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Abstract: In this paper a comparison is made between two different dynamic models of an
experimental open water canal situated in Évora, Portugal. A qualitative analysis focuses
on the capacity of each model to accommodate different types of boundary conditions
and monitoring the canal, while accounting for nonuniform geometric characteristics and
dynamic accuracy. Both models are derived from the well known Saint-Venant equations,
resulting in a finite dimension discrete-time model, and a simplified infinite dimension
continuous-time model, respectively. The finite dimension model is shown to be more
appropriate to be used in a fault tolerant control framework.
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1. INTRODUCTION

Water is a vital resource for earth biodiversity but is
also essential for human kind way of life as it is used
for industrial, domestic and agricultural purposes. In
respect to Portugal, 81.8% of the available water is
used for irrigation purposes (Raposo, 1996). In a near
future UNESCO predicts that two out of three indi-
viduals will be affected by the lack of fresh water.
The efficiency of water consumption is primordial for
a sustainable development in the future.

Many of the currently existing water distribution net-
works are still manually operated. Only a few have
monitoring equipment to support human decision, like
for instance the SCADA system – Supervisory Con-
trol and Data Acquisition. To improve the efficiency

1 This work is co-sponsored by project PTDC/EEA-
CRO/102102/2008, FCT, Portugal.

on water use it is necessary to incorporate modern
automatic control systems which are able to account
for water flow deviations at some point in the water
network (Silva et al., 2007). Usually, water canals
interact with end users through their physical offtakes.
For simplicity and economic purposes in most of the
irrigation systems water is supplied by gravity. The
problem of supplying a given discharge is converted
into controlling the water level at the offtake loca-
tion. As the canal is constituted by several pools sep-
arated by gates, the offtake is normally immediately
upstream the gate with a level sensor associated.

A typical open water canal is usually divided into
several pools whose dynamics can be represented by
the Saint Venant equations (Szymkiewicz, 2010), that
is partial differential equation (PDE) of hyperbolic
type. Hydraulic structures along the canal, like gates
for instance, can also be modeled by a static rela-
tionship between upstream, downstream water levels



and gates position. Through the separated implemen-
tation of all components it is possible to simulate a
given open water canal using this type of models.
The established model strategy proposed by (Litrico
and Fromion, 2009) makes use of the Saint Venant
equations to obtain an infinite dimension model de-
scribed as an Input-Output transfer function. This type
of model is specially suitable to frequency analysis but
do require a high degree of complexity which limits
their application to real time model based algorithms.
On the other hand, the substantial simplified version of
these models called the Integrator Delay Zero model
(IDZ) (Litrico and Fromion, 2004) is suitable to real
time applications but the simplifications used can only
capture the main low and high frequency nature of the
process.

This paper presents a qualitative study between the
above mentioned two types of open water canal mod-
els. The purpose of this study is to be able to conclude
which of these models is best suited to be used in a
fault tolerant control strategy (Blanke et al., 2006).
Fault tolerant control as long proved to be a robust
control technique to deal with complex systems sub-
ject to faults and disturbances, like an open water
distribution canal. A key point to the success of this
control strategy depends on the model accuracy and
flexibility to incorporate faulty situations. A model
that can be easy expanded to extract information along
the canal is preferable to one that uses only upstream
and downstream information. Also the possibility to
use models that can easily monitor the canal behav-
ior in different point locations is determinant to fault
detection.

This paper has the following structure. Section 2 in-
troduces the experimental water canal used in this
study. In Section 3 two different types of dynamic
models based on the linearized Saint Venant equa-
tions are presented for the water canal: a finite dimen-
sion discrete-time model, and an infinite dimension
continuous-time one. In Section 4 the frequency and
time responses of both models are compared in a sim-
ulation study. Finally, in Section 5 some conclusions
are drawn.

2. EXPERIMENTAL WATER CANAL

The experimental water canal is located in Évora,
Portugal, has 4 pools with a trapezoidal cross sec-
tion of 900 mm height, 150 mm base width and a
side slope of m = 150 mm. The distinct geometric
characteristics for each pool are shown in Table 1.
The 4 pools are divided by three sluice gates. All the-
ses sluice gates are electro-actuated and instrumented
with position sensors. A rectanguar overshot gate is
located at the end of the canal with 700 mm width.
The off-take valves, equipped with an electromagnetic
flow-meter and motorized butterfly valve for flow con-
trol, are immediately located upstream of each sluice

Table 1. Geometric characteristics

Total length – L [m] Slope – I
Pool 1 40.37 0.0016
Pool 2 34.87 0.0014
Pool 3 35.14 0.0019
Pool 4 26.55 0.0004

gate. Counterweight-float level sensors are distributed
along the canal, as shown in Fig. 1.

