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Abstract

This paper presents a simplified way of comput-
ing the parity space residuals’ computational form
through MIMO predictive models used for control
synthesis. It is possible to derive a parity equa-
tion in the predictive models framework starting
from a plant model description in pseudo-state
space variables. From this equation, after a time
transformation, the resultant set of predictors is
compared with the respective predictors of the dis-
crete linear plant MIMO models. The comparison
results in a simpler way of computing matrices K
and J of the parity space residuals’ computational
form. This result shows that predictive controllers
and parity space residuals naturally fit and an
integrated strategy allows computational savings,
in particular in adaptive schemes where system
parameters estimation dependent matrices need to
be recalculated at each sampling interval.
Keywords: MIMO predictive models; Generalized
Predictive Controller; Discrete linear systems;
Parity Space; Residuals computational form.

1. INTRODUCTION

An active fault-tolerant control system is designed
following performance objectives under either nor-
mal, or faulty operation (Zhang and Jiang, 2003).
For a system to achieve good performance, faults

1 Part of this work has been done under the project
POSI/SRI/39643/2001, under the IIIrd EC Framework
Program, and under a 3 years teaching leave given by
ESTSetúbal/IPS.

need to be detected and diagnosed as fast as
possible so that a reconfigurable controller may
be activated. All this should be done on-line and
in real-time, in particular, residuals generation.
In this paper, residuals generation through par-
ity space computational form is integrated in the
MIMO predictive models framework with the in-
tention of its use with adaptive predictive con-
trollers, namely the Generalized Predictive Con-
troller (GPC) (Clarke et al., 1987). Writing this
equation in this framework, and after a time trans-
formation, reveals a set of predictors with the
same structure as the one of the MIMO predictive
models. Both the parity space residuals’ compu-
tational form and the MIMO predictive models
allow a very simple way of computing the former
predictors’ vectorial equations matrices from the
later. This results in an important economy of
computations in an on-line real-time strategy such
as the one of active fault-tolerant control sys-
tems. This holds in particular when using adaptive
structures, where matrices for residuals generation
and controller gains need to be recalculated, each
time sample, through plant parameters recursive
estimation. Hence, the approach proposed here is
well suited for the combined strategy of an adap-
tive GPC with an adaptive residuals generation
presented in (Diońısio et al., 2003).

The paper follows with the introduction of some
notation and the plant description, in section 2.
Section 3 presents the set of MIMO predictive
models for later comparison with the set of pre-
dictors generated by the residuals’ computational
form, from section 4. In section 5, comparison
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results are presented. Finally, section 6 presents
a numerical example, and in section 7 conclusions
are drawn.

2. PLANT MODEL

Consider a discrete I/O MIMO description of a
plant subjected to actuators and sensors faults,
and to sensors noise. The plant has u ∈ Rm

inputs, y ∈ Rl outputs, ∆u ∈ Rm actuators faults,
∆y ∈ Rl sensors faults, and ξ ∈ Rl sensors noise.

y(t) =




H11(q−1) H12(q−1) · · · H1m(q−1)
H21(q−1) H22(q−1) · · · H2m(q−1)

...
...

. . .
...

Hl1(q−1) Hl2(q−1) · · · Hlm(q−1)


 ·

[u(t) + ∆u(t)] + Il×l∆y(t)+


N1(q−1) 0 · · · 0
0 N2(q−1) · · · 0
...

...
. . .

...
0 0 · · · Nl(q−1)


 · ξ(t)

(1)

where Il×l is an [l] × [l] identity matrix, and the
transfer functions are

Hij(q−1) = q−1
bij
0 + bij

1 q−1 + . . . + bij

nij
b

q−nij
b

1 + ai
1q
−1 + . . . + ai

ni
a
q−ni

a

Ni(q−1) =
1

1 + ai
1q
−1 + . . . + ai

ni
a
q−ni

a

Define the following polynomials

A∗i (q
−1) := 1 +

ni
a∑

p=1

ai
pq
−p; B∗

ij(q
−1) :=

nij
b∑

p=0

bij
p q−p

(2)
A∗i and B∗

ij being coprime and i = 1, . . . , l, and
j = 1, . . . , m. Rewriting (1) as

A∗(q−1) · y(t) =B∗(q−1) · [u(t− 1) + ∆u(t− 1)]
+A∗(q−1) · [∆y(t) + ξ(t)]

(3)

with A∗(q−1) = diag
(
A∗1(q

−1), . . . , A∗l (q
−1)

)
, and

B∗(q−1) =




B11(q−1) B12(q−1) · · · B1m(q−1)
B21(q−1) B22(q−1) · · · B2m(q−1)

...
...

