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Existence of optimal boundary control for the
Navier-Stokes equations with mixed boundary
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Abstract. Variational approaches have been used successfully as a strategy to take
advantage from real data measurements. In several applications, this approach allows
to increase the accuracy of numerical simulations. In the particular case of fluid dy-
namics, it leads to optimal control problems with non-standard cost functionals which,
when subject to the Navier-Stokes equations, require a non-standard theoretical frame
to ensure the existence of solution. In this work, we prove the existence of solution for
a class of such type of optimal control problems. Before doing that, we ensure the ex-
istence and uniqueness of solution for the 3D stationary Navier-Stokes equations, with
mixed-boundary conditions, a particular type of boundary conditions very common in
applications to biomedical problems.
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1. Introduction

Optimal control problems associated to fluid dynamics have been studied by sev-
eral authors, during the last decades, motivated by the important applications of
such type of problems to the industry. In a natural way, most of the first works
were devoted to the case of distributed control as this is easier to handle. How-
ever, the most challenging problems in applications such as automobile or airplane
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design, and more recently, in bypass design or boundary reconstruction in medical
applications, are modeled by problems where the control is assumed to act on part
of the boundary. Actually, boundary control problems are usually harder to deal,
specially with respect to optimality conditions, since higher regularity for the so-
lutions is often required. The list of works on the subject is long, and here we only
mention a few references [1], [14], [8], [13], [5], [6] and [7].

In this work, and having in mind applications in biomedicine, we will consider
the steady Navier-Stokes equations with mixed boundary conditions

−ν∆u+ u · ∇u+∇p = f in Ω,

∇ · u = 0 in Ω,

γu = g on Γin,
γu = 0 on Γwall,
ν∂nu− pn = 0 on Γout,

(1)

where ν represents the viscosity of the fluid (possibly divided by its constant den-
sity), f the vector force acting on the fluid and g the function imposing the velocity
profile on Γin. The unknowns are the velocity vector field u and the pressure vari-
able p. These equations have been widely used to model and simulate the blood
flow in the cardiovascular system (see, for instance, [10] and the references cited
therein). In this type of applications it is often required to represent part of an
artery as the computational (bounded) domain Ω. In addition, for the numerical
simulations, we impose homogeneous Dirichlet boundary conditions on the sur-
face representing the vessel wall (Γwall) and Dirichlet non-homogeneous on the
artificial boundary (Γin), which is used to truncate the vessel from the upstream
region. Besides, on the surface limiting the domain, in the downstream direction
(Γout), homogeneous Neumann boundary conditions are imposed. In Figure 1 we
can see a longitudinal section of such a domain, where the deformation of Γwall
could represent the presence of a plaque of atherosclerosis.
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Figure 1. Representation of the domain Ω

When facing this and other type of pathologies of the cardiovascular system, it
is important the evaluation of hemodynamical factors to predict, in a non invasive
way, either the evolution of the disease, or the effect of possible therapies. This
can be done by relying on the numerical simulations obtained in the domain under
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analysis. The main difficulty in this strategy lies in the lack of accuracy of the
virtual simulations with respect to the real situation. In order to improve the
accuracy and make the simulations sound enough, it is possible to use data from
measurements of the blood velocity profile, obtained through medical imaging in
some smaller parts of the vessel. This can be done through a variational approach,
i.e., by setting an optimal control problem with a cost function (or a class of cost
functions) of the type

J(u, g) = β1

∫
Ωpart

|u− ud|2 dx+ β2

∫
Γin

|g|2 ds+ β3

∫
Γin

|∇sg|2 ds, (2)

where ud represents the data available only on a part of the domain called Ωpart.
Note that, while fixing the weights β1, β2 and β3, we determine whether the
minimization of J emphasizes more a good approximation of the velocity vector to
ud, a “less expensive” control g (in terms of the L2-norm), or a smoother control.
An example of ud, measured in Ωpart, could be the velocity vectors obtained in
several cross sections of the vessel, as represented in Figure 2.

Figure 2. Representation of ud over Ωpart

Solving the optimal control problem

(P )

{
Minimize J(u, g)
subject to (1)

(3)

will give us the means of making blood flow simulations more reliable, using known
data.

