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How the brain selects one action among multiple alternatives is

a central question of neuroscience. An influential model is that

action preparation and selection arise from subthreshold

activation of the very neurons encoding the action. Recent

work, however, shows a much greater diversity of decision-

related and action-related signals coexisting with other signals

in populations of motor and parietal cortical neurons. We

discuss how such distributed signals might be decoded by

biologically plausible mechanisms. We also discuss how

neurons within cortical circuits might interact with each other

during action selection and preparation and how recurrent

network models can help to reveal dynamical principles

underlying cortical computation.
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Introduction
How the brain decides to select an action among multiple

alternatives is a central question of neuroscience. As far as

a decision entails the selection of an action, decisions are

tightly linked to action preparation. Evidence favors the

idea that these processes occur in parallel and might share

neural substrates: multiple potential actions are simulta-

neously ‘prepared’ in motor related areas while an action

is being selected. Selection of actions may be performed

through competition among neurons preparing for avail-

able actions [1–3]. Thus, the study of the action prepara-

tion process will help to advance our understanding of

decision-making and vice versa.

The field has made much progress in understanding

single neuron response properties in different behavioral

paradigms in different brain areas. But we still lack an

understanding of how populations of neurons within and
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across circuits act together to perform the computations

required for a decision. Recent studies have highlighted

the distributed and mixed nature of the representation of

decision-related and action-related signals within neural

populations. This prompts the question of how interac-

tions between these neurons can perform circuit compu-

tations and how the distributed signals can be decoded in

downstream areas. Here, we review recent studies addres-

sing these questions and other steps toward elucidating

the computations and circuit dynamics underlying deci-

sion-making.

Although the processes of decision-making and action

preparation are thought to take place at multiple cortical

and subcortical levels, including the basal ganglia, and

superior colliculus [2,4], here we focus mainly on cortical

areas, namely primary motor and higher motor cortices,

including the frontal eye fields in the primate prefrontal

cortex, and parietal association cortex.

Classical view of action preparation and
decision-making
One old and influential hypothesis for the neural mech-

anism of action preparation is that it simply involves

moderate pre-activation of the same neurons that are

responsible for execution of the action being consid-

ered or prepared. This view is consistent with the

observation that the level of activation during prepara-

tion is lower than required for actually executing the

actions and is positively correlated with how quickly an

animal responds to a cue to initiate the action [5,6].

Extending this hypothesis, action selection or decision-

making is performed through ‘competition’  between

neurons responsible for preparing the available actions

[1]. Factors influencing a choice, such as sensory evi-

dence in the case of perceptual decision or the value of

options in the case of value-based decision, modulate

the subthreshold activity and thereby bias the final

choice. The action associated with most active neurons

at the time of reporting a choice will be the selected

action.

Notably, in a task where a subject is free to choose when

ready, ‘pre-activation’ signals can indicate not only what

action to be chosen but also when. A neuron preferring

the eventually chosen action appears to gradually increase

its activity at subthreshold level during decision period

and the activity reaches a constant level of activation just

before the action [2]. Such ‘ramp-to-threshold’ activity

has been seen in several species and contexts, including
www.sciencedirect.com
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timing behavior [7], proactive movement in response to

sensory stimuli [8], and giving up waiting in a waiting task

[9��].

In some sense, the level of activity of ramp-to-threshold

neurons dynamically reflects how ‘close’ the animal is to

executing the action. But in a task where the sensory

accumulation and movement preparation were dissociat-

ed, the activity of many neurons in lateral intraparietal

area (LIP) reflected sensory accumulation more so than

motor preparation [10]. The interpretation of what exact-

ly these neurons encode (e.g., movement intention/prep-

aration, sensory accumulation or saliency of the stimulus)

is still a matter of debate [11,12]. Rather than focusing on

the question of ‘what is represented’ by a particular area

or set of neurons, it may be more productive to address

this issue by understanding the causal role of the activity

of these neurons: how the activity is decoded or read out

by the downstream areas and eventually used for behav-

ior.

