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Abstract 

 

The work aims at evaluating the usefulness of powdered milk as a drug matrix for the 

production of minitablets specifically designed for children. Mixtures made of powdered milk, 

paracetamol, mannitol, sodium croscarmellose and magnesium stearate (evaluated for flow 

properties, cohesiveness and caking tendency) were compacted into beams (evaluated for 

deformation, elasticity and stiffness) and minitablets (evaluated for uniformity of mass, 

thickness, tensile strength and paracetamol mean dissolution time) and a 23 factorial design 

performed. The increase on milk fraction in the formulation improved the compressibility of 

paracetamol and hardness of compacts, reducing weight variation and paracetamol release. A 

marked decrease on the dissolution time was observed as sodium croscarmellose was added 

to the milk rich formulations. The increase of the compression force resulted in the production 

of thinner compacts but had little effect on dissolution time. The production of beams has 

shown that deformation, bending strength and stiffness increased with both milk and 

compaction pressure, and decreased with sodium croscarmellose, whereas elasticity 

decreased when all variables increased. Tensile strength and mean dissolution time described 

minitablets well, unlike compaction force. The study has proved that powdered milk is suitable 

for the production of minitablets by direct compression of poor compressible drugs. 

 

 

 

Highlights 

- Powdered milk can be used as a matrix to deliver poorly compressible drugs. 

- Minitablets can be produced by direct compression of drug and powdered milk. 

- Materials’ behaviour is different as powders, compacts or tablets. 

- The complexity of milk materials justifies unexpected outcomes for compacts and tablets. 

- Mean drug dissolution time was the most sensitive parameter to assess tablets’ performance. 
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1. Introduction 

Over the years paediatric patients have been medicated by compounding or 

manipulating medicines designed to the adult population to obtain the required dose or to aid 

administration (Richey et al., 2012). In recent years the need to reconsider the dosage forms 

available in order to make them child-friendly has resulted in the publication of European 

Union (EMEA/CHMP/PEG/194810/2005, 2006, EMA/CHMP/QWP/180157/2011, 2011) and 

World Health Organization (WHO) guidelines concerning medicines designed for children 

(WHO, 2010) and essential medicines for children (WHO, 2013), thus increasing awareness and 

encouraging research on the paediatrics' drug delivery field. These guidelines assert that solid 

dosage forms are the first choice when developing new medicines for children.  

Paediatric patients represent a very heterogeneous group in need of individualized 

dosing and ease of administration of palatable medicines. Difficulties in swallowing 

encountered by the youngsters often result in administration of liquid formulations which, in 

comparison to solid dosage forms, present disadvantages namely, reduced stability, difficulty 

to find non-toxic excipients / preservatives (Krause and Breitkreutz, 2008) and to ascertain the 

measurement/administration of the right dose by the caretaker. In contrast, minitablets 

(Thomson et al., 2009, Stoltenberg and Breitkreutz, 2011), pellets (Kayumba et al., 2007) and 

granules (Mambrini and Kibleur, 2013) may be preferred alternatives when formulating new 

dosage forms for children providing the required drug stability, and dose accuracy as well as 

flexibility. Some children seem to prefer uncoated tablets to suspensions, syrups or powders 

(van Riet-Nales et al., 2013) but the age at which they are able to swell minitablets (2-3 mm 

diameter (Lennartz and Mielck, 1998)) remains undetermined and probably varies with the 

individual. Recent studies showed that round uncoated tablets are well accepted by 1 to 4 year 

old children (van Riet-Nales et al., 2013), while others deemed their usage safe in children as 

young as 2 years old (Thomson et al., 2009). Small-sized multiparticulates, on the other hand, 

can be swallowed by children over 6 months of age when dispersed in soft food or liquid 

beverages (Krause and Breitkreutz, 2008) if an adequate delivery device (e.g. dosing spoon or a 

counting device) is considered (Walsh et al., 2011).  

Direct compression of powder blends has some advantages (e.g. fewer processing 

steps, increasing productivity, reduced costs and elimination of heat and moisture effects on 

the final product (Martinello et al., 2006)) but it requires a good flow (for consistent tablet 

weight) and the right balance between brittle fracture and plastic behaviour of the mixture 

components (Thoorens et al., Jivraj et al., 2000). Factors such as the characteristics of 

individual particles, applied pressures and environmental conditions affect the powder mixture 
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and tablet performance (appropriate site of action, stability and palatability). Thus, optimal 

flow properties, at the expense of adjuvants, are often required for reliable design and proper 

manufacture operation (Sinka et al., 2009, Leturia et al., 2014) and these excipients have to be 

carefully considered when developing new paediatric solid dosage forms. Excipients, which are 

innocuous to adults, may pose a risk to the different age groups within the paediatric 

population (Salunke et al., 2012) and, therefore, powdered milk a complete, universally 

accepted food is an innovative and attractive excipient in formulating dosage forms for 

children. Due to its complex composition, milk has been proposed as a vehicle for 

physiologically active entities (Fox and McSweeney, 1998, Meurant, 1995, Livney, 2010) and 

resulted in a wide variety of novel applications in milk technology, namely as a 

solubilising/dispersing agent for oral drugs (Charkoftaki et al., 2010, Kytariolos et al., 2013). 

Paracetamol is regarded as a very effective drug for the relief of pain and fever in adults and 

children (Bosch et al., 2006), considered by WHO palliative in care of children (WHO, 2013).  

 When developing new dosage forms an experimental design (factorial design) 

approach is advisable to collect as much as possible information from experimental data using 

a small number of trials, thus minimizing costs, saving time and improving the properties of 

the resulting products (Djuris et al., 2013). To that end, it is crucial to identify the variables that 

most affect the quality of the final product. In this study a full factorial design (Lewis et al., 

1998) was employed to identify the variables (both formulation and manufacturing) and their 

interactions with significant impact on selected properties of minitablets made of paracetamol 

and powdered milk and produced by direct compression. Thus, the study aims at assessing the 

feasibility of using powdered milk in the oral delivery of drugs to children in minitablets based 

on a factorial design (Lewis et al., 1998) to optimize both the process and the formulation 

parameters. 

 

 

 

2. Materials and Methods 

 

2.1. Materials 

Powdered milk (Nido®, Nestlé Portugal, Oeiras, Portugal), paracetamol (Lusifar, Lisbon, 

Portugal), sodium croscarmellose (Ac-Di-Sol®, FMC BioPolymer, Philadelphia, USA), D-mannitol 

(Carlo Erba, Cornaredo, Italy) and magnesium stearate (Sigma-Aldrich, Munich, Germany) were 

used in the different formulations. 

 

http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCroscarmellose_sodium&ei=SS00U9H5FaWe0QXgtYDgCQ&usg=AFQjCNHBTBz0bxrrjWuqks24kdNjY6O1Iw&sig2=rb5FMLS8mngOeKVAdXgLCw&bvm=bv.63808443,d.Yms
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2.2. Experimental design and statistical analysis 

To investigate the properties of powder mixtures and compacts (beams and 

minitablets), full factorial designs were considered (Tables S1 and S2, Annex 1). The factorial 

design was constructed based on preliminary experiments (results not shown), which have 

revealed that the milk/drug ratio and disintegrant fraction in the formulation, and the 

compression pressure applied were critical to the manufacture of the minitablets, as assessed 

for weight and thickness variations, mechanical strength and paracetamol dissolution time. 