. . .
...

Bl1(q−1) Bl2(q−1) · · · Blm(q−1)




The vectors in (1) and (3) are, by definition,

u(t) := [u1(t) . . . um(t)]′

∆u(t) := [∆u1(t) . . . ∆um(t)]′

y(t) := [y1(t) . . . yl(t)]′

∆y(t) := [∆y1(t) . . . ∆yl(t)]′

ξ(t) := [ξ1(t) . . . ξl(t)]′

Introduce the pseudo-state s(t)

s(t) :=[y1(t) . . . y1(t− n1
a + 1) y2(t) . . .

y2(t− n2
a + 1) . . . yl(t) . . . yl(t− nl

a + 1)

u1(t− 1) . . . u1(t− n1
b) u2(t− 1) . . .

u2(t− n2
b) . . . um(t− 1) . . . um(t− nm

b )]′

Where nj
b = max{nij

b : i = 1, . . . , l}, for each j =
1, . . . , m. The following vectors are also considered

∆ŭ(t) := [∆u1(t) . . . ∆u1(t− n1
b + 1) . . .

∆um(t) . . . ∆um(t− nm
b + 1)]′

∆y̆(t) := [∆y1(t + 1) . . . ∆y1(t− n1
a + 1) . . .

∆yl(t + 1) . . . ∆yl(t− nl
a + 1)]′

ξ̆(t) := [ξ1(t + 1) . . . ξ1(t− n1
a + 1) . . .

ξl(t + 1) . . . ξl(t− nl
a + 1)]′

f(t) = [∆ŭ(t) ∆y̆(t)]′

Finally, it is possible to write a pseudo-state space
representation of the plant

s(t + 1) = Φs(t) + Γu(t) + SF f(t) + SN ξ̆(t)
y(t) = Hs(t)

(4)

In order to keep track of vectors and matrices
dimensions:

• s(t) is [n1
a + n2

a + · · · + nl
a + n1

b + n2
b + · · · +

nm
b ]× [1]

• ∆ŭ(t) is [n1
b + n2

b + · · ·+ nm
b ]× [1]

• ∆y̆(t) is [n1
a + n2

a + · · ·+ nl
a + l]× [1]

• f(t) is [dim(∆ŭ(t)) + dim(∆y̆(t))]× [1]
• ξ̆(t) is [n1

a + n2
a + · · ·+ nl

a + l]× [1]
• Φ is [dim(s(t))]× [dim(s(t))]
• Γ is [dim(s(t))]× [m]
• SF is [dim(s(t))]× [dim(f(t))]
• SN is [dim(s(t))]× [dim(ξ̆(t))]
• H is [l]× [dim(s(t))]

where dim(x(t)) means the number of lines of a
generic column vector x(t). A note about vectors
∆ŭ(t), ∆y̆(t) and ξ̆(t) dimensions’ should be given
at this point: consider that only mf actuators and
lf sensors are faulty, and that noise affects only



ld sensors (0 ≤ mf ≤ m, 0 ≤ lf ≤ l, and 0 ≤
ld ≤ l), meaning that the remaining nj

b actuators,
and ni

a sensors entries’ on vectors ∆ŭ(t), ∆y̆(t),
and ξ̆(t) are zero (index j corresponds to fault
free actuators, and index i corresponds to fault
free and/or noise free sensors), then these vectors
can be shortened in length including only faulty
actuators and sensors, and noisy sensors.

