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Abstract 

A methodology using Generalized Linear Models (GLM) was developed and 

tested to build a model to predict PM10 outdoor urban concentrations. The 

methodology is based in the previous study of the relations between atmospheric 

concentrations of air pollutants CO, NO2, NOx, VOCs, SO2, and meteorological 

variables, air temperature, relative humidity and wind speed, in a particular city 

(Barreiro, Portugal). The model uses data from the Portuguese monitoring air 

quality stations network, and meteorological data. The developed GLM model 

consider as dependent variable PM10 outside air concentrations, and considers as 

explanatory independent variables or covariates, the air concentrations of 

pollutants NO2, NOx, CO, O3 but also the meteorological variables, air 

temperature, relative humidity of outside air and wind speed. A logarithmic link 

function was considered with a Poisson probability distribution.  Particular 

attention was dedicated to cases with maximum air temperature below 25ºC and 

maximum air temperature above 25ºC. Results indicate that best performance 

results were achieved for model with values of maximum air temperature above 

25ºC, when compared with model considering all data, or when compared with 

model considering maximum air temperature below 25ºC. The model was also 

tested with data from other Portuguese city (Oporto). 

Keywords:  outdoor air quality, PM10, generalized linear methods, SPSS. 
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1 Introduction 

Concern about air quality has growth mainly due to the increase in respiratory 

problems, especially in children, elderly and people with respiratory diseases, 

related with air pollution. Also, the economic and social development has led to 

the increase of urban traffic and industry that emit a wide variety of pollutants, 

namely CO, NO2, NOx, VOCs, PM and  SO2. In the last decades, traffic, air 

pollution and health problems related with it have increased [1]. It is now 

accepted that air pollutants can trigger allergies and respiratory problems, 

particularly in children [2–4]. In this subject PM concentration in streets is one 

major issue, especially in urban environments.  PM contain microscopic solids or 

liquids, which are so small that they can penetrate deep into the lungs and cause 

serious health problems. In fact, in the range of air pollutants, particular attention 

was dedicated to Particulate Matter (PM) considering both PM10 and PM2,5 [1, 5] 

and more recently nanoparticle [6]. Unfortunately, the knowledge of PM10 

concentrations is not always an easy matter as in some urban locations there is 

no Urban Air Quality Stations Network present or even there is no way of 

knowing the concentrations levels. With this scenario, every way of measuring 

or even estimating the PM10 concentration of a particular site would be useful 

and welcome. In the past several methods have been used to estimate PM10 

concentration levels in urban air outside locations. These methods include the 

monitoring of ambient concentrations with air acquisition equipment, the 

numerical simulation of pollutants dispersion with computers, wind tunnel 

experiments in urban models and statistical methods [7]. Statistical tools like 

statistical models based on multiple regression analysis and classification and 

regression trees analysis have been developed and applied in the forecasting of 

average daily concentrations for particulate matter and average maximum hourly 

ozone levels [8, 9]. In studies based on the estimation of PM concentrations 

using satellite remote sensing techniques, also some statistical tools have been 

widely used. In this field, the Aerosol Optical Thickness (AOT) is the satellite 

derived parameter most commonly used as the basis for PM estimation using 

statistics techniques [10]. Several methods have been used to correlate this 

satellite remote sensing (AOT) with the surface measured PM concentrations 

based on ground measurements from air quality stations. These include linear 

relations [11], statistical and chemical transport models [12], multiple regression 

analysis [13] and neural networks [14]. Also statistical methods were developed 

and used in the past to determine relationships between air pollution 

concentrations and meteorological parameters. Among these, methods like 

multiple linear regression analysis [15], nonlinear multiple regressions [16], 

artificial neural networks [17], and generalized additive models and fuzzy-logic-

based models [18] were used. These models were tested in a perspective of daily 

or long term forecasting and focused in the perspective of the exploring 

relationship between O3 and PM. However, in some situations it would be useful 

to know (or at least to estimate) unknown PM air concentration values based in 

values of air concentrations of other pollutants and on meteorological variables. 

