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Abstract  

Currently, most in vitro drug release studies for ophthalmic applications are carried out 

in static sink conditions. Although this procedure is simple and useful to make 

comparative studies, it does not describe adequately the drug release kinetics in the eye, 

considering the small tear volume and flow rates found in vivo. 

In this work a microfluidic cell was designed and used to mimic the continuous, 

volumetric flow rate of tear fluid and its low volume. The suitable operation of the cell, 

in terms of uniformity and symmetry of flux, was proved using a numerical model 

based in the Navier-Stokes and continuity equations. The release profile of a model 

system (a hydroxyethyl methacrylate-based hydrogel (HEMA/PVP) for soft contact 

lenses (SCLs) loaded with diclofenac) obtained with the microfluidic cell was compared 

with that obtained in static conditions, showing that the kinetics of release in dynamic 

conditions is slower. The application of the numerical model demonstrated that the 

designed cell can be used to simulate the drug release in the whole range of the human 

eye tear film volume and allowed to estimate the drug concentration in the volume of 

liquid in direct contact with the hydrogel. The knowledge of this concentration, which is 

significantly different from that measured in the experimental tests during the first hours 

of release, is critical to predict the toxicity of the drug release system and its in vivo 

efficacy.  

In conclusion, the use of the microfluidic cell in conjunction with the numerical model 

shall be a valuable tool to design and optimize new therapeutic drug loaded SCLs. 
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INTRODUCTION  

Topical administration of ocular medication through eyedrops constitutes the most used 

form of treatment of the diseases that affect the anterior segment of the eye. It is 

estimated that this conventional dosage form accounts for approximately 90% of the 

commercial ophthalmic formulations [1,2]. The use of eye drops has numerous 

advantages, namely the ease of administration, patient compliance and low cost. 

However, these conventional ocular formulations show low bioavailability due to 

physiological and anatomical constraints of the eye. Typically, only a small fraction of 

the administered dose (1-7%) is absorbed due to spillage from the eye, lacrimation and 

tear turnover, nasolacrimal drainage, metabolic degradation, and/or non-specific 

absorption [3,4]. Moreover, as a result of the tear drainage, part of the administered 

drugs are absorbed into the systemic circulation and may reach important organs,  

causing eventual side effects [5,6]. 

Several strategies have been attempted to overcome these problems, including the use of  

emulsions, ointments, suspensions, aqueous gels, in situ thermosensitive gels, 

nanomicelles, nanoparticles, liposomes, dendrimers, nanosuspensions, microneedles, 

implants and soft contact lenses  (SCLs) [7–9]. Among these, SCLs have raised special 

attention, due to their high degree of comfort, biocompatibility and prolonged contact 

with the eye. More than 125 million people worldwide use contact lenses, which 

corresponds to a market of about $7.6 billion [10]. These devices are generally used to 

correct a number of vision impairments and for cosmetic purposes, but may also be used 

for therapeutic reasons. In certain situations, clinicians prescribe contact lenses to relief 

the ocular pain, promote the corneal healing, provide mechanical protection and support 

and maintain the corneal epithelial hydration [11]. They have also potential to be used 

as drug delivery devices [12,13], although till date there are no contact lenses loaded 

with drugs available in the market. So far, SCLs are only used in association with 

eyedrops, and in this case, they must be placed in the eye immediately after the 

application of the drops to increase the drugs residence time in the eye. This procedure 

improves the drugs permeation and absorption through the cornea but still requires the 

patient’s compliance and ability to self-administer the medicine. 

Efforts have been made in the last decades to develop drug loaded SCLs that ensure per 

si a sustained drug release, allowing to enhance the drug bioavailability in the eye, and 

thus, to improve the efficacy of treatments. Several approaches are described in the 

literature, including the modification of the composition of the base materials by 
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incorporation of monomers/compounds that enable to tailor the hydrogel properties 

[12,13], molecular imprinting with the drugs to create “cavities” in the polymeric matrix 

which affect the reloading/swelling of the hydrogels and the respective drug release [14]  

and grafting of ligands to the hydrogel matrix which form inclusion complexes with the 

drugs [15]. The possibility of creating two-layer contact lenses with an inner drug-

bearing biodegradable polymer film was also investigated [12]. Other researchers 

incorporated in the hydrogels drug-loaded nanostructures, like nanoparticles and 

liposomes [1,16,17].  