This strategy is not new, and has already been used as a proof of concept in [12]
and [19], where both the Navier-Stokes and the Generalized Navier-Stokes equa-
tions were considered to model the blood flow. Even if it proved to be successful
from the numerical point of view, problem (P ) has not yet been studied, at least
up to the authors knowledge, not even with respect to the existence of solution.
In fact, many authors have treated similar problems, considering the same type
of cost functionals constrained to the Navier-Stokes equations, but for the case
where Ωpart = Ω and without using mixed boundary conditions. In [5] and [7]
the case with only Dirichlet boundary conditions, and a similar cost functional,
was treated. In [14] and [17] the authors considered J as the cost functional, with
Ωpart = Ω, but again they just dealt with Dirichlet boundary conditions. In [9]
the authors considered a more complex set of mixed boundary condition, but for
a different cost functional.

Here we prove the existence of solution for problem (P ) regarded in the weak
sense. We will make the distinction between different possibilities both for Ωpart
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and for the parameters β2 and β3. In order to do that, we will start by setting
the existence of a unique weak solution for the state equation (1). The regularity
of this solution remains an open problem and will not be treated here. It is
important to deal with this issue, before addressing the natural following stages,
namely the derivation of optimality conditions for problem (P ) and the numerical
approximation.

The organization of this paper reads as follows. In Section 2 we give some
notation and results needed for this work. The Navier-Stokes equations with mixed
boundary conditions are studied in Section 3. Finally, in Section 4, we prove the
existence of solution for a class of optimal control problems.

2. Notation and some useful results

We consider Ω ⊂ Rn, with n = 2, 3, an open bounded subset with Lipschitz
boundary.

The standard Sobolev spaces are denoted by

W k,p(Ω) =

u ∈  Lp(Ω) : ‖u‖p
Wk,p =

∑
|α|≤k

‖Dαu‖pLp <∞

 ,

where k ∈ IN and 1 < p <∞. For s ∈ IR, W s,p(Ω) is defined by interpolation. The
dual space of W 1,p

0 (Ω) is denoted by W−1,p′(Ω). We also use Hs(Ω) to represent
the Hilbert spaces W s,2(Ω). For Γ ⊂ ∂Ω with positive measure we denote by
Hs(Γ), s ≥ 1

2 , the image of the unique linear continuous trace operator

γΓ : Hs+ 1
2 (Ω)→ Hs(Γ),

such that γΓu = u|Γ for all u ∈ Hs+ 1
2 (Ω) ∩ C0(Ω̄). In particular, for s = 0, H0(Γ)

is the subspace of L2(Γ) corresponding to the image of the continuous functions in
H1(Ω). The norm of Hs(Γ) is defined similarly to the norm in H1(Ω), except that
the tangential derivatives on Γ should be used (see, for instance, [14]). Whenever Y
is a space of functions u : Ω→ R, we will use the boldface notation Y = Y ×Y ×Y
for the corresponding space of vector valued functions.

We will also make use of the following Sobolev embedding result:

Lemma 2.1. Let Ω be a bounded set of class C1. Assume that p < n and p∗ = pn
n−p .

Then

i) W 1,p(Ω) ⊂ Lq, ∀q ∈ [1, p∗[ with compact embedding.

ii) W 1,p(Ω) ⊂ Lp∗, with continuous embedding.

Proof. For the proof see, for instance, [2], Corollary IX.14 and Theorem IX.16 -
Remark 14ii).
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We consider the spaces of divergence free functions defined by

H =
{
u ∈ H1(Ω) | ∇ · u = 0

}
,

Vwall = {ψ ∈ HΓwall
(Ω) | ∇ · ψ = 0}

and
VD = {ψ ∈ HΓD

(Ω) | ∇ · ψ = 0} ,

where ΓD refers to the Dirichlet boundary Γin ∪ Γwall. In these definitions, for
Γ ∈ {Γwall,ΓD}, we represent by HΓ the set

HΓ =
{
ψ ∈ H1(Ω) | γΓψ = 0

}
.

The corresponding norms are defined by

‖.‖H = ‖.‖VD
= ‖.‖Vwall

= ‖.‖H1(Ω).

We also define

H1
0 (Γ) =

{
v ∈ L2(Γ) | ∇sv ∈ L2(Γ), γ∂Γv = 0

}
and

H
1
2
00(Γ) =

{
g ∈ L2(Γ) | ∃v ∈ H1(Ω), v|∂Ω

∈ H 1
2 (∂Ω), γΓv = g, γ∂Ω\Γv = 0

}
a closed subspace of H

1
2 (Γ).

