the gathered data to the hub, which later will

forward the data to the front-end applications via a router.

The dashboard module of the application will have a doughnut pie chart, which will help

to visualize active power data from clamp in real time. To design a doughnut pie chart

and implement JavaScript functionalities to render live data, oboe.js [38] JavaScript

library was utilised. The HTTP response for active power data from iEnegy3 API is a

continuous JSON response that never completes. The response starts as a JSON message

chunk having reading data for active power and the response continues to send new active

power reading as they happen. This kind of handshake of HTTP protocol is designed by

VPS to capture and represent active power to the front-end of Cloogy applications. The

implementation method of oboe.js can be summarized in the below figure 5-15, where

we can see that a live JSON stream response is sent from the message server to the front-

end application.

Figure 5-15 Live data transmitted from message server to the front-end (from [39]).

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

55

To capture live stream received from the clamp, it was required to utilise this new

JavaScript library called oboe.js. This library is an open source JavaScript library which

helps to load JSON streams by combining DOM with speed and fluidity of SAX. It can

parse any JSON into a stream. This library helps developers to start using JSON response

before HTTP response has been completed, or even if it never completes [39]. Hence, in

the end, with the help of Oboe.js, the dashboard module was designed and developed, and

later successfully deployed in both Android and iOS as seen in the below figure 5-16.

Figure 5-16 Dashboard Module from android and iOS respectively.

Chart.js

Both electricity and plugs module require an interface where the user is presented with

consumption data in the form of charts. These charts log real time data in an interval.

These interfaces also have consumption indicators to check the performance, daily

average, forecast and other operations. For example, to view energy consumption by a

residential device like a water cooler, the user can view all the information in the form of

charts for daily, weekly, monthly and yearly. The performance of the device can also be

compared with historical data with the help of line charts.

To design an interface for charts, an open source chart library for JavaScript named as

Chart.js was selected. It is an open source library to visualize, and to animate interactive

graphs or charts. In other words, it is a simple and engaging HTML5 JavaScript chart

library. This library uses HTML5 canvas element to render charts in the applications. It

is a responsive feature which helps to implement this library across systems with different

screen sizes. Moreover, to create a chart in an application, the script for the chart.js library

should be included in index.html which is the route file of the application. Next, by

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

56

providing a single <canvas> node, the charts are rendered into the views of the

application. According to the library documentation, it is used with ES6 modules having

plan JavaScript and module loaders [40] [41].

The below figure 5-17, presents a snapshot of the prototype where the user can monitor

electricity consumption for one of the devices that is connected to the power plug. At the

end part of the charts, there are ecological footprints for carbon, trees and cars.

Figure 5-17 Consumption module of one of the plugs where chart.js has been implemented

In the below figure 5-18, the same functionality of chart.js is implemented in the

electricity module where an user can see the consumptions data received from the clamp

with consumption indicators, and ecological footprints.

Figure 5-18 Consumption module of electricity module where it has been compared with historic data

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

57

Ionic Time and Date Picker

The Cloogy application comes with a feature that permits to schedule operating periods

of any electrical equipment that is connected to the power plug. To mark the time interval

to turn equipment on and off from a distance, it was required to present a calendar UI to

the user. To implement this requirement, ionic-timepicker [42] and ionic-datepicker [43]

bower components were implemented in the design. The plugins were installed into the

project with the help of bower and the path for these plugins were specified in index.html

file. Then the dependencies were injected into the schedule module where the controller

utilized it.

Additional modifications to the time and date picker can be configured in the methods of

config file of the plugin. The new configuration based on the requirement of VPS looks

as below in the figure 5-19.

Figure 5-19 Configuration method for ionic time and date picker

5.2.4. AngularJS Filters

As discussed earlier, the Cloogy application allows users to control and schedule

operating periods of electrical equipment. According to the requirement, in the schedule

module, the user can create, view, edit and delete any schedules for an electrical

equipment, as shown in the below figure 5-20.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

58

Figure 5-20 Create, view, edit and delete operations snippet from schedule module of the application.

The input fields which are mandatory for the user to add a schedule are the following:

▪ State: Whether user wish to turn on or off the electrical equipment,

▪ From & To: The time interval the user wishes to turn on/off the equipment,

▪ Date: The date the user wishes to perform the future actuation schedule, and

▪ Week: Multiple selection options to select the week days for the actuation

schedule.

According to the requirement, the week selection should return the value in binary which

should be later converted into decimal. Then this decimal value along with other input

field values are utilized to query the API to perform schedule actuations on the server.