The milk/paracetamol ratio (m/M), the fraction of disintegrant in the mixtures (d/D) (22 

factorial design), plus the compression pressure (p/P) on the manufacture beams and 

minitablets (23 factorial design) were considered as independent variables. 

The dependent variable(s) for the powders' analysis were flowability (i.e., cohesion 

coefficient and index, flow rate dependency, the coefficient of compaction and the caking 

tendency), for the beams mechanical properties (i.e., bending strength, elasticity, deformation 

and stiffness) and for the minitablets uniformity of weight, thickness, tensile strength and 

release of paracetamol. 

Results were analyzed by ANOVA to identify the significant (p<0.05) variables and 

interactions, and determine their impact on the properties of powders, beams or minitablets. 

The statistical analysis (IBM SPSS Statistics, IBM Corporation, Endicott, NY, USA) proceeded by 

application of multiple linear regressions to identify the relationships between each response 

and the variables studied, and their respective interactions (Zhan et al., 2013, Juslin et al., 

1995). The inclusion, or exclusion, of variables in the equations was based on the significance 

(p<0.05) of each variable, examination of the residuals (expressed as the root mean square 

error, RMSE), adjusted coefficient of correlation (R2
adj), mean square error (MSE) and 

significance based on the F-test (Pinto et al., 1997). Linear relationships between the 

independent and dependent variables were established according to the following general 

equation (Pinto et al., 1997). 

        
      

 

Where,    is any dependent variable,   is the interception,    
  is the transposed factor matrix 

of the influencing independent variables and   is the vector of the regression coefficients. 

 

2.3. Formulation and characterization of powder mixtures, beams and minitablets 

 Raw materials were weighted (Table S3, Annex 1) and blended in a planetary mixer 

(Kenwood Chef, Hampshire, UK) at 60 rpm for 10 min, prior to the addition and mixing of 
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magnesium stearate for another 5 min. These powder mixtures were compacted either into 

beams or minitablets at two distinct pressures (73 and 178 GPa), applied at a punch 

compression displacement of 5 mm/min by a universal testing machine (LR 50K, Lloyds 

Instruments, Leicester, UK) equipped with flat faced punches and dies (3.5 x 2 cm) for beams, 

or 2.5 mm diameter for minitablets. 

 

2.3.1. Evaluation of the flowability of powder mixtures: Raw materials and their mixtures 

were evaluated using a powder rheometer (Powder Flow Analyzer, Stable MicroSystems, 

Godalming, UK) (Landillon et al., 2008). 70 g of each blend was placed in the measuring vessel 

and evaluated for cohesiveness (cohesion index), powder flow rate dependency (based on the 

compaction coefficient, when the flow speed increased from 20 to 50 mm/s due to higher 

blade speed rate) and caking tendency. For definition of terms please refer to Annex 2. 

 

2.3.2. Evaluation of the mechanical properties of beams: The bending strength, deformation, 

stiffness and Young’s modulus of elasticity (R.C. Rowe, 1996) of beams were found by using a 

three-point bend rig test (TA.XT Plus, Stable Microsystems, Godalming, UK) after recording the 

probe’s force and displacement (0.5 mm/min) on the beams. For equations used in 

calculations, see Annex 3. 

 

2.3.3. Evaluation of minitablets: Uniformity of weight: The uniformity of weight (n=20) was 

carried out according to the European Pharmacopoeia (2010) using an analytical balance 

(Mettler-Toledo AG204DR, Columbus, OH, USA); Tensile strength and thickness: All minitablets 

were stored at room temperature (21C) and 65% relative humidity (RH), at least two weeks 

prior evaluation. Tablets (n=6) of each batch were evaluated for thickness (calliper) and 

diametric crushing strength (Texture Analyzer, TA-XT Plus, Stable Micro Systems, Godalming, 

UK), at a constant rate of 0.5 mm/s, allowing for the calculation of their tensile strengths (σ) 

(Fell and Newton, 1970); Dissolution test: The release of paracetamol was assessed by 

dissolution testing (n=12) in conformity with the European Pharmacopoeia (2010) (paddle 

apparatus, at 50 rpm in phosphate buffer solution, pH=5.8, Sotax AT7, Sotax AG, Allschwil, 

Switzerland). Paracetamol was quantified by high pressure liquid chromatography (HPLC, 

Merck-Hitachi LabChrom, L-7100 pump, a L-7200 auto-sampler and a L-7450 diode array 

detector, Tokyo, Japan), using a C-18 reverse-phase column (Purospher®, Merck, Darmstadt, 

Germany) according to a previously described method (Zhang et al., 2006). For equations used 

in calculations, see Annex 3. 
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3. Results  

  To evaluate the potential use of milk as a drug delivery vehicle a stepwise procedure 

was considered to characterize the behaviour of the raw materials, their compaction ability 

and the performance of the minitablets, thus maximizing the significance of the selected 

variables combined in factorial designs of experiments. The variables and levels of variables 

were selected based on previous experiments as described before. 

3.1. Powders. The analysis of the raw materials (Table 1) has shown that the five materials had 

distinctive properties: paracetamol and magnesium stearate were cohesive requiring a large 

work of the blade to move within the bed (41.4 and 37.8 J/g for paracetamol and magnesium 

stearate, respectively) contrasting with mannitol, sodium croscarmellose and milk 

(respectively 8.27, 10.1 and 19.1 J/g). In a static powder bed, paracetamol and magnesium 

stearate did show high cohesions between particles. However, when the powder beds of the 

different materials were assessed in a dynamic condition, the patterns were quite different. 

Paracetamol and magnesium stearate powders started to flow easily (coefficients of 

compaction of -49.1 and -40.8N/mm, respectively), as did mannitol (-4.90 J/g) and sodium 

croscarmellose (-22.2 J/g) whose flow improved in a dynamic test. Overall, this suggests the 

existence of agglomerates which have broken thus improving the flow of powders. Similarly 

sodium croscarmellose and mannitol have showed a middle value coefficient of compaction, 

but milk had its flow decreased by the stirring of the probe showing a unique increase on the 

coefficient of compaction (7.95 N/mm). The ability of materials to cake was assessed by the 

measurement of the height of cakes formed and respective strength. Table 1 shows that 

powdered milk did not form a cake whereas paracetamol and mannitol were able to build up 

small cakes (0.26 and 0.25mm, respectively) with strengths of 2.05 and 1.45 N, in the same 

order. Sodium croscarmellose and magnesium stearate although not forming cakes with 

significant height (0.08 and 0.09 mm, respectively), they produced cakes harder (1.76 and 2.45 

N, respectively) than those made by other materials. 

3.2. Blends of powders. This part of the work considers the combined effect of processing 

(mixing) and formulation according to a 22 factorial design of experiments. It must be 

underlined that powders were mixed prior to the analysis and, therefore, the process of mixing 

may have affected the properties of the raw materials. Table 2 summarizes the effects on the 

blends when each and all independent variables (paracetamol milk ratio and sodium 

croscarmellose/mannitol ratios) were changed (see Tables S1-S3, for supplementary material). 