Note that we have the continuous embeddings H1
0 (Γ) ⊂ H

1
2
00(Γ) and H

1
2
00(Γ) ⊂

L2(Γ) ([4], pp. 397).
Finally, we set

Ĥ
1
2 (Γ1 ∪ Γ2) =

{
(g1, g2) ∈ H

1
2
00(Γ1)×H

1
2
00(Γ2) |

∫
Γ1

g1 · nds+

∫
Γ2

g2 · nds = 0

}
.

3. State Equation

The well-posedness of system (1) concerning the existence and uniqueness for g
within an admissible class is required before studying the existence of solution of
the optimal control problem. In [16] the authors studied the evolutionary case set-
ting the existence of a solution local in time, for the type of boundary conditions
considered here. Concerning the stationary case, in [15] and [10] the existence
of solution for a similar system was proved. Both authors considered Neumann
conditions mixed with Dirichlet homogeneous conditions. In the later it was men-
tioned that no additional difficulties should be expected with non-homogeneous
boundary conditions. In [9], the existence was shown, in the 2D case, for a system
with mixed boundary conditions including Dirichlet non-homogeneous. Again the
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authors mentioned that the 3D case could be proved using the same techniques.
For the sake of clearness, we show that system (1) is in fact well-posed in the 3D
case, following the ideas of [9].

We first start by considering the Stokes system

−ν∆u+∇p = h in Ω,

∇ · u = 0 in Ω,

γu = g on Γin,
γu = 0 on Γwall,
ν∂nu− pn = 0 on Γout,

(4)

Definition 3.1. Let g ∈ H1
0(Γin), h ∈ L

3
2 (Ω). We call u ∈ Vwall a weak solution

of (4) if γΓinu = g and

ν

∫
Ω

∇u : ∇v dx =

∫
Ω

hv dx, (5)

for all v ∈ VD.

Theorem 3.2. .

i) There exists a unique solution u ∈ Vwall of problem (5). For such solution there

exists a distribution p ∈ L
3
2 (Ω) such that (u, p) ∈ Vwall×L2(Ω) is a solution

of ( 4) in the sense of distributions. If u and p are smooth enough, then p is
unique and the boundary conditions in ( 4) are verified point-wise.

ii) On the other hand, if (u, p) ∈ HΓwall
× L 3

2 (Ω) is a solution of problem (4) in
the sense of distributions, then u is a solution of ( 5).

Proof. i) Consider the auxiliar minimization problem

min
A
E(u) :=

1

2
‖∇v‖2L2(Ω) − (h, u)

where
A = {u ∈ HΓwall

, γΓin
u = g}.

The functional E : H1(Ω)→ R is continuous and convex on H1(Ω) and thus
weakly lower semi-continuous with respect to the H1(Ω) norm. Also, the
admissibility set A is sequentially weakly closed. Finally, since E verifies the
coercivity property, the classical theory of the calculus of variations ensures
the existence of a unique solution ū for the minimization problem. Hence, ū
is also the unique solution of the necessary and sufficient optimality condition

ν

∫
Ω

∇u : ∇v dx =

∫
Ω

hv dx, ∀v ∈ HΓD
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and therefore (5) has a unique solution.

If we take v ∈ HΓD
∪C∞0 (Ω) and integrate (5) by parts, we obtain∫

Ω

(ν∆ū+ h) · v = 0⇔ (∆ū+ h, v) = 0, ∀v ∈ HΓD
∪C∞0 (Ω).

Due to the inclusion L
3
2 (Ω) = (L3(Ω))′ ⊂ (W 1,3

0 (Ω))′ = W−1, 32 (Ω), we

have ν∆ū+ h ∈W−1, 32 (Ω). Therefore by De Rham’s theorem ([18] Lemma

II.2.2.2) there exits a distribution p ∈ L
3
2 (Ω) such that ∇p ∈ L

3
2 (Ω) and

(ν∆ū + h, v) = (∇p, v) that is, system (4) is verified in the sense of dis-
tributions. Let us now assume that ū and p are smooth and replace h by
−ν∆ū+∇p in (4). Integrating by parts we obtain∫

Γout

(ν∂nū− pn) · v ds = 0 , ∀v ∈ VD.

