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Abstract: Irrigation and drainage canals are some examples of water conveyance systems
spread worldwide. These systems are characterized by transport phenomena and strong
coupling having a relevant social and economic impact in society. The management of water
networks is a complex task due to the large scale and uncertainty. This paper purposes a
modular modeling framework based on canal and junction models to construct different
water network topologies as irrigation and drainage networks. The framework presented is
a valuable resource for studying the behavior of canal networks, first in a development stage
and later for determining the benefits of introducing control algorithms to increase service
level performance.

Keywords: Modeling, Large Scale Systems, Canal Networks, Unsteady Flow.

1. INTRODUCTION

Water is a vital resource for life on earth. Mankind
way of life is based on water consumption: indus-
try, agricultural and domestic activities. The use of
such resource with efficiency is absolutely vital not
to compromise future generations. For example agri-
cultural has a great impact in water consumption and
in respect to Portugal 81.8% of the available water
is used for irrigation (Raposo, 1996). As water is not
always available near the end consumers it is conveyed
by a network of open canals. The objective of these
facilities is to make water available to farmers while
minimizing losses. The canal losses can be caused by

1 This work was supported by the Portuguese Government, through
Fundação para a Ciência e a Tecnologia, under the project
PTDC/EEACRO/102102/2008 - AQUANET, through IDMEC un-
der LAETA.

bad network management due to oversupply which
can cause spillage along the canal and outflows at
the end of the networks system. Drainage networks
like rivers and sewers must assure the necessary flow
to prevent floods. Mathematical models that are able
to simulate water networks behavior is an important
supporting tool to improve water management.

Hydraulic simulation models are useful for studying
flow routing in canal networks. The flow dynamics
in canals is well described by the Saint-Venant equa-
tions (Akan, 2006), one dimensional nonlinear par-
tial differential equations of hyperbolic type capable
of describing the transport phenomenon. The Saint-
Venant equations consist on mass and momentum
conservation equations. Many hydraulic simulation
models have been developed to study the flow be-
havior in canal networks based on numerical meth-
ods (Szymkiewicz, 2010) as finite difference (Akan
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and Yen, 1981) (Nguyen and Kawano, 1995) or finite
elements.

This paper uses a linear model based on the lin-
earization and discretization of the Saint-Venant equa-
tions for capturing the canal dynamics (Litrico and
Fromion, 2009). The model has the interesting abil-
ity to accept either water depth of flow boundary
conditions (Nabais et al., 2011). The connecting el-
ements can be either hydraulic structures, imposing
flow boundary conditions, or reservoir type, impos-
ing water depth boundary conditions. The modeling
framework presented has the following features,

• a modular and flexible structure that keeps large
scale systems tractable;

• it can represent different network topologies like
irrigation and drainage systems;

• is a valuable resource for studying canal net-
works behavior and support control strategies;

• different problems of water management can be
studied, namely the farmers request, the drainage
after rainfall, tides impact or flood prediction.

In section 2 the structural elements present in canal
networks are modeled, the canal and junctions. The
canal networks used in this work are presented in
section 3. Due to the strong coupling existing in canal
networks the steady state algorithm for both networks
are also presented. The framework accuracy is studied
in section 4. First the convergence to different steady
state configurations is analyzed then illustrative sce-
narios are tested for the irrigation and drainage net-
works. In section 5 final comments are drawn.

2. MODELING CANAL NETWORKS

Water conveyance networks are complex systems usu-
ally space distributed with a large dimension. Like
other network systems they are composed by links and
nodes. The link between nodes is accomplish by the
water transportation element – the canal. The nodes
establish the separation of different links and are rep-
resented by reservoir, gates or a combination of both.

2.1 Canal Pool Models

The flow dynamics in open canals is well described
by the Saint-Venant equations (Akan, 2006), nonlinear
partial differential equations of hyperbolic type capa-
ble of describing the transport phenomenon,

∂Q(x, t)

∂x
+ T (x, t)

∂Y (x, t)

∂t
= 0 (1)

∂Q(x, t)

∂t
+

∂

∂x

(
Q2(x, t)

A(x, t)

)
+ . . .

