Light Intensity Activity: a possible contribution to delay frailty

Madalena Gomes da Silva, José G. Sousa, Maria C. Rocha

^a School of Health, Polytechnic of Setubal, Portugal

E-mail for correspondence: madalena.silva@ess.ips.pt

Review Article

The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review

Previous Next

Exercise Programs for Communityw and Meta-Analysis

Olga Theou,¹ Liza Stathokostas,² Kaitlyn P. Roland,¹ Jennifer M. Jakobi,¹ Christopher Patterson,³ Anthony A. Vandervoort,⁴ and Gareth R. Jones¹

¹Human Kinetics, Faculty of Health and Social Development, University of British Columbia Okanagan,

Isan Armiio-Olivo *

Journal of Gerontology: MEDICAL SCIENCES Cite journal as: J Gerontol A Biol Sci Med Sci 2009. Vol. 04A, No. 1, 61–68 doi:10.1693/gerona/gln001 Published by Oxford University Press on behalf of The Gerontological Society of America 2009. Advance Access publication on January 20, 2009

Physical Activity as a Preventative Factor for Frailty: The Health, Aging, and Body Composition Study

Matthew L. Peterson,^{1,2} Carol Giuliani,³ Miriam C. Morey,^{1,2} Carl F. Pieper,^{1,2} Kelly R. Evenson,⁴ Vicki Mercer,³ Harvey J. Cohen,^{1,2} Marjolein Visser,⁵ Jennifer S. Brach,⁶ Stephen B. Kritchevsky,⁷ Bret H. Goodpaster,⁸ Susan Rubin,⁹ Suzanne Satterfield,¹⁰ Anne B. Newman,⁸ Eleanor M. Simonsick,^{11,12} for the Health, Aging and Body Composition Study Research Group

aim

to characterize self reported light intensity activity (LIPA) of people aged 75 and above, and investigate its association with functional capacity.

methods

65 participants

79.48 ± 4.98

functionally independent

no cognitive impairment

geriatric outpatient clinic

Ethical Approval | November 2016 up to February 2017

Physical Function < 10 predict frailty and falls

Pavasini	et al.	BMC	Medicin	e (2016)	14:215
DOI 101	186/	1201	6-016-0	763-7	

BMC Medicine

CrossMark

RESEARCH ARTICLE

Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis

Rita Pavasini¹⁷, Jack Guralnik², Justin C. Brown³, Mauro di Ban⁴, Matteo Cesar^{5,6}, Francesco Landi⁷, Bert Vaes^{8,9}, Delphine Legrand¹⁰, Joe Verghese¹¹, Cuilling Wang¹², Sari Stenholm¹³, Luigi Ferruccl⁴, Jennifer C. Lal¹⁵, Anna Arnau Bartes¹⁶, Joan Espaulella¹⁷, Montserat Ferret^{18,19}, Jae-Young Lim²⁰, Kristine E. Ensrud^{21,22}, Peggy Cawthor³³, Anna Turusheva¹⁹, Elena Frolova⁸⁴, Yves Rolland⁵⁵, Valerie Lauwers⁵, Andrea Corsonello³⁶, Gregory D. Kirk²⁷, Roberto Ferrari¹²⁸, Stefano Volpato³⁹ and Gianluca Campo¹

Abstract

Background: The Short Physical Performance Battery (SPPB) is a well-established tool to assess lower extremity physical performance status. Its predictive ability for all-cause mortality has been sparsely reported, but with conflicting results in different subsets of participants. The aim of this study was to perform a meta-analysis investigating the relationship between SPPB score and all-cause mortality.

Methods: Articles were searched in MEDLNB; the Cochrane Library, Google Scholar, and BioMed Central between July and September 2015 and updated in January 2016. Indusion criteria were observational studies, >50 participants; stratification of population according to SPPB value, data on alf-acuse mortality. English language publications. Twenty-four articles were selected from available evidence. Data of interest (lee, clinical characteristics, information after stratification of the sample into four SPPB groups (Dat. -3, -4, 6, -9, Io-12) were retrieved from the articles and/or obtained by the study authors. The odds ratio (OR) and/or hazard ratio (HR) was obtained for all-acuse mortality according to SPPB category (with SPPB scores 10–12 considered as reference) with adjustment for age, sex, and body mass index.