This could be done based on known air concentrations from other air pollutants 
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and on meteorological parameters using data from monitoring sites or from 

specific acquisition data equipment. This is particularly useful in urban 

environments, were there is no data from monitoring sites and when it is 

important to know PM concentration in outside air, this is particularly important 

in high traffic urban sites. A well-known, documented and that tested tool like 

General Linear Models (GLM) [19] is used in building a methodology to 

estimate PM outside concentrations based on known values of outside air 

pollutant concentrations from the same site. GLM had shown that compared with 

other methods (as Multiple Linear Regression Model ) can made assumptions 

more evident, can decouple assumptions in a better way, improving quality and 

showing greater flexibility. In this methodology we use data from air pollutants, 

CO, NOx, NO2, O3, SO2 and PM10 that are hourly monitored by several stations, 

to build a model that is subsequently used to predict PM10 concentrations in the 

same site. To build this model it was taken under consideration the knowledge 

that Atmospheric PM are very different not only in their constitution, but also on 

its origin and on their govern mechanisms. Generically are grouped under the 

designation of particle matter (PM), a group of air pollutants considerably 

extended and different, and that may have their origin in sources as diverse as 

automobiles, steel mills, power stations, heating systems, factories cement, 

volcanoes, deserts and oceans, between others. In general terms, is common to 

consider as particulate matter the definition from NIST [20] as “any condensed-

phase tridimensional discontinuity in a dispersed system may generally be 

considered a particle”. In terms of classification, PM are usually classified based 

on two distinct criteria. They can be classified by their mechanism of formation, 

and in this case they are called primary particles or secondary particles, or can be 

classified by their physical size. According to the criterion of the formation 

mechanism, the primary particles are those that are directly emitted as particles, 

whereas secondary particles are those which are formed from gaseous precursors 

in the atmosphere through a mechanism of formation gas-particle. PM are also 

often classified by their physical size. Their characteristic dimensions vary from 

a range of few nanometres (nm) up to dozens of micrometres (µm) in diameter. 

The particles larger than 2.5 µm (coarse particles) are produced by mechanically 

breaking of the larger solid particles. This PM can include dust originating from 

agricultural processes transported by wind, dust originating from the bare soil, 

dust originating from unpaved roads or dust from other processes such as mining 

or stone quarrying. Smaller particles (fine particles) are mainly formed from 

gases. The smaller ones (less than 0.1 microns) are formed by nucleation, i.e. the 

condensation of substances formed by high temperature steaming or by chemical 

reactions in the atmosphere. The particles below 1 m may be formed by 

condensation of metal or condensation of organic compounds that are evaporated 

in combustion processes, or they can also be produced by condensation reactions 

resulting from atmospheric gases. The particles produced by these reactions of 

gases in the atmosphere are called secondary particles. Sulphate and nitrate 

particles are usually the predominant component of these fine particles. Other 

important aspect in the definition of the characteristics of PM concentrations in 

the atmosphere are the meteorological variables such as wind speed and 
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direction, atmospheric temperature, precipitation and atmospheric boundary 

layer height. Higher concentrations of particle concentrations are often registered 

under weather conditions with atmospheric stability, especially in situations of 

inversion with low wind speeds. Also chemical and physical processes of 

particle formation are regulated largely by meteorological variables [21]. 

Chaloulakou et al. [22] found that PM2.5 and PM10 concentrations were highly 

correlated with carbon monoxide, black carbon and nitrogen oxides and 

inversely correlated with local wind speed. Also solar radiation and temperature 

have major importance in the mechanisms of formation of secondary particles. 

Results from Anderson indicate 25ºC as key air temperature value from which 

the occurrence of summertime air pollution episodes are promoted [23]. 

