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Tecnologia de Setúbal, Instituto Polit́ecnico de Setúbal, Portugal
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Abstract: This paper presents a robustly stable closed loop control scheme for Piecewise
Affine (PWA) systems. The control scheme is composed by a robust mode hybrid controller
that stabilizes a PWA system subject to additive input disturbances while ensuring that all the
uncertainty associated with the continuous state is contained in a single discrete mode of the
system. The continuous state uncertainty is described by a polytope and is determined by a
set-valued hybrid observer using polytopic arithmetics. Closed loop stability is ensured by
employing a Model Predictive Control strategy. A very simple demonstrative example is also
presented.
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1. INTRODUCTION

The present work focuses on the closed loop control
problem for stochastic hybrid systems. In recent years
the industry and research community have shown an
increasing interest on hybrid systems due to their
capability of describing the interaction between dy-
namical and logical components (Antsaklis, 2000).
This interaction can be found in many real world sys-
tems, embedded control systems and in the control of
many complex industrial systems via the combination
of classical continuous control laws with supervisory
switching logic.

The class of hybrid systems considered in this paper is
Piecewise Affine (PWA) systems. These are basically
composed by a set of affine dynamics and a discrete

1 This work was supported in part by projects
POCI/EME/59522/2004 and PTDC/EME-CRO/69117/2006
co-sponsored by FEDER, Programa Operacional Ciência e
Inovaç̃ao 2010, and by the grant SFRH/BPD/41496/2007, from
FCT, Portugal.

mode that defines the active dynamics. In (Heemelset
al., 2001) PWA systems are proven to be equivalent,
under some mild assumptions, to many other classes
of hybrid systems, and so, the proposed techniques can
be interchanged among all the referred classes.

Closed loop control schemes have already been used
to control hybrid systems, for instance the widely
spread Model Predictive Control (MPC) (Mayneet
al., 2000). However, the state is always assumed to
be exactly known and no observers or estimators are
needed to reconstruct it. Some of the MPC schemes
were even proven to be robustly stable in the presence
of small disturbances (Jalali and Nadimi, 2006; Be-
mporad and Morari, 1999). In this paper, the robust
MPC of (Bottoet al., 2005) will be used, and a set-
valued state observer (Shamma and Tu, 1995) will
reconstruct the state uncertainty set from the measured
outputs. The stability is ensured for the unknown but
bounded input disturbances and measurement noise
explicitly considered in the stochastic PWA model.
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The closed loop stability arises from the robust stabil-
ity of the MPC scheme in the presence of uncertainty
and, from the fact that the information gathered by the
set-valued observer must reduce the uncertainty.

The remainder of this paper is organized as follows:
Section 2 describes the stochastic PWA model that
will be considered. Sections 3 and 4 describe the ro-
bust mode hybrid controller and the set-valued hybrid
observer, respectively. In section 5, the receding hori-
zon strategy presented and the stability of the entire
control loop is analyzed. A numerical example is pre-
sented in section 6 to further clarify the introduced
concepts. Finally, some conclusions are drawn in sec-
tion 7.

2. SYSTEM MODEL

The proposed control scheme is developed for PWA
systems which were introduced in (Sontag, 1981). The
following stochastic PWA model will be considered:

x(k + 1) = Ai(k)x(k)+Bi(k)u(k)+fi(k)+Li(k)w(k)

(1a)

y(k) =Ci(k)x(k)+Di(k)u(k)+gi(k)+v(k) (1b)

iff

[
x(k)
u(k)
w(k)

]
∈ Ωi(k) (1c)

wherek ∈ N0 is the discrete time,x(k) ∈ X ⊂ R
nx

is the continuous state,u(k) ∈ U ⊂ R
nu is the input,

y(k) ∈ R
ny is the output and,i(k) ∈ I = {1, . . . , s}

is the discrete mode wheres the total number of
discrete modes. The input disturbancew(k) ∈ Wi ⊂
R

nw and measurement noisev(k) ∈ Vi ⊂ R
nv are

modelled as random variables taking values in the
respective polytopes which contain the origin and may
depend on the discrete modei. These polytopes are
defined by sets of inequalities, as follows:

HWi(k) w(k) ≤ hWi(k) , ∀k∈N0 (2)

HVi(k) v(k) ≤ hVi(k) , ∀k∈N0 (3)

The discrete modei is a piecewise constant function
of the state, input and input disturbance of the system
whose value is defined by the polytopic regionsΩi:

Ωi �
{[

x
u
w

]
∈R

nx+nu+nw : Si x+Ri u+Qi w ≤ Ti

}
(4)

The matrices and vectorsAi, Bi, fi, Li, Ci, Di, gi,
Si, Ri, Qi, Ti depend on the discrete modei and have
appropriate dimensions.

