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Abstract: This paper presents a robustly stable closed loop control scheme for Piecewise
Affine (PWA) systems. The control scheme is composed by a robust mode hybrid controller
that stabilizes a PWA system subject to additive input disturbances while ensuring that all the
uncertainty associated with the continuous state is contained in a single discrete mode of the
system. The continuous state uncertainty is described by a polytope and is determined by a
set-valued hybrid observer using polytopic arithmetics. Closed loop stability is ensured by
employing a Model Predictive Control strategy. A very simple demonstrative example is also
presented.

Keywords: Hybrid Systems, Model Predictive Control, Closed Loop Stability, Robust Mode
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1. INTRODUCTION mode that defines the active dynamics. In (Heeratls
al.,, 2001) PWA systems are proven to be equivalent,
The present work focuses on the closed loop control ynder some mild assumptions, to many other classes
problem for stochastic hybrid systems. In recent yearsof hybnd systems, and so, the proposed techniques can
the industry and research community have shown anpe interchanged among all the referred classes.
increasing interest on hybrid systems due to their
capability of describing the interaction between dy- l0sed loop control schemes have already been used
namical and logical components (Antsaklis, 2000). t0 control hybrid systems, for instance the widely
This interaction can be found in many real world sys- SPréad Model Predictive Control (MPC) (Mayme
tems, embedded control systems and in the control of2» 2000). However, the state is always assumed to
many complex industrial systems via the combination P& €xactly known and no observers or estimators are
of classical continuous control laws with supervisory N€€ded to reconstruct it. Some of the MPC schemes
switching logic. were even proven to be robu.stly stable.m.the presence
of small disturbances (Jalali and Nadimi, 2006; Be-
The class of hybrld systems considered in this paper iSmporad and Morari, 1999) In this paper, the robust
Piecewise Affine (PWA) systems. These are basically MPC of (Bottoet al, 2005) will be used, and a set-
composed by a set of affine dynamics and a discreteyalued state observer (Shamma and Tu, 1995) will
reconstruct the state uncertainty set from the measured
! This work was supported in part by projects outputs. The stapility is ensured for the unknown bqt
POCIEME/59522/2004 and PTDC/EME-CRO/69117/2006 Pounded input disturbances and measurement noise

co-sponsored by FEDER, Programa Operacionaén@ia e explicitly considered in the stochastic PWA model.
Inova@o 2010, and by the grant SFRH/BPD/41496/2007, from
FCT, Portugal.
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The closed loop stability arises from the robust stabil- 3.1 The Open-Loop Min-Max Optimal Control Problem
ity of the MPC scheme in the presence of uncertainty

and, from the fact that the information gathered by the Consider the PWA system subject to bounded addi-
set-valued observer must reduce the uncertainty. tive exogenous disturbances defined in (1). The finite
horizon min-max optimal control problem for the dis-
turbed PWA system under operational constraints is
defined as follows (Kerrigan and Maciejowski, 2003).

The remainder of this paper is organized as follows:
Section 2 describes the stochastic PWA model that
will be considered. Sections 3 and 4 describe the ro-
bust mode hybrid controller and the set-valued hybrid
observer, respectively. In section 5, the receding hori-
zon strategy presented and the stability of the entire
control loop is analyzed. A numerical example is pre- . x
sented in I[sJection gto further clarify the ir?troduged exists) the control sequence(k) = ]’?N =

li / /
concepts. Finally, some conclusions are drawn in sec-( (k1K) u/(k+1[k)....,u (k+N—1|k))" which ()
tion 7. transfers the state frori, to a given final seKy C X,

which contains a final (target) nominal equilibrium
statex ¢, and (i) minimizes the performance index
VN (zx,u) given by:

Problem 1. The PWA formulation
Given an initial convex set of continuous stafés C
X at time £ and a final timek + N, find (if it