All these studies involve in vitro drug release experiments which are typically carried 

out in static conditions. It is normally assumed that the release occurs in infinite sink 

conditions1 and the accumulation of drug in the solution surrounding the hydrogel is 

negligible, which is not always true. In fact, the low solubility of some drugs, the small 

volumes of release (e.g. 2-10 mL) and experiments performed without stirring often 

used in this type of experiments, may compromise the infinite sink conditions [18,19]. It 

should be stressed that in the eye, sink conditions can be maintained if the drug 

clearance is high. However, the total clearance mechanism (including lacrimal turnover 

and absorption by conjunctiva) is complex and difficult to simulate in in vitro studies. 

Static conditions are generally used due to the simplicity of the experimental procedure 

and they are useful to compare different systems. However, they are far from simulating 

the real release conditions, since they do not match the ocular in vivo flow conditions. In 

a normal situation, the human eye contains a tear volume that ranges from 6.2 to 30.0 

µL [20–22] and the tear flow rate assumes values between 0.9 and 2.1 µL/min [23]. The 

use of contact lenses increases the tear turnover to values of the order 1.4-4.3 µL/min 

[23]. In order to predict in a more reliable way the drug release kinetics in the eye, it is 

crucial to develop microfluidic models that mimic, as close as possible, the 

hydrodynamic conditions of the eye.  

As far as the authors know, only a reduced number of papers have addressed this issue 

in the development of new therapeutic drug loaded SCLs. The group of M.E. Byrne 

used two microfluidic devices with different geometries [4,24] to study the drug release 

behavior of SCLs materials under physiological flow rates. The results were compared 

with those obtained in static conditions. It was concluded that under flow conditions 

similar to those of the human eye, the release time of the drugs increased, and more 

                                                             
1
 The term sink conditions is usually defined as the volume of medium at least greater than three times 

that required to form a saturated solution of a drug substance. 
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sustained release profiles were obtained. More recently, Jones et al. [25] achieved 

similar conclusions. They compared the release of two drugs from commercial contact 

lenses, in static and dynamic conditions, and concluded that experimental parameters, 

such the volume of release and the flow rate, have a significant influence on the 

measured release profiles. Although the work of these groups has contributed to draw 

the attention to the importance of reproducing more closely the eye conditions in in 

vitro tests, in no case a detailed characterization of the microfluidic devices operation 

was done. The use of numerical models yields information on the fluid flow inside the 

devices which is not accessible from experimental measurements. Furthermore, these 

models would allow predicting the impact of changing the inner chamber volume and/or 

the flow rate, on the drug release profiles. 

In this work, a microfluidic cell was designed and built to mimic the tear flow rate and 

to approximate the in vitro drug release conditions to those found in the eye. Due to 

operational limitations, the volume of the inner chamber, where the hydrogel is placed, 

is higher than the tear film volume in the eye (while the minimum volume of the cell 

chamber that could be achieved was 45 µL, the maximum tear film volume in the eye is 

30 µL). A conventional hydroxyethyl methacrylate-based hydrogel (HEMA/PVP) for 

SCLs loaded with an anti-inflammatory (diclofenac) was used as model system to 

obtain an experimental release profile using the microfluidic cell. This release profile 

was compared with the one obtained in static conditions. The fluid dynamics in the 

microfluidic cell was fully characterized through numerical simulation using a 

computational model. The fitting of the numeric model to the experimental drug release 

profile allowed the parametrical characterization of the system and the use of a release 

volume closer to the lower limit of the tear film volume. The in vivo drug release 

efficacy of the studied model system was predicted, taking into account the estimated 

drug concentration in the tear film volume. 