3. THE ROBUST OPTIMAL CONTROL
PROBLEM

As an MPC strategy will be adopted, this section
defines the robust optimal control problem that must
be solved at each sampling time to determine the
control input.

3.1 The Open-Loop Min-Max Optimal Control Problem

Consider the PWA system subject to bounded addi-
tive exogenous disturbances defined in (1). The finite
horizon min-max optimal control problem for the dis-
turbed PWA system under operational constraints is
defined as follows (Kerrigan and Maciejowski, 2003).

Problem 1. The PWA formulation
Given an initial convex set of continuous statesXk ⊆
X at time k and a final timek + N , find (if it
exists) the control sequenceu(k) ≡ uk+N−1

k ≡
(u′(k|k), u′(k+1|k), . . . , u′(k+N−1|k))′ which (i)
transfers the state fromXk to a given final setXf ⊆ X,
which contains a final (target) nominal equilibrium
statexf , and (ii ) minimizes the performance index
VN (xk,u) given by:

max
w∈Wi(k|k)×. . .×Wi(k+N−1|k)

xk ∈ Xk

JN (xk,u,w)
(5)

whereJN (xk,u,w) is defined as:

k+N−1∑
t=k

min
a(t|k)∈Xf

‖x(t|k)−a(t|k)‖Px,l+‖u(t|k)−uf‖Pu,l

(6)
subject to:

x(k|k) = xk (7a)

x(t+1|k) = Aix(t|k)+Biu(t|k)+fi+Liw(t|k)

for

[
x(t|k)
u(t|k)
w(t|k)

]
∈ Ωi (7b)

[
x(t|k)
u(t|k)
w(t|k)

]
∈C, ∀w(t|k)∈Wi(t|k), t=k, . . . , k+N−1

with C �
{[

x
u
w

]
:SCx+RCu+QCw ≤ TC

}
(7c)

x(N |k) ∈ Xf , ∀w(.|k) ∈ Wi(.|k), (7d)

wherex(t|k) represents the state trajectory,‖x‖Px,l

and ‖u‖Pu,l the l-norm of vectorx and u weighted
with matricesPx and Pu, respectively, withPx and
Pu being full column rank matrices, anduf is the
steady-sate equilibrium input whenx(t|k) = xf and
disturbances are not present.

Problem 1 minimizes the worst-case performance cost
(5)–(6) and robustly guarantees constraints (7), at all
time stepsk. It penalizes the distance from the given
final state-setXf , while the state at the end of the hori-
zon is not penalized. This structure and properties of
the stage cost, terminal cost, and terminal state-set are
important to achieve closed-loop robust asymptotic
stability of the MPC controlled system. Problem 1 has
infinite dimension since it requires the solution of an
optimization problem for every admissible statexk ∈
Xk and disturbance sequencew(k) ≡ wk+N−1

k ≡
(w′(k|k), w′(k+1|k), . . . , w′(k+N−1|k))′. It must
be transformed into afinite dimension problem, using
the methodologies presented in (Boyd and Vanden-
berghe, 2004) to solve robust optimization problems.



3.1.1. Min-Max as a Finite-Dimensional Problem
The robust mode hybrid control strategy described
in (Silva et al., 2004) ensures that the mode of
the system is “certain” regardless of the distur-
bances over a fixed horizon. As a consequence, for
each possible mode trajectoryi(k) ≡ ik+N−1

k ≡
(i′(k|k), i′(k+1|k), . . . , i′(k+N−1|k))′ the system
behaves as a linear (affine) system, though time-
variant, and so convex state-sets are generated given
that both the initial state and the disturbance sequences
take values in convex sets. Besides, since the stage
cost (5) of Problem 1 is a convex function, the tech-
nique presented in (Scokaert and Mayne, 1998) to
convert a min-max problem into an equivalent con-
vex program based on the linearity of the dynamic
model and convexity of the stage cost and uncertain-
ties can be adopted here. In view of this, consider
the following infinite-dimensional min-max optimiza-
tion problem, whereUN , Xk and Wi ≡ Wi(k|k) ×
. . . × Wi(k+N−1|k) are convex polytopes, and function
L(.,.,.) is convex:

min
u∈UN

max
xk∈Xk,w∈Wi

L (xk,u,w) (8)