Fig. 1. Schematics of the complete facility

At the head of the canal an electro-valve controls the
canal inflow. This flow is extracted from a reservoir
as depicted in figure 1. The maximum flow capacity
is 0.090 m3/s. The water canal nominal capacity pro-
vides a flow of 0.030 m3/s for a uniform water depth of
0.600 m. All electro-actuators and sensors in the canal
are connected to local PLCs (Programmable Logic
Controllers) responsible for the sensor data acquisition
and for the control actions sent to the actuators. All lo-
cal PLCs are connected through a MODBUS network
(RS 485) (Figueiredo and Ayala Botto, 2005).

3. MATHEMATICAL MODEL

3.1 Saint Venant Equations

The mathematical model of the water canal will be
derived based on first principles physical relations to
an hydraulic control volume (Sabersky et al., 1998).

The derived set of equations is known as the Saint-
Venant equations,

∂Q(x, t)

∂x
+ B(x, t)

∂Y (x, t)

∂t
= 0 (1)

∂Q(x, t)

∂t
+

∂
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A(x, t)

)

+ . . .

. . . + g · A(x, t) · (J(x, t) − I(x)) = 0 (2)

where Q(x, t) is the discharge, Y (x, t) the water sur-
face level, B(x, t) the water surface width, A(x, t) the
water cross-section area, g the gravity acceleration, x
the longitudinal abscissa in the flow direction, t the
time instant, I(x) the bottom slope and J(x, t) the
energy gradient slope that can be accurately approx-
imated by the following Manning-Strickler empirical
formula (Quintela, 2005),

J(x, t) =
P (x, t)

4/3
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10/3

Q(x, t) |Q(x, t)| (3)



where K is the Manning-Strickler coefficient (deter-
mined to be 65 m1/3/s) and P (x, t) is the wetted
perimeter. These equations are non-linear with un-
known analytical solution.

The flow type on open water is classified according
to the Froude number, that can be seen as the ratio
between inertial and gravity forces,

Fr(x, t) = V (x, t)

√

B(x, t)

g · A(x, t)
=

V (x, t)

C(x, t)
(4)

where, C(x, t) =
√

g A(x,t)
B(x,t) , is the wave celerity. In

this work only subcritical flow is considered, that is to
say Fr < 1.

For control purposes it is recommended to work
around a steady state with a linear model. To accom-
plish this the Saint Venant equations are first linearized
around an equilibrium point and only then discretized.

3.2 Linearized Saint Venant Equations

Consider a steady state defined as (Q0, Y0(x)) where
index 0 stands for steady point configuration. The
deviation variables are defined as,

q(x, t) = Q(x, t) − Q0

y(x, t) = Y (x, t) − Y0(x)

Assuming A(x, t) = B0(x)Y (x, t), after linearization
equations (1) (2) become,
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where,
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To complete the linearized pool model is necessary to
consider an initial condition along the spatial coordi-
nate,

q(x, 0) = q0(x) y(x, 0) = y0(x) (8)

and two boundary conditions on each end along time,

q(0, t) = u1(t) q(L, t) = u2(t) (9)

To simplify future analysis the Saint Venant equations
can be written to a more convenient alternative form.
For that consider the area deviation as a(x, t) =
B0(x)y(x, t). The linearized equations (5) and (6) are
now,
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Considering the state vector χ(x, t) =
[

q(x, t) a(x, t)
]

′

equations (10) and (11) may be expressed in state
space,

A
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where,
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α(x) − β(x) α(x)β(x)
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3.3 Continuous Models

From (13) after laborious mathematical manipulations
a continuous multivariable model, input–output trans-
fer matrix, relating upstream and downstream water
level to upstream and downstream discharge, has been
developed (Litrico and Fromion, 2009),

[

y(0, s)
y(L, s)

]

=

[

p11(s) p12(s)
p21(s) p22(s)

] [

q(0, s)
q(L, s)

]

(14)

The input–output transfer matrix is specially suited
for properties analysis and frequency analysis sup-
porting H∞ design. Although accurate these models



are too complex and may compromise real time im-
plementations. From this structure a simplified model
named Integral Delay Zero is available (Litrico and
Fromion, 2004).

The IDZ model is valid for the uniform and nonuni-
form flow conditions and captures the main physical
properties of open canal dynamics. The model is accu-
rate for the most important dynamic characteristics as
the integrator gain and time delay. The zero accounts
for direct influence of discharge on the water level
for high frequency. The model has only a few param-
eters, the integrator gain, the time delay and zeros,
which can be computed analytically from the steady
state configuration. The model is structurally identical
to (14) only with different elements pij(s) calculated
by,

p11(s) =
1

Aus
+ b̃u

p12(s) =−

(

1

Aus
+ bu

)

e−τ1s

p21(s) =

(

1

Ads
+ bd

)