Similarly, the JSON response to already scheduled actuations of electrical equipment has

a decimal number which represents the weeks selected by the user. To visualize this

information on the front-end, the application should plot this number against a calendar

bitmap which converts the decimal number to binary. Lastly, the binary number is plotted

in a week`s table to provide the output for the week days. The bitmap plotting is shown

in the below figure 5-21.

Figure 5-21 Calendar week bitmap plotting in schedule module

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

59

For example, if the JSON response has a week bitmap number of 62, then the front-end

applications should display Monday, Tuesday, Wednesday, Thursday, and Friday on the

interface. The decimal number 62 is plotted on the map in a way that this decimal number

of 62 is converted into binary which will be 0111110. Next, the desired result will be

obtained if we plot the binary number 0111110 into a week calendar map starting from

Saturday until Sunday, it will give the desired result. According to the requirement, the

1st bit of binary bitmap should start as Sunday, and ends on the 64th bit of bitmap as

Saturday.

To implement the above functionality in angular, custom filters from the framework was

utilized. In our prototype, the week bitmap value rendered on schedule.html as shown

below in figure 5-22, on code line number 63.

Figure 5-22 Usage of Angular Filter in schedule module of the application.

To create bitmap functionality, custom filter from Angular JS has been implemented in

our hybrid application. The steps to create custom filter starts with custom filter name and

a function as input parameters to app.filter(). By this, app.filter() will return a function

which can take various optional input parameters. The custom filter code will return the

expected output in the returned function. In our hybrid application, a custom name `

weekBitConverter ` was created for the week bitmap as shown in the above figure 5-23,

code line number 63. This filter name was passed as input parameter to the app.filter()

which can be seen in the below figure 5-23.

Figure 5-23 Custom application filter for week bit map

Since the app.filter() returns the decimal value, our next step was to convert this decimal

value into the 64 bit binary number. This can be seen in the below figure 5-24.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

60

Figure 5-24 Decimal to binary conversion

After conversion, it was required to plot the binary number to get the selected week days.

All the above functionalities objectives were obtained with the help of angular.filter().

The input parameters are defined in the app.filter() as shown in the below figure 5-25

which will implement our bitmap operations in our application.

Figure 5-25 Custom filter code for the week bit map using angular.filter().

5.3. User Interfaces

The user interface starts with the login page asking for valid API URL along with valid

username and password. Once the user has obtained the required authentication

credentials by registration on the Cloogy application, the user initiates the usage of the

prototype by starting with providing the API URL.

According to the given requirement, the input field to fill up the API URL is designed in

such a way that the user must long press the Cloogy icon designed at the center of the

login page. Once long pressed, it will have a popup input field to provide the API URL

or to change the existing URL. The slow-motion pop up cannot be captured in an image.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

61

However, in the below figure 5-26, we can see the popup hovering at the top of the login

page, while the backside view has been darkened with the styling.

Figure 5-26 Snapshot of the application prototype asking for change API address in both OS (left: Android,

right: iOS).

Once the user has successfully logged into the application, the first screen which will be

presented to the user will be the dashboard, as shown in the below figure 5-27. The

dashboard is responsible for providing an overview of monthly consumption in terms of

currency visualized in a progress bar at the bottom of the application. It also allows thea

user to get a monthly goal for the energy consumption. At the top of the dashboard, the

user can see doughnut pie chart progress bar which streams live active power from the

clamp in terms of a kilowatt.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

62

Figure 5-27 Dashboard module from the application prototype (left: Android, right: iOS).

As discussed earlier in this chapter, there are four main views of the applications which

are dashboard, electricity, plugs, and settings. Moving forward, the user can switch to the

electricity tab, where brief electricity consumptions for a day, week, month and year will

be presented along with current and forecast values. The ecological footprints are also

presented at the bottom of the card as shown in the below figure 5-28.

Figure 5-28 Electricity module from the application prototype (left: Android, right: iOS).

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

63

Both electricity and plugs tabs are designed using <ion-slide-box> directive from Ionic

according to the requirement and the UI is designed using CSS property cards [44] from

the Ionic framework.

As discussed in the section 4.6.3, Ionic provides a good number of UI design templates.

These templates make developer’s work little easier. Card template from Ionic is widely

used in recent years. Cards in the mobile application helps developers to contain and

organize information. There will be always be a good amount of content that developers

intend to display at once, and often the screen size will be small enough to have contents.