     The purpose of this paper is study the relationship between atmospheric 

pollutants and develop a methodology that estimate PM10 concentrations in the 

city of Barreiro in Portugal, by using an Generalised Linear Model (GLM), using 

data from air quality stations with measured concentration values of CO, NOx, 

VOCs, and SO2 to predict the values of PM10 concentration. The predict values 

are compared with real measured values of PM10 outside air concentrations in the 

city.  

2 Methods 

2.1 Location 

Barreiro is a medium size city located 40km south of Lisbon, Portugal, with 

34km2 area and about 80000 inhabitants, with industry near the centre and 

typical suburbs important car traffic fluxes. The city is almost flat, with highest 

point at approximately 10 meters above sea level. The weather is temperate, with 

no severe seasons. The main industrial activity in Barreiro city is developed in 

the industrial area. A natural gas power plant and some chemical industries are 

the main industrial sources. The most important pollutants released from these 

industrial sources are NOx, SO2 and PM. 

2.2 Meteorological and air quality data 

Meteorological data was provided by the Instituto Português do Mar e Atmosfera 

(IPMA). The prevailing wind direction is NW (frequency 35.1%). The highest 

wind speed registered correspond to the prevailing direction NW (14,1 km/h). 

The NW wind is particularly frequent in the summer months (June, July and 

August), with a maximum occurring in August (58.5%) and a minimum 

frequency recorded in December (15.6%). The average wind speed is relatively 

constant throughout the year. Air Quality data from pollutants concentrations 

(CO, NOx, NO, NO2, O3, SO2 and PM10) are hourly monitored by seven air 

quality stations that are managed by the Portuguese government. Data from 

September 2003 to December 2005 was statistically treated, according to the 

pollutant in question. A twenty-four hour mean was calculated for NOx, NO, 
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NO2, SO2 and PM10 and 8 hours mean to CO and O3. Daily averages of each 

pollutant were related with each other and with meteorological data. 

2.3 The GLM methodology 

A General Linear Models (GLM) [19] was used to building a methodology to 

estimate PM outside concentrations based on known values of other outside air 

pollutant concentrations. GLM are based in the assumption that there are K 

independent values Y1, ..., YK, from a variable of interest or response variable 

(effect) that follows an exponential family distribution with expected value E 

(Yi) = i [24]. Considering K vectors xi = (1 xi1 x12 … xip)t, i=1, ..., K, 

containing the values of p explanatory variables, independent or covariates 

(variables candidate to "causes"). Considered also a link differentiable function 

g, such that: 

   (1) 
 

where (  = 1 2 … p) are the values of parameters to be estimated. Thus if we 

consider for the function g the identity function we have: 
 

    (2) 

then  

    (3) 
 

     The resulting model is the Gaussian linear regression model. If alternatively, 

consider the function g as a logarithmic function and Yi has a Poisson 

distribution, then the model will result in a Poisson regression model and each 

term i is the effect of variable Xi in g ( i). Each i represents the “effect” of 

variable Xi in the function g(µi). 

     In this case the objective is to estimate PM10 concentration values based on 

other variables, like air pollutant concentration from CO, NO2, NOx, O3 and SO2 

(in µg/m3) and meteorological variable as air temperature (T,ºC), relative 

humidity (RH,%) and wind velocity (WV, m/s). The general model parameter 

used in GLM models are resumed in table 1. Statistical Package software for 
 

Table 1:  General model parameter information resume. 

Dependent variable PM10 concentration (µg/m3) 

Covariates CO concentration (µg/m3) 

 NO2 concentration (µg/m3) 

 NOX concentration (µg/m3) 

 O3 concentration (µg/m3) 

 SO2 concentration (µg/m3) 

 Temp (ºC) 

 RH (%) 

 WV (m/s) 

Probability distribution Poisson 

Link function Logarithmic 
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Social Sciences SPSS 10.0 for windows was used to build and analyse the 

model. 

