Synthesis, Characterization and Catalytic application of Water Stable n³-Allyl **Dicarbonyl Complexes of Molybdenum(II)**

Carla A. Gamelas,¹ Ana C. Gomes,² Sofia M. Bruno,² Anabela A. Valente,² Martyn Pillinger,² Carlos C. Romão,³ Isabel S. Gonçalves²

¹Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal; ²Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal ³Instituto de Tecnologia Química e Biológica, UNL, 2781-901 Oeiras, Portugal;

Introduction

Ally dicarbonyl complexes $[Mo(\eta^3-C_3H_5)X(CO)_2(L)_n]$ (X = halide) have been found to act as catalyst precursors for several reactions, namely the polymerization of dienes and the epoxidation of olefins.¹ In our recent investigations of complexes cis-[Mo(CO)₄(L)], we found that the nature of the bidentate ligand L influences the species formed by oxidative decarbonylation and their catalytic performance in olefin epoxidation: with L = bipy, the organic-inorganic hybrid [MoO₃(bipy)] is obtained; with L = di-*t*Bu-bipy, the polynuclear complex [Mo₈O₂₄(di-*t*Bu-bipy)₄] is obtained instead.² Here we report on the use of the complexes [Mo(η^3 -C₃H₅)Cl(CO)₂(L)] (L = bipy (**1**), di-*t*Bu-bipy (**2**)) as catalyst precursors in the epoxidation of cyclooctene (Cy) using aqueous TBHP or H_2O_2 as oxidant. Additionally, oxidative decarbonylation was performed for both catalysts, in aqueous media, and the obtained products were characterized and also used as catalysts.

nthesis

Compound	Solvent	Yield (%) ^b	Identified solid after 24h ^c
1	H_2O	37	4 (TY≈60%)
1	CH ₃ CN	19	4
3	H_2O	32	4
4	H_2O	38	4
5	H_2O	28	4
2	H_2O	87	_
2	CH ₃ CN	59	_
6	H_2O	96	_
7	H_2O	90	_
8	H_2O	98	

. <u> </u>	J		
Compound	Solvent	Yield (%) ^b	Identified solid after 24h ^c
1	CH ₃ CN	66	5
3	CH ₃ CN	71	5
4	CH ₃ CN	79	5
5	CH ₃ CN	54	5
2	CH₃CN	26	8
6	CH₃CN	54	8
7	CH₃CN	75	8
8	CH₃CN	81	8

Conclusions

The η^3 -allyl dicarbonyl complexes [Mo(η^3 -C₃H₅)Cl(CO)₂(L)] (L = bipy, **1**; di-*t*Bu-bipy, **2**) are convenient precursors to oxo Mo(VI) compounds that selectively catalyze the epoxidation of Cy in aqueous media. Reaction of **1** or **2** with the oxidant results in oxidative decarbonylation. When the oxidant is H₂O₂ aq., the oxodiperoxo complexes MoO(O₂)₂(L) (5, 8) are formed. By contrast, when the oxidant is TBHP aq., different oxo Mo(VI) compounds are formed, depending on the ligand L and the reaction conditions: oxo-bridged dimers $[MoO_2CI(L)]_2O(3, 6)$, the hybrid $\{[MoO_3(bipy)][MoO_3(H_2O)_n]\}(4)$, the octanuclear complex $[Mo_8O_{24}(di-tBu-bipy)_4](7)$.

We anticipate that the extension of these studies to other η^3 -allyl dicarbonyl complexes, including chiral derivatives, will provide novel oxo Mo(VI) compounds, possibly active in aqueous catalysis.

References

[1] Alonso, J. C.; Neves, P.; da Silva, M. J. P.; Quintal, S.; Vaz, P. D.; Silva, C.; Valente, A. A.; Ferreira, P.; Calhorda, M. J.; Felix, V.; Drew, M. G. B. Organometallics 2007, 26, 5548.

[2] Amarante, T. R.; Neves, P.; Coelho, A. C.; Gago, S.; Valente, A. A.; Paz, F. A. A.; Pillinger, M.; Gonçalves, I. S. Organometallics 2010, 29, 883.

[3] (a) Abrantes, M.; Amarante, T. R.; Antunes, M. M.; Gago, S.; Paz, F. A. A.; Margiolaki, I.; Rodrigues, A. E.; Pillinger, M.; Valente, A. A.; Gonçalves, I. S. Inorg. Chem. 2010, 49, 6865. (b) Schlemper, E. O.; Schrauzer, G. N.; Hughes, L. A. Polyhedron 1984, 3, 377. (c) Arzoumanian H.; Bakhtchadjian R. Trans. Met. Chem. 2006, 31, 681. (d) Amarante, T. R.; Paz, F. A. A.; Gago, S.; Gonçalves, I. S.; Pillinger, M.; Rodrigues, A. E.; Abrantes, M. Molecules 2009, 14, 3610. [4] Rodrigues, C. W.; Limberg, C.; Pritzkow, H. Chem. Commun. 2004, 2734.

Acknowledgments

We are grateful to FCT, POCI 2010, OE and FEDER for general funding, REDE/1517/RMN/2005. EST-IPS is acknowledged for a short duration grant to C.A.G. The FCT is acknowledged for a post-doctoral grant to S.M.B. CICE-CO is acknowledged for financial support (including a post-doctoral grant to A.C.G.).