In this scenario, cards are helpful UI designs to customize the contents in one place. There

are big companies like Google, Twitter, and Spotify which utilize cards as their design

patterns. Cards helps to fit the same amount of information across all types of devices

with different screen sizes. Cards provides useful features like animation, more control

over the native functionalities, and are flexible in nature. In our hybrid prototype, cards

are placed in a slide-box, where users should swipe the cards from left to right, or vice

versa [44].

Since our requirement was to build a cross platform application, it was expected that there

might be challenges making the user interface responsive across all platforms. There were

also little deviations seen in different versions of the Android, where the UI does not

follow CSS properties in older versions of Android older than 4.0. To make the UI more

responsive, it was imperative to use CSS Flexbox property which is the new layout mode

in CSS3. The usage of flexbox helps HTML elements to adapt if there is any change in

the screen size. Flexbox accommodates the page layout according to the different screen

sizes of different devices. The flex container’s margins collapse with margins of its

contents when there is any change is the page layout of the device. However, to start

implementing the technology, the developer should start designing the UI by containers.

To implement flexbox in our design, it is imperative to start flexbox properties with a flex

container and its items. The flex container is declared having the display property of an

element. The display property can be set to flex or inline-flex. After the container, the next

task will be to define the properties of the items inside container [45] [46]. In the below

figure 5-29, the justify-content property at the code line number 261, horizontally aligns

the flexible container`s items when the items do not use all the available space on the

main-axis of the mobile device. Similarly, the other property align-items at the code line

number 260, vertically aligns the flexible container`s item when the items designed do

not use all the available space on the cross-axis of the mobile device.

Figure 5-29 Code snippet of implementation of flex container property of CSS3

The below figure 5-30 provides a summary of the functionalities that the prototype offers

in plugs module. Plugs modules display the list of devices that are connected to the

Cloogy power plugs in a residential house. With the help of this prototype, the user can

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

64

turn on or off the power of the device from a remote location along with creating future

actuation schedules, viewing the actuation history log.

Figure 5-30 Different functionalities snapshot of plugs module from iOS

In plugs module, the user can view plug history, view energy consumption, schedule

actuation operations, and change the name of the power plug along with the icon as seen

in the above figure 5-30. The energy consumption for plugs will have indicators providing

performance report in bar/line charts as shown in the below figure 5-31.

Figure 5-31 Snapshot from iOS where Consumption module for electricity and plugs is presented respectively.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

65

6. Conclusions

This chapter discusses the conclusion of the thesis, focusing on strengths and limitations.

The chapter is about the outcome of the thesis objectives and the results are analyzed in

detail.

This chapter starts Section 6.1 with project final results. Section 6.2 will describe the

strengths of the work, stressing what sets it apart from the other approaches and

demonstrating how the initial problem is currently solved. Section 6.3 discusses few

problems encountered during the development phase and at the end, section 6.4 provides

a brief overview of improvements required in the project by providing a proposal for what

should be the following steps for the project and what should be achieved in the future.

6.1. Results

Keeping the requirement of the project as top priority, the technical and implementation

of the prototype has proven to achieve satisfactory results. With minor glitches at the end

of the deployment, a successful prototype for Cloogy was built and deployed in iOS and

Android.

The objectives defined by VPS at the beginning of the internship were accomplished. The

first objective of this thesis was to study and research about the best possible solution for

the cross-platform Cloogy application. To accomplish this task, different cross-platform

development tools were analyzed by going through the framework documentations, user

and developer experiences, online community, ease of access to the online components,

plug-ins and support for the development. Simple prototypes were built to test the

framework. The frameworks which were tested with simple prototypes were Meteor,

React Native, Xamarin with Visual Studio 2015, Appcelerator Titanium studio and at the

end, Ionic with Apache Cordova. The practical test results of the prototype were shared

and discussed with VPS. Based on the test results, the Ionic framework was selected.

The second objective was to a develop cross-platform Cloogy prototype with single code-

base which was accomplished using the Ionic framework. Finally, the last objective was

to maintain the similar GUI in Android, and iOS. This objective was accomplished by

successfully built the application to Android, and iOS. The built application was

successfully deployed in both emulators and real devices. There was pitfall while

deploying into Windows Phone. This will be discussed in the later section 6.3 of this

chapter.