Since matrices Φ, Γ, SF , SN , and H are generally
of large dimensions, their structure is not repre-
sented here. Nevertheless, they are easily obtained
when taking into consideration vectors s(t), u(t),
y(t), f(t), and ξ̆(t) definitions, as well as plant
description (3).

Notice that vectors and matrices dimensions are
explicitly shown here and throughout the paper
(whenever justified) for the sake of better un-
derstanding of the comparative study and of the
numerical example, sections 5 and 6, respectively.

3. MIMO PREDICTIVE MODELS

Starting with the plant description given by (3),
discarding faults but considering noise (admitted
to be zero mean white Gaussian), it is possi-
ble (Mosca, 1995) to obtain a set of predictive
equations for the outputs, over a prediction time
horizon T , written as

Ŷ t+T
t+1 = Π′s(t) + WU t+T−1

t (5)

with

Ŷ t+T
t+1 =




ŷ(t + 1)
ŷ(t + 2)

...
ŷ(t + T )


 U t+T−1

t =




u(t)
u(t + 1)

...
u(t + T − 1)




and ŷ(t) meaning an estimate of y(t). Matrices W
and Π′, with dimensions [l × T ] × [m × T ] and
[l × T ]× [dim(s(t))], respectively, are

W =




W1 0
W2 W1

...
...

. . .
WT WT−1 · · · W1


 Π′ =




Π′1
Π′2
...

Π′T


 (6)

and

Wi =




w1
i · · · w1

i

w2
i · · · w2

i
...

. . .
...

wl
i · · · wl

i


 Π′i =




π1
i
′

π2
i
′

...
πl

i

′




(7)

with i = 1, . . . , T . Matrices Wi and Π′i have di-
mensions [l] × [m], and [l] × [dim(s(t))], respec-
tively, and, although not entirely defined in this
paper, they can be easily found in the literature
(Mosca, 1995).

Moreover, if the sensors noise is not considered in
an ideal plant description, than ŷ(t) = y(t) and
(5) can be rewritten as

Y t+T
t+1 = Π′s(t) + WU t+T−1

t (8)

4. RESIDUALS’ COMPUTATIONAL FORM

Consider a time window of dimension σ and
backward iterate the pseudo-state space described
by (4) over this time window in order to obtain
the following parity equation (Chow and Willsky,
1984; Gertler, 1998).

Y t
t−σ = Js(t− σ) + KU t

t−σ + LF F t
t−σ + LDΞt

t−σ

(9)
where vectors Y t

t−σ and U t
t−σ have the same struc-

ture as previously defined for vectors Y t+T
t+1 and

U t+T−1
t , respectively. The other vectors and ma-

trices are

F t
t−σ =




f(t− σ)
f(t− σ − 1)

...
f(t)


 Ξt

t−σ =




ξ̆(t− σ)
ξ̆(t− σ − 1)

...
ξ̆(t)




and

J =




H
HΦ
HΦ2

...
HΦσ




K =




0
HΓ 0

HΦΓ HΓ
...

...
. . .

HΦ(σ−1)Γ HΦ(σ−2)Γ · · · HΓ 0




(10)



Matrices LF and LD have the same format as
matrix K, being Γ replaced by SF and SN , respec-
tively. Dimensions of vectors and matrices are:

• Y t
t−σ is [l × (σ + 1)]× [1]

• U t
t−σ is [m× (σ + 1)]× [1]

• F t
t−σ is [dim(f(t))× (σ + 1)]× [1]

• Ξt
t−σ is [dim(ξ̆(t))× (σ + 1)]× [1]

• J is [l × (σ + 1)]× [dim(s(t))]
• K is [l × (σ + 1)]× [m× (σ + 1)]
• LF is [l × (σ + 1)]× [dim(F t

t−σ)]
• LD is [l × (σ + 1)]× [dim(Ξt

t−σ)]

Equation (9) can be rewritten as

Y t
t−σ −KU t

t−σ = Js(t− σ) + LF F t
t−σ + LDΞt

t−σ

(11)
being the left hand side of (11) called the residu-
als’ computational form, and the right hand side
the residuals’ internal form.