. . .+ g ·A(x, t) · (Sf (x, t)− S0(x)) = 0 (2)

where A(x, t) is the wetted cross section, Q(x, t) is
the water flow, Y (x, t) is the water depth, T (x, t)

is the wetted cross section top width, Sf (x, t) is the
friction slope, S0(x) is the bed slope, x and t are
the independent variables. One approach to this com-
plex problem is to linearize (1) (2) around a nonuni-
form steady configuration defined by (Q0, Y0(x)).
The Preissmman scheme is the numerical method used
to discretize the linearized Saint-Venant equations into
a finite linear model (Nabais and Botto, 2011).

To complete the model it is necessary to add boundary
conditions. As the flow is considered subcritical one
boundary condition for each end is introduced (Nabais
et al., 2011). In case of flow boundary condition,
when the pool is connected to an hydraulic structure,
as a gate or a pump, the model input is the flow. A
similar approach is done for the water depth boundary
condition, when the pool is connected to a reservoir
or to another pool, the model input is the water depth.
The pool linear model is given as,

X(k + 1) =AX(k) +BU(k) +BwW(k, k − 1)

Y(k) =CX(k) +DvV(k) (3)

where k stands for time iteration, X(k) is the state-
space vector, Y(k) is the output considered usually
as water depths along the pool, U(k) is the model
input that depends on the boundary conditions the pool
is subjected to, W(k, k − 1) is the state-space flow
disturbance that accounts for lateral outflows/inflows
along the pool, V(k) is the output disturbance consid-
ering noise measurements and A, B, Bω, C and Dv

are the state space matrices.

2.2 Modeling Junctions

Hydraulic conditions at a junction may be described
by equations of mass and energy conservation. As-
suming no change in storage volume within the junc-
tion the continuity equation at a junction formed by
the parent canal i and the branches j and k can be
written as,

Qi = Qj +Qk (4)

and when the flows in all branches joining at the junc-
tion are subcritical, the equation of energy conserva-
tion can be approximated by he kinematic compatibil-
ity condition (Akan and Yen, 1981),

Yid = Yju = Yku (5)

where Y∗ stands for water depth and subscript u and
d means upstream and downstream respectively. In
irrigation canals subjected to control is common to
find gates connecting canals. In this case the energy
constraint (5) is replaced by the respective gate equa-
tion for computing the flow across the gate. This flow
is the boundary condition for the connected pools.

348



3. CANAL NETWORKS

3.1 Description

For illustration purposes two different canal networks
topologies (Adlul Islam and Sen, 2005) will be tested,

Drainage Network: composed by 14 pools and 14
nodes containing a loop, Fig. 1, with a total length
of 29300m and a nominal flow of 70m3/s;

Irrigation Network: composed by 41 pools and 42
nodes, Fig. 2, with a total length of 43500m and a
nominal flow of 40m3/s.

In Table 1–2 canal networks parameters are presented
were L is the pool length, B is the cross section bed
width, m is the cross section lateral slope 1 : m, S0

is the canal bed slope, n is the Manning roughness
coefficient and N is the number of reaches by canal.
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Fig. 1. Drainage network.

Fig. 2. Irrigation network (canal numbers are in bold).

3.2 Steady State

In a steady configuration, with no time derivatives, the
Saint Venant equations becomes (Litrico and Fromion,
2009),

dQ(x)

dx
= 0

dY (x)

dx
=

S0 − Sf (x)

1− F 2(x)
(6)

Table 1. Drainage network parameters.