6.2. Strengths

Following the rapid growth in the field of mobile application development, there has been

the urgency of having the best feasible development option for mobile application in a

quick time and keeping the budget. Today, each organization is looking for moving their

solutions into mobile applications. It has become a `must have` element for every

organization, regardless of its size. It is crucial that the mobile application supports across

all platforms. With limited time and budget, Ionic turns out to be a very good choice.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

66

AngularJS is the backbone of Ionic. Therefore, to build a robust hybrid application with

Ionic, it requires proper in-depth knowledge of AngularJS framework. For developers

who are good with Angular, will be comfortable creating fully cross-platform hybrid

applications. The code will be single code-base which will run across all platforms.

This cross-platform prototype of Cloogy was developed using the first version of Ionic

framework along with AngularJS 1.4 and Apache Cordova to provide the native part of

the application. When we think of building a cross-platform application, we face

challenges regarding lack of mobile UI set of components, due to the singularities of each

platforms whether it is iOS or Android or even if it is to be deployed in Windows phone.

For instance, Android devices have tabs designed at the top of the screen. However,

devices running on iOS, the tabs are placed in the opposite way. This is one of the example

where Ionic counter this problem solution by providing single code base. There is no

requirement to tweak the code base for platform specific UI design. The framework

adapts by itself when deployed in the specific platform. Other frameworks do lack in these

little features. Ionic in the background, takes care of all the little differences that platforms

have between each other. Alternatively, all other frameworks do not bring such full front-

end solutions when compared with Ionic.

Considering all the requirements of the enterprise starting from keeping the Cloogy UI in

place, cost-efficiency, flexibility and one of the most important code reusability, Ionic

fitted the choice. When tested with other well-known cross platform frameworks like

Xamarin and Titanium, Ionic emerged as a winner when compared with open source

libraries, using platform specific APIs, usage of heavy graphics, application loading time

etc. Considering other factors like type and complexity, applications built on Xamarin

and Titanium are typically more substantial than the native ones. One of the major factor

for selecting the Ionic, was that it is a completely free and open source and it has beautiful

UI that is very easy to customize for a developer who has robust web development skill

set. These functionalities easy integrate with native functionalities with the aid of

Cordova. As discussed in Section 4.6.3, Ionic is an open sourced framework which is

licensed under MIT. This license grant permission, free of charge, to any developer to

obtain the copy of the software without any restrictions [35] [24]. Keeping frameworks

as open source helps to bring thousands of developers to work on the software which not

only improves the framework, but also fixes minor challenges faced by the framework.

Ionic has a simple approach to the development process. The CLI of the framework helps

developers to perform application related tasks like running, debugging, and packaging

the application with simpler commands. The team behind Ionic is closely working on

building its own IDE which will help developers to create applications by visually

dragging and dropping native functionalities [24].

There are times in the development process, when a smallest coding error can take whole

day fixing it. This situation may arise when there isn´t sufficient documentation or forums

around the internet about the framework where developer look for help. This kind of

situation was very rare with Ionic as it provides very detailed developer friendly

documentation with tutorials across the internet to get started. Ionic also hosts different

developer forums like in Stack Overflow, Ionic forums, Slack [47] where all the coders

around the world gather in one place just to fix one bug on their codes. Cordova itself has

a great community for developers and plugins which helps the coders in great extend to

access native functionalities of platform on which they wish to run the application. Along

with Cordova, Angular itself is support By Google and is also considered to be most

popular single page application framework.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

67

Setting up the development environment is one of the tedious tasks, but in the case of

Ionic, its CLI allows developers to set up and test on any platform with quick, and simple

commands. About the UI design which is one of the important factors in this thesis, Ionic

is helpful as it is pre-loaded with easy-to-customize UI components, where most of the

mobile application`s elementary things are included in CSS and JS components. With this

feature, it consumes less time, resource and effort when compared to the other

frameworks.

6.3. Limitations

Though there are new tools available in the development world for creating native like

cross platform applications, the current state of having perfect cross platform application

is far from complete. Since user interface(UI) and the experience design (UX) of iOS and

Android are entirely different from each other, it is not an easy task to create an uniform

GUI wrapper on top of it. If there is a requirement with does not fit with the framework

vision of development, then it requires much effort to implement and write specific code.

By analyzing the limitations encountered during the development of the cross-platform

application using Ionic, we notice that some of the JavaScript libraries do not support

Android versions which are lower than 4.0. This limitation is for the phones which runs

older versions of browsers, because they cannot support new JavaScript libraries. As

already mentioned in Section 2.2.3, Cordova packages the web application in a device

installer format and runs the application in the WebView of the phone’s browser. The

WebView runs in a full-screen mode inside the native container of the device. Therefore,

it is imperative to have the browser updated so that new libraries of web technologies can

be implemented in the hybrid application. Ionic was always focused on building for

modern web standards and modern mobile devices. Thus, for Android, Ionic supports

from Android 4.1 and up, and for iOS, it supports iOS7 and up.

