
Worst-Case Responses Estimate Impact on Pareto Front 

Nuno COSTA* and João LOURENÇO 

Instituto Politécnico de Setúbal – Escola Superior de Tecnologia de Setúbal 

Centro de Desenvolvimento de Produto e Transferência de Tecnologia, 2910-761 Setúbal, Portugal 

*Corresponding author  

Keywords: Multiresponse, Modeling, Optimal, Optimization, Uncertainty, Variability. 

Abstract. For a reasoned decision-making in multiresponse problems, it is important to investigate 
how consistent the Pareto Frontier is to responses estimation uncertainty. To investigate the impact 
of this uncertainty source on the Pareto frontier, solutions achieved from the worst and mean 
responses estimate were generated and compared. Results are displayed graphically and a metric is 
used to select an optimal solution. 

Introduction 

Processes and products have multiple characteristics or properties (responses) that must be 
optimized simultaneously. In contrast to single response optimization problems, where the optimal 
solution is defined easily, for multiple responses optimization problems, a solution is more of a 
concept than a definition [1]. In practice, a collection of optimal or nondominated solutions from 
where the decision-maker shall select one based on its preference or solution’s impacts on product 
and process performance is generated from models built on mean estimated responses. However, it 
is known that models fitted to responses are, by nature, inaccurate due to process natural variability 
and estimation uncertainty of model’s coefficients. This has implications on the generated (optimal 
or Pareto) solutions and on their characteristics, namely on the solutions reproducibility, which has 
also been not addressed in the literature. Thus, in contrast to the current practice, solutions 
reproducibility is assessed here through a novel metric, and Pareto frontiers generated from the mean 
and worst responses estimates are evaluated. 

Solutions Generation and Dominance Relation 

To conduct statistically designed experiments for modelling the responses surface and use a function 
that combines the models of multiple responses for finding a solution that either maximizes or 
minimizes the aggregated function is a frequent practice in the RSM framework that has been 
illustrated by several authors, namely in [2-5], as examples. However, for multiresponse optimization 
(MRO) problems there is not a unique solution that is best (global minimum or maximum) with respect 
to all responses. In practice, the utopia point (the variables setting that would yield all responses at 
their target value) cannot be achieved because responses are usually in conflict. Thus, a compromise 
solution must be identified, and a desired condition for any candidate solution is to be non-dominated. 

Pareto optimality is a predominant concept in defining a non-dominated solution. For a 
minimization problem like that formulated in (1), 

Minimize F(x) = [f1(x), …, fp(x)]                                                                                                                (1) 
subject to 

G(x) = [g1(x), …, gq(x)] < 0 

H(x) = [h1(x), …, hw(x)] = 0 

𝑥 ≤ 𝑥 ≤ 𝑥  
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where the objective function, inequality and equality constrained functions are denoted by F(x), G(x) 
and H(x), respectively; the x  is the vector of input variables or decision vector, with lower and upper 
bounds denoted, respectively, by x  and x , a solution x  is said to dominate another solution x , if 
both the following conditions are true: 

a) 𝑓 (𝑥 ) ≤ 𝑓 (𝑥 ) ∀ ∈ 1, … , 𝑝; 

b) ∃ ∈ 1, … , 𝑝 ∶  𝑓 (𝑥 ) ≤ 𝑓 (𝑥 ). 

Non-dominated solutions, namely the called Pareto frontiers, are usually generated from least 
squares point estimates of the responses at a given set of input variables (hereafter referred to as the 
‘‘mean model’’) without considering the uncertainty in the parameter estimates. Since the responses 
are likely to have different natural variability in the region of operation, the precision with which the 
parameters are estimated differs, making it difficult to anticipate effects on the Pareto frontier solutions 
[6]. One cannot also ignore that sampled data are another source of uncertainty in estimating the 
response surfaces. Another set of collected data would yield different response surfaces and, 
consequently, another Pareto frontier would be generated. Such as Chapman et al. [6] noted, naively 
treating the estimated response surfaces as fixed can lead to overconfidence in the conclusions and 
potentially sub-optimal input factor level choices that do not yield the expected practical results. 