 

EXPERIMENTAL 

Materials 

2-Hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), 

2,2’-azobis(2-methylpropionitrile) (AIBN), phosphate saline buffer (PBS, pH 7.4), 

phosphoric acid, monopotassium phosphate, diclofenac sodium (DCF), was all 

purchased from Sigma-Aldrich. Poly(viny thlpyrrolidone) (PVP K30, Kollidon VR 30) 

was kindly provided by BASF. Acetonitrile and methanol were purchased from Fisher 
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Scientific. A Millipore Milli-Q water purification system was used to get distilled and 

deionized (DD) water. 

 

Hydrogels preparation 

To prepare HEMA/PVP based hydrogels (98/2, w/w), an appropriate amount of the 

crosslinker EGDMA was dissolved in HEMA (hydrophilic monomer) to obtain a 

concentration of 80 mM. Then, the mixture was degassed by ultra-sounds (5 minutes) 

and bubbled with a gentle stream of nitrogen (15 minutes) before the addition of AIBN 

(initiator) to a final concentration of 10 mM, and PVP (hydrophilic additive) to a final 

concentration of 0.02 g/mL. The solution was magnetically stirred for about 2 hours to 

obtain complete dissolution of PVP and injected into a mold consisting of two silanized 

glass plates (silanization procedure described in [26]) separated by a spacer of 

polyurethane. The polymerization reaction was performed at 50 °C for 14 hours, 

followed by 24 hours at 70 °C. The obtained hydrogel sheets were washed over 5 days, 

with DD water renewed three times a day, to remove unreacted monomers and to 

facilitate the cutting of the samples used in the study. The hydrated samples (thickness 

0.30 mm) were cut with a leaker of diameter 1.4 cm and dried overnight in an oven at 

35 °C.  

 

Drug loading and drug release 

The dry hydrogel samples were loaded with diclofenac (DCF) by soaking in the drug 

solution (prepared with PBS) with a concentration of 1 mg/mL, for 38 hours, at ambient 

temperature, in the dark. 

For the in vitro static drug release experiments, drug loaded samples were immersed in 

4 mL of PBS solution in closed vessels, at 36 °C, under stirring (180 rpm). At 

predetermined time intervals, 800 µl aliquots of the supernatant were collected and 

replaced by the same volume of fresh PBS solution.   

In vitro dynamic drug release experiments were done in a microfluidic cell fabricated 

with in poly(methylmethacrylate) (PMMA). The microfluidic cell is constituted by one 

central feeding pipe and from eight radial exit pipes converging in a collector ring (Fig. 

1a). The cell was designed with a cylindrical inner chamber of 45 µL. This volume is 

slightly superior to the volume of the tear fluid present in the eye (6.2-30.0 µL) [20–22], 

but, due to operational constraints it could not be smaller. 
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[Insert Figure 1] 

Fig. 1 a) Schematic representation of the microfluidic cell used to approximate in vitro 

to in vivo’s release conditions and b) experimental apparatus used in the dynamic 

release experiment 

 

In order to approach the physiological conditions, the drug release experiments in the 

microfluidic cell were performed at 36°C and a continuous flow of PBS of 3 µL/min 

was used. This flow rate is within the range of values found for contact lenses wearers 

(1.4-4.3 µL/min [23]). At predetermined time intervals, the out flow solution was 

collected to be analyzed. All in vitro release experiments were carried out in triplicate. 

The concentration of diclofenac in the collected samples was determined using a high 

performance liquid chromatograph (HPLC) with a Jasco UV–vis detector and a C-18 

column Nova-Pak Watters, at the wavelength of 276. The mobile phase, consisting of 

phosphoric acid, acetonitrile and methanol (40/48/12 in volume), was introduced into 

the column at a flow rate of 1 mL/min and a pressure of 14 MPa.  