Consider also thatΥXk
is the set of all verticesνXk

of Xk andΥWi
is the set of all verticesνWi

of Wi.
As L(.,.,.) is assumed convex relatively toxk andw,
the above infinite-dimensional optimization problem
is equivalent to the following finite-dimensional one:

min
u∈UN

max
xk∈ΥXk

,w∈ΥWi

L (xk,u,w) (9)

The previous step was obtained by knowing that the
maximum of a convex functionL over a convex set
Xk (Wi) is at one of the vertices ofXk (Wi) (see
e.g. (Boyd and Vandenberghe, 2004)). In turn, the
optimization problem (9) is also equivalent to the
convex program:

min
u,γ

{
γ

∣∣u∈U
N, L (xk,u,w)≤γ,∀xk∈ΥXk

,w∈ΥWi

}
(10)

Based on the previous technique, the min-max Prob-
lem 1 is now converted into an equivalent finite-
dimensional minimizing one, however restricted by
the robust mode condition that imposes the same mode
trajectoryi for all admissiblexk ∈ Xk andw ∈ Wi

(or equivalentlyxk ∈ ΥXk
andw ∈ ΥWi

). Consider
the system dynamics, operational constraints, and the
robust mode condition represented within the PWA
framework. The robust mode min-max optimal control
problem equivalent to Problem 1 is defined as follows:

JN (Xk) � min
u,a,γ

γ , ∀xk∈ΥXk
, w∈ΥWi

(11)

4. SET-VALUED HYBRID OBSERVER

The hybrid controller presented in the previous sec-
tion requires, at each time instant, the knowledge of
a polytope that contains all possible values for the
continuous state, the continuous state uncertainty set

Xk. So, the hybrid observer must determine, at ev-
ery time instant, the polytope of uncertainty from the
collected measurements and applied inputs. Usually,
an hybrid observer would also provide estimates for
the continuous state and for the discrete mode of the
system, however, in this special setup, the continuous
state estimate is not required and the discrete mode is
imposed by the hybrid controller through the robust
mode condition, and so it does not need to be esti-
mated.

At a given time instantk the observer must determine
the uncertainty polytopeX (k+1|k) from the imposed
discrete modesi(k) and i(k + 1), the applied input
u(k) and measured outputy(k) and the polytope of
the previous time instantX (k|k−1). The uncertainty
polytope is propagated to time instantk +1 since it
must be used in the determination the inputu(k +
1) and, according to the system model (1) the most
recent measurement isy(k) while y(k+1) will only
be available afteru(k+1) has been applied.

The uncertainty polytopeX (k+1|k) requires the use
of polytopic arithmetic (Veres, 2002) and can be com-
puted in 3 steps:

Measurement Collection The information of the col-
lected measurement,y(k), is used to refine the un-
certainty polytopeX (k|k−1):

X (k|k) = X (k|k−1)
⋂

⋂[
X̄i(k)

−→+
(
y(k)−Di(k)u(k)−gi(k)

)] (12)

whereX̄i(k) is the admissible state polytope for zero

output of discrete modei(k), the sign
−→+ represents

the shift of a polytope by a vector and
⋂

is the
intersection of polytopes.̄Xi are given by:

X̄i �
{

x ∈ R
nx : −HVi

Cix ≤ hVi

}
(13)

State Prediction The system dynamics (1a) are used
to predictX (k+1|k) fromX (k|k). First each vertex
νX (k|k) of X (k|k) is propagated to the next time
instant according to:

νX̃ (k+1|k) = Ai(k)νX (k|k)+Bi(k)u(k)+fi(k) (14)

then, the set of admissible input disturbances are
also propagated using:

νW̃i(k)
= Wi(k)νWi(k) (15)

Finally, these two polytopes must be added using
the Minkwosky sum+̄:

X (k+1|k) = X̃ (k+1|k) +̄ W̃i(k) (16)

Constraint Verification The constraints (1c) of the
discrete modei(k +1) are verified to ensure that
all the uncertaintyX (k+1) is contained in a single
discrete mode:

X (k+1|k)
⋂

Ωi(k+1) = X (k+1|k) (17)

This step may be ignored since it only serves as a
verification of the controller constraints.