The increase in the milk fraction resulted in an increase of the cohesion index (5.75 J/g, Table 
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3). This was surprising because paracetamol, which has shown poor flow, had its cohesion 

index decreased in the formulation when replaced by milk. The increase in milk fraction (m/M) 

resulted in an increase of the coefficient of compaction (14.37 N/mm), i.e., formulations with 

larger milk fractions were less prone to flow than those with smaller milk fractions (22.9 versus 

17.2 J/g, Table 2). On contrary, increasing fractions of disintegrant in the powder mixtures 

originated formulations that flew better (-6.90 N/mm). The increase of the fractions of both 

materials (variables md/MD) presented an effect similar to the increase in the milk’s fraction 

but, due to the presence of the disintegrant with an antagonistic effect, the overall interaction 

was smaller than that observed when only the milk fraction increased (only 5.62 N/mm, Table 

3). 

 Regarding the cake formed, either its height or its strength decreased with the 

increase on the milk fraction (m/M, -0.054 mm and -0.043 N, respectively, the latter not 

significant; Table 3). Here, the effect was mostly due to the other components in the mixture, 

particularly to milk. The fraction of disintegrant in the formulations resulted in a significant 

increase on the cohesion index (d/D, 18.2 up to 22.0  J/g) but a significant decrease on the 

coefficient of compaction (-6.90 N/mm). This suggests that static mixtures have difficulty to 

flow (even after a process of mixing) but, once they have been challenged to flow, their flow 

improved significantly. The increase of both variables (md/MD) resulted in formulations with a 

propensity to cake. The effect of the interaction revealed a decrease on the cohesion index 

and an increase on the coefficient of compaction (-1.50 J/g and 5.62 N/mm, respectively), 

suggesting that the flowability decreased when both milk and disintegrant fractions were 

increased and, this significant interaction effect was likely to be related with cake formation 

and cake strength (0.039 mm and 0.190 N, respectively; Table 3). 

  From the observations the following multiple linear regression equations were 

proposed: 

Cohesion index = 20.619 + 2.863 M + 1.903 D                                                                                       eq.1 

(R2
Adj =0.695, MSE= 4.294, RMSE = 2.072, F=32.928) 

Coefficient of compaction (N/mm) = -12.627 + 7.120 M – 3.432 D + 2.791 MD                             eq.2 

(R2
Adj =0.805, MSE= 14.430, RMSE = 3.799, F=39.563) 

Cake Height (mm) = 0.254 - 0.027 M + 0.020 MD                                                                                 eq.3 

(R2
Adj =0.557, MSE= 0.001, RMSE = 0.029, F=13.133) 
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Mean cake strength (N/mm) = 2.383 – 0.095 MD                                                                               eq.4 

(R2
Adj =0.130, MSE= 0.041, RMSE = 0.202, F=5.331) 

The graphical representation of these equations can be found in the supplementary 

material (Figure S1, Annex 4). As anticipated the equations reflect the significance found in the 

ANOVA and the coefficient of compaction has shown to be the best predictor to anticipate the 

effect of formulation changes on flowability, which was not surprising because this property 

itself reflects the flow of particles. 

 

3.3. Compacts (beams). Mechanical properties of compacts (Table 4) are very sensitive to 

changes on the materials and processing conditions, often with antagonistic outcomes. 

Therefore, the lack of significance observed for the results (Table 5) was not surprising. Indeed 

the results are, for each group of variables, already an average of different conditions (4 

groups). It follows that changes on the 3 variables did not have an impact on the properties of 

beams, turning the design robust from the mechanical properties measured perspective. 

In general terms deformation of beams increased with the milk fraction and 

compaction pressure and decreased with disintegrant fraction alone or in interaction with milk 

fraction. The pressure alone promoted the deformation of materials but the md/MD 

interaction decreased deformation. The bending strength increased with the milk fraction and 

pressure but decreased with disintegrant fraction and interaction of pressure. The elasticity 

decreased (i.e., the Young’ modulus of elasticity increased) when all variables and variables 

interactions, increased. Finally, stiffness increased with milk fraction and pressure and 

decreased for all other variables and interactions (Table 5). 

An increase on the disintegrant fraction resulted in a marginal decrease of 

deformation (-0.283x10-2 mm) suggesting that sodium croscarmellose promoted a decrease on 

elasticity and eventually plasticity of the beams produced. Elasticity decreased since the 

Young’s modulus of elasticity has shown an increase of 0.820 GPa. The interaction (md/MD) 

showed a decrease of elasticity (the Young’s modulus increased by 0.809 GPa). These changes 

were likely to be due to the increase of the disintegrant fraction rather than to milk fraction. 

The bending strength, i.e., the resistance of the beams to deformation was also marginally 

significant to the effect of the pressure required to bend the beams (0.955 kPa, Table 5). 

Furthermore, the effect of elasticity was significantly negative (Young’s modulus increased by 

0.968 GPa). This suggests that the compaction pressure turned the materials in the compacts 

less elastic. Finally, the stiffness of the compacts did not change with variables, with the 
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marginal exception of the compaction pressure, for which the stiffness increased by 0.056 

N/mm (Table 5). 

 

3.4. Minitablets. Table 6 summarizes the results of the 23 factorial design. The weight of tablets 

was dependent on the flow of materials, thus the fraction of milk in formulations affected the 

flow of powder mixtures and consequently the weight of the tablets (Table 7) in which the 

m/M effect and the md/MD interaction were the only significant effects. An increase on the 

fraction of milk improved the flowability of the mixtures for tableting and the mean weight of 

minitablets increased by 0.20 mg (Table 7). On the other hand, the combined effect of milk 

fraction and disintegrant fraction (md/MD) decreased tablet mean weight (-0.13 mg, Table 7). 

Nevertheless, all batches of minitablets produced complied with compendial (Pharmacopoeia, 

2010) specifications for uniformity of mass for single dose preparations. The mean weight 

variation for all interaction was not a relevant property in tablet evaluation, with the exception 

of milk fraction increase. 

The variables to significantly impact  the thickness were the milk fraction and the 

pressure applied. A decrease on tablet thickness occurred (m/M) probably due to the plastic 

and elastic properties of milk components in contrast to paracetamol, which is a well-known 

problematic compacting material. Without surprise an increase on the compaction pressure 

(f/F) was also followed by a significant decrease on tablet thickness (-0.07 mm, Table 7). 

Interesting to notice the antagonist effect between the milk fraction and pressure (md/MD) for 

which an increase in tablet thickness was observed (0.03 mm, Table 7). Possibly the increase in 

pressure emphasized the elastic recovery of the materials with tablet relaxation, but further 

characterization should be carried out. The tensile strength of minitablets has shown a 

significant dependency on the fraction of milk (m/M, 0.668N/mm2, Table 7), suggesting that 

milk components acted as binding agents in the tablet. With small significance, the fraction of 

disintegrant in the formulation promoted a decrease on the tensile strength (d/D, -0.090 

N/mm2, Table 7) suggesting that sodium croscarmellose was not as good binder as mannitol, 

or that it showed higher elasticity than mannitol or other components in the formulations. 