In particular, if the plant is fault free and noise
free, (9) becomes

Y t
t−σ = Js(t− σ) + KU t

t−σ (12)

5. COMPARATIVE STUDY

It is now possible to perform a comparison be-
tween predictive MIMO models and residuals’
computational form in parity space. To start with,
consider (12) written for a generic time instant t′.
Applying a t′ = t + T time translation to (12)
yields

Y t+T
t+T−σ = Js(t + T − σ) + KU t+T

t+T−σ (13)

Next, consider T = σ, as a restriction,

Y t+T
t = Js(t) + KU t+T

t (14)

In (8) it is easily seen that there are T predictors,
and that in (14) there are (T + 1) predictors, the
extra one (first line of (14)) corresponding to a
zero order predictor (notice there is no time delay
between Y and U). Comparing the T predictors
of (8) (T lines of (8)) directly with the last T
predictors of (14) (disregard the first line of (14)),
allows to conclude that

W1 = HΓ Π′1 = HΦ

W2 = HΦΓ Π′2 = HΦ2

...
...

WT = HΦT−1Γ Π′T = HΦT

Steam from
boiler drum

To steam
collector
Cvsato

Spray
water

LTSH HTSH

u =Cvgij

Cgij

y =Tvsati y =Tvsato
211

Fig. 1. Plant schematic view.

or, more generally,

Wi = HΦi−1Γ Π′i = HΦi (i = 1, . . . , T )

also based on the comparison of matrices W and
Π′ (6) with K and J (10).

Notice that the restriction T = σ has been made
only for convenience, and that in practice σ is
normally smaller than T (specially for a reduced
number of faults), implying that only the first
σ < T predictors should be considered out of the
T predictors defined in (8).

6. NUMERICAL EXAMPLE

A simulation example illustrating the computa-
tional savings achieved with the proposed algo-
rithm is presented hereafter.

6.1 Plant and model description

The plant considered in this example is the steam
super-heating subsystem of a boiler (Barreiro
thermoelectric power plant of CPPE). Fig.1 shows
a simplified overview of this subsystem referring
the main variables. The steam coming from the
boiler drum passes through the low-temperature
super-heater (LTSH) and receives a spray wa-
ter injection before passing through the high-
temperature super-heater (HTSH) to the steam
collector. From the collector, the steam is ex-
tracted for use, either by the turbine or by indus-
trial clients. The process variable to be controlled
is y2 = Tvsato, the steam temperature at the
output of the HTSH. The manipulated variable is
u1 = Cvgij , the command of the spray water valve,
which influences the spray water flow, Cgij . The
overall plant dynamics is quite slow (τ ' 230s)
and changes due to the influence of the load



imposed on the system, the super-heated steam
flow, Cvsato. This variable affects the dynamic
behaviour between y1 = Tvsati, an intermediate
temperature measure, and y2 = Tvsato.

The physical based model is described in (Diońısio
et al., 2001, 2003); nevertheless, a brief presen-
tation of model essential characteristics’ follows.
Two sampled models were identified in open loop
with discrete linear time-invariant models. The
first model, corresponding to the discrete transfer
function between Cvgij and Tvsati, has 3 poles, 2
zeros and 1 unit delay (n1

a = 3, and n11
b = 2), and

was obtained at the equilibrium point defined by
Cvgij(0) = 30% and Tvsati(0) = 426.31oC. The
second model, corresponding to the overall dis-
crete transfer function between Cvgij and Tvsato,
has 4 poles, 2 zeros and 2 units delay (n2

a = 4,
and n21

b = 3; n1
b = 3), and was obtained at

the equilibrium point defined by Cvgij(0) = 30%
and Tvsato(0) = 535.15oC. For both models the
sampling period was Ts = 5s and the input signal
was a band-limited white noise with variance of
3.3% of Cvgij(0), superimposed to the constant
input Cvgij(0). A RLS algorithm with directional
forgetting was running in parallel, with a forget-
ting factor λ = 0.98, estimating both plant models
parameters. The identified overall discrete plant
model is of non-minimum phase having a static
incremental negative gain. With this set of pa-
rameters and a new collection of data, the overall
discrete linear model was validated, having an
accumulated quadratic tracking error of 0.43oC2.