 

Numeric flow modulation 

The flow inside the microfluidic cell was modeled through the numerical solution of the 

Navier-Stokes and continuity equations using the StarCCM+ simulation package. The 

fluid was considered to be incompressible and with constant properties: density of 

0.9937 g/cm3 and dynamic viscosity of 0.0692 mPa.s at 36 ºC. The background fluid 

(tear fluid) was represented by the buffered saline (PBS). The drug flows in the tear 

fluid volume as a passive scalar. The passive scalar model is used since the drug 

properties do not affect the solution properties, due to the very low concentration of the 

drug. Diclofenac diffusivity in PBS, determined by Nuclear Magnetic Resonance 

(NMR), is 1.4x10-9 m2/s [27]. Effective diffusivity in the hydrogels materials was 

determined by fitting the numerical model to the experimental release data obtained 

with the microfluidic cell (inner chamber 45 µL). The lens is modeled as a porous 

media with hydrodynamic permeability of 10-14 m2s-1Pa-1 [28,29] and a polymer volume 

fraction in the swollen state of 0.62. The used mesh of trimmed topology comprises 

about one million control volumes, with higher cell density in the zone near the lens and 

tear film. The time step was 60 seconds. The effect of the mesh size and time stepping 

on the results was analyzed indicating independence on the used numerical parameters. 
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RESULTS AND DISCUSSION 

Comparison of static and dynamic release conditions 

As previously referred, static conditions are used in drug release studies due to the 

simplicity of the experimental procedure. In Figure 2, the fractional cumulative DCF 

mass profile obtained in static conditions is compared with the one obtained using the 

microfluidic cell. 

 

[Insert Figure 2] 

Fig. 2 DCF fractional cumulative mass release in static and dynamic conditions 

(microfluidic cell) from HEMA/PVP hydrogel 

 

The release kinetics is greatly affected by the release conditions: in static conditions 

more than 90% of DCF is released upon the first 24 hours; in the inner chamber of the 

microfluidic cell the release progresses at a steady rate, reaching 90% of total release at 

approximately the 100th hour. Such differences in the drug release profiles can be 

understood through the analysis of the driving forces for drug release. The decrease of 

the release medium volume (from 4 mL, used in static experiments, to 45 µL in the 

microfluidic cell) leads to distinct concentration gradients between the drug loaded 

hydrogel and the release medium. In static experiments the drug concentration in the 

release medium is well below the drug solubility limit, which is 6-9 mg/mL for DCF in 

PBS [30]. In these conditions, the driving force produced by the gradient of 

concentrations between the hydrogel and the supernatant is maximum. Additionally, the 

mechanical stirring during the release experiment contributes to obtain a homogeneous 

medium and causes the disruption of any surface boundary effect. In turn, in 

microfluidic conditions, the more sustained release could be a consequence of the lower 

gradient of the drug concentration resultant from the small volume of release and flow 

conditions. Similar conclusions were achieved by other authors who compared the 

results in static conditions and under flow [4,25,26]: the release time of the drugs 

increased under flow, being significantly affected by the volume of release and the flow 

rate. 

Static conditions can be useful for an initial evaluation of a drug releasing system 

performance, as well as to make comparisons between different systems. Nevertheless, 

one should take in consideration that in static conditions the release environment is far 

from replicating the hydrodynamic conditions of the eye, as our results show.  
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A microfluidic system designed to approximate the in vivo conditions (volume and 

renovation rate) can provide more reliable information about the drug delivery system 

behavior, particularly in what concerns release rates and release amounts.  

 

Evaluation of the microfluidic cell operation 

In order to ensure that the designed cell respects the fluid mechanics principles, e.g. 

avoiding dead volumes, the cell operation was evaluated through the numerical flow 

modulation described above.  

In terms of fluid dynamics, considering a flow rate of 3µL/min, the flow in the inner 

chamber of the microfluidic cell is found to stabilize due to the Stokes nature of the 

considered flow. Also, the unsteady diffusion of the drug into the inner chamber (further 

studied) appears to have a negligible effect in the fluid dynamic, again due to the very 

low concentration, both in mass and volume terms. 

The fluid flows in the cell uniformly, as shown in the Figure 3a where some streamlines 

are drawn. The color is related to the local fluid velocity. Symmetric and very regular 

paths are followed by the fluid from the inlet pipe to the eight exiting pipes. In the 

leeward side of the returning pipes the velocity field also displays a regular pattern, 

therefore no dead zones are present in the flow. Vector field details are presented in 

Figure 3b. From this figure one can verify the flow overall uniformity and alignment in 

the inner chamber.  