Now consider w ∈ C∞0 (Γout) such that
∫

Γout
w · nds = 0. If we define

w̄ =

{
w on ΓD = Γin ∪ Γwall
0 on Γout,

(6)

we have w̄ ∈ C∞0 (∂Ω) and
∫
∂Ω
w̄ · nds = 0. As a result, there exists v ∈ VD

such that γ∂Ωv = w̄ and γΓout
v = w. Consequently,∫

Γout

(ν∂nū− pn) · w ds = 0, ∀w ∈ C∞0 (Γout) such that

∫
Γout

w · nds = 0.

In view of a corollary of the fundamental lemma of the calculus of variations
([3] Cor.1.25 p.23), we have

ν∂nū− pn = c0n on Γout,

where c0 is a constant. Let us now take p̄ = p + c as another distribution
such that (4) is verified. Then we have

0 =

∫
Γout

(ν∂nū− pn) · v =

∫
Γout

(c− c0)n · v ds ∀v ∈ VD.

Choosing v such that
∫

Γout
n · v ds = 1, we conclude that (ū, p̄), with c = c0,

is the unique solution of (4).

ii) If u ∈ HΓwall
is a solution of (4) then it is clear that u ∈ Vwall and, as a result

of integration by parts, that (5) is verified.

Before obtaining an estimate for the Stokes problem, we first recall some related
results.
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Lemma 3.3. Let g ∈ H
1
2 (∂Ω) be such that∫
∂Ω\Γ

g · nds =

∫
Γ

g · nds = 0.

Then there exists v ∈ H such that γv = g.

Proof. See, for instance, [11].

It is now straightforward to prove the next lemma.

Lemma 3.4. Let (g1, g2) ∈ Ĥ 1
2 (Γin ∪ Γout). Then there is a bounded extension

operator E : Ĥ
1
2 (Γin ∪ Γout)→ Vwall, ∀v ∈ Vwall, such that for v = E(g1, g2) we

have g1 = γΓinv, g2 = γΓoutv.

As a result, we can obtain the following estimate for the solution.

Lemma 3.5. Let S : H
1
2
00(Γin)× L

3
2 (Ω) → Vwall be the solution operator to ( 5).

Then, if v = S(g, h), we have

‖v‖2Vwall
= ‖v‖2H1(Ω) ≤ c

(
‖g‖2

H
1
2
00(Γin)

+ ‖h‖2
L

3
2 (Ω)

)
,

where c > 0 is independent of (g, h).

Proof. Using Lemma 3.4 we see that v = E g + v̄ with v̄ = v − E g ∈ VD. Hence

‖∇v‖2L2(Ω) = (∇v,∇E g) + (∇v,∇v̄),

which, in view of the definition of weak solution, can be written as

‖∇v‖2L2(Ω) = (∇v,∇E g) +
1

ν
(h, v̄).

We deal with each term of the right-hand side separately. Using Young’s inequality,
together with the fact that E is bounded, we have

|(∇v,∇E g)| ≤ c1‖∇v‖L2(Ω)‖∇E g‖L2(Ω) ≤ c2‖∇v‖L2(Ω)‖E g‖H1(Ω) (7)

≤ c3‖∇v‖L2(Ω)‖g‖
H

1
2
00(Γin)

≤ ε‖∇v‖2L2(Ω) +
c4
ε
‖g‖2

H
1
2
00(Γin)

, (8)

for ε > 0. Moreover, using Poincaré and Young inequalities and the Sobolev
embedding H1(Ω) ⊂ L3(Ω) (see Lemma 2.1.i), we have

|(h, v̄)| ≤ c5‖h‖
L

3
2 (Ω)
‖∇v̄‖L2(Ω) ≤ ε‖∇v̄‖2L2(Ω) +

c6
ε
‖h‖2

L
3
2 (Ω)

. (9)

And, by similar arguments,

‖∇v̄‖2L2(Ω) = ‖∇v −∇E g‖2L2(Ω) ≤ c7
(
‖∇v‖2L2(Ω) + ‖E g‖2H1(Ω)

)
(10)

≤ c8
(
‖∇v‖2L2(Ω) + ‖g‖2

H
1
2
00(Γin)

)
. (11)
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Therefore

‖∇v‖2L2(Ω) ≤ ε(1 + c8)‖∇v‖2L2(Ω) +
c6
ε
‖h‖2

L
3
2 (Ω)

+ (
c4
ε

+ c8ε)‖g‖2
H

1
2
00(Γin)

and consequently

‖v‖2H1(Ω) ≤ c9‖∇v‖
2
L2(Ω) ≤ c

(
‖h‖2

L
3
2 (Ω)

+ ‖g‖2
H

1
2
00(Γin)

)
for a certain constant c > 0.