e−τ2s

p22(s) =−
1

Ads
+ b̃d

The transfer function p21(s) describes the effect of
upstream discharge to downstream water depth. The
time delay τ1 represents the time for a change in the
upstream discharge to produce an effect on the down-
stream water depth. Transfer function p12(s) describes
the effect of a change in the downstream discharge to
have effect in the upstream water depth. Interpretation
of τ2 is analogous to τ1. For uniform flow the time
delays are calculated by τ1 = L/α = L/(V0 + C0)
and τ2 = L/β = L/(C0 − V0). A canal pool can
be divided into two parts; the uniform part located
upstream where the water depth is approximately con-
stant, and a nonuniform part located at the downstream
end where the water level is slow moving with an
approximately horizontal surface caused by a flow
obstruction as a gate. The integrator constants Au and
Ad correspond to the superficial area for uniform and
nonuniform flows respectively. The constants bi are
related to high frequency gain.

3.4 Discrete Models

The Saint Venant discretization is done over a grid of
spaced lines, horizontal for time and vertical for space,
Fig. 2, where, ∆x is the spatial mesh dimension,
∆t is the time step, θ and φ weighting parameters
ranging from 0 to 1, k is time level index and i is
cross-section index. A function value and its partial
derivatives inside a grid square are calculated from the
square node values accordingly to (15)–(17).
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Fig. 2. Interpolation using the Box Scheme.
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For φ = 0.5 it correspond to the Preissmann
method. Changing θ means moving the evaluation
point in time. The state vector for two consecutive
sections is fourth dimension with both upstream and
downstream discharge and area deviation, x(k) =
[

qk
i ak

i qk
i+1 ak

i+1

]T
. Applying (15)–(17) to equa-

tion (13) after some manipulations we get the discrete
state space system,
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(18)

The state space representation describes the pool dy-
namics between two adjacent sections. To obtain the
model corresponding to a pool divided into n section
it is necessary to use n+1 sections leading to 2(n+1)
variables. Using model (18) is possible to obtain 2n
equations. The last two equations are related to the
upstream and downstream boundary conditions. The
total pool state vector X(k) is defined as,

X(k) =
[

q1(k) a1(k) q2(k) a2(k) . . .

. . . qn(k) an(k) qn+1(k) an+1(k)
]

(19)

The final reach model is represented in state space by,

X(k + 1) = AkX(k) + Bku(k)

Y(k) = CkX(k) (20)

Matrices Ak and Bk are square sparse matrix with di-
mension 2(n+1), matrix Bk has dimension 2(n+1)×
2 to account for both boundary conditions and matrix
Ck has variable dimension according to the outputs
used. The model will be naturally dependent on the
discretization parameters used, specifically θ and ∆t.
Understanding the physical process and discretization
technique is vital to identify unphysical behavior in
the solution (Szymkiewicz, 2010).



Table 2. Dynamical parameters

Pool 1 Pool 2 Pool 3 Pool 4
C0(L) 2.0690 2.0690 2.0690 2.0690

α(L) 2.2773 2.2773 2.2773 2.2773
β(L) 1.8607 1.8607 1.8607 1.8607

δ(L) 0.0180 0.0182 0.0177 0.0192

γ(L) 0.0101 0.0093 0.0112 0.0057

Fr0
(L) 0.0101 0.0101 0.0101 0.0101

D(L) 1.4703 1.4703 1.4703 1.4703

Table 3. IDZ parameters

Au Ad τ1 τ2
pool 1 13.39 12.78 18.09 22.55

pool 2 11.56 11.11 15.55 19.23

pool 3 11.46 11.02 15.56 19.42

pool 4 11.82 11.34 15.48 18.99

b̃u bu bd b̃d

pool 1 1.534 1.956 2.048 1.591

pool 2 1.517 1.960 2.039 1.567

pool 3 1.541 1.998 2.077 1.591

pool 4 1.471 1.886 1.966 1.520

4. SIMULATION RESULTS

4.1 The experimental water canal data

The spacial step was considered equal to L/10. The
water level elevation for steady state can be computed
numerically from the relation,

dY (x)

dx
=

I − J(x)

1 −
V 2

0
(x)B0

gA0(x)

(21)

The dynamical parameters (7) and (12) along the canal
axis are indicated in Table 2.

Output matrix Ck in (20) will be defined to produce
a model similar do the IDZ model, relating the up-
stream and downstream discharge deviations to up-
stream and downstream water level deviations. Ck is
responsible to convert the water area deviation in state
vector (19) to water level deviation. In Table 3 the IDZ
model parameters are presented for all pools. For the
nonuniform case the Input-Output matrix (Litrico and
Fromion, 2009) poles can be asymptotically approx-
imated. Table 4 indicates the asymptotic frequency
values of the canal poles. The models presented here

Table 4. Asymptotic natural frequency

Pool 1 Pool 2 Pool 3 Pool 4
kp = ±1 0.1549 0.1811 0.1798 0.1826
kp = ±2 0.3094 0.3619 0.3593 0.3648
kp = ±3 0.4639 0.5427 0.5388 0.5470

kp = ±4 0.6185 0.7236 0.7184 0.7293

kp = ±10 1.5461 1.8088 1.7959 1.8232

were implemented and tested in Simulink.