2. SYSTEM MODEL

i max JIn (xr,u,w)
The proposed control scheme is developed for PWA WEW, (k) X - - - X W, (k1| (5)
systems which were introduced in (Sontag, 1981). The T € Xy

following stochastic PWA model will be considered: whereJy (z4,u,w) is defined as:

w(k+1) = Aigyx(k)+ Biggyu(k) + iy + Ligyw(k) - o)
Q2 > i () —all)l o )~
y(k) =Cigryx (k) +Digeyu(k) +giry+o(k)  (1b) =* 6)
z(k) subject to:
wherek € Ny is the discrete timeg(k) € X C R z(t+1lk) = Ax(t|k)+ Bsu(t|k)+ fi+ Lyw(t| k)

is the continuous state k) € U C R is the input,
y(k) € R™ is the output andi(k) € Z = {1,..., s}
is the discrete mode where the total number of
discrete modes. The input disturbancgk) € W; C
R™ and measurement nois¢k) € V; C R™ are

modelled as random variables taking values in the
respective polytopes which contain the origin and may
depend on the discrete modeThese polytopes are

defined by sets of inequalities, as follows:

o (t|k)
for [u(tlk)} e (7b)

w(t|k)

a(t]
[u((tlk)):|€(c Vw(tlk) e W;q k), t=k,...,k+N—1
tlk

with C 2 { [g] :Sca+ Reut Qew < TC} (7¢)
x(N\k) EXf, Vw(.|k:) EWi(_‘k), (7d)

where z(t|k) represents the state trajectofiys|| p, ;

Hy  wk) <hw... . Y 2 and ||u||p, ; the I-norm of vectorz and u weighted
Wiy WE) < P Felo @) with matricesP, and P,, respectively, withP, and
Hy, v(k) < iy 5 VkeNo @) P, being full column rank matrices, and; is the

steady-sate equilibrium input wherft|k) = =, and

The discrete modeis a piecewise constant function ~.
disturbances are not present.

of the state, input and input disturbance of the system

whose value is defined by the polytopic regiéhs

A (T2 it . Problem 1 minimizes the worst-case performance cost
;= {[Zﬁ} R S p b Rijut+Qiw < Tz} (5)—(6) and robustly guarantees constraints (7), at all

(4) time stepsk. It penalizes the distance from the given

The matrices and vectots;, B;, fi, L;, C;, D;, gi, final state-seK ¢, while the state at the end of the hori-
S;, R;, Q:, T, depend on the discrete mogland have ~ ZON is not penalized. This structure and properties of
appropriate dimensions. the stage cost, terminal cost, and terminal state-set are
important to achieve closed-loop robust asymptotic
stability of the MPC controlled system. Problem 1 has
infinite dimension since it requires the solution of an
optimization problem for every admissible state €
X, and disturbance sequenee(k) = wi ! =
As an MPC strategy will be adopted, this section (w'(k|k),w'(k+1[k),...,w'(k+N—1[k))". It must
defines the robust optimal control problem that must be transformed into finite dimension problem, using
be solved at each sampling time to determine thethe methodologies presented in (Boyd and Vanden-
control input. berghe, 2004) to solve robust optimization problems.

3. THE ROBUST OPTIMAL CONTROL
PROBLEM



3.1.1. Min-Max as a Finite-Dimensional Problem  Xj. So, the hybrid observer must determine, at ev-
The robust mode hybrid control strategy described ery time instant, the polytope of uncertainty from the
in (Silva et al, 2004) ensures that the mode of collected measurements and applied inputs. Usually,
the system is “certain” regardless of the distur- an hybrid observer would also provide estimates for
bances over a fixed horizon. As a consequence, forthe continuous state and for the discrete mode of the
each possible mode trajectoiyk) = iﬁ*N_l = system, however, in this special setup, the continuous
(i’ (k|k), ' (k+1|k),...,i’(k+N—1Jk))" the system  state estimate is not required and the discrete mode is
behaves as a linear (affine) system, though time-imposed by the hybrid controller through the robust
variant, and so convex state-sets are generated givemode condition, and so it does not need to be esti-
that both the initial state and the disturbance sequencesnated.