We can now prove the existence of a solution for the Navier-Stokes system (1).

Definition 3.6. Let g ∈ H1
0(Γin), f ∈ L

3
2 (Ω). We say that u ∈ Vwall is a weak

solution of (1) if γΓin
u = g and

ν

∫
Ω

∇u : ∇v dx+

∫
Ω

(u · ∇)uv dx =

∫
Ω

fv dx, (12)

for all v ∈ VD.

We need the following result.

Lemma 3.7. If u ∈ H1(Ω), then u · ∇u ∈ L
3
2 (Ω) and ‖u · ∇u‖

L
3
2 (Ω)

≤ ‖u‖2H1(Ω).

Proof. Using Hölder’s inequality ([2], IV.2, Remark 2.) and the Sobolev embedding
H1(Ω) ⊂ L6(Ω) (see Lemma 2.1.ii)) we have∫

Ω

|u · ∇u| 32 dx ≤ ‖u‖
3
2

L6(Ω)‖∇u‖
3
2

L2(Ω) ≤ c‖u‖
3
2

H1(Ω)‖∇u‖
3
2

L2(Ω) ≤ c‖u‖
3
H1(Ω) ≤ ∞.

Theorem 3.8. Let g ∈ H1
0(Γin) such that ‖g‖H1

0(Γin) ≤ ρ, for ρ > 0 sufficiently

small, and f ∈ L
3
2 (Ω). Then, there exists a unique weak solution u ∈ Vwall of the

Navier-Stokes system ( 1) which verifies

‖u‖2H1(Ω) ≤ α
(
‖g‖2H1

0(Γin)

)
+ ‖f‖2

L
3
2 (Ω)

, (13)

where α(s) = c(s2 + s).

Before proceeding to the proof of the theorem, let us introduce another defini-
tion.

Definition 3.9. We define the projection operator P : L
3
2 (Ω) → L̂

3
2 (Ω) as the

solution of the equation

(Ph, v) = (h, v), ∀v ∈ L̂3(Ω),

where
L̂p(Ω) = {v ∈ Lp(Ω) | ∇ · v = 0, γΓD

(v · n) = 0} .
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Proof of Theorem 3.8. We look for h ∈ L̂
3
2 (Ω) such that the corresponding solution

to the Stokes system u = S(g, h) is also a solution of (12). For this purpose we will
use a fixed point argument. If we replace such u = S(g, h) in (12), we get

ν(∇S,∇v) + (S ·∇ S, v) = (f, v) ∀v ∈ VD,

which, by definition of S, is equivalent to

(h, v) + (S ·∇S, v) = (f, v) ∀v ∈ VD

which is also equivalent to

(h+ S ·∇S−f, v) = 0 ∀v ∈ VD. (14)

Using Lemma 3.7 and the fact that VD is dense in L̂3(Ω), we can see that, from
equation (14), we have

(P(h+ S ·∇S−f), v) = 0 ∀v ∈ L̂3(Ω)⇔
(h+ P(S ·∇ S−f), v) = 0 ∀v ∈ L̂3(Ω)⇔

−P(S ·∇S−f) = h . (15)

We should now prove that the operator C : L̂
3
2 (Ω)→ L3(Ω) defined by

C(h) = −P(S(g, h) · ∇ S(g, h)− f)

verifies the contraction property.