Pool L [m] B [m] m S0 n N
1 1500 10 1 0.00027 0.022 20
2 1500 10 1 0.00027 0.022 20
3 3000 10 1 0.00047 0.025 40
4 3000 10 1 0.00047 0.025 40
5 2000 10 1 0.00030 0.022 25
6 2000 10 1 0.00030 0.022 25
7 2000 10 1 0.00030 0.022 25
8 1500 10 1 0.00027 0.022 18
9 1500 10 1 0.00027 0.022 18
10 2000 10 1 0.00030 0.022 22
11 1200 10 0 0.00033 0.022 14
12 3600 20 0 0.00025 0.022 38
13 2000 30 0 0.00025 0.022 21
14 2500 40 0 0.00016 0.022 25

Table 2. Irrigation network parameters.

Pool L [m] B [m] m S0 n N
1 2500 10.00 2.0 0.00013 0.015 22
2 2000 8.50 2.0 0.00015 0.016 20
3 1700 7.00 2.0 0.00016 0.017 18
4 1500 5.00 2.0 0.00017 0.018 16
5 1500 5.00 2.0 0.00020 0.020 16
6 1400 4.00 2.0 0.00021 0.020 16
7 1200 3.00 2.0 0.00022 0.020 15
8 1000 2.00 2.0 0.00024 0.022 13
9 1400 3.50 1.0 0.00025 0.022 15
10 1200 2.70 1.0 0.00022 0.022 15
11 1000 1.75 2.0 0.00024 0.022 15
12 1300 2.50 2.0 0.00022 0.022 16
13 1200 1.50 1.0 0.00025 0.022 15
14 1000 1.00 2.0 0.00022 0.022 17

15,18 1000 1.50 2.0 0.00024 0.022 13
16,21 1000 1.00 1.0 0.00025 0.022 13
17,26 1000 1.75 2.0 0.00024 0.022 15

19 900 0.90 0.9 0.00025 0.022 12
20,23 1100 1.50 2.0 0.00024 0.022 16

22 1200 1.75 2.0 0.00024 0.022 16
24 1000 1.00 1.0 0.00025 0.025 14
25 1200 2.00 2.0 0.00024 0.020 18
27 900 1.50 2.0 0.00024 0.022 14
28 900 1.50 1.0 0.00025 0.022 12
29 800 1.00 1.0 0.00025 0.022 11
30 800 1.25 2.0 0.00024 0.022 13
31 700 0.75 2.0 0.00024 0.022 12

32–41 700 0.50 1.0 0.00050 0.030 10

which corresponds to the gradually varied flow where
F is the Froude number F = V

C with C =
√
gA
T .

The backwater Y (x) can be obtained from (6) as
long the nominal flow and downstream water level are
given. Equation (6) is usually solved using numerical
methods, e.g. Newton-Raphson method.

The network steady state configuration has to be deter-
mined from the known boundary conditions. Typically
the upstream inflow and downstream water depths
are known for the entire network. The complexity
of this task depends on the network configuration.
For a single canal the problem is solved straightfor-
ward from downstream to upstream intercalating the
pool backwater computation (6) with the mass (4)
and energy (5) conservation equations. For drainage
networks the problem is similar as flow in each canal
is known due to the network convergent nature. It-
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eration procedure is needed if some loop is present
in the network. That is the case for the considered
drainage network. The irrigation network steady state
is the most challenging as the flow along the network
is unknown and the solution is achieved through a
complex iterative procedure.

The backwater computation in a single canal is classi-
fied into one of two categories,

Initial Value Problem (IVP): refers to the solution
of (6) from the specified (Q0, Y0(L));

Boundary Value Problem (BVP): refers to the solu-
tion of (6) from specified upstream and downstream
water levels (Y0(0), Y0(L)). The shooting method
can be used to overcome this problem. Using this
method the BVP is solved as an IVP with iterations
until the upstream water level is inside a predefined
tolerance. The flow update Qk+1 is done using a
simple extrapolation,

Qk+1 = Qk +
Y0(0)− Y k(0)

Y k−1(0)− Y k(0)

(
Qk−1 −Qk

)
(7)