6.2 Simulation results

The simulation starts at the linearized equilibrium
point defined by Cvgij(0) = 30%, Tvsati(0) =
426.31oC and Tvsato(0) = 535.15oC, which is
considered the nominal model. It is assumed that
additive faults can only occur on actuator u1 =
Cvgij and on sensor y2 = Tvsato, and both sensors’
noise is neglected, meaning that mf = m = 1,
lf = 1 < l = 2, and ld = 0 < l = 2. Therefore,
matrix LF is shortened by those columns related
with non-faulty sensor y1 = Tvsati, and matrix LD

is not considered at all.

Adaptive residuals that react to additive faults
(r1 sensitive to sensor 2 fault and r2 sensitive
to actuator fault) and do not react to set-point

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6
Adaptive residuals r1 and r2

time [sec.]

r1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
4

0

0.1

0.2

0.3

0.4

time [sec.]

r2

Fig. 2. Adaptive residuals r1 and r2 during a
change of set-point. Actuator fault occurs.

changes were designed as referred in (Diońısio et
al., 2003), and considering σ = 4. These residuals
are computed on-line for every simulation discrete
time interval, since they are adaptive and system
parameters may change at any time. Residuals
are designed according to a certain fixed off-line
criteria (e.g., structured residuals), but need to
be computed on-line according to the estimated
system parameters. This means that the adaptive
residuals algorithm is run every simulation dis-
crete time interval.

In order to quantify the number of floating point
operations saved by the direct assignment of ma-
trices K and J , from matrices W and Π′, respec-
tively, vs. their algorithmic computation, in the
adaptive residuals generation algorithm, the same
simulation was performed under each one of the
two possibilities.

Consider Fig.2 where it is shown the time evolu-
tion of adaptive residuals r1 and r2, respectively,
during the occurrence of an actuator incipient
fault (−0.8% at t = 15000s) after a change of the
set-point (−1.8oC at t = 12000s). Both residuals
are shown in absolute value and after low-pass fil-
tering. Residual r1 remains insensitive to the fault
occurrence and residual r2 reacts (as designed)
making detection possible. Attention should be
payed to the set-point change instant where both
residuals show some peaks. Even though they are
not significant in amplitude they could mask in-
cipient faults. Therefore, it was assumed (Diońısio
et al., 2003) that during set-point changing in-
stants no faults occur.

Under the possibility of assigning directly matri-
ces K and J from matrices W and Π′, respectively,
the total number of floating point operations per



simulation discrete time interval in the adaptive
residuals generation algorithm was approximately
42185 for residual r1, and approximately 31944
for residual r2. Under the possibility of the algo-
rithmic computation of matrices K and J , both
previous results were increased by the amount of
approximately 16481 extra floating point opera-
tions per simulation discrete time interval. These
results reflect approximately a reduction of 28%
and 34% on the number of floating point opera-
tions per simulation discrete time interval, respec-
tively. Different results were obtained for residuals
r1 and r2 because their computation is based on
different design specifications.

A final remark: the numerical results for the
floating point operations are highly dependent on
the dimensions of all vectors and matrices involved
in (11), and on the number of faults to detect
and of noisy sensors to decouple. Therefore, these
results are specific of this simulation and are not
to be seen as a general rule, though they give a
reasonable indication.

7. CONCLUSIONS

In this paper, the parity space formulation was
integrated within a pseudo-state space represen-
tation valid for MIMO predictive models. This
integration lead to the conclusion that both parity
space residuals’ computational form and MIMO
predictive models represent the same predictors,
allowing a simpler way of computing the former
predictors’ vectorial equations matrices from the
later. This results in an important economy of
computations in an on-line real-time strategy such
as the one of active fault-tolerant control systems,
particularly in an adaptive strategy. A numerical
example is given highlighting the savings for the
on-line computation of matrices K and J , in an
adaptive residual generation in parity space.
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