Results: Standardzed data were obtained for 17 studies (n = 16534, mean age 76 ± 3 years). As compared to SPPB scores 10–12, values of 0–35 (OR 325, 95%cl 286–379), 4–6 (OR 2.14, 95%cl 1.92–239), and 7–9 (OR 150, 95%cl 1.92–230), and 7–9 (OR 150, 95%cl 1.92–10), were ach associated with an increased its of all-cause mortality. The association between poor performance on SPPB and all-cause mortality remained highly consistent independent of follow-up length. subsets of participants, geographic area, and age of the population. Random effects meta-regression showed that OR for all-cause mortality with SPPB values 7–9 was higher in the younger population, diabetics, and men.

Conclusions: An SPPB score lower than 10 is predictive of all-cause mortality. The systematic implementation of the SPPB in clinical practice settings may provide useful prognostic information about the risk of all-cause mortality: Moreover, the SPPB could be used as a surrogate endpoint of all-cause mortality in this needing to quantify benefit and health improvements of specific treatments or rehabilitation programs. The study protocol was published on PROSPERD (CR2AV2)5024016.

Keywords: Short Physical Performance Battery, All-cause mortality, Physical function, Meta-analysis

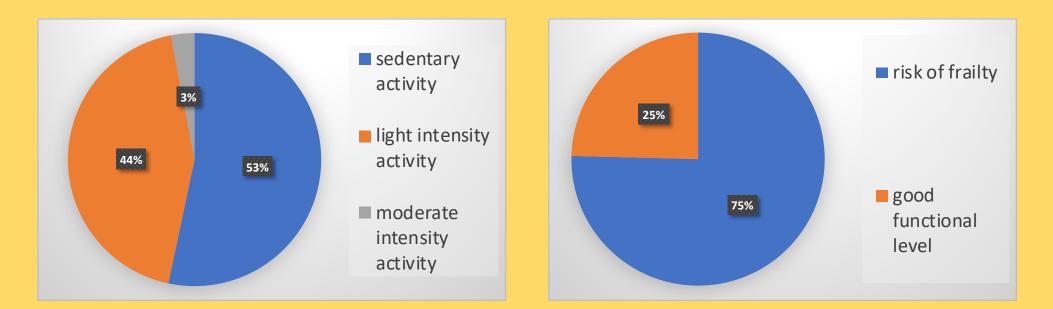
methods

	Characterization of Physical Activity		
			code:
Date:			
Day of the week			for researchers' use
	1		Classification in METs
Time of Day	What was I doing?	For how long?	
	example		
8.30h	in the kitchen, preparing breakfast, standing	10 minutes	
10.00h	shopping groceries, walking	15 minutes	
14.30h	watching TV, sitting	2 hours	

Self Reported PA

8 hour entries valid recommended for clinical practice

Guralnik et al., 1994; Guralnik et al., 1995; Guralnik et al., 2000; Pavasini et al., 2016; Copeland et al., 2017; Ainsworth, 2009


results

- 40 (61.5%) females & 25 males
- 50.8% were married & living with spouse
- 26.1% lived alone
- 64.6% basic education

		Light Intensity Physical Activity mean±SD	Physical Function mean±SD
Gender	Female	268.33±107,79	7.44±2.41
	Male	269.95±108.74	7.49±2.44
	P value	0.647	0.195
Age	75-79	267.60±95.94	7.43±2.43
	80-84	271.46±107.30	7.46±2.40
	85-89	304.29±114.06	8.48±2.13
	90-96	274.49±112.00	7.6±2.46
	P value	0.518	0.032*
Educational Level	Basic education (6 th grade)	268.33±107.79	7.44±2.41
	Secondary education (12 th grade)	273.28±108.74	7.48±2.40
	Higher education	326.36±100.52	7.61±2.42
	P value	0.842	0.413

results

positive low association between time spent in light intensity PA and physical function (*rho=0.45*, p=0.01)

discussion

daily average of 4h 30m in light intensity activity, significantly associated with functional capacity

sedentary time increase due to the decrease of time spent in **LIPA**(Sparling, Howard, Dunstan, & Owen, 2015)

LIPA may bring a significant contribution for functional capacity and autonomy

Tools

self reported LIPA | lower than studies using accelerometry (Loprinzi, 2013, 2017)

well guided daily use of diaries | detailed PA routines | enable tailored interventions