There is a workaround to fix the above encountered limitation by adding an additional

plugin called crosswalk [48]. It is a plugin by Cordova where the application starts using

crosswalk WebView instead of mobile device`s WebView. However, there are chances of

increase in the memory footprint, and increase in the size of the application which is not

advisable.

Since Ionic also supports windows phone, the. appxupload file was built successfully for

the window. However, the application was not deployed on both emulator and real device

due to security restrictions by Microsoft. While deploying the application, it gives the

below runtime error

“0x800c001c - JavaScript runtime error: Unable to add dynamic content”

It is a security feature that Windows runtime gives us if we dynamically try to inject

content into our HTML. The run time error informs that third party libraries are not

allowed to be executed in windows phone environment. It is being restricted by Microsoft

to enhance the security feature of the windows phone operating system. This security

feature blocks properties like innerHTML and outerHTML which may lead to unsafe

handling of untrusted data. This kind of blockade are categorized under common security

issues by Microsoft. This limitation has a workaround by adding a JavaScript file called

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

68

winstore-jscompat.js [49] by Microsoft Open Technologies. This JavaScript library

allows to run code lines are flagged as unsafe by Microsoft.

There are security rules in place where it blocks unwanted access to window runtime

whenever the application has run a malicious script. It has been observed that Windows

store applications developed using AngularJS in Visual Studio IDE returns runtime

errors. This runtime error informs developers that it cannot add inject dynamic contents

which might be unsafe. To unblock these runtime errors, Microsoft Open Technologies

(MS Open Tech) has released the JavaScript Dynamic Content for applications developed

for Windows phone environment. It helps to relax the security checks performed by the

Windows security model with a minor impact on the performance of the application. The

performance of the application depends upon specific usage, time, and frequency.

However, it does achieve the fundamental goals set by Microsoft Windows phone

development environment [49].

6.4. Future Work

Finally, this thesis is intended to create a cross platform for Cloogy using Ionic

framework. However, it does not rule out the possibility of creating a hybrid application

of Cloogy with other cross-platform frameworks available. Ionic was chosen considering

the time, and budget factors. Furthermore, other frameworks may provide other fruitful

results with good native functionalities in the hybrid frameworks.

Nevertheless, taking Ionic as our cross-platform development framework, there are

specific areas where there is room for improvement starting with UI design of the

application. The cross-platform prototype of Cloogy was developed independently

without any references from the existing Cloogy code base for Android, iOS and

Windows phone. UI design of any mobile application developed using native or hybrid

approach will always have some scope of improvement. Therefore, the UI design of

Cloogy hybrid prototype can be improved if well-paid libraries are utilized as they were

used in the native approach of Cloogy.

Registering new user and generating new password functionalities from the existing

Cloogy application was not implemented as this is only a prototype for the enterprise to

examine the possibility of having a cross-platform application.

There can be minor bugs when the application is deployed in real device especially with

the JavaScript Libraries. According to VPS, the existing native functionalities uses paid

libraries like Kendo UI or d3.js, whereas in this prototype, free, open-source libraries like

chart.js, angular charts have been utilized for some of the modules where energy

consumptions are visualized in form of charts. Hence, if enterprise agrees to move

forward with Ionic to develop the cross-platform application, it would be recommended

to use the paid versions libraries which enterprise is already using for their other software

solutions.

Finally, the prototype code base cannot be termed as an optimal code base for a cross-

platform since this is being developed with minimal experience of web technologies

programming languages. There is always a scope of improvement in the future. The

current code base was developed to have a prototype which will help the enterprise to

examine the possibility of implementing Cloogy as a hybrid cross-platform application.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

69

Bibliography

[1] R. Patil, "Pros and Cons of Cross-Platform Mobile Application Development," InfoQ, 13 Sep 2016.

[Online]. Available: https://www.infoq.com/articles/mobile-cross-platform-app-development.

[2] M. P. C. Ketan Anant More, "Native Vs Hybrid Apps," International Journal of Current Trends in

Engineering & Research, vol. 2, June 2016.

[3] W. Jobe, "Native vs Mobile Web Apps," International Journal of Interactive Mobile Technologies,

vol. 7, no. 4, p. 6, November 2013.

[4] Cloogy, "CLoogy - Smart Living," Virtual Power Solutions, [Online]. Available:

https://www.cloogy.pt/en.

