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Abstract Water is a vital resource and the growing populations and economies

around the globe are pushing its demand worldwide. Therefore, the water conveyance

operation should be well managed and improved. This paper proposes the develop-

ment of reliable models able to predict water levels of a real 24.4 km water delivery

channel in real time. This is a difficult task because this is a time-delayed dynamical

system distributed over a long distance with nonlinear characteristics and external

perturbations. Artificial neural networks are used, which are a well-known model-

ing technique that has been applied to complex and nonlinear systems. Real data is

used for the design and validation of the models. The model obtained has the ability

to predict water levels along the channel with minimum error, which can result in

significant reduction of wasted water when implementing an automatic controller.

Keywords Data based modeling ⋅ Water delivery systems ⋅ Artificial neural net-

works ⋅ Nonlinear autoregressive exogenous model

1 Introduction

Water is the most important resource for human life therefore it has to be efficiently

managed. An increase of 55 % in global water demand is expected by 2050, mainly

influenced by the projected growing demands from manufacturing, thermal electric-

ity generation and domestic use [1].
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The development of models and the design of controllers for irrigation channel

systems has been a difficult task since these systems are distributed over long dis-

tances and present a dynamic behavior characterized by time delays, strong nonlin-

earities, unknown perturbations and numerous interactions among sub-systems [2].

Control of irrigation channels has been driving the attention of engineers since

immemorial times and several papers have been published in this field [3–12]. One

of the most accepted and used models for simulation of the physical dynamics of a

real main irrigation channel pool is the system described by the Saint-Venant equa-

tions [13]. However, the difficulty in determining the parameters of these equations

remains as one of the main drawbacks of this physically oriented modeling approach.

As a consequence, new alternative modeling approaches, namely both parametric

and nonparametric data-driving models, have been proposed, in which the model

parameters are optimized to match real data [14].

The water delivery system which the authors intend to model is the Milfontes

Canal, a large scale open water channel supplying water to the village of Vila Nova

de Milfontes as well as to local farmers. The facilities are equipped with a basic

monitoring system that provides information on the water depth and gate aperture

levels along the channel. The absence of an automatic control system together with

the necessity of ensuring the clients’ water requests results in large amounts of wasted

water at the end of the channel.

As far as the authors are aware of, Artificial Neural Networks (ANN) have never

been applied to real irrigation channels in normal operation. In this paper, ANN are

employed to create a nonlinear dynamic model of the Milfontes Canal using real

operation data from 2013. This model has the ability to predict future water levels

along the infrastructure, from the perspective of signal prediction in real time. Well-

known performance measures are used to assess the models performance. The model

developed may ensure a significant reduction of wasted water when implementing

an automatic controller.

The paper is organized as follows. In Sect. 2, the system modeling is addressed.

The results obtained are shown and discussed in Sect. 3 and conclusions are drawn

in Sect. 4.

2 Artificial Neural Networks

ANN are self-organizing systems, having the ability to learn from examples, that is,

to be trained with provided data. This feature makes them extremely useful to model

complex or unfamiliar systems, since it does not require system in-depth knowledge

from the designer. Usually, ANN modeling follows three steps: structure identifica-

tion, parameter estimation and model validation.

The system to be identified can be represented as a Multiple-Input Multiple-

Output (MIMO) Nonlinear Auto Regressive with exogenous inputs (NARX) model:

y = f (x), (1)
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where x is a state vector obtained from input-output data and y the system output. In

this case, the state vector x at each time step k can be obtained from the inputs and

outputs of the system, joining them in a vector:

x(k) = [y1(k),… , y1(k − p1 + 1),… ,

yp(k),… , yp(k − pp + 1),
u1(k),… , u1(k − m1 + 1),… ,

um(k),… , um(k − mm + 1)]T .

(2)

The parameters m1,… ,mm are the orders of the inputs u1,… , um, and the para-

meters p1,… , pp are the orders of the outputs y1,… , yp, respectively. Note that the

dimension of the state vector is given by D =
∑m

j=1 mj +
∑p

j=1 pj [15]. For a dynamic

system using this state vector, the model is represented by:

ŷ(k + 1) = f (x(k)) (3)

The state variables x are called the regressor and the predicted outputs ŷ the

regressand.

In the present case, the system model will take the form of a neural network and

the tuning mechanism is known as training the network. This training consists on

adjusting the network parameters the connection weights and the node biases accord-

ing to an error backpropagation algorithm.

In this type of problems, data is usually divided for model training and testing.

Training a neural network model is based on a learning algorithm. For this work,

the Levenberg-Marquardt backpropagation algorithm is employed. The performance

measures used were the mean square error (MSE) for both model training and testing.