Let h1, h2 ∈ Bδ, where Bδ ⊂ L̂
3
2 (Ω) is a given ball with respect to the L̂

3
2 (Ω)

metrics. Then, using Hölder’s inequality together with Poincaré’s inequality, we
get

‖C(h1)− C(h2)‖
L̂

3
2 (Ω)

=

‖P(S(g, h1) · ∇ S(g, h1)− S(g, h2) · ∇ S(g, h2))‖
L̂

3
2 (Ω)

=

‖S(g, h1) · ∇ S(g, h1)− S(g, h2) · ∇ S(g, h2)‖
L

3
2 (Ω)

≤

‖S(g, h1) · ∇ S(g, h1)− S(g, h2) · ∇ S(g, h1)‖
L

3
2 (Ω)

+ ‖S(g, h2) · ∇ S(g, h1)− S(g, h2) · ∇ S(g, h2)‖
L

3
2 (Ω)

=

‖S(0, h1 − h2) · ∇ S(g, h1)‖
L

3
2 (Ω)

+ ‖ S(g, h2) · ∇ S(0, h1 − h2)‖
L

3
2 (Ω)

≤

‖S(0, h1 − h2)‖L6(Ω)‖∇S(g, h1)‖L2(Ω) + ‖S(g, h2)‖L6(Ω)‖∇S(0, h1 − h2)‖L2(Ω) ≤
c1(‖S(0, h1 − h2)‖H1(Ω)‖∇S(g, h1)‖L2(Ω) + ‖ S(g, h2)‖H1(Ω)‖∇S(0, h1 − h2)‖L2(Ω)) ≤
c2‖∇S(0, h1 − h2)‖L2(Ω)

(
‖∇S(g, h1)‖L2(Ω) + ‖ S(g, h2)‖H1(Ω)

)
. (16)
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Using Lemma 3.5 and the continuous embedding H1
0 (Γin) ⊂ H

1
2
00(Γin), we can see

that

(16) ≤ c3

(
‖h1 − h2‖2

L
3
2 (Ω)

) 1
2

×[(
‖h1‖2

L
3
2 (Ω)

+ ‖g‖2
H

1
2
00(Γin)

) 1
2

+

(
‖h2‖2

L
3
2 (Ω)

+ ‖g‖2
H

1
2
00(Γin)

) 1
2

]

≤ c4‖h1 − h2‖
L

3
2 (Ω)

[
‖h1‖

L
3
2 (Ω)

+ ‖h2‖
L

3
2 (Ω)

+ ‖g‖H1
0(Γin)

]
≤ c̄‖h1 − h2‖

L
3
2 (Ω)

,

where c̄ depends on ‖h1‖
L

3
2 (Ω)

, ‖h2‖
L

3
2 (Ω)

and ‖g‖H1
0(Γin). But since h1, h2 ∈ Bδ,

we can choose δ and ρ small enough so that c̄ < 1. Therefore S maps Bδ into itself
and hence it has a fixed point h̄. Since c̄ is strictly smaller than 1, it is easy to
see that such fixed point is unique. As for the estimate (13), let us notice that the
fixed point can be obtained as the limit of a sequence (hk) verifying

h1 = C(0), h2 = C(h1), . . . , hk = C(hk−1), ...

Since we have hk =
∑k
i=1(hi − hi−1) =

∑k
i=1[C(hi−1) − C(hi−2)] then, in virtue

of Lemma 3.7 and Lemma 3.5, we have

‖h̄‖
L

3
2 (Ω)

=‖ lim
k→∞

hk‖
L

3
2 (Ω)

≤ lim
k→∞

k∑
i=1

‖hk − hk−1‖
L

3
2 (Ω)

≤
∞∑
i=1

c̄ i−1‖C(0)‖
L

3
2 (Ω)

=
c̄

1− c̄
‖ S(g, 0) · ∇ S(g, 0)− f‖

L
3
2 (Ω)

≤c5(‖ S(g, 0)‖2H1(Ω) + ‖f‖
L

3
2 (Ω)

) ≤ c6(‖g‖2
H

1
2
00(Γin)

+ ‖f‖
L

3
2 (Ω)

).

(17)

Consequently, the solution u = S(h̄, g) of system (12) is bounded by

‖u‖2H1(Ω) = ‖ S(g, h̄)‖2H1(Ω) ≤ c6
(
‖g‖2

H
1
2
00(Γin)

+ ‖h̄‖2
L

3
2 (Ω)

)
.

≤ c7
(
‖g‖2

H
1
2
00(Γin)

+ ‖g‖4
H

1
2
00(Γin)

+ ‖f‖2
L

3
2 (Ω)

)
.

≤ c8
(
‖g‖2H1

0(Γin) + ‖g‖4H1
0(Γin) + ‖f‖2

L
3
2 (Ω)

)
.