4.2 Calibrating Finite Dimension Model

Passing from an infinite model to a finite one implies
some inaccuracies. In fact the finite dimension model

performance will be a function of parameters ∆x, ∆t,
and θ. The spatial grid mesh dimension was fixed to
Li

10 which is a common value for open water canal as
a compromise between accuracy and computational
complexity. Here the centered scheme, θ = 0.5,
was implemented which is second order accurate and
unconditionally stable for θ ≥ 0.5. The time step
can be adjusted to improve model performance. As an
initial guess we may expect that reducing time step
will improve the model. Consider the Courant number
defined,

Cr =
α∆t

∆x
(22)

A natural frequency error analysis depending on
Courant number was performed. The error is minimal
for three different Courant number: Cr = 0.9 mini-
mizes the error for ω1, Cr = 1.1 minimizes the error
for ω2 while the higher frequencies error is minimized
for Cr = 1.14. The same analysis for pools 2 to 4
give similar results. In Fig. 3 the three different con-
figurations for Cr are tested for pool 1 with a positive
step input at downstream end. Physically this is equiv-
alent to operate a pump at downstream end, this will
diminish the water level. Simultaneously a wave will
travel from downstream to upstream end with an im-
mediate effect in water level. From Fig. 3(a) and 3(b)
is possible to see how the wave is propagated along the
canal axis. A higher Courant number, that is to say a
higher time step, reduces significantly the unphysical
oscillations introduced numerically. At the same time
the diffusion is also reduced as the front wave persists
until the upstream end. In Fig. 3(c) and 3(d) the higher
Courant number configuration has a more smooth re-
sponse with some discontinuities corresponding to the
first oscillating mode, the time required for a wave to
travel both ways, τ1 + τ2 ' 40s. Naturally the best
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(d) Downstream water level.

Fig. 3. Pool 1 behavior for a downstream step input of
magnitude 0.1Q0.



Table 5. Natural frequency error between
asymptotic and Saint Venant poles

Pool 1 [%] 2 [%] 3 [%] 4 [%]
kp = ±1 0.12 0.05 0.08 0.03

kp = ±2 0.61 0.64 0.62 0.68

kp = ±3 1.67 1.64 1.68 1.57

kp = ±4 3.06 2.96 3.08 2.74
kp = ±10 13.69 13.01 13.82 11.48

numerically configuration for representing the Évora
canal is θ = 0.5 and Cr = 1.15.

4.3 Model Verification

For the established discretization configuration in Ta-
ble 5 the natural frequency error for some poles is
presented. As can be seen the error is insignificant for
the first pairs. In Fig. 4 the magnitude frequency re-
sponse is indicated. To access the interaction between
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(a) q(0, ω) to y(0, ω).
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(b) q(L, ω) to y(0, ω).
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(c) q(0, ω) to y(L, ω).
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(d) q(L, ω) to y(0, ω).

Fig. 4. Magnitude frequency response for Pool 4.

each pool model and hydraulic structures the exper-
imental water canal will be considered in one of its
possible configurations: pool 4 with an overshot gate
at downstream. Fig. 5 presents the simulation results
for a step input 0.1 × Q0 in upstream discharge varia-
tion. The downstream water level deviation is similar
between finite and infinite models. The finite model
configuration proposed is the one with less oscilla-
tions at downstream water level before wave arrival.
The undershoot presented by the other finite models
is eliminated and transformed into an overshot. At
the upstream water level some differences are signif-
icant. The infinite model has a different final value.
There is a significant discontinuity corresponding to
wave propagation time from downstream to upstream.
This can have an undesired effect when a hydraulic
structure is connected to the upstream end of a pool.
If the gate is of undershot type it will propagate the
discontinuity into the upstream pools.
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(a) Upstream water deviation.
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(b) Downstream water deviation.

Fig. 5. Time response for an upstream step input of
0.1 × Q0 for pool 4 with an overshoot gate.

5. CONCLUSIONS

This paper presents a comparison between two dif-
ferent types of dynamic models of an open water
canal: an infinite dimension and a finite dimension
one. The infinite model is best suited for frequency
design while the finite model is more adequate for
time design. While the infinite dimension model suf-
fers from a lack of capacity for monitoring the canal,
as only the upstream and downstream water deviations
are available, the finite dimension model allows for a
better supervision of both water and discharge devia-
tion along the canal axis. Thus, the finite dimension
model can accommodate sensorial capacity along the
canal, which makes it more suitable to be used in fault
tolerant control schemes.
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