take values in convex sets. Besides, since the stag
cost (5) of Problem 1 is a convex function, the tech-
nique presented in (Scokaert and Mayne, 1998) to
convert a min-max problem into an equivalent con-
vex program based on the linearity of the dynamic
model and convexity of the stage cost and uncertain-
ties can be adopted here. In view of this, consider
the following infinite-dimensional min-max optimiza-
tion problem, wherdU™, X, and W; = W) x

.o X Winen—1|k) are convex polytopes, and function
L(.,.,.) is convex:

Ata given time instant: the observer must determine
the uncertainty polytop&’(k+1|k) from the imposed
discrete modes(k) andi(k + 1), the applied input
u(k) and measured outpytk) and the polytope of
the previous time instart’(k|k —1). The uncertainty
polytope is propagated to time instaint- 1 since it
must be used in the determination the inpk +

1) and, according to the system model (1) the most
recent measurement igk) while y(k+1) will only

be available aftet(k+1) has been applied.

. The uncertainty polytop&’(k+1|k) requires the use
aCUN e Rn e L (zi,u,w) ®) o polytopic arithmetic (Veres, 2002) and can be com-

Consider also thdl x, is the set of all vertices x, puted in 3 steps:

of X, and Ty, is the set of all verticesyy, of W;. Measurement Collection The information of the col-
As L(.,.,.) is assumed convex relatively 19, andw, lected measuremeny(k), is used to refine the un-
the above infinite-dimensional optimization problem  certainty polytopet (k|k—1):

is equivalent to the following finite-dimensional one:

X (k|k) = X(k|k—1)()
min max L (zg,u,w) 9) _
uEUT e e r){*%kf?(y(k)—I%wﬂdk)—gum>}

The previous step was obtained by knowing that the S o
maximum of a convex functiod, over a convex set whereX;;, is the admissible state polytope for zero

X, (W;) is at one of the vertices ot} (W;) (see output_ofdiscrete mod#k), the sign+ represents
e.g. (Boyd and Vandenberghe, 2004)). In turn, the the shift of a polytope by a vector arfd is the
optimization problem (9) is also equivalent to the intersection of polytopest; are given by:

convex program: X L {T e R™ : —Hy Ciz < hvi} (13)

12)

. N
L <,V T Ty, - .
e (Y[ weUSL (o uw) <, Vi €T, w € T, } State Prediction The system dynamics (1a) are used

_ _ - (10 to predictX (k+1|k) from X (k|k). First each vertex
Based on the previous technique, the min-max Prob- Va(kk) Of X(k|k) is propagated to the next time
lem 1 is now converted into an equivalent finite-  jnstant according to:

dimensional minimizing one, however restricted by
the robust mode condition thatimposes the same mode V& (k1jk) = itk Vi) +Bigryu(k) + fiy (14)

trajectoryi for all admissiblex), € X andw € W; then, the set of admissible input disturbances are
(or equivalentlyz;, € T, andw € Yy,). Consider also propagated using:

the system dynamics, operational constraints, and the

robust mode condition represented within the PWA Wiy = Wilk) Wi (19)

problem equivalent to Problem 1 is defined as follows:  the Minkwosky sumt-:

In () 2 min -y, Vap€Tx, , weTw, (11) X(k+1lk) = X(k+1k) + W) (16)
Constraint Verification The constraints (1c) of the
discrete mode(k + 1) are verified to ensure that

4. SET-VALUED HYBRID OBSERVER all the uncertaintyX’(k+1) is contained in a single
discrete mode:
The hybrid controller presented in the previous sec- X(k+1]k) in(k+1) — X(k+1]k) (17)

tion requires, at each time instant, the knowledge of
a polytope that contains all possible values for the This step may be ignored since it only serves as a
continuous state, the continuous state uncertainty set verification of the controller constraints.