Also with modest significance was the interaction between the milk and the disintegrant 

fractions in which an antagonist effect was observed with a slight increase on the tensile 

strength (0.091N/mm2, Table 7). Interesting is to point out the lack of significance of the 

pressure effect (f/F) alone or in combination with the other variables (mdf/mdF) on the tensile 

strength of minitablets. It would be expected that the higher the pressure, the higher the 

tensile strength but that was not the case and probably the materials, e.g., milk components, 

were able to accommodate higher pressures. 
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 Dissolution tests show (Figure 1) that milk rich tablets disintegrate at a much slower 

rate than those containing higher fractions of paracetamol. Furthermore, a significant 

difference is observed when 1% or 5% of disintegrant was used. When a higher fraction of 

croscarmellose sodium is used a t50 of 5-8 min is observed, whereas smaller fractions of 

disintegrant resulted in t50 of 14-16 min. As anticipated the formulation related variables, milk 

and disintegrant fractions, presented a significant impact on the release of paracetamol (MDT). 

The increase on milk fraction translated into a significant increase on the dissolution time of 

8.40 min (Table 7), likely due to the formation of a matrix within the tablets which prevented 

the release of paracetamol. This matrix was formed due to the presence of milk fat (which 

increased the hydrophobicity of tablets) or the increase in polymeric structure (due to milk 

proteins) in the minitablets. On the contrary, when the fraction of disintegrant increased, the 

mean dissolution time decreased (-5.13 min, Table 7). This was expected as tablet 

disintegrated with exposure of contents, followed by a faster dissolution of paracetamol. 

Noteworthy is the antagonist effect between the milk and disintegrant fractions for which a 

decrease on the dissolution median time (-5.13 min, Table 7) was observed. Minitablets 

containing more paracetamol disintegrated almost instantly resulting in more than 90% drug 

release within the first 2 minutes of test. However, even the batches with the slowest 

dissolution profiles showed 80% drug release after 40 min, complying with the Pharmacopoeial 

monograph for paracetamol tablets (Pharmacopoeia, 2010). Pressure did not show a 

significant effect (p<0.869, Table 7) on the dissolution time probably because materials were 

able to accommodate the effect of increased pressure and, consequently, no changes were 

observed. Results for the dissolution tests for the different formulations are presented in 

Figure 1, reflecting the previous observations: an increase in milk fraction largely decreased 

drug release and an increase in the disintegrant fraction (from 1 up to 5%) decreased drug 

release. Nevertheless, even tablets with the slowest dissolution profiles showed 80% drug 

release after 40 min complying with the European Pharmacopoeia (2010). 

  From the observations the following multiple linear regression equations were 

proposed for the significant independent variables: 

Weight (mg) = 11.888 + 0.111 M - 0.064 MD                                                                                       eq.5 

(R2
Adj =0.039, MSE= 0.273, RMSE = 0.523, F=8.222) 

Thickness (mm) = 2.029 – 0.056 M – 0.034 F + 0.014 MF                                                                  eq.6 

(R2
Adj = 0.498, MSE= 0.004, RMSE = 0.063, F=36.325) 

Tensile Strength (N/mm2) = 0.599 + 0,334 M                                                                                       eq.7 

(R2
Adj = 0.646, MSE= 0.055, RMSE = 0.233, F=196.486) 
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t50 (min)= 6.139 + 4.199 M – 2.572 D – 2.566 MD                                                                                eq.8 

(R2
Adj = 0.952, MSE = 1.252, RMSE = 1.120, F= 241.756) 

 

 These equations reflect the quality of each property on the evaluation of the 

minitablets. Weight uniformity and thickness of tablets were poor descriptors of the tablets 

produced, whereas the tensile strength and particularly the mean dissolution time of 

paracetamol were better descriptors of the independent variables, reflecting more adequately 

the effects of the latter on the minitablets. 

 

 

 

4. Discussion 

  The design of tablets requires not only the compaction of materials but also its 

adequate characterization. As such, an excipient intended for direct compression when added 

to the formulation should produce tablets with enough tensile strength to withstand handling, 

a low friability, a low weight variation, a short disintegration time and a high drug dissolution 

rate (Taylor and Aulton, 2013). 

  Preliminary experiments (results not shown) have identified the relevant variables to 

be considered in the factorial designs. The latter have allowed to define a design space for the 

characterization of raw materials and production of minitablets for paediatric applications. The 

study reflects the complexity of the materials used, in particular powdered milk, providing 

unexpected results. 

  The flowability of raw materials was deemed important for further processing, namely 

mixing and filling of tablet dies. It was interesting to realize the different behaviour of raw 

materials in repose and after being challenged to move. Paracetamol and magnesium stearate 

were highly cohesive while at rest by comparison to powdered milk, mannitol and sodium 

croscarmellose. However, when the powder beds were challenged on measuring the 

coefficient of compaction, paracetamol and magnesium stearate presented high coefficients, 

suggesting that the movement of particles had a positive effect on their cohesion. In contrast, 

mannitol and sodium croscarmellose have shown a slight increase on their flowability. From a 

complementary perspective the ability of mannitol to form cakes was also different. 

Paracetamol, sodium croscarmellose and mannitol formed small cakes (in experimental 

conditions) unlike powdered milk. However, the cakes of sodium croscarmellose and milk were 

strong and difficult to break. While paracetamol and mannitol particles favour interlocking 

bonds due to differences on sizes and shape, milk particles are complex in nature showing 
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different sensitivity to changes on processing conditions. It can be anticipated, for instance, 

that milk fat and protein played a role in adhesion of particles, while lactose might have 

diluent and glidant effects on the all powdered milk mixtures. Upon mixing, changes on the 

materials, with effects not immediately related to the observations made on pure raw 

material, certainly occurred. In fact, results have shown that the properties of mixed raw 

materials were not the sum of the properties of individual powders. For instance, and in 

contrast to the results on cohesion, an increase on the fraction of powdered milk in the blends 

resulted in a lower caking tendency and a higher cohesion index, even when the paracetamol 

fraction (known to be difficult to flow) was decreased. It must be pointed out that either 

temperature or the relative humidity (experimental conditions were 21˚C and 65% RH) may 

not have been the optimal for the materials. In fact, cohesion and caking tendency of 

amorphous powders is highly dependent on environmental conditions, thus cohesiveness and 

cake formation must consider these conditions (Fitzpatrick et al., 2007). This is particularly 

relevant for powdered milk due to its complex nature. Fat content (from the milk) in the 

formulations have been described to promote cohesion between particles (Rennie et al., 

1999), although powdered milk has shown a free flowing behaviour once processed (Özkan et 

al., 2002) with a positive effect on decreasing the caking tendency in paracetamol powder 

mixtures. 

  An increase on the milk fraction in formulations (m/M) largely increased the coefficient 

of compaction reflecting the poor flowability of static milk rich formulations. As the speed of 

mixing increased, milk rich formulations flowed better. Following an increase on sodium 

croscarmellose in the formulations (d/D) the cohesion index increased but the coefficient of 

compaction decreased significantly. Taking into consideration that when sodium 

croscarmellose fraction augmented, the fraction of mannitol diminished, the overall result was 

in accordance with the known behaviour of both materials. Mannitol is a slightly more free 

flowing material than sodium croscarmellose (Rowe et al., 2012). On the other hand, sodium 

croscarmellose particles do not flow so well due to their twisted and varying length fibrous 

morphology, although the production of this raw material minimizes the effect of these 

characteristics on flow (Larry et al., 2006). Overall an increase on sodium croscarmellose 

content in the formulations resulted in a more difficult flow but, once the blend was 

challenged, the flow improved with a slight increase on cake formation, though weaker in 

strength. Data shows that the flowability of sodium croscarmellose is dependent on flow rate, 

i.e., when the flow rate increases the disintegrant’s coefficient of compaction diminishes, by 

opposition to mannitol which has been shown more flow rate independent. 
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  The model equations (1 to 4) have demonstrated that, with the exception of the 

strength of the cake, direct relationships between variables are observed: increase for the 

cohesion index and cake height and decrease for the coefficient of compaction. 