3 Results 

GLM models were used to investigate the complex relationships between the 

concentration of 5 air pollutant concentrations, meteorological and PM10 

concentration levels in the Barreiro city. 

 (4) 

 

Based on these results, particle concentrations estimations for PM10 can be 

expressed as the product of the exponential terms: 

 (5) 

 

The first term contains the regression intercept and the rest terms contain binary 

variables, originated from GLM model as explained above. This methodology as 

applied to three tested models A, B, and C. The three models presented in table. 

3 differ only in data considered. In model A, we considered the total number of 

observations recorded. In model B we considered the observations recorded in 

days with maximum air temperature of day above 25ºC (maximum). In model C 

we consider only observations with maximum air temperature of day less or 

equal to 25ºC. These considerations are shortly resumed in table 2. 

Table 2:  Specific models short description. 

Model Restriction Dependent Variable Covariates 

A No - All values PM10 conc. (µg/m3) CO, NO2, NOx, O3 SO2 T, RH, WV 

B Tmax > 25ºC PM10 conc. (µg/m3) CO, NO2, NOx, O3 SO2 T, RH, WV 

C Tmax  25ºC PM10 conc. (µg/m3) CO, NO2, NOx, O3 SO2 T, RH, WV 

 

     The  coefficients obtained with methodology implemented for the three 

models are: 

Model A: 
Ln PM10 = 2,425652 - 0,000357 [CO] + 0,001821 [O3] - 0,000364 [SO2] + 0,028348 

[NO2] + 0,000093 [NOx] + 0,016820 Temp - 0,000490 HR+ 0,002821WV            (6) 

Model B: 
Ln PM10 = 1,957605 - 0,000204 x [CO] + 0,001931 [O3] - 0,003097 [SO2] + 0,024388 

[NO2]+ 0,000309 [NOx]+ 0,043356 Temp - 0,000960 HR + 0,003548WV            (7) 

Model C: 
Ln PM10 = 2,419685 - 0,000219 [CO] + 0,000863 [O3] + 0,002149 [SO2] + 0,019767 

[NO2] + 0,001449 [NOx] + 0,021912 Temp + 0,000153 HR + 0,003008WV            (8) 

     Fig. 1 shows the scattered plot with measured PM10 concentrations versus the 

PM10 concentration values predicted by the three models (A, B and C). The data 
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values of measured PM10 concentrations are identified by PM10 measured in 

µg/m3 and the PM10 concentrations values predicted by the three models are 

identified by predicted mean of response in µg/m3. 

 

 

 

 

 

 

 

 

Figure 1: Comparison between PM concentrations predicted versus measured 

for the three models. 

     By the analysis of Fig. 1 and knowing that the correlation coefficient R2x100 

gives the percentage of variability explained by the model (R2 = sum of squared 

residuals (SSR)/total sum of squares (SST)) ,  the calculation of R2 results that 

model B is the best of the three selected models, with R2 = 65%. Models A and C 

have a weak explanatory capacity. Table 3 shows a resume of the statistical 

model results performance for the three models (A, B and C). 

Table 3:  Resume of models results performance. 

 

     The first column of Table 3 presents the statistics tests most often used in 

generalized linear models and represent measures of dispersion (generalized 

and/or corrected), which permit to test the quality of models. Values from 

Table 3, confirm that model B is the one with best performance results shown by 

statistical tests. These statistics tests are obtained using all the deviations 

obtained between the estimated and recorded (residuals) for each observation. 

Considering the Akaike Information Criterion, the objective is to minimize AIC. 