5. THE RECEDING HORIZON CONTROL
STRATEGY

The set-valued observer described in section 4 com-
putes the uncertainty polytopeX (k|k−1) associated
with the continuous state of the system, which is then
used to determine the solution of the open-loop min-
max robust mode optimal control Problem 1 giving the
optimal input sequenceu(k) at time instantk. Based
on this solution, a Receding Horizon Control (RHC)
strategy can be implemented such that state-feedback
is obtained. Therefore, consider the following Model
Predictive Control algorithm.

Algorithm 1. Model Predictive Control Algorithm .

(1) At timek, collect the measurementy(k).
(2) Determine the uncertainty polytopeX (k+1|k),

and setXk+1 = X (k+1|k).
(3) Solve Problem 1, and obtain the optimal input

sequenceu∗(k+1).
(4) When sampling timek+1 is reached, apply the

first component ofu∗(k+1) to the hybrid system,
i.e. applyu(k+1) = u∗(k+1|k+1).

(5) Setk=k+1 and go to 1.

5.1 Robust Stability

As the PWA system is subject to persistent distur-
bances the system must be steered to a target state-
set. So, convergence to a final equilibrium state-set (or
a desired reference trajectory tube) must be studied.
Next, some important definitions to establish closed-
loop robust stability are presented.

Definition 1. The pair(xf , uf ) is said to be anominal
equilibrium pair of a PWA system (1) if the equilib-
rium statexf ∈ R

nx and equilibrium inputuf ∈ R
nu

satisfy:

xf = Aixf + Biuf + fi + Li0[ xf
uf

0

]
∈ Ωi

for somei ∈ I.

Notice that an equilibrium pair can be computed by
solving a mixed integer program. Consider also the
following definitions, which can be found in e.g.
(Kerrigan and Mayne, 2002) and (Blanchini, 1999).

Definition 2. A set Xf is robustly stableiff, for all
ε > 0, there exists aδ > 0 such thatd(x(0), Xf ) ≤ δ
impliesd(x(k), Xf ) ≤ ε, ∀k ≥ 0 and all admissible
disturbance sequences (whered(z,Z) � min

y∈Z
‖z−y‖,

such thatZ ⊂ R
n and‖.‖ denotes any norm).

Definition 3. The setXf is robustly asymptotically
(finite-time) attractivewith domain of attractionX iff
for all x(0) ∈ X, d(x(k), Xf ) → 0 ask → ∞ (there
exists a timeM such thatx(k) ∈ Xf , ∀k ≥ M ) for
all admissible disturbance sequences.

Definition 4. The setXf is robustly asymptotically
(finite-time) stablewith domain of attractionX iff it
is robustly stable and robustly asymptotically (finite-
time) attractive with domain of attractionX.

Definition 5. The setXf is robustly positively invari-
ant for the systemx(k + 1) = F (x(k), w(k)) iff
∀x(0) ∈ Xf and∀w(k) ∈ W, the system behavior
is such thatx(k) ∈ Xf , ∀k ∈ N.

Definition 6. The setXf is robustly controlled invari-
ant for the systemx(k +1) = F (x(k), u(k), w(k))
iff there exists a feedback control lawu(k) =
κf (x(k)) such thatXf is a robust positively in-
variant set for the closed-loop systemx(k + 1) =
F (x(k), κf (x(k)), w(k)) andu(k) ∈ U, ∀x(k) ∈ Xf .

In order to prove robust stability of the PWA when the
RHC strategy is applied, consider the following set of
assumptions regarding the stage costL(.), the terminal
costP (.), and the terminal state constraintXf .