= α
(
‖g‖2H1

0(Γin)

)
+ ‖f‖2

L
3
2 (Ω)

.
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Remark 3.10. In the proof of the previous theorem the fact that g ∈ H1
0(Γin)

is not essential, and we could alternatively suppose that g ∈ H
1
2
00(Γin) verifies

‖g‖
H

1
2
00(Γin)

≤ ρ. In this case the proof could follow in the same way, but we would

get the estimate

‖u‖2H1(Ω) ≤ α
(
‖g‖2

H
1
2
00(Γin)

)
+ ‖f‖2

L
3
2 (Ω)

, (18)

instead of (13).

4. Existence results for the optimal control problem

Consider the admissible control set

U =
{
g ∈ H1

0 (Γin) | ‖g‖H1
0 (Γ) ≤ ρ

}
,

where ρ is defined as in Theorem 3.8. We can define the weak version of problem
(P ) as follows: we look for g ∈ U such that J(u, g) is minimized, where u is the
unique weak solution of (12) corresponding to g.

Remark 4.1. Note that U is just an example of an admissible set, within the
abstract set

U0 =
{
g ∈ H1

0 (Γin) : such that (12) has a unique solution
}
.

We can prove the following existence result:

Theorem 4.2. Assume that Ωpart = Ω, ρ is as described above and β2, β3 6= 0.
Then (P ) has an optimal solution (u, g) ∈ Vwall × U in the weak sense.

Proof. First see that for g = 0 there is a corresponding unique solution u0 to (12)
so that Vwall × U is nonempty. This implies that 0 ≤ J ≤ +∞.

Let (uk, gk)k ⊂ Vwall × U be a minimizing sequence, that is, such that

J(uk, gk)→ I, the infimum, when k → +∞.

Since U ⊂ H1
0 (Γin) is bounded, there exists a subsequence of (gk)k which converges

weakly to a certain ḡ ∈ H1
0 (Γin). Due to (13) we have

‖uk‖2H1(Ω) ≤ α
(
‖gk‖2H1

0(Γin)

)
+ ‖f‖2

L
3
2 (Ω)

, ∀k,

and therefore there exists ū such that uk → ū weakly in H1(Ω). Indeed, we
have ū ∈ Vwall, as both the divergence operator and the trace operator γΓwall

:

H1(Ω) → H
1
2 (Γwall) are bounded linear operators. Also, as γΓinuk → γΓin ū,

weakly in H
1
2 (Γin), we have that γΓinuk = gk converges weakly in L2(Γin), both
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to γΓin ū and ḡ. Thus, we must have γΓin ū = ḡ. Finally, since the convective term
in (12) is weakly continuous in H1(Ω) (see [11] p.286) we conclude that ū is the
solution corresponding to ḡ. Due to the fact that the functional J is both convex
and continuous, and therefore strong lower semi-continuous (l.s.c.), it is also l.s.c.
with respect to the weak topology ([2] Remark III.8.6). Consequently,

I = lim
k
J(uk, gk) ≥ lim inf

k
J(uk, gk) ≥ J(ū, ḡ) ≥ I,

and we conclude that (ū, ḡ) is a an optimal solution for (P ).

Remark 4.3. The fact that we assume U′ bounded in H1
0 (Γin) is a very strong

assumption which allows us to prove the result even either if β2 = 0 or β3 = 0. In
this latter case, the l.s.c. property of J should be verified with respect to H

1
2 (Γin)

rather than H1
0 (Γin).

Remark 4.4. We can also choose an admissible set for the controls that is not
necessarily bounded. This is the case when U = U0. Then, if β3 6= 0, from the fact
that for a minimizing sequence (gk)k we have

‖gk‖H1
0 (Γin) ≤ J(uk, gk) ≤ +∞,

we can still extract a weakly convergent sequence in H1
0 (Γin), so that the proof

would follow as above. If β3 = 0, in view of the properties of H1
0 (Γin) (see for

instance [14]), we would get

‖gk‖H1
0 (Γin) ≤ ‖gk‖L2(Γin) ≤ J(uk, gk) ≤ +∞,

and the proof could be attained similarly as above.