Here, the Pareto frontier is generated from  
i) response estimate at input variable settings (x ) are defined as 

𝑓 (x ) = x 𝛽,                                                                                                                                (2) 

where 𝛽 represents the estimated model parameters (coefficients of the response mean model);  
ii) response estimate at input variable settings are defined as  

𝑓 (x ) = x 𝛽 ± 𝑡 /    𝑀𝑆𝐸(1 + x (𝑋′𝑋) )x ,                                                                 (3) 

where the mean square error MSE = SSE/(n−z), SSE is the error sum of squares, n is the number of 
experimental runs in the model matrix X, z is the number of terms in the response’s model, and  is 
the significance level [7]. Note that, in this manuscript, it is always considered the worst-case estimates 
for responses. This means that when a response must be maximized (is a Larger-The-Better response 
type - the estimated response value is expected to be equal or larger than an upper bound) a minus sign 
is used in (3) whereas a plus sign is used for responses which must be minimized (is a Smaller-The-
Better response type - the value of the estimated response is expected to be equal or smaller than a 
lower bound). For a Nominal-The-Best (NTB) response type (the estimated response value is expected 
to be equal to a target value) a plus or minus signal can be used in (3), depending on which one makes 
the response estimate value far from target. 

When the Pareto frontier generated from the estimated mean responses (as in (2)) significantly differ 
from that generated from the estimated worst responses (as in (3)), the decision-maker can use the 
quality of predictions (QoP) metric proposed by Costa and Lourenço [4] to identify a solution with 
high reproducibility (lower QoP value). When Ordinary Least Squares regression technique is used to 
fit models to responses,  

𝑄𝑜𝑃 = 𝑡𝑟𝑎𝑐𝑒 𝜑 ∑ (x∗) ,                                                                                                               (4) 

where  is a matrix whose elements are 𝜑 = 1 (𝑈 − 𝐿 )⁄  and 𝜑 =

1 (𝑈 − 𝐿 ) 𝑈 − 𝐿  𝑓𝑜𝑟 𝑖 ≠ 𝑗⁄ , with 𝑖, 𝑗 = 1, … , 𝑛, and ∑ (x∗) represents the variance-covariance 
matrix of the n estimated responses at optimal location x*. If all the models fitted to responses have 
the same regressors, one can write 

∑ (x∗) = x∗ (𝑋′𝑋) x∗ ∑,                                                                                                            (5) 



where X is the model matrix, ∑ = �̂� �̂� /𝑁, �̂� represents the estimated residuals (difference between 
the observed response value and the corresponding estimated value) and N is the number of 
experimental observations. If the Seemingly Unrelated Regression technique is used, the reader is 
referred to [8] where a variant of the QoP metric is defined and illustrated. 

The Pareto frontier (optimal solutions) are generated with a compromise programming-based 
criterion introduced in [9], varying the shape factor 1≤ ωi ≤12 with increments of one unit, and a 
Sequential Quadratic Programming algorithm are used. 

Example 

This case study aimed at determining the settings for reaction time (𝑥 ), reaction temperature (𝑥 ), and 
amount of catalyst (𝑥 ) for maximizing the conversion (y1) of a polymer and achieving a target value 
for the thermal activity (y2). A central composite design with four center points was run and the range 
values for y1 and y2 are [80, 100] and [55, 60], respectively [3]. The target value for y1 was set equal 
to 100 and for y2 was set equal to 57.5. The constraints for the input variables are −1.682 ≤ 𝑥 ≤
1.682 𝑤𝑖𝑡ℎ 𝑚 = 1, 2, 3 and the mean models fitted to responses, denoted by �̂�  and �̂� , according to 
[3], are as follows:  

�̂�  = 81.0943 + 1.0290𝑥  + 4.0426𝑥  + 6.2060𝑥  − 1.8377𝑥 + 2.9455𝑥  − 5.2036𝑥  + 2.1250𝑥 𝑥  + 
11.3750𝑥 𝑥  − 3.8750𝑥 𝑥                                                                                       (𝑅 = 0.9199; 𝑅 = 0.8478) 

�̂�  = 59.8505 + 3.5855𝑥  + 0.2547𝑥  + 2.2312𝑥  + 0.8360𝑥  + 0.0742𝑥  + 0.0565𝑥  − 0.3875𝑥 𝑥  
− 0.0375𝑥 𝑥  + 0.3125𝑥 𝑥                                                                                     (𝑅 = 0.8918; 𝑅 = 0.7944) 