From the three models, model B is the one with lowest AIC, which means that 

evidence for the model B is the best. The same can be concluded when analysing 

Value df Value/df Value df Value/df Value df Value/df

Deviance 26868,641 6718 4,000 6450,747 3263 1,977 17576,459 3220 5,459

Scaled Deviance 26868,641 6718 6450,747 3263 17576,459 3220

Pearson Chi-Square 27483,708 6718 4,091 6471,573 3263 1,983 18044,189 3220 5,604

Scaled Pearson Chi-Square 27483,708 6718 6471,573 3263 18044,189 3220

Log Likelihood
b

-31497,004 -12102,567 -17428,695

Akaike's Information Criterion (AIC) 63012,008 24223,134 34875,391

Finite Sample Corrected AIC (AICC) 63012,034 24223,189 34875,447

Bayesian Information Criterion (BIC) 63073,333 24277,973 34930,11

Consistent AIC (CAIC) 63082,333 24286,973 34939,11

Model A Model B Model C

PM10 measured PM10 measured PM10 measured 

R2=0,386 R2=0,649 R2=0,149

Model A Model B Model C

Air Pollution XXII  55

 

 www.witpress.com, ISSN 1743-3541 (on-line) 

WIT Transactions on Ecology and The Environment, Vol 183, © 2014 WIT Press



AICC (Akaike Information Criterion corrected by minimizing the number of 

model parameters). When comparing with the quantile of a chi-square 

distribution with n-p degrees of freedom (n-number of observations, p-number of 

estimated parameters) it is possible to measure the suitability of models Results 

of deviance show that the three are suitable. Another measure of goodness of fit 

is the Pearson chi-square test, which leads to the same conclusions when 

compared with the quantile of the chi-square distribution with n-p degrees of 

freedom. Table 4 shows the likelihood ratio chi-square test, which compares 

each model with the null model. Regardless of model B is considered the best, 

each model individually, has a greater explanation of the dependent variable 

using some of the explanatory than any other model without explanatory 

variables. 

Table 4:  Models likelihood ratio chi-square test performance. 

 
 

     In Fig. 2, we observe that the residues associated with the model B are those 

with a more adequate to the expected aspect: cloud without standard and with 

homogeneous variability (white noise). Either model A or model C, the residues 

appear to have a functional relationship and not look like white noise. The 

variability is also not constant as would be expected. Some diagnostic tests have 

been made (independence, heteroscedescidade, normality) and models A and C 

are rejected. Only after validation of residuals has behavior of white noise with 

normal distribution is that it can and should consider the inference using models. 

 

 

 

 
 

 

 

 

 

Figure 2: Scattered plot of residuals for the three models. 

     One last step for evaluating the quality of the model is to perform simple tests 

using the Wald Chi-Square statistic (Table 5). This test serves to verify that some 

independent variable (explanatory) in particular, contributes significantly to the 

explanation of the response variable, testing in the form H0:  versus H1: 

. If we reject the null hypothesis, we have evidence that the variable is a 

good explanatory variable. From Table 5, the p-values (sig in Table 5) associated 

with the nullity test of each parameter, the sig values are zero in majority, 

Omnibus Test Value df Value/df Value df Value/df Value df Value/df

Likelihood Ratio Chi-Square 17979,211 8 0,000 14532,589 8 0 3537,432 8 0

Model A Model B Model C

Model A Model B Model C
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indicating rejection of the null hypothesis, showing that the associated variables 

should be considered. Note that the model HR variable B is statistically 

significant (p-value = 0.021), not being in model A (p-value = 0:08) and model C 

(p-value = 0.72). Remember that we rejects the null hypothesis if p-value 

<significance level (the level of significance is usually 5%). It is concluded that 

the relative humidity is important when considering the higher temperatures. 

Table 5:  Models hypotheses tests. 