[5] J. Wiken, "Figure 1 - Native apps, mobile websites, and hybrid app architectures compared side by

side.," 15 April 2015. [Online]. Available: https://dzone.com/articles/three-types-mobile-

experiences.

[6] J. Wilken, "The Three Types of Mobile Experiences," 15 April 2015. [Online]. Available:

https://dzone.com/articles/three-types-mobile-experiences.

[7] MRC - Michaels, Rose & Cole Ltd, "Why businesses should think twice before building native

mobile applications," Native Mobile Applications : The wrong choice for business?, pp. 1-11.

[8] Nielsen Norman Group, Native, Web and Hybrid Apps, 2013.

[9] P. Cho, "The Benefits of Native vs. Hybrid Mobile Apps," 3 August 2015. [Online]. Available:

https://www.phase2technology.com/blog/the-benefits-of-native-vs-hybrid-mobile-apps/.

[10] F. M. K. &. J. Jahid, "Comparing native and Hybrid Applications with focus on Features," Faculty

of Computing, Blekinge Institute of Technology, Sweden.

[11] WaveMaker, "What is cross-platform mobile application development?," [Online]. Available:

http://www.wavemaker.com/cross-platform-mobile-app-development-tool/.

[12] I. S. A. C. Manuel Palmeri, "Comparison of Cross-Platform Mobile Development Tools," 16th

International Conference on Intelligence in Next Generation Networks, no. 12, pp. 179-186, 2012.

[13] S. Amatya, "Cross-Platform Mobile Development," Department of Computer Science, Linnaeus

University, Sweden, 2013.

[14] C. Infotech, "PhoneGap or Titanium or Xamarin - Which Cross-Platform Framework Should You

Choose?," [Online]. Available: http://www.cygnet-infotech.com/blog/phonegap-or-titanium-or-

xamarin-which-cross-platform-should-you-choose.

[15] M. Rajput, "Why You Should Choose Ionic Framework To Build Your Next Mobile App?," 17

October 2016. [Online]. Available: http://www.mindinventory.com/blog/why-you-should-choose-

ionic-framework-to-build-your-next-mobile-app/.

[16] Wikipedia, "Apache Cordova," [Online]. Available: https://en.wikipedia.org/wiki/Apache_Cordova.

[Accessed 20 October 2017].

[17] E. V. Alireza Pazirandeh, "Evaluation of Cross-Platform Tools for Mobile Development,"

Gothenburg, 2013.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

70

[18] imgZine, "On its Titanium-powered app platform, imgZine lets publishers and corporations build

white-label Real Time Social Magazines that can increase readership by 400%," Case Study :

imgZine, pp. 1-6.

[19] Appcelerator Titanium, "Axway Appcelerator Blog," [Online]. Available:

https://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/. [Accessed 29

October 2017].

[20] Microsoft, "Xamarin Platform," [Online]. Available: https://www.xamarin.com/platform. [Accessed

29 October 2017].

[21] estaun.net, "Some thoughts after (almost) a year of real Xamarin use," 4 April 2014. [Online].

Available: http://www.estaun.net/blog/some-thoughts-after-almost-a-year-of-real-xamarin-use/.

[22] altexsoft, "The Good and The Bad of Xamarin Mobile Development," 26 June 2017. [Online].

Available: https://www.altexsoft.com/blog/mobile/the-good-and-the-bad-of-xamarin-mobile-

development/.

[23] StackOverflow, "Is Xamarin free in Visual Studio 2015?," [Online]. Available:

https://stackoverflow.com/questions/30313302/is-xamarin-free-in-visual-studio-2015. [Accessed 29

October 2017].

[24] "Ionic Framework," [Online]. Available: http://ionicframework.com/.

[25] L. P. Richardson, "Xamarin vs Ionic: A Mobile, Cross Platform, Shootout," 28 March 2017. [Online].

Available: https://www.codeproject.com/Articles/1079101/Xamarin-vs-Ionic-A-Mobile-Cross-

Platform-Shootout.

[26] stackshare, "Stackshare: Ionic vs. PhoneGap vs. Xamarin," 03 March 2017. [Online]. Available:

https://stackshare.io/stackups/xamarin-vs-phonegap-vs-ionic.

[27] A. Makar, "Top-Down vs. Bottom-Up Project Management Strategies," 27 January 2015. [Online].

Available: https://www.liquidplanner.com/blog/how-long-is-that-going-to-take-top-down-vs-

bottom-up-strategies/.

[28] H. Kniberg, Scrum and XP from the Trenches, InfoQ Enterprise Software Development Series, 2007,

p. 142.