5. THE RECEDING HORIZON CONTROL
STRATEGY

The set-valued observer described in section 4 com-

putes the uncertainty polytop¥(k|k —1) associated
with the continuous state of the system, which is then
used to determine the solution of the open-loop min-
max robust mode optimal control Problem 1 giving the
optimal input sequenca(k) at time instant;. Based

on this solution, a Receding Horizon Control (RHC)

Definition 4. The setXy is robustly asymptotically
(finite-time) stablewith domain of attractiorX iff it

is robustly stable and robustly asymptotically (finite-
time) attractive with domain of attractia®.

Definition 5. The setX; is robustly positively invari-
ant for the systemz(k + 1) F(z(k),w(k)) iff
vz(0) € Xy andVw(k) € W, the system behavior
is such that:(k) € X¢, Vk € N.

strategy can be implemented such that state-feedbaclpefinition 6. The setX ; is robustly controlled invari-

is obtained. Therefore, consider the following Model
Predictive Control algorithm.

Algorithm 1. Model Predictive Control Algorithm .

(1) Attime k, collect the measurementk).

(2) Determine the uncertainty polytope(k+1|k),
and set¥,;y = X' (k+1]k).

(3) Solve Problem 1, and obtain the optimal input
sequencer*(k+1).

(4) When sampling timé +1 is reached, apply the
first component ofi* (k+1) to the hybrid system,
i.e. applyu(k+1) = u*(k+1]k+1).

(5) Setk=k+1andgoto 1.

5.1 Robust Stability

As the PWA system is subject to persistent distur-

ant for the systeme(k+1) = F(x(k), u(k),w(k))
iff there exists a feedback control law(k)
kf(z(k)) such thatX; is a robust positively in-
variant set for the closed-loop systenik +1) =
F(z(k),kr(z(k)), w(k)) andu(k) € U, Vx(k) € X;.

In order to prove robust stability of the PWA when the
RHC strategy is applied, consider the following set of
assumptions regarding the stage dois}, the terminal
costP(.), and the terminal state constrai.

Assumptions 1.

a) L(z,u)is aconvex function oveX x U and there
exists ac > 0 such thatl(z,u) > c(d(z,Xy)),
V(z,u) € (X\Xy) x U.

b) The stage cost(z,u) =0 if 2 € Xy andu=1uy.

bances the system must be steered to a target state- ¢) The terminal cosP(z) = 0, Va € R"=.
set. So, convergence to a final equilibrium state-set (or d) The terminal state constraiX; C X is a

a desired reference trajectory tube) must be studied.

Next, some important definitions to establish closed-
loop robust stability are presented.

Definition 1. The pair(x s, uy) is said to be amominal
equilibrium pair of a PWA system (1) if the equilib-
rium statex; € R™ and equilibrium input.; € R«
satisfy:

zy = Ajxy+ Biug + fi + Li0

4] en
for somei € 7.

Notice that an equilibrium pair can be computed by
solving a mixed integer program. Consider also the
following definitions, which can be found in e.g.
(Kerrigan and Mayne, 2002) and (Blanchini, 1999).

Definition 2. A set X; is robustly stableiff, for all

€ > 0, there exists @ > 0 such thatd(z(0),X;) < ¢

impliesd(z(k),X;) < ¢ Vk > 0 and all admissible

disturbance sequences (whdfe, Z) = Hggﬂz -yl
Yy

such thatz C R™ and||.|| denotes any norm).

Definition 3. The setX; is robustly asymptotically
(finite-time) attractivewith domain of attractiorX iff
for all z(0) € X, d(z(k),X;) — 0 ask — oo (there
exists a timeM such thatc(k) € Xy, Yk > M) for
all admissible disturbance sequences.

compact convex polyhedron containing the final
nominal stater; in its interior.
e) If the nominal equilibrium paifz s, uy) is such

that] v/ | €. then| i | € s, Vo € X, Y €W,

f) The terminal state constraiit; is robustly con-
trolled invariant foru = uy € U andvw € W;,.

Based on the previous set of assumptions, the follow-
ing theorem is presented.

Theorem 1.