Figure 1 displays the Pareto frontier for both the mean and worst responses estimate, represented 
with crosses and circles, respectively. In this case, one can see a significant difference between the 
Pareto frontiers, though the data trend is similar, that is, the further away from the target ? ?  value is, 
the higher ? ?  value will be. Pareto frontier built on the mean estimated responses is widely used, but 
there is no guarantee that all these solutions are either equally “good” or better than those achieved 
from worst responses estimate. Further information is useful to validate it, namely the optimal 
solutions assessment in terms of solutions’ quality of predictions (see Figure 2), where it is apparent 
that some solutions reproducibility is undesirably lower (QoP is higher) as well as to investigate if 
optimal variable settings are significantly different for both Pareto frontiers. In this situation, 
significant differences are apparent (see Figure 3). 

 

 

Figure 1. Pareto frontiers 



  

Figure 2. Quality of prediction                                  Figure 3. Optimal variable settings (𝑥 = 1.682) 

Results Discussion 

To use the mean response models for generating the Pareto frontier and making decisions about the 
preferred solution in multiresponse problems is a procedure that ignores the uncertainty associated to 
the responses surface. If this uncertainty is not neglectable, there is no guarantee that future observed 
responses will be equal to the estimated responses when the process is run at a chosen design location. 
Such as Chapman et al. [6, 10] shown, natural variability in the process and subsequent uncertainty 
in the experimental values result in less accurate response models and different Pareto frontiers. In 
practical terms, this means that process or product performance will be not as good as it could be 
possible. 

The example considered here shows that Pareto frontiers generated from mean and worst responses 
estimate are not similar (change is relevant). However, one can antecipate that Pareto frontiers did 
not change substantially when R2 and Adjusted R2 values are similar and large (>95%). To gain a 
further understanding of how uncertainty can impact on the robustness of results, a simulation study 
to evaluate the Pareto frontiers change due to variability in the estimated response surfaces can be 
helpful. In fact, simulation-based studies can account for both the parameter estimates and the 
response model uncertainty, which helps to examine the variability impact on the Pareto frontier 
solutions and facilitates a more informed solution selection by the decision-maker. However, so far, 
this was rarely done because it takes too much time to compute and it is not sure that significantly 
better solutions will be found. Nevertheless, with the computing speed increasing, it may become a 
usual practice. For guidelines on it the reader is referred to [10]. 

To evaluate the Pareto frontier consistency for different levels of uncertainty in the data as part of 
the optimization process is important for realistic decision-making in multiresponse problems. A 
larger variety of scenarios or alternative optimal solutions will provide a further understanding of the 
problem as well as the impact of subjective choices in the optimization process, helping the decision-
maker to take informed decisions more confidently. 

We anticipate that there will be many situations where the Pareto frontiers built on the mean and 
worst estimates will differ significantly. In such situations, the decision-maker should carefully 
consider whether primary interest lies in focusing on average or worst-case performance, because the 
solutions reproducibility can’t be ignored. To use the QoP metric is an appropriate approach to 
identify a solution with the highest reproducibility, which can be especially useful for problems with 
more than two responses. 

Conclusion 

This work goes beyond the current practice of displaying a Pareto frontier for a bi-objective problem 
by representing graphically the Pareto frontiers generated from both the mean and worst responses 



estimate. This provides to the decision-maker a broader set of competing choices from where a unique 
solution should be selected and indications how changes in the responses variability are propagated to 
the Pareto frontier. The case study provides evidence that a larger uncertainty in the estimates of 
model’s coefficients impact on Pareto frontier solutions, and hence less confidence the decision-maker 
may have in the reproducibility of selected solution. Nevertheless, more case studies are necessary to 
investigate how often this result can occur in real-life problems, though it is expected that higher 
natural variability and higher model’s coefficients uncertainty more significant differences between 
the Pareto frontiers will occur. 

Practitioners and decision-makers need to be aware that the mean model approximation is not a 
panacea and the uncertainty associated to some optimal solutions can be excessively high. Additional 
research is also welcoming to introduce tools or graphs for assessing the solutions reproducibility and 
guide the decision-maker in selecting confidently a solution among those of the Pareto frontier, namely 
for problems with a higher number of responses of distinct types. Nevertheless, the QoP metric 
presented can be useful. 
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