Multiplexed representation of decision-
related and action-related signals
More recently, the view that decision-related or move-

ment preparatory activity simply consists of a subthresh-

old, scaled-down, version of action-related activity has

been questioned. That such activity patterns might be a

special case of a much broader class of single neuron

correlates of decision-making started to become evident

once researchers began to sample neurons in a relatively

unbiased manner, with fewer constraints in selecting

neurons. In the context of action preparation, Churchland

et al. [13] observed a striking mismatch between preferred

movement direction tuning during the preparation versus

the movement phases within individual neurons in mon-

key primary motor and premotor cortex. Similarly, in the

context of perceptual decision-making, several groups

reported that signals correlated with sensory evidence

and predictive of choice in the posterior parietal cortex

and frontal eye field are not as simple as might be

imagined. First, they occur not only in the form of

classically observed ramping activity but also in a variety

of different temporal patterns [14�,15��,16,17�]. Further-

more, decision signals can be mixed with decision-unre-

lated signals within individual neurons [14�,17�]. Thus,

reading out decision-related signals requires de-mixing

them from other signals [18��,19,20]. These findings call

for taking into account a broader range of neuronal

responses and asking more complicated but interesting

questions: how do decision-related neurons exhibiting

different dynamics, ramping and otherwise, interact with

each other, and how are these signals read out in down-

stream areas to cause an action?

Reading out population neural activity
To understand how the variety of responses in cortical

populations contribute to behavior, we need to understand
www.sciencedirect.com 
the mechanism of decoding population activity. In turn, to

gain insights on the decoding mechanisms, it is important

to understand how the signals are distributed across popu-

lations of cortical neurons.

When signals are distributed across neurons, it is likely to

be useful to look at population activity from a multi-

dimensional perspective [19,21�]. The population activity

of any number of neurons at a given time point can be

represented as a single point in a multi-dimensional

space, and the population activity pattern over time as

a trajectory in this space. Given that the neural trajecto-

ries normally do not span the entire space, dimensionality

reduction can be used to extract important features of the

data [19,20,22]. In other words, population activity can be

projected onto certain axes, which may be more inter-

pretable and meaningful. Importantly, such a projection

also corresponds to taking a weighted sum of the popula-

tion of neurons’ activity, an operation that might be

considered as an elementary kind of neural readout.

A multi-dimensional approach has proven to be useful in

the study of decision-making and action preparation

[15��,23–25,26�,27]. Applying a multi-dimensional ap-

proach to a study of action preparation, Kaufman et al.
[26�] proposed a simple population decoder of motor

cortex activity that produces a readout resembling the

activity of downstream areas (e.g., muscle activity) during

the movement period. Interestingly, when observed

through the same decoder, motor cortex output is sup-

pressed during the preparatory period (i.e., when the

action is withheld), even though individual neurons can

be as active as during movement period. This happens

because population trajectory during the preparatory pe-

riod lies in a subspace orthogonal to the movement

subspace. This constitutes a novel mechanism by which

movement is withheld during preparatory period, which

does not rely on non-linear thresholding mechanisms.

In a decision-making task, population activity can also be

collapsed to a relatively few dimensions that carry infor-

mation about future choice. Mante et al. [15��] applied

multi-dimensional analysis to recordings from the frontal

eye field of monkeys performing a task in which decisions

are made based on either the color or the motion direction

of a visual stimulus, depending on the context cue pre-

sented at the beginning of each trial. Although individual

neurons could display complex mixed selectivity, they

found a single effective choice axis that was common to

both color and motion contexts. This suggests that the

same readout mechanism can be used in two different

contexts in order to appropriately choose actions accord-

ing to the sensory evidence.

In tasks in which a subject can freely choose the timing of

actions (e.g., a reaction time task or a waiting task), ramp-

to-threshold activity has been repeatedly found in multiple
Current Opinion in Neurobiology 2015, 33:40–46
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brain areas (Figure 1a). However, this normally involves

selection criteria that might exclude neurons that do not

exhibit the classical ramp-to-threshold activity but could

be crucially involved in the decision process. If a multi-

dimensional population approach is applied to datasets

obtained in these tasks, a threshold for decision commit-

ment can be defined as a ‘threshold hyperplane’ in popu-

lation activity (Figure 1b). By analyzing the activity of

individual neurons that strongly contribute to this thresh-

old hyperplane, we might be able to better understand the

contribution of each neuron to the decision and how

downstream circuits can read out these signals.