The network nodes can be classified as type I or type
II. Type I node requires the solution of a BVP af-
ter the determination of a IVP. Type II node means
the BVP requires the solution of a group of canals.
The Boundary Value Problem for a Group of Canals
(BVPGC) starts with the solution of a IVP for a given
canal that defines the upstream water depth. This value
will be used to solve the BVP of the canal sharing the
same upstream node. After the solution of the BVP
the canal flow is determined and by continuity con-
servation the node inflow is computed. Then the IVP
can be applied to the node upstream canal. The proce-
dure continues until a node of type II is found, where
typically the energy equation should be verified. The
node classification is uniquely determined across the
network and plays an important role in terms of com-
putation efficiency. Accordingly to (B. J. Naidu and
Narasimhan, 1997) the best path of marching should
be determined before starting computations in par-
ticular the starting node. Parameters as the number
of canals in the network, number of reaches into a
canal is divided, the number of type II nodes and the
number of loops in the algorithm for computing the
solution affects the computational effort. For a given
node the number of nodes of type I and II on the
right and left side are counted. The solution should
start from the side with the higher number of type II
nodes, and in case of draw the side with more type I
nodes should be chosen. The algorithm for computing
the steady state is given by Algorithm 1 and 2 for
the drainage and irrigation network, where E.E. means
energy equation and C.E. means mass conservation
equation. The boundary conditions are presented in
Table 3–4. The drainage network steady state config-
uration is presented in Table 5. The irrigation network

Algorithm 1 Drainage network steady state
1: Solve C.E. for all nodes to set Qi

2: IVP for canal [14]
3: repeat
4: Assume Q11

5: Apply C.E. for node [11] and [12]
6: IVP for canal [13]
7: IVP for canal [11]
8: IVP for canal [12]
9: until E.E. is verified at node 11

10: IVP for canal [8] and [9]
11: IVP for canal [10]
12: IVP for canal [1] and [2]
13: IVP for canal [3] and [4]
14: IVP for canal [5,6] and [7]

Algorithm 2 Irrigation network steady state
1: repeat
2: Assume Q28

3: BVPGC for canals [27,39,26,38,25,11,10]
4: repeat
5: Assume Q25

6: BVPGC for canals [24,37,23,36,22]
7: until E.E. is verified at node 10
8: IVP for canal [9]
9: repeat

10: Assume Q32

11: BVPGC for canals [31,41,30,14,13]
12: repeat
13: Assume Q30

14: BVPGC for canals [29,40,28]
15: until E.E. is verified at node 13
16: BVPGC for canals [12,4,3]
17: until E.E. is verified at node 3
18: IVP for canal [2]
19: repeat
20: Assume Q20

21: BVPGC for canals [19,34,18,8,7]
22: repeat
23: Assume Q22

24: BVPGC for canals [21,35,20]
25: until E.E. is verified at node 7
26: IVP for canal [6]
27: repeat
28: Assume Q18

29: BVPGC for canals [17,33,15]
30: until E.E. is verified at node 6
31: until E.E. is verified at node 6
32: IVP for canal [5]
33: until C.E. is verified at node 2
34: IVP for canal [5]

initial conditions can be consulted in (Adlul Islam and
Sen, 2005).

4. SIMULATION RESULTS

Using elementary blocks for canals and junctions a
simulator can be constructed for each network (Nabais
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Table 3. Drainage network boundary con-
ditions.

Node Flow [m3/s] Node Flow [m3/s] Level [m]
1 10.0 5 10.0 –
2 10.0 6 10.0 –
3 10.0 7 10.0 –
4 10.0 14 – 2.5

Table 4. Irrigation network boundary con-
ditions.

Node Flow [m3/s] Level [m] Node Level [m]
1 40.0 – 32 1.0749
5 – 0.9111 33 1.4777
9 – 1.6559 34 1.7107
12 – 0.9759 35 2.0070
15 – 0.9127 36 1.7769
18 – 1.8784 37 1.2190
20 – 1.6026 38 1.4745
22 – 1.6729 39 1.3719
25 – 1.3622 40 1.6091
28 – 1.4766 41 1.3310
30 – 1.1741 42 1.2535

Table 5. Drainage network steady state.