Assumptions 1.

a) L(x, u) is a convex function overX×U and there
exists ac > 0 such thatL(x, u) ≥ c (d(x, Xf )),
∀(x, u) ∈ (X\Xf ) × U.

b) The stage costL(x, u)=0 if x∈Xf andu=uf .
c) The terminal costP (x) = 0, ∀x ∈ R

nx .
d) The terminal state constraintXf ⊆ X is a

compact convex polyhedron containing the final
nominal statexf in its interior.

e) If the nominal equilibrium pair(xf , uf ) is such

that
[ xf

uf

0

]
∈Ωi then

[
x
uf
w

]
∈Ωi, ∀x∈Xf ,∀w∈Wi.

f) The terminal state constraintXf is robustly con-
trolled invariant foru = uf ∈ U and∀w ∈ Wi.

Based on the previous set of assumptions, the follow-
ing theorem is presented.

Theorem 1.
Consider that Assumptions 1 hold for Problem 1, and
thatXN is a non-empty set defined by all initial states
xk such that Problem 1 is feasible at timek for Xk =
xk. ThenXf is robustly asymptotically stable, with
domain of attractionXN , for the closed-loop system
when the MPC Algorithm 1 is applied.

The proof follows from considering standard Lya-
punov arguments.

The set-valued observer is not explicitly referred in
this stability analysis because it will only reduce the
state uncertainty polytope at each time instant. IfXf is
robustly asymptotically stable for this setting without
the consideration of the set-valued observer then, it
will remain robustly asymptotically stable when the
observer is introduced.



6. NUMERICAL EXAMPLE

Consider the following stochastic PWA system:

x(k+1) =

=




[
0.25 −0.40
0.40 0.25

]
x(k)+

[
0
1

]
u(k)+

[
1
0

]
w(k)+

[
0
0

]

iff
[
1 0

]
x(k) ≤ 0 (mode 1)

[
0.25 −0.50
0.50 0.25

]
x(k)+

[
1
0

]
u(k)+

[
1
0

]
w(k)+

[
0
−1

]

iff
[
1 0

]
x(k) > 0 (mode 2)

y(k) =
[
1 0

]
x(k) + v(k)

x(k) ∈ X �
[−2 , 2

] × [−2 , 2
]

u(k) ∈ U �
[−1 , 1

]
w(k) ∈ W �

[−0.1 , 0.1
]

, Uniformly distributed

v(k) ∈ V �
[−0.1 , 0.1

]
, Uniformly distributed

The uncertainty associated with the initial state is
defined as:

x(0) ∈ X (0) �
[
1.3 , 1.5

] × [
1.5 , 1.7

]
(18)

The objective of the control scheme is to move the
state and the corresponding uncertainty polytope into
the final set:

Xf �
[
0.1 , 0.9

] × [−0.5 , −1.3
]

(19)

The control horizon is chosen asN = 3, the weights
of the controller arePx = Inx

, Pu = 10Inu
and

the norml is the 1-norm. The solution of the initial
optimal control problem is represented in figure 1,
while the MPC solution is shown in figure 2.

To study the influence of the estimation on the pro-
posed closed-loop scheme, the previous MPC solution
will be recomputed considering the following charac-
teristics of the measurement noise:

v(k)∈ V �
[−0.01 , 0.01

]
, Uniformly distributed

(20)

The new MPC solution is represented in figure 3.

Comparing figures 2 and 3, it is clear that the state
uncertainty is reduced in the last case, having a direct
impact on the controller performance. This influence
reflects itself in the cost function values of the com-
plete trajectory, which are presented in figure 4.

As can be seen in figure 4 there is a sensible reduc-
tion in the cost function of the trajectory defined by
the MPC when the measurement noise is reduced,
showing the benefits of introducing a state estimator
in the control loop. For very wide intervals of the
measurement noise these benefits are reduced to the
point where the estimator becomes irrelevant.

A quantitative measure of the cost functional reduc-
tion can not be determineda priori since it depends on
the actual input disturbances and measurement noises
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Fig. 1. Solution of the initial optimal control problem.
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Fig. 2. Solution of the MPC problem with,
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.

that acted on the system. Further, if the actual input
disturbances are the ones predicted in the worst case
scenario, no reduction of the cost functional occurs.

7. CONCLUSIONS

This paper presented the first closed-loop control
scheme for stochastic hybrid systems. The state esti-
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mator reduces, at each time instant, the uncertainty in
the continuous state, leading to an improvement of the
controller performance. This improvement depends on
the actual input disturbance and measurement noise
instances, and may be zero in a worst case scenario.

Other MPC methodologies for hybrid systems will be
considered in future research aiming at more signifi-
cant performance improvements.
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