Park et al. [18��] approached the problem of population

representation and readout of population activity with a

different technique. Using a generalized linear model-

based statistical approach, they proposed a mechanism to

decode choice from population of LIP activity, which

relied on biologically plausible leaky integrators and

competition mechanisms and could approximate the sta-

tistically optimal decoding model.

These studies have advanced our understanding of how

decision-related and action-related signals are distributed

across populations of neurons and how downstream cir-

cuits might in principle decode them. To examine read-

out mechanisms directly, a critical step will be to

determine what types of signals are actually transmitted

to which downstream areas. For example, in many studies

of decision-making, it is proposed or implied that the

decision-related signal predictive of a future action is
Figure 1
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enriched in the signal transmitted out of the cortical

decision circuit (e.g., from layer 5 neurons). Although

experimentally challenging, attempts to record activity

transmitted through a specific projection pathway have

been made previously, for example for pathways from the

frontal eye fields to the superior colliculus [28,29]. But,

these two studies were controversial in terms of whether

there is [29] or is not [28] a selective enrichment of certain

types of signals sent from the cortex to superior colliculus.

With recently developed genetic approaches to record

and manipulate activity in specific pathways, we can

anticipate that data relevant to this point will become

more readily available [30,31,32�,33�,34�].

Computation within a cortical circuit
Understanding the computations performed through

interactions amongst cortical neurons is one of the most

challenging problems of neuroscience. Cortical circuits

consist of different neuronal cell types (e.g., glutamater-

gic versus GABAergic, parvalbumin-positive versus

somatostatin-positive versus vasoactive intestinal poly-

peptide-positive) distributed across several distinct

layers. Each neuron’s input and output connection pat-

terns are systematically organized according to cell iden-

tity determined by, for example, cell types and layer

[35,36].

An influential idea for the circuit architecture underlying

perceptual decision-making is that sensory signals are fed

into integration circuits whose activity crossing a thresh-

old level serves as commitment to a decision [37]. More
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Two complementary approaches to circuit-level understanding of

decision-making and action preparation. (Left) Schematic illustration of

recordings of cortical neuron activity. Recording the activity of neurons

together with identification of cell-types of recorded neurons from

awake, behaving animals will characterize response properties of

different neuron types. (Right) Schematic illustration of a recurrent

network model and an example recurrent model equation. In the

equation, ri(t) denotes activity of a model unit i, ak(t) denotes activity of

an external input unit k, wij denotes connection strength from a unit j

to a unit i, vik denotes connection strength from an external input unit

k to a unit i, and t denotes decay time constant of model unit.

Recurrent network models are useful in simulating large number of

neurons and analyzing the dynamics of population activity. Detailed

information gained from experimental approaches helps to constrain

cortical network models. In turn, network models help to explain

variable neuronal responses observed in cortex.
recently, a similar circuit model was proposed for sponta-

neous action generation in which actions are generated

without explicit sensory inputs [9��,38]. Furthermore,

mutual inhibition between neurons responsible for po-

tential actions is thought to play an important role in

competition between different possible actions [39]. But

these ideas have not been directly tested and how these

models could map onto actual cortical circuits is un-

known. To build and test cortical circuit models, a first

important step is to correlate the response properties of

neurons with their identified cell-types and layers. A

second, even more demanding, step is to establish the

functional connectivity between neurons and to under-

stand the patterns of signal propagation within the cortical

circuit [40,41,42�].

Such an attempt has been made in pioneering work by

Isomura et al. [41], who correlated the response properties

of neurons during action preparation and execution with

their cell-types and functional connectivity between neu-

rons. They found that most of the inhibitory interneurons,

some of which were identified with juxtacellular labeling

and immunohistochemistry, were active during move-

ment periods, slightly after movement-related activity

of pyramidal neurons. Furthermore, when they examined

functional connectivity among neurons with different

types of response properties, a few instances of recurrent

excitation between pairs of pre-movement type neurons

were found, suggestive that they might constitute ele-

ments of an integrator circuit.