Pool Flow [m3/s] Upstream [m] Downstream [m]
1 10.0000 1.5870 1.8773
2 10.0000 1.5870 1.8773
3 10.0000 1.1393 1.8773
4 10.0000 1.1393 1.8773
5 10.0000 1.7360 2.2392
6 10.0000 1.7360 2.2392
7 10.0000 1.7360 2.2392
8 20.0000 1.8773 1.9525
9 20.0000 1.8773 1.9525
10 30.0000 2.2392 2.2713
11 10.1710 1.9525 2.2713
12 29.8290 1.9525 2.4849
13 40.1710 2.2713 2.4849
14 70.0000 2.4849 2.5000

et al., 2011). The simulator allows water depths and
flows monitoring along network nodes and in each
individual canal. In particular it is possible to analyze
how perturbations propagate along the network. In
a first stage the simulator accuracy for reaching a
new steady state is analyzed for both networks. The
comparison is made with the solution obtained by
Algorithm 1 and 2 for new boundary conditions. In
a second stage a physical scenario is tested for each
network.

4.1 Steady State Analysis

The simulator accuracy is tested for both networks for
different steady state configurations. Starting from the
initial steady state a step flow is applied changing the
upstream boundary condition. In the drainage network
the boundary changed from 10m3/s to

[
12 14 16

]
m3/s

while for the irrigation network the boundary changed
from 40m3/s to

[
45 50 55

]
m3/s. The drainage net-

work suffers a maximum flow deviation of 60% while
for the irrigation network a 37.5% deviation is im-
posed. The simulator accuracy in converging to the
new steady state configuration is evaluated for each

canal in respect to the nominal flow, upstream water
depth and downstream water depth. In Table 6–7 the
simulator accuracy is presented using the following
error criteria: Mean Absolute Error (MAE), Maximum
Absolute Error (MXAE), Mean Absolute Relative Er-
ror (MARE) and Maximum Relative Error (MXRE).
The simulator ability to converge to the new final

Table 6. Simulator accuracy for the
drainage network.

12m3/s MAE MXAE MARE MXRE
Flow 0.0054 0.0238 0.0002 0.0016

Upstream 0.0050 0.0082 0.0025 0.0042
Downstream 0.0045 0.0082 0.0020 0.0034

14m3/s MAE MXAE MARE MXRE
Flow 0.0163 0.0747 0.0006 0.0050

Upstream 0.0190 0.0310 0.0087 0.0143
Downstream 0.0170 0.0310 0.0069 0.0116

16m3/s MAE MXAE MARE MXRE
Flow 0.0323 0.1490 0.0010 0.0091

Upstream 0.0406 0.0656 0.0172 0.0277
Downstream 0.0362 0.0656 0.0136 0.0229

Table 7. Simulator accuracy for the irriga-
tion network.

45m3/s MAE MXAE MARE MXRE
Flow 0.0018 0.0059 0.0008 0.0028

Upstream 0.0011 0.0043 0.0007 0.0019
Downstream 0.0005 0.0036 0.0000 0.0018

50m3/s MAE MXAE MARE MXRE
Flow 0.0063 0.0237 0.0019 0.0062

Upstream 0.0047 0.0168 0.0028 0.0069
Downstream 0.0021 0.0141 0.0013 0.0068

55m3/s MAE MXAE MARE MXRE
Flow 0.0130 0.0558 0.0033 0.0095

Upstream 0.0105 0.0362 0.0060 0.0141
Downstream 0.0048 0.0304 0.0028 0.0140

steady state is confirmed by the low Mean Absolute
Relative Error. Only for the drainage network with
a boundary flow deviation of 60% the mean relative
error rises above 1% in water depths. Maximum nom-
inal error values grow in respect to the boundary flow
deviation and are bellow 70mm in water depth for all
tested scenarios.

4.2 Unsteady Flow Simulations

Two different scenarios will be tested: the tides impact
plus a rainfall scenario for the drainage network and
an upstream flow disturbance propagation along the
irrigation network.