  Far more complex was the interaction between the milk and sodium croscarmellose 

fractions. Although the cohesion indexes increased for either milk or sodium croscarmellose 

fractions, the simultaneous increase of both (md/MD) resulted in a decrease of the cohesion 

index, i.e., the mixtures flowed better, but the flow was not as good as for sodium 

croscarmellose alone. This is likely due to the tendency of the mixture to cake with a high 

strength. 

  As anticipated, the mechanical properties of compacts in the form of beams did not 

provide a clear cut evidence of materials properties and, in fact, the complex nature of 

materials, particularly milk, prevented a more informative outcome. Deformation of beams 

decreased with sodium croscarmellose fraction suggesting that this material provides plasticity 

to the compacts, which was not reverted by the increase on milk, showing an antagonistic 

effect possibly due to the surrounding of sodium croscarmellose plastic fibbers by milk 

particles. A similar pattern was presented by the bending strength. Interesting to point out 

that elasticity decreased when all variables increased, suggesting interactions between the 

different materials. 

  The pattern of results for stiffness followed those obtained for deformation and 

bending strength which increased particularly when the milk fraction and the compaction 

pressure increased. The process of manufacturing powdered milk based minitablets depends 

on the ability of materials to flow, thus filling the dies properly, with implication on tablets 

weight and thickness, and on the mechanical properties of materials affecting their 

compactibility and compressibility into tablets, and tablet’s performance. It was without 

surprise that major changes on tablets weight were observed when the fraction of milk 

increased. In fact, formulations with higher milk fractions did have their flow increased and 

consequently higher die filling ability resulted in increased weight, in agreement with the 

results observed for measurements in dynamic conditions. On the other hand, the 

simultaneous increase on both sodium croscarmellose and milk fractions produced a worse 

flow than that observed for milk fraction increase alone. This is in good agreement with the 

study on powder flowability. 

  It was expected that an increase on the thickness of tablets would have been observed 

when the milk fraction increased. However, tablets showed a significant decrease on this 

property suggesting that milk was compressed more easily than paracetamol. This makes 

sense if one considers that changes observed were not due to the mechanical properties of 
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milk (e.g. plasticity, elasticity, brittleness), as discussed for the production of beams, but 

mostly due to flow inside the die, under pressure, namely by a better packing of milk 

components as compared to paracetamol. 

  A significant reduction on tablet’s thickness was also expected when higher pressures 

were applied, but that was not evident. It was discussed previously that, in combination, 

paracetamol and milk showed modest elasticity, which is probably the reason why only a small 

change on thickness was observed. It should be stressed, however, that both tablet weight 

variation and thickness were not good predictors of changes on tablets, as reflected by the low 

correlation in the equations (5 to 8) presented for these properties. 

  The process of compaction subjects materials to stresses and changes on their physical 

properties leading to deformation and breakage of particles. The properties of the final 

product are, therefore, dependent on the physical properties of the materials (R.C. Rowe, 

1996). Accordingly, physical properties of powders influence the formation and final properties 

of tablets, particularly the balance between plasticity and elasticity (Malamataris et al., 1996) 

which will promote, or not, a large number of strong bonds between particles. 

 In the present work when the powdered milk fraction was increased in the formulation 

the tensile strength of tablets also increased. This suggests that milk components provided 

good binding properties to tablets, as reflected by a significant increase on the tensile 

strength, by opposition to paracetamol, which is known to have a poor compressibility 

behaviour, producing weak tablets with tendency to cap (Krycer et al., 1982) due to high 

elasticity and week interparticle bonding ability (Malamataris et al., 1996). The ability of milk 

to provide compacts has been described in dairy products in which milk components were 

used to promote cohesion within complex matrices (Özkan et al., 2002). Results have shown 

that the increase on fat contents in powdered milk composition promoted the cohesion, thus 

facilitating the production of milk-based tablets (Rennie et al., 1999). Additionally, the melting 

range of milk’s fat components (approximate 40˚C), suggests that softening, if not melting, of 

milk’s fat occurred in the production of tablets. Consequently this component acts as a binding 

agent promoting the formation of tablets (Foster et al., 2005). Once the pressure was 

removed, solidification, if not crystallization, of fat components promoted the formation of 

bonds between particles. Also of significance is that the moisture present in the materials (e.g. 

lactose, milk proteins) emphasized the action of fat components by localized particle 

dissolution of recrystallised materials once the pressure was removed (Rennie et al., 1999, 

Fitzpatrick et al., 2007). It is anticipated that for skimmed powdered milk the latter effect is 

more important than for high fat content milk in which the previous effect should be more 

relevant. The increase on sodium croscarmellose did have a marginal deleterious effect on the 
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tensile strength. Authors concluded (Ferrero et al., 1997) that, in spite of the significant 

influence of sodium croscarmellose on disintegration time, it does not play an important role 

in the binding of materials. Our work confirms this observation restricting the effect of sodium 

croscarmellose to the increase in the dissolution of paracetamol due to a smaller 

disintegration time of tablets. The interaction between milk and sodium croscarmellose 

fractions tends to be antagonic, but the effect of milk in the tablets overlapped that of the 

disintegrant, under these experimental conditions. Super disintegrants such as sodium 

croscarmellose are excipients used to promote rapid breakdown of oral solid dosage forms and 

because they can be present at lower concentrations in the overall formulation any possible 

adverse effect on flowability or compactibility is minimized (Larry et al., 2006). Therefore, it 

was not surprising that this work revealed similar results: on one hand the increase of 

croscarmellose in the formulations showed to be crucial in promoting the rapid disaggregation 

of the mini-tablets and on the other seems to adversely affect powder milk flowability 

(Fitzpatrick et al., 2007), producing lighter tablets.  

 As anticipated, the dissolution of paracetamol was a better predictor of formulation 

and processing conditions. In fact, an increase in the milk fraction led to a significant decrease 

on paracetamol release, likely due to the matrix effect of milk components within the structure 

of the tablet. This matrix was made of fat and protein components of the milk which have 

surrounded the particles of paracetamol preventing dissolution in the media and release from 

the tablets. On the contrary and as anticipated, an increase on the disintegrant fraction 

resulted in a decrease of the mean dissolution time of paracetamol due to a faster 

disintegration of tablets. It is worth to point out that in the interaction between milk and 

sodium croscarmellose fractions the effect of the latter was stronger  as reflected by a 

decrease on the mean dissolution time. The magnitude of such decrease was in the same 

order as that observed for the single main effect (d/D). This suggests that the matrix effect 

discussed previously for milk, was easily disrupted in the presence of high contents of 

disintegrant. Overall, these observations are in good agreement with the findings that sodium 

croscarmellose action is concentration dependent (Iwao et al., 2013) and its effect on 

disintegration time is dependent on the plastic deformation capacity of the powder mixture 

(Ferrero et al., 1997). Regarding dissolution, the addition of higher fractions of disintegrants 

seems to be particularly important when powdered milk was the main component in the 

formulation. In fact, a marked decrease of nearly 50% in the mean dissolution time, was 

detected. This may be explained by the concentration-dependent croscarmellose action (Iwao 

et al., 2013) and by its effect in disintegration time, with the former being dependent on the 

plastic deformation capacity of the powder mixture (Ferrero et al., 1997). 
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 It was without surprise that tensile strength and mean dissolution time were the best 

predictors to evaluate changes on tablets properties (Ferrero et al., 1997, Riippi et al., 1998), 

as confirmed by the significance and robustness of the multiple linear regression equations. 