 

[Insert Figure 3] 

Fig. 3 a) Representation of the paths of fluid inside the microfluidic cell with a central 

entry point and eight radial exit points and b) vector field details in a cross section of the 

cell 

 

Impact of the inner chamber volume on drug release profiles  

Figure 4 presents the concentration profile of DCF released from HEMA/PVP hydrogel 

obtained with the microfluidic cell, whose inner chamber volume is 45 µL. The 

numerical model was fitted to the experimental data, setting the hydrogel properties 

(hydrodynamic permeability and porosity) and the external medium properties (density, 

viscosity and DCF diffusivity in PBS) - see values in Numeric flow modulation section.  
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Although a large deviation between the data and the fitting is observed in the first 24 

hours of release (r2=0.734), the quality of the fitting greatly improved after that 

(r2=0.964). 

From the fitting, the effective diffusivity of DCF in the HEMA/PVP hydrogel was 

estimated to be 1.35 x10-13 m2/s.  

Since it was not possible to design a microfluidic cell with an inner chamber volume 

inferior to 45 µL, the numerical tool was used to predict the drug release profile in a 

volume of 7 µL, which is close to the minimum value of the tear film, considering the 

value estimated for DCF diffusivity in HEMA/PVP. Both estimated profiles (for 45 µL 

and 7 µL) are also presented in Figure 4.  

 

[Insert Figure 4] 

Fig. 4 Concentration profile of DCF released from HEMA/PVP at the exit point of the 

microfluidic cell and adjustment obtained using the numerical model for cells with inner 

chambers of 45 µL and 7 µL. Zoom for the first hours is included 

 

It can be observed that the profiles estimated by numerical simulation are not 

significantly affected by the inner chamber volume. The initial lag observed in these 

curves does not find correspondence with the experimental data, because the experiment 

with the microfluidic cell started with the device filled with PBS to ensure that no air 

bubble was trapped inside. The first aliquot collected consists of PBS that was forced to 

pass through the inner chamber at an higher velocity, and thus, will drag some drug. 

This initial step could not be considered in the simulations. The obtained results allow 

us to conclude that our microfluidic cell is able to simulate the range of the human eye 

tear film volume (6.2 to 30.0 µL).  

 

Efficacy of diclofenac loaded SCLs  

It is important to stress that the results of simulation presented in Figure 4 are 

concentrations of DCF at the exit point of the system, since in the experimental assay 

this is the collection point of the aliquots for drug quantification. However, to approach 

the in vivo conditions, we should consider the concentration of DCF in the inner 

chamber (that represents the tear film volume), to estimate the efficacy of drug loaded 

SCLs. As far as the authors know, all the reported studies using microfluidic devices to 
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study drug release from SCLs rely on the measurement of drug concentrations at the 

exit point. 

The drug concentration in the inner chamber can be estimated through the numerical 

simulation. In Figure 5, the predicted concentration profile of DCF for the 7 µL inner 

chamber of the microfluidic cell is shown. The concentration profile in the eye, resultant 

from application of commercial DCF eyedrops, according to the recommend posology, 

is also represented. This profile was estimated considering the application of 1 drop of 

DCF commercial ophthalmic solution (e.g. Voltaren Ophthalmic®, 1 mg/ mL) each 4 

hours during the day (the posology recommended for treatment of a post traumatic 

inflammation) and assuming that a volume of 7 µL of an eyedrop remains in the eye and 

the tear renovation rate is 3 µL/ min. 

 

[Insert Figure 5] 

Fig. 5 Concentration profiles of DCF released from HEMA/PVP at the exit point and at 

the 7 µL inner chamber of the microfluidic cell, obtained using the numerical model. 

The concentration profile in the eye resultant from application of DCF eyedrops is also 

shown 

 

As expected, the periodic application of the eyedrops leads to a saw shape drug 

concentration profile. In contrast, in the case of the drug loaded hydrogel, although the 

concentration profile at the inner chamber presents an initial burst, after the first few 

hours, a more sustained delivery is achieved. The maximum concentration achieved in 

the inner chamber is slightly higher than that obtained by application of the eyedrops. 