4.2.1. Flood Prediction on Drainage Networks For
the drainage scenario two physical meaningful situa-
tions are tested. The ability to drain stormwater can be
analyzed by raising the upstream boundary condition
(60% on the network inflow for nodes 1 to 7) and
the tides impact in the network can be imposed at
the downstream boundary, modeled as a sine wave of
amplitude 0.5m (relative deviation of 40%) and period
14 hours. In Fig. 3(a)–3(b) the variations of water
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depth and flow for nodes 13 and 14 are presented. The
water depth along canal axis for pool 10 is presented
in Fig. 3(c) for different situations: the steady state t0,
high tide t1, high tide with rainfall t2 and low tide with
rainfall t3.
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Fig. 3. Flood prediction under drainage network.

4.2.2. Flow Disturbance on Irrigation Networks
The irrigation network upstream boundary condition
is disturbed according to a triangle wave with a max-
imum flow deviation of 15m3/s. The impact propaga-
tion can be studied looking into the flow and water
depth variables along the network. In Fig. 4 the prop-
agation effect is represented both in water depth and
flow deviation for two shortest paths: from node 1 to
node 5 (primary canals) and from node 2 to node 9
(secondary canals). It is clear the advection and dis-
persion effects on the disturbance propagation along
the network.

5. CONCLUSIONS

A modular modeling framework for channel network
was presented. Different network configurations can
be easily constructed by interconnecting the elemen-
tary components modeling canals and junctions. For
illustrative purpose two different topologies, irrigation
and drainage, were constructed without any hydraulic
structure which is a challenge. The energy equation
is used to impose water depth boundary conditions.
The framework proved to be accurate in reaching new
steady state configurations. For these case studies the
response to boundary disturbance was analyzed cor-
responding to an increase in water demand by farmers
or flood prediction due to the interaction between tides
and rainfall drainage.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

time [hours]

de
pt

h 
de

vi
at

io
n 

[m
]

Node 1
Node 2
Node 3
Node 4
Node 5

(a) Water depth hydrograph.

0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

time [hours]

flo
w

 d
ev

ia
tio

n 
[m

3 /s
]

Node 1
Node 2
Node 3
Node 4
Node 5

(b) Flow hydrograph.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

time [hours]

de
pt

h 
de

vi
at

io
n 

[m
]

Node 2
Node 6
Node 7
Node 8
Node 9

(c) Water depth hydrograph.

0 1 2 3 4 5
−1

0

1

2

3

4

5

time [hours]

flo
w

 d
ev

ia
tio

n 
[m

3 /s
]

Node 2
Node 6
Node 7
Node 8
Node 9

(d) Flow hydrograph.

Fig. 4. Irrigation network hydrographs along the short-
est path between nodes 1 to node 9 and for node
2 to node 9 for a maximum peak flow of 55m3/s.

6. REFERENCES

Adlul Islam, N. S. Raghuwanshi, R. Singh and D. J.
Sen (2005). Comparison of gradually varied flow
computation algorithms for open-channel net-
work. Journal of Irrigation and Drainage Engi-
neering 131(5), 457–465.

Akan, A. Osman (2006). Open Channel Hydraulics.
Elsevier.

Akan, O. A. and B. C. Yen (1981). Diffussion wave
flood routing in channel networks. Journal of
Hydraulic Engineering 107(6), 719–732.

B. J. Naidu, S. Murty Bhallamudi and S. Narasimhan
(1997). Gvf computations in tree-type chan-
nel networks. Journal of Hydraulic Engineering
123(8), 700–708.

Litrico, Xavier and Vincent Fromion (2009). Mod-
eling and Control of Hydrosystems. Springer-
Verlag.

Nabais, Joao and Miguel Ayala Botto (2011). Linear
model for canal pools. In: 8th Internation Confer-
ence on Informatics in Control, Automation and
Robotics. Noordwijkerhout, The Netherlands.
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