These equations have shown a minimal weight variation for a center point between 

disintegrant and milk fractions, a decrease on tablet thickness due to compression force and 

milk fraction, whereas dissolution time decreased with the disintegrant fraction but increased 

with milk fraction. 

 It is known that compression forces influence tablets properties as thickness, porosity, 

crushing strength, friability and disintegration time (Riippi et al., 1998, Pabari and Ramtoola, 

2012). However, in this study it was only possible to detect a significant influence of the 

compression force on the tablets’ thickness. At high pressures, crushing strength shows a 

tendency to level off, contrary to its increase by a power function with increasing pressure, 

when lower pressures are applied (Sonnergaard, 2006). It is also worth to mention that at high 

pressure particle deformation becomes paramount in disintegration due to hindrance of fluid 

penetration by further reduction of porosity (Larry et al., 2006). The former may explain why 

only non-significant effects for compression force increase and its respective interactions were 

detected in tensile strength and dissolution profile. Uniformity of weight and thickness models 

showed a weaker correlation with the studied variables. One possible reason for this is the fact 

that both responses are highly dependent on appropriate powder rheology and environmental 

conditions, such as humidity and temperature, which may have influenced powder 

characteristics (Sinka et al., 2009), preventing better correlations. Stronger models were found 

for the mean dissolution time and the tensile strength responses. Dissolution rate is a highly 

sensitive test that can be influenced by numerous factors related to the physicochemical 

properties of the drug substance, product formulation, manufacturing processes and 

dissolution testing conditions (Lee et al., 2008). The mechanical strength of a tablet depends 

on both formulation and processing parameters (van Veen et al., 2000). So, on one hand, it 

was not surprising that formulation variables correlated so strongly with the mean dissolution 

time and tensile strength and, on the other, it was interesting to note, as discussed before, 

that no quantifiable effect was found for the manufacture process.  

 

 

5. Conclusions 

 The study has proved the ability of powdered milk to provide a suitable matrix system 

for drug delivery in minitablets, which can be used in paediatrics or other age groups. In fact, 

milk complies with the characteristics of an excipient intended for direct compression when 
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added to the formulation, producing tablets with enough tensile strength to withstand 

handling, with low friability and weight variation, a short disintegration time and a high drug 

dissolution rate. 

 The assessment of the flow of each excipient and respective blends revealed the 

complexity of interactions between materials. Increasing quantities of milk in the powder 

mixtures presented contradictory effects. In one hand the cohesion index increased and, on 

the other, the caking tendencies decreased. Differences were observed when measurements 

were done on static powder beds versus dynamic beds revealing the need for a balance to 

obtain a powder mixture with the most desirable flowability characteristics. Increasing 

disintegrant percentages seem to reduce powder mixtures flowability, but because they are 

present in low concentrations in the overall formulation any possible adverse effect on 

flowability is minimized. Globally the regression equations explained adequately the responses 

with high significance, indicating that formulation variables display a more distinguishable 

influence in the chosen responses than the manufacture conditions, in particular 

milk/paracetamol ratio which proved to be a critical variable affecting the proprieties of the 

final product. 

Considering the results, powdered milk is a promising excipient for direct compression 

of poor compressible drugs. The minitablets obtained were well characterized by the tensile 

strength and paracetamol mean dissolution time, but the uniformities of weight and thickness 

were poor predictors of formulation and processing variables effects on the final product. Due 

to the complex nature of the materials, the mechanical behaviour of powder blends was 

difficult to understand, requiring further investigation.  
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Figure 1: Dissolution profiles of the different batches of minitablets 

(a) minitablets produced using 73 MPa: mdf (), Mdf (), mDf () and MDf () and 

(b) minitablets produced using 178 MPa:  mdF (), MdF (), mDF () and MDF () 
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Table 1: Properties of powdered raw materials a) 

 

Substance Cohesion indexb) 

(J/g) 

Coefficient of compression 

(N/mm) 

Cake height 

(mm) 

Cake strength 

(N) 

Paracetamol 41.4 ± 3.60 - 49.1 ± 8.30 0.26 ± 0.01 2.05 ± 0.04 

Milk 19.1 ± 1.10 7.95 ± 1.40 0.00 ± 0.00 0.00 ± 0.00 

Mannitol 8.27 ± 0.80 - 4.90 ± 2.19 0.25 ± 0.01 1.45 ± 0.30 

Sodium croscarmellose 10.1 ± 1.85 - 22.17 ± 6.97 0.08 ± 0.01 1.76 ± 0.16 

Magnesium stearate 37.8 ± 2.56 - 40.81 ± 0.32 0.09 ± 0.00 2.45 ± 0.13 

 

a) n=3 

b) Cohesiveness (cohesion index): Extremely cohesive (> 19); Very cohesive (19-16); Easy flowing (14-11); Free flowing (<11) 
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Table 2: Properties of powdered blends of raw materials according to a 22 factorial design a) 

 

Factor Cohesion indexb) 

(J/g) 

Coefficient of compaction  

(N/mm) 

Cake height  

(mm) 

Cake strength 

(N/mm) 

md 14.56 ± 1.23 -13.2 ± 1.62 0.28 ± 0.03 2.44 ± 0.07 

Md 21.80 ± 2.05 -4.44 ± 4.30 0.19 ± 0.03 2.20 ± 0.17 

mD 20.42 ± 2.10 -23.6 ± 7.83 0.28 ± 0.02 2.24 ± 0.13  

MD 24.15± 1.92 -4.64 ± 2.07 0.25 ± 0.03 2.33 ± 0.09 

 

a) n=3 

b) Cohesiveness (cohesion index): Extremely cohesive (> 19); Very cohesive (19-16); Easy flowing (14-11); Free flowing (<11) 
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Table 3: Evaluation of the results for different properties of powdered blends of raw materials according to the 22 factorial design by ANOVA a) 

 

Factor 

increased 

Cohesion Index 

(J/g) 

Coefficient of compaction 

(N/mm) 

Cake Height 

(mm) 

Cake Strength 

(N) 

Mean Effect MSq 

b) 

Fc) 

/  

Sig. 

Mean Effect MSq 

b) 

F c)  

/  

Sig. 

Mean Effect MSq 

b) 

F c)  

/  

Sig. 