 

 

 

     It is important to realize the significance of i coefficients associated with 

each explanatory variable vari from model. If the variable vari changes vari 

units, keeping the remaining explanatory constants, we have 

 

 .   (9) 

4 Model implementation to Oporto data 

Knowing that model B (Tmax air > 25ºC) is the model that best predicts PM10 

concentrations based in measured concentrations of CO, NO2, NOx, O3 SO2 T, 

RH, WV, model B was attested with data from a different Portuguese city 

(Oporto) following the same methodology and the same coefficients. Data from 

the Portuguese air quality network managed by CCDR, from Campanhã air 

quality station was used, considering values from January 2011 to December 

2011. Also meteorological data from FEUP meteorological acquisition station, at 

the same period was used. Results showing PM10 concentrations predicted by the 

model and PM10 concentrations measured are shown in Fig. 3. 

     Inspection of fig. 3 shows that the model predicts with reasonable accuracy 

PM10 concentrations in Oporto (R2=0.4705). It is also visible that the model 

predict poorly PM10 concentrations in the range of <20µg/m3. 

 

 

 

 

B
Wald Chi-

Square
df Sig. B

Wald Chi-

Square
df Sig. B

Wald Chi-

Square
df Sig.

(Intercept) 2,425652 7677,888 1 0,000 1,957605 1146,149 1 0,000 2,419685 2184,525 1 0,000

CO -0,000357 643,828 1 0,000 -0,000204 109,603 1 0,000 -0,000219 84,91 1 0,000

O3 0,001821 195,808 1 0,000 0,001931 146,327 1 0,000 0,000863 7,1 1 0,008

SO2 0,000364 22,99 1 0,000 -0,003097 359,387 1 0,000 0,002149 530,754 1 0,000

NO2 0,028348 8976,73 1 0,000 0,024388 3932,244 1 0,000 0,019767 785,657 1 0,000

NOx 0,000093 10,957 1 0,001 0,000309 83,629 1 0,000 0,001449 200,609 1 0,000

Temp 0,01682 613,923 1 0,000 0,043356 686,462 1 0,000 0,021912 250,801 1 0,000

HR -0,00049 3,059 1 0,080 -0,00096 5,355 1 0,021 0,000153 0,129 1 0,720

Wind 0,002821 1136,725 1 0,000 0,003548 167,289 1 0,000 0,003008 979,439 1 0,000

Model B Model C

Parameter

Model A
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Figure 3: Comparison between PM concentrations predicted versus measured 

for Oporto data. 

5 Conclusions 

Results analysis show that model A (all values) predict very bad results for PM10 

concentrations (R2=0,386) with worst results for concentration values below 20 

(µg/m3). With the objective of improving the model accuracy two sub models 

with the criteria of maximum temperature of air above 25ºC (model B) and 

below 25ºC (model C) were developed. 

     By the knowledge of PM secondary formation mechanisms discussed in 

section it is expected that PM concentration could be correlated with gaseous 

pollutants mainly NOx SO2, VOC and temperature. For this specific case we 

have no VOC data so VOC concentrations were not used. For O3 knowing that 

this pollutant is also a result of photochemical oxidation is expected that O3 

could also been correlate with secondary PM even if O3 is not a precursor for 

secondary particles. Comparisons of the three models show that best 

performance results are achieved for model B that considers only data with 

values of Tmax air above 25ºC (R2=0,649) in accordance with results from 

(Anderson et al. [23]) which concludes that “simultaneous occurrence of daily 

maximum temperatures above 25ûC and low wind speed conditions which favour 

the occurrence of summertime air pollution episodes”. When comparing model 

A (all data) and model B (Tmax air > 25ºC ) and model C (Tmax air < 25ºC) the 

best fit prediction is achieved in model B showing the importance of higher air 

temperature in the formation of the secondary particles in air. This can also be 

concluded by observation of the relatively high coefficient values in Temperature 

variable observed. 

     Results show a good accuracy for situations were solar radiation is an 

important factor, which is reflected in the outsider air temperature parameter 

Tmax air >25ºC. These model are an important tool in situations where there is 

no measurements of PM concentrations but it is possible to achieve data from 

other gaseous air pollutants as CO, NO2, NOx, O3 SO2 and also meteorological 

data as T, RH and WV. 

R² = 0,4705
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