One should note that the chosen inner chamber volume is close to the lower limit of the 

tear film volume in the eye, whereby, higher tear film volumes should lead to lower 

burst values. The comparison of the concentration profiles correspondent to the inner 

chamber and the exit point shows a significant difference during the first 2 hours which 

faints afterwards. 

To assess the efficacy of the drug release system herein studied, the therapeutic amount 

which has to be delivered to the eye was estimated. As mentioned above, when 

eyedrops are applied, only 1-7% of the administered dose is absorbed. Considering an 

eyedrop of 34 µl [31] and an effective absorption of 5%, the recommend posology 

delivers, in one day, 8.5 µg (5 x 1 drop). Taking this value into account, one can predict 
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for how long the studied hydrogels release a therapeutic amount of drug. In Table 1 the 

DCF mass released per day from a SCL, obtained by numerical simulation for the inner 

chamber, is shown. An average dry weight of 30 mg was assumed for the SCL. 

 

[Insert Table 1] 

 

The results analysis suggests that the HEMA/PVP SCLs loaded with DCF shall be 

effective during ≈ 5 days.  

It should be underlined that the studied system (drug + hydrogel) is a model system. 

Thus, several aspects may require optimization to develop a commercial therapeutic 

device. For example, instead of using a HEMA-based, which has a low oxygen 

permeability, we could use the newer silicon hydrogels that, due to their higher oxygen 

permeability would be more suitable for a prolonged drug release [13].  Also, the 

loading procedure could be modified to adjust the amount of drug released. However, 

the focus of this work is not the optimization of a specific drug delivery system, but 

rather finding a way to better simulate the behavior of the drug loaded lenses in vivo. 

In conclusion, the use of the microfluidic cell to access the drug release profiles in 

hydrodynamic conditions which are closer to those found in vivo (in particular volume 

and renovation rate), associated with the application of the numerical model that 

predicts the drug concentration in the tear film volume, shall be a valuable tool to 

design and optimize new therapeutic SCLs. 

 

CONCLUSIONS 

In the last years, an increasing number of studies has focused on the development of 

drug delivery systems for ophthalmic applications, based on SCLs. In almost all those 

studies, the in vitro drug release profiles are obtained in static conditions, very different 

from those found in the eye. 

In this work, a microfluidic cell was designed to simulate the hydrodynamic conditions 

of the eye, namely the low volume of tear fluid and its continuous renovation. The 

release of a non-steroid anti-inflammatory commonly used in ocular therapy 

(diclofenac) from a conventional HEMA-based hydrogel for contact lenses was 

investigated. The drug release profiles in static conditions and obtained with the 

microfluidic cell were compared. As expected, the release time of the drugs increased 

under flow. 
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The flow inside the microfluidic cell was characterized using a computational fluid 

dynamics numerical model based on the Navier-Stokes and continuity equations. It was 

demonstrated that the fluid flows in the cell uniformly without dead zones, which 

testifies the adequate operation of the cell. 

The numerical model was fitted to experimental data obtained with the cell, using as 

adjustment parameter the diffusivity of the drug in the hydrogel.  The model was then 

used to evaluate the effect of changing the volume of liquid in contact with the 

hydrogel, on the drug release profiles. The reduction of the volume from 45 µL (the 

volume of the inner chamber of the cell used) to 7 µL (≈ the lower limit of the tear 

volume in the eye) led to minor differences in the concentration profiles of the solution 

collected from the cell, demonstrating that the designed microfluidic cell may be used to 

simulate lower volumes, within the tear film volume range. 

The numerical model was applied to estimate the drug concentration in the volume of 

liquid in direct contact with the hydrogel, which, in the first few hours, is significantly 

different from that measured experimentally (from solutions collected at the exit point 

of the microfluidic cell). This estimated concentration simulates the tear film 

concentration and allows a more reliable prediction of the in vivo efficacy of the drug 

loaded hydrogel than that based on common static drug release experiments. 
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