Mean Effect MSq 

b) 

F c)  

/  

Sig. 

m/M 17.2 

/ 

22.9 

5.75 114 44.3 

/ 

.000 

-19.4 

/ 

-5.08 

14.37 6E7 41.6 

/ 

.000 

0.277 

/ 

0.223 

-.054 

 

.010 12.1 

/ 

.000 

2.32 

/ 

2.28 

-.043 .433 41.5 

/ 

.296 

d/D 18.2 

/ 

22.0 

3.79 57.9 22.5 

/ 

.000 

-8.81 

/ 

-15.7 

-6.90 1E7 9.83 

/ 

.000 

0.233 

/ 

0.267 

.034 .004 5.47 

/ 

.011 

2.32 

/ 

2.28 

-.045 .433 41.5 

/ 

.296 

md/MD 20.8 

/ 

19.3 

-1.50 24.9 9.66 

/ 

.001 

-15.0 

/ 

9.46 

5.62 9E5 6.67 

/ 

.002 

0.230 

/ 

0.269 

.039 .006 6.86 

/ 

.004 

2.20 

/ 

2.39 

.190 .535 51.3 

/ 

.000 

 

a) n=3 

b) MSq – Mean Square 

c) F – ‘F’ test for significance (Sig.) 
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Table 4: Properties of beams made of powdered raw materials according to the 23 factorial design a) 

 

Factor Deformation 

(x 10-2 mm) 

Bending strength 

(KPa) 

Young’s modulus 

(GPa) 

Stiffness 

(N/mm) 

mdf 2.54 ± 0.48 6.42 ± 0.89 9.37 ± 0.72 0.40 ± 0.04 

Mdf 2.23 ± 0.61 5.84 ± 0.64 9.64 ± 2.19 0.36 ± 0.04 

mDf 1.90 ± 0.55 5.59 ± 1.27 11.03 ± 0.21 0.37 ± 0.10 

MDf 2.31 ± 0.38 6.38 ± 0.90 10.61 ± 1.69 0.42 ± 0.06 

mdF 2.48 ± 0.38 6.73 ± 1.22 10.12 ± 0.71 0.44 ± 0.05 

MdF 2.47 ± 0.98 8.66 ± 2.94 11.82 ±1.32 0.47 ±0.17 

mDF 1.98 ± 0.38 5.89 ± 1.29 11.71 ± 0.88 0.43 ± 0.09 

MDF 2.40 ± 0.71 6.77 ± 1.75 10.87 ± 0.76 0.42 ± 0.10 

 

a) n=5 

 

  



28 
 

Table 5: Evaluation of the results for different properties of beams made of powdered blends of raw materials by ANOVA a) 

Factor Deformation 

(x10-2 mm) 

Bending strength 

(kPa) 

Young’s modulus 

(GPa) 

Stiffness 

(N/mm) 

Mean Effect MSqb) 

(x10-4) 

Fc) 

/ 

Sig. 

Mean Effect MSq b) F c) 

/ 

Sig. 

Mean Effect MSq b) F c) 

/ 

Sig. 

Mean Effect MSq b) F c) 

/ 

Sig. 

m/M 2.23 

/ 

2.36 

0.128 4.10 1.26 

/ 

.293 

6.16 

/ 

6.91 

0.754 3.76 1.77 

/ 

.182 

10.56 

/ 

10.73 

0.175 .383 .269 

/ 

.766 

0.409 

/ 

0.417 

0.007 .001 .123 

/ 

.884 

d/D 2.43 

/ 

2.15 

-

0.283 

8.16 2.51 

/ 

.092 

6.91 

/ 

6.16 

-0.756 3.85 1.81 

/ 

.175 

10.23 

/ 

11.05 

0.820 4.31 3.02 

/ 

.058 

0.415 

/ 

0.410 

-0.005 .001 .099 

/ 

.906 

md/MD 2.44 

/ 

2.15 

-

0.289 

8.13 2.50 

/ 

.093 

6.58 

/ 

6.49 

-0.084 .378 .178 

/ 

.838 

10.24 

/ 

11.05 

0.809 4.15 2.91 

/ 

0.64 

0.419 

/ 

0.407 

-0.012 .001 .192 

/ 

.826 

f/F 2.25 

/ 

2.34 

0.086 3.57 1.10 

/ 

.342 

6.06 

/ 

7.01 

0.955 5.85 2.75 

/ 

.074 

10.16 

/ 

11.13 

0.968 5.90 4.14 

/ 

.022 

0.385 

/ 

0.441 

0.056 .019 2.53 

/ 

.091 

mf/MF 2.33 

/ 

2.25 

-

0.074 

3.49 1.07 

/ 

.351 

6.86 

/ 

6.21 

-0.647 2.88 1.35 

/ 

.268 

10.77 

/ 

10.52 

0.251 .574 .402 

/ 

.671 

0.414 

/ 

0.412 

-0.003 .001 .085 

/ 

.919 
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df/DF 2.29 

/ 

2.29 

-

0.003 

3.14 .966 

/ 

.388 

6.84 

/ 

6.23 

-0.608 2.59 1.22 

/ 

.305 

10.89 

/ 

10.40 

0.496 1.677 1.18 

/ 

.318 

0.425 

/ 

0.401 

-0.023 .004 .499 

/ 

.610 

mdf/MDF 2.25 

/ 

2.33 

0.744 3.52 1.08 

/ 

.347 

6.23 

/ 

6.84 

0.606 2.60 1.22 

/ 

.304 

10.41 

/ 

10.88 

0.464 1.477 1.36 

/ 

.363 

0.395 

/ 

0.430 

0.035 .008 1.04 

/ 

.363 

 
a) n=5 
b) MSq – Mean Square 
c) F – ‘F’ test for significance (Sig.)  
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Table 6: Properties of minitablets made of powdered raw materials according to the 23 factorial design 

 

Factor Uniformity of weight a) 

(mg) 

Thickness b) 

(mm) 

Tensile strength c) 

(N/mm2) 

Mean Dissolution Time d) 

(t50 / min) 

mdf 11.68 ± 0.65 2.14 ± 0.07 0.35 ± 0.18 2.1 ± 0.08 

Mdf 12.10 ± 0.39 1.99 ± 0.06 0.89 ± 0.37 15.48 ± 2.11 

mDf 11.81 ± 0.54 2.14 ± 0.07 0.13 ± 0.10 1.94 ± 0.24 

MDf 11.95 ± 0.60 2.01 ± 0.06 0.91 ± 0.31 5.12 ± 1.22 

mdF 11.76 ± 0.57 2.04 ± 0.05 0.37 ± 0.21 1.88 ± 0.26 

MdF 11.99 ± 0.48  1.96 ± 0.05 0.97 ± 0.26 15.58 ± 0.71  

mDF 11.90 ± 0.64 2.05 ± 0.07 0.22 ± 0.18 2.05 ± 0.06 

MDF 11.89 ± 0.45 1.96 ± 0.06 0.96 ± 0.24  5.40 ± 0.94  

 

a) n=20 

b) n=6 

c) n=6 

d) n=3 
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Table 7: Evaluation of the results for different properties of minitablets made of powdered blends of raw materials by ANOVA 

Factor Mean weight  

(mg) 

Thickness  

(mm) 

Mean tensile strength  

(N/mm2) 

Mean dissolution time  

(min) 

Mean Effect MSq F  

/  

Sig. 

Mean Effect MSq F  

/  

Sig. 

Mean Effect MSq F  

/  

Sig. 