Mean absolute error (MAE) and mean absolute relative error (MARE) were used as

well to assess the performance of model testing.

3 Results and Discussion

3.1 System Configuration

A schematic representation of the system inputs and outputs used in the system iden-

tification procedure is presented in Fig. 1. The group of major offtakes (u2 to u7) plus

the flow rate entering the channel inlet (u1) are the inputs of the system, in a total

of 7. The outputs consist on two types of sensors, in a total of 10: upstream (y1, y4,

y7 and y10) and downstream (y3, y6 and y9) water depth sensors and gate aperture

sensors (y2, y5 and y8), which measure the correspondent gate openings percentage.
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Fig. 1 Schematic representation of the channel inputs and outputs

3.2 Database

In order to carry out this work, the Associação de Beneficiários do Mira (ABM), a

non-profit organization in charge of this hydro agricultural infrastructure, provided

the database files. These files contained the sensor measurements plus a client order

book containing the water requests during 2013, which were considered as the effec-

tive outflows of the channel.

A procedure was applied in order to import the data from the database files into

well-formatted datasets. All data points considered as outliers were removed. An

outlier data point consisted on all negative values and all values that stood out by

differing more than 15 units from their precedent. For the datasets, upon missing

data, all the identified missing segments were recovered when possible using the

zero order hold (ZOH).

Lack of either sensor or flow rates information reduced the list of potential

datasets to the ones depicted in Table 1. The information regarding the number of

data points before and after outliers removal and missing data processing is pre-

sented for each dataset. The percentage of missing data here presented represents

the number of missing data points considering the total number of data points of

each dataset.

It was verified that the sampling times of the sensors signals were not constant,

usually falling in the 65–100 s range. Furthermore, the signals were not synchro-

nized, therefore requiring further data processing. After signal processing, it was

found that the time step, k, should be 90 s in order to take advantage of the available

data provided by ABM.

Table 1 Final datasets obtained after identification of missing data and outliers and reconstruction

with ZOH

Dataset ID Data points

before

Missing data (%) Number of

outliers

Data points after

49 6200 5.5 0 6199

50 6203 0.0 168 6203

51 6202 0.0 1 6202

53 6187 1.3 6 6187
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3.3 System Delay

The system delay associated with the channel arises from the fact that the water

levels do not immediately change when the water flow rates inwards and/or outwards

of the channel are adjusted. Hence, the computation of the system delay has to take

into account the location of the offtakes to estimate the delay caused by the time the

water takes to arrive to the place where these offtakes are located.

According to tests performed on a site visit, the water speed on the channel was

about 2.7 m/s. Considering the total length of the channel, the delay from the chan-

nel’s intake flow to the water level measured on the other end of the channel was

approximately 100 time steps, which translates to about 2 and a half hours.

The followed approach consisted on using an input-output delay as parameter of

the system where the delay due to water flow rates was the same as the one in the

water levels.

Given that the system delay may be set by many data points that situation would

inevitably lead to an impracticable network model. In order to overcome this prob-

lem, a subset of the past data up to the system delay (100 time steps) was fed into the

model. In terms of time steps, that corresponded to the set of delays 𝜏 = [1, 11, 21,

31, 41, 51, 61, 71, 81, 91, 101], with a time step of 5 × k, which translates to 7.5 min.

3.4 Model Parameterization, Training and Validation

Regarding the model parameterization, the number of hidden layers and neurons in

each layer were varied. In order to reduce variability and to find the best model, ten

rounds of the same model were performed with different random initializations of

network input weights. This was performed for each possible system delay, from 1

step to 100 time steps in time. The final system delay found corresponded to the

model with best performance overall.

In this paper, the software Matlab® 2014a default stopping conditions were used,

except for the training epochs, which were set to 200. The model training dataset

was divided using the function divideblock from Matlab, where 70 % of data was

used for train, 15 % for validation and 15 % for test. A linear autoregressive model

with exogenous inputs (ARX) was estimated with the same regressor as the NARX

networks for comparison, using the default conditions of ARX function from Matlab.

The same subsets for train and test were used and the system delay was varied as

performed for the NARX models.
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Fig. 2 Channel inlet flow

rates corresponding to input

u1 for the datasets used for

model training (Dat 49, 51

and 53) and testing (Dat 50)

3.5 Modeling Results

The model training dataset was obtained by joining datasets 49, 51 and 53. Each

one of these datasets represent, respectively, a low, medium and high range of the

variability that can be found in the system. The criterion for defining this variability

was based on the flow rates values of the channel main inlet, u1, as it can be confirmed

in Fig. 2. Dataset 50 was selected for test, given that it represents a medium range,

considered suited for testing the model. In Fig. 2, the lack of data between datasets

51 and 53 corresponds to a dataset which was not used for system modeling due to

significant percentage of missing data.