Sample

Low level of physical functioning could be explained by the older mean age of the participants (Gill et al., 2016) and/or recruitment location

Future study

light intensity physical activity amongst frail older adults seems to be an alternative to moderate intensity

use activity diaries to help customize interventions

Madalena Gomes da Silva E-mail: madalena.silva@ess.ips.pt

Aadland, E., & Ylvisåker, E. (2015). Reliability of objectively measured sedentary time and physical activity in adults. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0133296

Ainsworth, B. E. (2009). How do i measure physical activity in my patients? Questionnaires and objective methods. *British Journal of Sports Medicine*. https://doi.org/10.1136/bjsm.2008.052449

Copeland, J. L., Ashe, M. C., Biddle, S. J., Brown, W. J., Buman, M. P., Chastin, S., ... Dogra, S. (2017). Sedentary time in older adults: a critical review of measurement, associations with health, and interventions. *British Journal of Sports Medicine*, bjsports-2016-097210. https://doi.org/10.1136/bjsports-2016-097210

Füzéki, E., Engeroff, T., & Banzer, W. (2017). Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sports Medicine (Auckland, N.Z.). https://doi.org/10.1007/s40279-017-0724-0

Guralnik, J. M., Ferrucci, L., Pieper, C. F., Leveille, S. G., Markides, K. S., Ostir, G. V., ... Wallace, R. B. (2000). Lower Extremity Function and Subsequent Disability: Consistency Across Studies, Predictive Models, and Value of Gait Speed Alone Compared With the Short Physical Performance Battery. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 55(4), M221–M231. https://doi.org/10.1093/gerona/55.4.M221

Guralnik, J. M., Ferrucci, L., Simonsick, E. M., Salive, M. E., & Wallace, R. B. (1995). Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. *New England Journal of Medicine*, 332(9), 556–562. https://doi.org/10.1056/NEJM199503023320902

Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., ... Wallace, R. B. (1994). A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. *Journal of Gerontology*, *49*(2), M85–M94. https://doi.org/10.1093/geronj/49.2.M85

Landi, F., Onder, G., Carpenter, I., Cesari, M., Soldato, M., & Bernabei, R. (2007). Physical activity prevented functional decline among frail community-living elderly subjects in an international observational study. *Journal of Clinical Epidemiology*, 60(5), 518–524. https://doi.org/10.1016/j.jclinepi.2006.09.010

Loprinzi, P. D. (2013). Objectively measured light and moderate-to-vigorous physical activity is associated with lower depression levels among older US adults. *Aging & Mental Health*, *17*(7), 801–805. https://doi.org/10.1080/13607863.2013.801066

Loprinzi, P. D. (2017). Light-Intensity Physical Activity and All-Cause Mortality. American Journal of Health Promotion, 31(4), 340–342. https://doi.org/10.4278/ajhp.150515-ARB-882

Marsh, A. P., Chmelo, E. A., Katula, J. A., Mihalko, S. L., & Jack Rejeski, W. (2009). Should physical activity programs be tailored when older adults have compromised function? Journal of Aging and Physical Activity, 17(3), 294–306. https://doi.org/10.1123/japa.17.3.294

Nyman, S. R., & Victor, C. R. (2012). Older people's participation in and engagement with falls prevention interventions in community settings: An augment to the cochrane systematic review. *Age and Ageing*. https://doi.org/10.1093/ageing/afr103

Pavasini, R., Guralnik, J., Brown, J. C., di Bari, M., Cesari, M., Landi, F., ... Campo, G. (2016). Short Physical Performance Battery and all-cause mortality: systematic review and metaanalysis. BMC Medicine, 14(1), 215. https://doi.org/10.1186/s12916-016-0763-7

Simek, E. M., McPhate, L., & Haines, T. P. (2012). Adherence to and efficacy of home exercise programs to prevent falls: A systematic review and meta-analysis of the impact of exercise program characteristics. *Preventive Medicine*. https://doi.org/10.1016/j.ypmed.2012.07.007

Sparling, P. B., Howard, B. J., Dunstan, D. W., & Owen, N. (2015). Recommendations for physical activity in older adults. *BMJ*, 350(jan20 6), h100–h100. https://doi.org/10.1136/bmj.h100