Mean Effect MSq F  

/  

Sig. 

m/M 11.8 

/ 

12.0 

0.20 3.18 10.61 

/ 

.001 

2.09 

/ 

1.98 

-0.11 .299 77.7 

/ 

.000 

0.265 

/ 

0.933 

0.668 10.71 182 

/ 

.000 

1.99 

/ 

10.4 

8.40 610 684 

/ 

.000 

d/D 11.9 

/ 

11.9 

0.01 .004 .013 

/ 

.911 

2.03 

/ 

2.04 

0.01 .001 .277 

/ 

.600 

0.644 

/ 

0.554 

-0.090 .192 3.27 

/ 

.074 

8.76 

/ 

3.63 

-5.13 227 255 

/ 

.000 

md/MD 11.9 

/ 

11.8 

-0.13 1.31 4.381 

/ 

.037 

2.04 

/ 

2.04 

0.00 .000 .004 

/ 

.948 

0.553 

/ 

0.645 

0.091 .202 3.44 

/ 

.067 

8.76 

/ 

3.63 

-5.13 228 256 

/ 

.000 

f/F 11.9 

/ 

11.9 

0.00 .000 .000 

/ 

.992 

2.07 

/ 

1.96 

-0.07 .112 29.1 

/ 

.000 

0.568 

/ 

0.630 

0.063 .094 1.59 

/ 

.210 

6.16 

/ 

6.23 

0.068 .039 .044 

/ 

.869 

mf/MF 11.9 

/ 

11.9 

-0.08 .570 1.900 

/ 

.169 

2.02 

/ 

2.05 

0.03 .018 4.71 

/ 

.033 

0.596 

/ 

0.602 

0.005 .001 .011 

/ 

.917 

6.16 

/ 

6.25 

0.123 .130 .146 

/ 

.706 
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df/DF 11.9 

/ 

11.9 

0.01 .014 0.046 

/ 

.830 

2.04 

/ 

1.96 

-0.00 .000 .004 

/ 

.948 

0.592 

/ 

0.606 

0.014 .004 .076 

/ 

.784 

6.13 

/ 

6.26 

0.128 .141 .158 

/ 

.694 

mdf/MDF 11.9 

/ 

11.9 

0.01 .005 .018 

/ 

.894 

2.04 

/ 

2.03 

-0.01 .002 .433 

/ 

.512 

0.611 

/ 

0.587 

-0.024 .013 .228 

/ 

.634 

6.21 

/ 

6.17 

-0.038 .012 .014 

/ 

.908 

MSq – Mean Square 

F – ‘F’ test for significance (Sig.) 
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Annex 1: Tables related to the design of the factorial design experiments 

 

 

Table S1: Independent variables and their levels in the full factorial designs a 

 

  

Factor Variables 

Levels 

  Low 

(-) 

High 

(+) 

B
ea

m
s 

an
d

 M
in

it
ab

le
ts

 

P
o

w
d

er
 m

ix
tu

re
s 

Milk / Paracetamol ratio m/M 20/80 80/20 

Disintegrant (%) d/D 1 5 

 Compression pressure (GPa) f/F 73 178 

 
a Shadowed area represents the formulations considered in the studies for the blends of powders. 
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Table S2: Complete matrices for the full factorial designs a 

(22 for mixtures of powders and 23 for beams and minitablets) 

 

  
Factorsb 

Variables’ levels  Variables’ interactions c 

M D F MD MF DF MDF 

B
e

am
s 

an
d

 M
in

it
ab

le
ts

 

P
o

w
d

er
 m

ix
tu

re
s 

(1) - - -  + + + - 

Mdf + - -  - - + + 

mDf - + -  - + - + 

MDf + + -  + - - - 

 mdF - - +  + - - + 

 MdF + - +  - + - - 

 mDF - + +  - - + - 

 MDF + + +  + + + + 

 

a Shadowed area represents the formulations considered in the studies for the blends of powders. 
 
b m/M, d/D and f/F represent milk content, sodium croscarmellose content and compression 
pressure at low and high levels, respectively.  

 

c To obtain signs for interaction terms in combination, multiply signs of factors. 
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Table S3: Formulations and compaction pressures according to the design matrices a 

 

  

Factors 

Formulation (%) Compression 

Pressure 

(MPa) 
Paracetamol Milk 

Sodium 

croscarmellose 
Mannitol 

Magnesium 

stearate 

B
e

am
s 

an
d

 M
in

it
ab

le
ts

 

P
o

w
d

er
 m

ix
tu

re
s 

(1) 64 16 1 18 1 73 

Mdf 16 64 1 18 1 73 

mDf 64 16 5 14 1 73 

MDf 16 64 5 14 1 73 

 mdF 64 16 1 18 1 178 

MdF 16 64 1 18 1 178 

mDF 64 16 5 14 1 178 

MDF 16 64 5 14 1 178 

 

a Shadowed area represents the formulations considered in the studies for the blends of powders. 
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Annex 2: Definitions of powder’s properties 

 

The cohesion coefficient is the work required to move the blade through the powder and 

was calculated from the area under the curve of the force vs displacement graph. 

The cohesion index is the ratio between the cohesion coefficient and sample weight.  

Powder flow rate dependency was found from the work needed to move the blade 

through the powder bed at increasing speeds and reflects the changes on blend’s flowability due 

to increase on flow. 

The coefficient of compaction was determined from the force required to move the 

equipment’s blade through the powder at different increasing speeds. If a higher coefficient of 

compaction is obtained when the blade’s speed increases, it indicates an increase in flow, and thus 

the flowability worsens for higher speeds. In contrast, if the coefficient of compaction decreases 

when higher speeds are applied to the blend, the powder flows better at increasing flow speeds. 

Caking is the tendency of a powder to form large agglomerates. The height of a cake 

formed after a set of compaction cycles (e.g. 5 compaction cycles) can be recorded to give 

information about the settlement and compaction of the column of powder. The strength of the 

cake formed depends on a number of factors such as packing efficiency, interparticle interactions 

and moisture content. The ratio between the cake’s height at the end of the test and the initial 

height is the cake height ratio. A powder with high tendency to cake shows a high cake height 

ratio. Once the cake is formed (last cycle) the blade cuts the cake and the force required is 

recorded as the mean cake strength. 
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Annex 3: Equations considered in the study 

 

 

Deformation and Bending strength 

   
       

       

with Fmax the maximum force applied at rupture, l the distance between loading points, and b and 

h the sample width and height. 

 

Young’s modulus of elasticity 

    
    

       
  

with F the applied load, x the displacement of sample at its midpoint and b, h, l, as before. 

 

Stiffness: 

K = F /  

With  was the displacement of the specimen due to the applied force F 

 

Tensile strength: 

  
  

   
  

 

where, P is the force applied (N), D the tablet diameter (mm) and t the tablet thickness (mm). 

 

Mean Dissolution Time (MDT): 

     
          
  

 

       
  

 

  

Where, t is time and dW the fraction of drug released in a certain interval of time. 
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Annex 4: Figures produced from the multiple linear regression analysis 

 

 

Figure S1: Graphical representation of the multiple linear regression equations (powder blends). 

(a) cohesion index, (b) coefficient of compaction, (c) cake height and (d) cake strength. 
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Figure S2: Graphical representation of the multiple linear regression equations (minitablets). 

(a) weight uniformity, (b) thickness, (c) tensile strength and (d) mean dissolution time. 