In the context of decision-making, it is proposed that

different pools of recurrently-connected excitatory neu-

rons compete with each other through mutual inhibition

[39,43], which provides neural substrate of decision-mak-

ing. Consistent with this model, although not a direct

proof, it has been observed that neuron pairs from the

‘same pool’ exhibit positive correlations and neuron pairs

from the ‘different pools’ exhibit negative correlations in

their activity fluctuations across trials [9��,19,44]. Exam-

ining further the sources of correlations will be crucial in

pursuing this hypothesis.

Recent advances in optogenetic and pharmacogenetic

approaches provide more powerful means to record and

manipulate specific elements of neural circuits [45,46].

These approaches have already proven to be powerful in

understanding circuit computations in sensory and other

systems [34�,47,48�]. Kvistiani et al. applied this approach

to a study of foraging decision and found cell-type specific

functional differentiation of inhibitory interneurons in

anterior cingulate cortex of mice [48�]. While parvalbu-

min-positive interneurons were activated upon leaving

reward sites, narrow-spiking somatostatin-positive inter-

neurons were active during reward approach. These

studies strongly suggest that the diversity of response

profiles seen in ‘blind’ recordings may in part be dictated
www.sciencedirect.com 
by an underlying circuit logic related to the computations

being performed. It will no doubt be extremely revealing,

albeit painstaking, to systematically map this logic for

tasks involving decision-making and action preparation.

As mentioned in the previous sections, recent studies

have suggested that multiple signals are often mixed

within individual neurons. Meaningful and potentially

simple neural dynamics can be hidden in interactions

among populations of these neurons in a manner that is

not intuitively obvious. In such scenarios, it may be

useful, if not necessary, to use model-based approaches

to help to analyze dynamics of population activity and

relate it to possible circuit computations. While this

approach may be still in its infancy, it has been shown

that recurrent network models can reproduce important

features of population neural activity and animal behavior

[15��,19,49,50��]. Recurrent networks can be built in a

number of different ways. They can be built by explicitly

designing a computation [39], but they can also be con-

structed without explicitly specifying computation, either

by fitting dynamics of population neural data compressed

in low dimensions [19,25], by constraining what the

network should do but not how to do it [15��], or even
Current Opinion in Neurobiology 2015, 33:40–46
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by using an independent principle [50��]. By analyzing

these models, one can extract the dynamical structure in

the network that is critical for performing a given task by

analyzing locally linear dynamical system [51]. For exam-

ple, in the recurrent network model of Mante et al. [15��],
different continuous attractors appear for different con-

texts, enabling integration of sensory stimuli in a context-

dependent manner. Local dynamics near the attractor

select the task-relevant sensory features to be integrated,

while ignoring the irrelevant features.

Although recurrent network models are proving to be a

powerful tool to analyze cortical computation, they re-

main to be validated and refined by more detailed exper-

imental data. Recurrent network models do not yet

normally take into account cortical circuit architecture

(e.g., layer and cell types) or correlation structure among

neurons (but see [52]). As mentioned above, these types

of information are becoming more readily available. We

expect that a combination of experimental approaches to

provide information about response properties and inter-

actions of cortical circuit elements and theoretical

approaches to build models incorporating these data

and understand principles for cortical computation will

be fruitful (Figure 2).

Conclusion
Decision-related and action-related signals appear to be

distributed in neural populations with various temporal

profiles and mixed with unrelated signals, indicating the

necessity of studies of population decoding and interac-

tions among populations of neurons. Dimensionality re-

duction techniques and other statistical approaches

provide important tools to extract relevant information

from populations of neurons and can even suggest possi-

ble mechanisms for decoding by downstream circuits.

Optogenetic approaches allow recording and manipula-

tion of neural activity transmitted to specific downstream

areas, experiments that can help to test putative decoding

strategies and link decision-related information to animal

behavior.

Understanding how populations of neurons interact with-

in a cortical circuit is even more challenging. For this

purpose, recurrent network models are made to reproduce

important features of neural population data and behav-

ior. Analysis of these network models can be used to

extract simple dynamical structures in apparently diverse

population dynamics. To further understand the compu-

tations performed in cortical circuits, existing cortical

circuit architecture must be integrated into models of

cortical networks. For this purpose, it is crucial to contin-

ue experimental efforts to provide details of neuronal

activity together with cell-identity and functional con-

nectivity, and to incorporate such information into cortical

network models.
Current Opinion in Neurobiology 2015, 33:40–46 
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