

Química Estrutural

THE EFFECT OF HYDROPHILIC MONOMERS ON SILICONE-BASED HYDROGELS PROPERTIES

Magda Carrilho¹, <u>Diana Silva^{1*}</u>, Benilde Saramago¹, Ana Paula Serro^{1,2}

¹ Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal ² CIIEM, Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.

*dianacristinasilva@tecnico.ulisboa.pt

Introduction

Many efforts have been done in order to overcome the problems of conventional ocular treatments. Therapeutic soft contact lenses (CL_s) have gained special attention and different strategies to obtain controlled drug release profiles have been followed.

Silicone hydrogel CL_s are the most commonly used worldwide. This type of lenses allows much more oxygen to reach the cornea than conventional hydrogel CL_s. However, the silicone compounds can reduce the surface wettability of the lenses, decreasing the users comfort. To overcome this problem, the new silicone CL_s include hydrophilic monomers and/or special wetting agents.

The aim of this work is to study the effect of two different hydrophilic monomers, DMA N,N-Dimethylacrylamide and HEMA (2-Hydroxyethyl methacrylate), on the properties of a TRIS-based hydrogel.

Methods

Hydrogels Production It was produced two types of silicone hydrogels, only varying the hydrophilic component (DMA or HEMA). TRIS/NVP/DMA **TRIS/NVP/HEMA** (40:40:20 w/w) (40:40:20 w/w) **Monomers:** - <u>Silicone component</u>: - TRIS (3-[Tris(trimethylsiloxy)silyl]propyl methacrylate) - Hydrophilic components: - DMA (N,N-Dimethylacrylamide) - HEMA (2-Hydroxyethyl methacrylate) - Other components: - NVP (N-Vinylpyrrolidone) **Crosslinker and Initiator:** - EGDMA (Ethylene glycol dimethacrylate) - AIBN (2,2'-Azobis(2-methylpropionitrile)) **Polymerization reaction:** 120 minutes ' radiation UV for (TRIS/NVP/DMA);

Pore-size dimensions Transmittance Swelling Capacity Surface morphology Wettability

Hydrogels Characterisation

Captive Bubble Sessile Drop (hydrated state) (dry state)

Loading & Release of Diclofenac

Loading Conditions	
Drug	Diclofenac Sodium Salt
Loading Solution	NaCl
Loading Solution Volume	3 mL
Temperature	4°C
Loading Time	38 hours
[] mg/mL Loading	1 mg/mL

Release Procedure

Results

1. Transmittance

Figure 1 – Transmittance values of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels.

All transmittance values are above the minimum accepted value, which is **90%**¹.

2. Swelling Capacity

4. Wettability

Figure 4 – Wettability of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels measured by captive bubble and sessile drop method and using distilled and deionized water (DD Water).

Both hydrated samples presented identical values (\approx 40°) showing to be **highly wettable in their hydrated state**.

On the other hand, in the sessile drop method, the samples showed contact angles close to 90°, which leads to the conclusion that these hydrogels are **poorly wettable when in their dry state**. This contradictory result can be explained by the **surface roughness of the dry hydrogels, according to the Cassie-Baxter model**³.

5. Morphology

7. Pore-size Dimensions

Figure 7 – Pore-size dimensions of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels, determined through DSC measurements and using the methods proposed by Brun et al.⁴ and Landry⁵. The red bars represent the cumulative diclofenac release of each type of hydrogel used to relate with pore-size dimensions.

The values obtained for the pore-size dimensions, based on calorimetric determination of the melting point depression of water and using the Landry's and Brun's equations, show that the pores are larger in TRIS/NVP/DMA.

DMA showed to be a better hydrophilic compound than HEMA, because it confers to the hydrogel higher swelling capacity, ionic permeability and larger pore-size dimensions, which consequently lead to a higher cumulative diclofenac release. The hydrogels properties as well as the amount of drug released are very sensitive to the type of hydrophilic monomer present in their composition.

Figure 2 – Swelling capacity of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels.

TRIS/NVP/DMA hydrogel has higher swelling percentage, proving the **good capacity of DMA to absorb water**.

3. Ionic Permeability

Figure 3 – Ionic permeability of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels. The red line indicates the minimum accepted value to have an adequate on-eye movement of the lens².

The value of the ionic permeability of TRIS/NVP/DMA is higher than that of the TRIS/NVP/HEMA. This result is in accordance with the swelling capacity values obtained.

Figure 5 – SEM images of the surface of TRIS/NVP/DMA (left) and TRIS/NVP/HEMA (right) hydrogels.

Both samples present similar surface morphologies.

6. Cumulative Diclofenac Release

Figure 6 – Cumulative diclofenac release of TRIS/NVP/DMA and TRIS/NVP/HEMA hydrogels.

The amount of diclofenac released was significantly higher for TRIS/NVP/DMA; this means a higher loading capacity which may be explained by its greater swelling capacity and larger pores.

 Efron, N. & Maldonado-Codina, C. Development of Contact Lenses from a Biomaterial Point of View – Materials, Manufacture, and Clinical Application. Comprehensive Biomaterials (2011).
 Nicolson, P. C. et al. Extended wear ophthalmic lens. (1998).

3. Whyman, G., Bormashenko, E. & Stei, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008).

4. Landry, M. R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta 433, 27–50 (2005).

5. Brun, M., Lallemand, A., Quinson, J.-F. & Eyraud, C. A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim. Acta 21, 59–88 (1977).

Acknowledgements

To Fundação para a Ciência e Tecnologia (FCT) through UID/QUI/00100/2013 and M-ERA.NET/0005/2012 projects and the PhD grant of Diana Silva PD/BD/114088/2015