[29] B. A. N. E. Y. J. M. Lawrence Chung, Non-Functional Requirements in Software Engineering, vol.

5, Sringer US, 2000.

[30] A. Rodriguez, "RESTful Web services: The basics," 06 November 2008. [Online]. Available:

https://www.ibm.com/developerworks/library/ws-restful/index.html.

[31] Virtual Power Solutions, "iEnergy3 - API Data Provisioning," Virtual Power Solutions, Coimbra,

2015.

[32] guru99, "RESTful Web Services," [Online]. Available: https://www.guru99.com/restful-web-

services.html.

[33] W. Cheung, "Angular Single-Page Applications - Cool Privilege Control System," 29 March 2016.

[Online]. Available: https://www.codeproject.com/articles/1088570/angular-single-page-

applications-cool-privilege-co.

[34] A. G. H. Arush Gupta, "Hybrid Application Development using Ionic Framework & AngularJS,"

International Journal of Innovative Research in Computer Science & Technology (IJIRCST), vol. IV,

no. 2, pp. 62-64, 2016.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

71

[35] Open Source Initiative, "The MIT License," [Online]. Available:

https://opensource.org/licenses/MIT. [Accessed 20 October 2017].

[36] TutorialPoints, "Ionic - Environment Setup," [Online]. Available:

https://www.tutorialspoint.com/ionic/ionic_environment_setup.htm.

[37] G. -. A. J. -. A. UI, "URL Routing," [Online]. Available: https://github.com/angular-ui/ui-

router/wiki/URL-Routing#url-parameters.

[38] J. Higson, "Oboe.js - GitHub," [Online]. Available: https://github.com/jimhigson/oboe.js.

[39] J. Higson, "Why Oboe.js?," [Online]. Available: http://oboejs.com/why.

[40] "Chart JS - GitHub," [Online]. Available: https://github.com/chartjs.

[41] "Chart.js Official Documentation," [Online]. Available: http://www.chartjs.org/docs/latest/getting-

started/usage.html.

[42] R. Patlolla, "Ionic Timepicker," [Online]. Available: https://github.com/rajeshwarpatlolla/ionic-

timepicker.

[43] R. Patlolla, "Ionic Datepicker," [Online]. Available: https://github.com/rajeshwarpatlolla/ionic-

datepicker.

[44] I. Framework, "Version 1 CSS layouts of Ionic Framework," [Online]. Available:

http://ionicframework.com/docs/v1/components/#cards.

[45] C. Coyier, "A Complete Guide to Flexbox," 20 July 2017. [Online]. Available: https://css-

tricks.com/snippets/css/a-guide-to-flexbox/.

[46] w3schools, "CSS3 Flexible Box," [Online]. Available:

https://www.w3schools.com/css/css3_flexbox.asp.

[47] Slack, "Team Messaging Group for Ionic Developers," [Online]. Available: www.slack.com.

[48] Cordova, "cordova-plugin-crosswalk-webview," [Online]. Available: https://github.com/crosswalk-

project/cordova-plugin-crosswalk-webview.

[49] Microsoft, "JavaScript Dynamic Content shim for Windows Store apps," [Online]. Available:

https://github.com/Microsoft/winstore-jscompat.

[50] Linkedin, "Virtual Power Solutions," 2015. [Online]. Available:

https://www.linkedin.com/company/virtual-power-solutions.

[51] Anesco, "Anesco partners with Virtual Power Solutions to offer Smart Microgrid Solutions," 4 June

2015. [Online]. Available: http://anesco.co.uk/anesco-partners-with-virtual-power-solutions-to-

offer-smart-microgrid-solutions/.

[52] vividus, "Benefits of Mobile Apps," [Online]. Available: http://vividus.com.au/insights/benefits-of-

mobile-apps/.

[53] Tony, "What are the advantages of hybrid apps for your enterprise," [Online]. Available:

https://fliplet.com/blog/advantages-of-hybrid-apps/#.

[54] Wikipedia, "Non-functional requirement," [Online]. Available: https://en.wikipedia.org/wiki/Non-

functional_requirement.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

72

[55] R. T. Fielding, "Architectural Styles and the Design of Network-based Software Architectures,"

UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

[56] "w3schools," [Online]. Available: https://www.w3schools.com/.

[57] AngularJS, "AngularJS API Docs," [Online]. Available: https://docs.angularjs.org/api.