The average performances of the best NARX and ARX models as well as of the

NARX models obtained over the 10 rounds, are presented in Table 2. The NARX

model has a better performance than the ARX. Therefore, only the performance

results of the best NARX model are presented for each output in Table 3. This best

model configuration was a single hidden layer with 10 neurons. More or less neurons

in the hidden layer resulted in worst results, which happened as well when adding

more layers.

The system delay found was 11 time steps which corresponds to approximately

16 min. This system delay is a result of a balance between the delays caused by the

Table 2 Models average performance results, for a 16 min delay, where the best model results are

presented in more detail in Table 3

MIMO models MSE (cm
2
) MAE (cm) MARE (cm)

10 rounds (NARX) 0.12± 0.01 0.16± 0.01 0.01± 0.01

Best NARX 0.11± 0.09 0.14± 0.08 0.01± 0.01

Best ARX 25.42± 41.31 3.13± 2.73 0.05± 0.07
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Table 3 Best NARX model performance results for each output and correspondent pool

Sensor types MSE (cm
2
) MAE (cm) MARE (cm) Pool

Water levels y1 0.05 0.10 0.01 1

y3 0.20 0.31 0.01 2

y4 0.05 0.09 0.01 2

y6 0.07 0.15 0.01 3

y7 0.31 0.18 0.01 3

y9 0.18 0.22 0.01 4

y10 0.05 0.13 0.01 4

MSE (%
2
) MAE (%) MARE (%)

Gate openings y2 0.01 0.03 0.01 –

y5 0.16 0.10 0.01 –

y8 0.05 0.12 0.01 –

channel intake flow rates and offtakes. The delay of each input or output depends on

its location, therefore the delay caused by a flow rate located at the beginning of the

channel is not the same as one at the middle or at the end.

Compared to the other outputs correspondent to the water levels, the output cor-

respondent to downstream pool 3, y7, presents the higher MSE. The output of water

level measured upstream pool 4, y9 also presents a high error.

It is worth noting that both the water level outputs y7 and y9 are located, respec-

tively, immediately before and after the gate that separates both pools 3 and 4, thus

the cause to obtain these errors may be due to noise, a failure in the sensors measure-

ment. The water level sensor represented by y3 also presents a high MSE and MAE

values, which may be due to the same cause. Regarding the remaining outputs, the

model has the ability to predict one step ahead the water levels and the gate apertures

with a minimum error. The best prediction model is presented in Figs. 3, 4, 5 and 6,

for each pool of the channel.

Fig. 3 Pool 1 downstream

model response
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Fig. 4 Pool 2 model response: a upstream, b downstream

Fig. 5 Pool 3 model response: a upstream, b downstream

Fig. 6 Pool 4 model response: a upstream, b downstream

When analysing the prediction model results, it can be observed that the main sys-

tem dynamics are being predicted correctly. Indeed, the great majority of the relative

error values are within the 5 cm band, which may be better visualized in Fig. 7.

As previously referred, the model presents higher prediction error when predict-

ing water levels in pool 3. An approximate maximum error of almost 9 cm can be
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Fig. 7 Model prediction

errors distribution for each

pool: upstream (Up) and

downstream (D)

visualized when analyzing Fig. 7, which is caused by an isolated spike in the output

prediction. The occurrence of such phenomenon may indicate the used network is

unable to model a minor system mode. For instance, it may be the case that the used

network is not able to model the reflected water waves effect. Other complex flow

phenomena may explain this behavior. Not to mention that noise is surely present in

the real value measurements.

4 Conclusions

In this work, artificial neural networks were employed to model a real large scale

water channel, using real operation data. This model has the ability to predict future

water levels along the infrastructure in real time and in the future it may be used in

a planning perspective, for control design or as an assistance tool for a FDI system.

The best one step ahead prediction NARX model parameterization presented con-

sists on a single-layered network with 10 neurons and a delay of approximately

16 min. The performance achieved by this model parameterization was equivalent

to a MSE mean of 0.11± 0.09 cm
2
, which is considered reasonable given that the

average real values range between 85 and 250 cm. The absence of other models of

the same channel precludes a well-supported validation of the proposed model. Nev-

ertheless, an independent test dataset, not used to train the models, was used with

the purpose of validating them.

The application of neural network models to water delivery systems proved to be

a good opportunity to show the benefits and features of using these type of black-box

models. As a result, in the future the water waste at the end of the channel can be

significantly reduced when applying an automatic controller, assisted by the model

obtained in this paper.
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