Consider that Assumptions 1 hold for Problem 1, and
thatXy is a non-empty set defined by all initial states
xj, such that Problem 1 is feasible at tirhdéor X}, =

xi. ThenXy is robustly asymptotically stable, with
domain of attractiorX y, for the closed-loop system
when the MPC Algorithm 1 is applied.

The proof follows from considering standard Lya-
punov arguments.

The set-valued observer is not explicitly referred in
this stability analysis because it will only reduce the
state uncertainty polytope at each time instari ffis
robustly asymptotically stable for this setting without
the consideration of the set-valued observer then, it
will remain robustly asymptotically stable when the
observer is introduced.



6. NUMERICAL EXAMPLE State Evolution

. i i P -~ nominal sta{te
Consider the following stochastic PWA system: — uncertainty sets
— final set )
— mode boundaries R4
z(k+1) = B
[0.25 —0.40] 0] 1] [0
040 025 |TR)IF | ulk)E] g |wk)+] 0} %, -
iff [10]a(k)<0  (model)
[0.25 —0.50 ] 1] 1] [0 & A=
10.50 025 _x(kH_o_“(k)*_o_w(k)‘L_—J
iff [10]a(k)>0 (mode 2) 2
=2 = 0 1 2
y(k) =[1 0] 2(k) + v(k) Xy
Control Input and Reference
x(k) ex£ [—2 s 2] X [—2 s 2] 1 - ?é)fr;trré){iicgpiﬁ‘pu_
U(k) clU 4 |:_1 , 1] o — input limits
w(k) € W2 [-0.1, 0.1] , Uniformly distributed u(k)
v(k) €V £[-0.1, 0.1] , Uniformly distributed os
The uncertainty associated with the initial state is -

2

defined as: ime, k

z(0) € X(0) = [1.3, 1.5] x [1.5, 1.7]  (18)  Fig. 1. Solution of the initial optimal control problem.

The objective of the control scheme is to move the State Evolution
state and the corresponding uncertainty polytope into =+ nominal state ‘ ‘

. . — uncertainty sets
the final set: — final set

— mode boundaries .

Xy £[0.1,09] x [-05,-13]  (19) |

The control horizon is chosen &6 = 3, the weights
of the controller areP, = I, , P, = 10[,, and 5 | Ioad
the norm! is the 1-norm. The solution of the initial K
optimal control problem is represented in figure 1, K
while the MPC solution is shown in figure 2. 1 = '

To study the influence of the estimation on the pro- o -- =T
posed closed-loop scheme, the previous MPC solution N ‘ ‘ ‘ ‘
will be recomputed considering the following charac- 2 -1 0 1 2
teristics of the measurement noise:

Control Input and Reference

v(k)€ V £ [-0.01, 0.01] , Uniformly distributed | [~ control input |
- - reference inpu
(20) | = inputlmis
0.5|
The new MPC solution is represented in figure 3. ul
Comparing figures 2 and 3, it is clear that the state o5
uncertainty is reduced in the last case, having a direct ,_./e\./\.
impact on the controller performance. This influence -

reflects itself in the cost function values of the com- e T8 9w

lete trajectory, which are presented in figure 4. . ) .
P J Y P g Fig. 2. Solution of the MPC problem with,

As can be seen in figure 4 there is a sensible reduc- V& [7 0.1, 0,1],
tion in the cost function of the trajectory defined by
the MPC when the measurement noise is reduce
showing the benefits of introducing a state estimator
in the control loop. For very wide intervals of the
measurement noise these benefits are reduced to the
point where the estimator becomes irrelevant.

dthat acted on the system. Further, if the actual input
'disturbances are the ones predicted in the worst case
scenario, no reduction of the cost functional occurs.

7. CONCLUSIONS

A guantitative measure of the cost functional reduc-

tion can not be determinetipriorisince it depends on  This paper presented the first closed-loop control
the actual input disturbances and measurement noisescheme for stochastic hybrid systems. The state esti-
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Cost functional variation
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Fig. 4. Optimal cost function values of the initial opti-
mal control and MPC for different measurement

noise intervals.
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