[58] Prat, "codecondo.com," 10 May 2016. [Online]. Available: http://codecondo.com/9-cross-platform-

mobile-development-tools-technologies-and-platforms/.

[59] J. Bristowe, "What is a Hybrid Mobile App?," 25 March 2015. [Online]. Available:

http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

73

Appendix A: Developers Manual

Installation

This Cloogy cross-platform prototype is built using Ionic Framework. To install and run

Ionic on your machine, there are few prerequisites that you should have in your machine

(system) before you start installing Ionic Framework. The prerequisites are:

• NodeJS: This is the base platform needed to create mobile apps using Ionic.

• Android SDK: If you wish to deploy and test the application android, then you

should have Android SDK setup on your machine.

• Xcode: If the user wishes to deploy and test this app in iOS, then you should

have XCode setup on your machine.

After successful installation of the prerequisites, then we can move forward and start

installing Ionic along with Cordova. It is required to have the below-mentioned versions

for installations without any runtime error:

Cordova CLI: 7.0.1

Gulp version: CLI version 3.9.1

Gulp local:

Ionic CLI Version: 2.1.4

Ionic App Lib Version: 2.1.2

OS: Windows 8.1

Node Version: v7.0.0

Open the command window to install Cordova and Ionic by providing the below

command

➢ npm install -g cordova ionic

Once we have installed Cordova along with Ionic, we can start developing new

application by utilizing ready-made templates from Ionic using the command in the below

figure A-1.

Figure A-1 Ionic Commands to install default templates

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

74

If the user wishes to run the existing ionic project, then you just need to give the below

commands to run the application

➢ cd projectName

➢ ionic serve

After the user has provided the ionic serve command, the project will be hosted your

localhost with port 8100.

It is recommended to install Ionic CLI version 2.1.4 to access the below commands.

Newer version of CLI may have a different set of commands. If the user wish to deploy

the application for android and iOS, then please follow the below commands:

iOS

➢ cd projectName

➢ ionic platform add ios

➢ ionic build ios

➢ ionic emulate ios [to run on emulator]

➢ ionic run ios [to run on real device]

Android

➢ cd projectName

➢ ionic platform add android

➢ ionic build android

➢ ionic emulate ios [to run on emulator]

➢ ionic run android [to run on real device]

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

75

Appendix B: User Manual

Introduction

The Cloogy cross-platform prototype mobile application is developed to help us to

understand the feasibility of having a hybrid application with a single code base that can

be deployed across all platforms of mobile OS.

The first version of the application can successfully be deployed in iOS and Android.

After installing the Cloogy application, the user will be able to:

• View active power value on the dashboard

• Set monthly goals

• View electricity consumptions for a day, week, month and year which can also

be viewed in form of bar charts.

• Compare the electricity consumptions in the form of line charts

• View device lists which are connected to the power plugs

• View consumption, perform actuation schedules, view history and edit the

power plugs information.

Login

Before using this prototype, the user should have a valid username and password for

Cloogy along with the API URL.

Once you have obtained the above required information, the user should follow the below

steps.

➢ Long press on the Cloogy icon on the login page of the application to change

the API address [if required] as shown in the below figure B-1.

 Figure B-1 Android(left) and iOS(right) login screen snapshot

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

76

➢ After setting the API address, please provide valid username and password

to login into the application.

Usage Overview

This hybrid Cloogy prototype works like the existing Cloogy application available in

Android, Windows Phone, and iOS, as the main goal was to retain the same functionalities

along with GUI.

There are three main tabs in this application which are as shown below for Android and

iOS.

Figure B-2: Android(up) and iOS(down) usage overview of dashboard(left), electricity(centre), and

plugs(right) modules.

Study and Development of Cross-Platform Cloogy Mobile Application for VPS

77

Use Cases

Using this prototype, there are four main use cases in this mobile application. These are:

Dashboard

In the dashboard, the user is presented with the active power information along with

monthly consumption details. The user has an option to change the monthly goal by

clicking on the green flag on the top of the monthly consumption progress bar.

Electricity

In the electricity tab, the user can view electricity consumption for a day, week, month

and year. By clicking on the graph icon , the user can view consumptions in form of

charts.

Plugs

In the plugs tab, the user can view consumptions , schedule actuations (create, edit,

view, and delete) , edit plug icons and view history .

In the front of the plug tab, the user can toggle the power button to

turn on or off the device from the application.

Settings

The last tab which is the settings tab provides an overview information about the

prototype along with the copyright information. In the end, if the user wishes to logout of

the application, he/she may do so by clicking on the logout button through the setting

tabs.