We will now consider another choice for Ωpart more connected to the medical
applications we have in mind. Let Ω be a domain representing a blood vessel like
in Figure 1. Consider (Ωpi)i to be a monotone sequence of subsets of Ω, such that

Ωp1
⊂ Ωp2

... ⊂ Ωpm ⊂ Ω. (19)

In addition, assume also that for all i ∈ {1, ...,m}, we have

∂Ωpi = Γini
∪ Γwalli ∪ Γouti

where Γouti , i ∈ {1, ...,m}, are disjoint surfaces corresponding to cross sections of
Ω, Γini

= Γin, and Γwalli = Γwall ∩ Ωpi 6= ∅. Note that the construction of each
Ωpi in this way ensures that (19) is verified, and that each Ωpi itself represents a
part of the vessel Ω.

Now consider Ωpart = ∪mi=1si where si = Γouti , for all i ∈ {1, ...,m}. An
example of such a situation is represented in Figure 2. We can still establish the
existence of solution in this case.

Theorem 4.5. Assume that Ωpart in J is given by Ωpart = ∪mi=1si, as described
above. Then there is an optimal solution to problem (P ).
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Proof. Let γsi : H1(Ωpi) → H
1
2 (si) be the family of linear, and bounded, trace

operators defining the boundary values, over each surface si, for functions defined
in Ωpi . To prove that J is weakly l.s.c, we need to see that it verifies the continuity
and convexity properties. Let uk → u in H1(Ω) and consider γsiud = gi to be the
values of the known data over each si. In this case∣∣∣∣∣

∫
Ωpart

(uk − ud)2 − (u− ud)2 ds

∣∣∣∣∣
is, in fact,∣∣∣∣∣

m∑
i=1

[
‖γsiuk − gi‖2L2(si)

− ‖γsiu− gi‖2L2(si)

]∣∣∣∣∣ ≤∣∣∣∣∣
m∑
i=1

[
(‖γsiuk − γsiu‖L2(si) + ‖γsiu− gi‖L2(si)))

2 − ‖γsiu− gi‖2L2(si)

]∣∣∣∣∣ .
Due to the boundness of each γsi we have that the last term can be bounded from
above by∣∣∣∣∣

m∑
i=1

[
(ci‖uk − u‖H1(Ωpi

) + ‖γsiu− gi‖L2(si)))
2 − ‖γsiu− gi‖2L2(si)

]∣∣∣∣∣ ≤∣∣∣∣∣
m∑
i=1

[
(ci‖uk − u‖H1(Ω) + ‖γsiu− gi‖L2(si)))

2 − ‖γsiu− gi‖2L2(si)

]∣∣∣∣∣ ,
(20)

which goes to zero when k →∞.
The convexity follows directly from the fact that∫

Ωpart

(
u1 + u2

2
− ud)2 ds =

m∑
i=1

1

4

∫
si

(γsiu1 − gi + γsiu2 − gi)2 ds

≤
m∑
i=1

1

4

∫
si

21[(γsiu1 − gi)2 + (γsiu2 − gi)2] ds

≤ 1

2

∫
Ωpart

(u1 − ud)2 ds+
1

2

∫
Ωpart

(u2 − ud)2 ds.

Therefore J is weakly l.s.c.. The rest of the proof follows as in Theorem 4.2.

Lastly, another case that can also be interesting from the applications point of
view.

Theorem 4.6. If we consider now Ωpi as a family of disjoint subdomains of Ω
and we take Ωpart = ∪mi=1Ωpi in J , then problem (P ) also has an optimal solution.
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Proof. To prove this statement, we will check, once more, that J remains convex
and strongly continuous. Concerning the convexity, it follows directly as in Theo-
rem 4.5. As for the continuity, let (uk)k be a convergent sequence to u in H1(Ω),
then ∣∣∣∣∣

∫
Ωpart

(uk − ud)2 − (u− ud)2 dx

∣∣∣∣∣ ≤∣∣∣∣∣
m∑
i=1

[
(‖uk − u‖L2(Ωpi

) + ‖u− ud‖L2(Ωpi
))

2 − ‖u− ud‖2L2(Ωpi
)

]∣∣∣∣∣ ≤∣∣∣∣∣
m∑
i=1

[
(‖uk − u‖L2(Ω) + ‖u− ud‖L2(Ωpi

))
2 − ‖u− ud‖2L2(Ωpi

)

]∣∣∣∣∣
which tends to zero when k →∞.
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