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Abstract. Given the considerable ongoing research interest in collaborative mul-

tidisciplinary modelling and co-simulation, it is worth considering the features

of model-based techniques and tools that deliver benefits to cyber-physical sys-

tems developers. The European project “Integrated Tool Chain for Model-based

Design of Cyber-Physical Systems” (INTO-CPS) has developed a well-founded

tool chain for CPS design, based on the Functional Mock-up Interface standard,

and supported by methodological guidance. The focus of the project has been on

the delivery of a sound foundation, an open chain of compatible and usable tools,

and a set of accessible guidelines that help users adapt the technology to their

development needs.

Keywords: Co-Simulation, CPS Engineering, Tool chain, methodology, founda-

tions

1 Introduction

In Cyber-Physical Systems (CPSs), computing and physical processes interact

closely. Their effective design therefore requires methods and tools that bring

together the products of diverse engineering disciplines. Without such tools it

would be difficult to gain confidence in the system-level consequences of design

decisions made in any one domain, and it would be challenging to manage trade-

offs between them. How, then, can we support such multidisciplinary design

with semantically well-founded approaches in a cost-effective manner?

In the INTO-CPS project we start from the view that disciplines such as

software, mechatronic and control engineering have evolved notations and the-

ories that are tailored to their needs, and that it is undesirable to suppress this

diversity by enforcing uniform general-purpose models [16,31] Our goal is to

achieve a practical integration of diverse formalisms at the semantic level, and

to realise the benefits in integrated tool chains. In order to demonstrate that the

technology works industrially it has been applied in very different application

domains (e.g.,[17,30,19,12,34,38]).



2 Larsen, Fitzgerald, Woodcock, Gamble, Payne and Pierce

To the CPS engineer, the system of interest includes both computational

and physical elements, so the foundations, methods and tools of CPS engineer-

ing should incorporate both the Discrete-Event (DE) models of computational

processes, and the continuous-value and Continuous-Time (CT) formalisms of

physical dynamics engineering. Our approach is to support the development of

collaborative models (co-models) containing DE and CT elements expressed

in diverse notations, and to support their analysis by means of co-simulation

based on a reconciled operational semantics of the individual notations’ simu-

lators [18]. This enables exploration of the design space and allows relatively

straightforward adoption in businesses already exposed to some of these tools

and techniques. The idea is to enable co-simulation of extensible groups of se-

mantically diverse models, and at the same time the semantic foundations are

extended using Unifying Theories of Programming (UTP) to permit analysis

using advanced meta-level tools that are primarily targeted towards academics

and thus not considered as a part of the industrial INTO-CPS tool chain.

Given the considerable interest in model-based CPS engineering, we be-

lieve that it is useful to consider what the Unique Selling Points (USPs) are for

integrated tool chains. In this paper, we first provide an overview of what we

consider the main USPs of the INTO-CPS technology from the perspective of

industry use (Section 2). We then describe the open INTO-CPS tool chain (Sec-

tion 3). In order to realise the benefits of the tools it is important to develop

guidance for their use in collaborative modelling, and this is described in Sec-

tion 4. We discuss our approach to providing integrated semantic foundations

needed to underpin such co-modelling (Section 5) before looking forward (Sec-

tion 6).

2 The Unique Selling Points

In our work on INTO-CPS, we have sought to deliver the following distinc-

tive features, relevant to the industrial use of co-modelling and co-simulation

technology. We see the main USPs as:

1. Faster route to market for engineering CPSs: In a highly active CPS mar-

ketplace, getting the right solution first time is essential. We believe that

the interoperability of tools in the INTO-CPS tool suite enables a more ag-

ile close collaboration between stakeholders with diverse disciplinary back-

grounds.

2. Avoiding vendor lock-in by open tool chain: Some commercial solutions

provide at least a part of the functionality provided by the INTO-CPS tool

chain with a high level of interoperability. However, in particular for Small



Features of Integrated Model-based Co-modelling and Co-simulation Technology 3

and Medium-sized Enterprises (SMEs), there is a risk of being restricted in

the choice of specialist tools.

3. Exploring large design spaces efficiently: CPS design involves making

design decisions in both the cyber and physical domains. Trade-off analy-

sis can be challenging. Co-simulation enables the systematic exploration of

large design spaces in the search for optimal solutions.

4. Limiting expensive physical tests: CPS development often relies on the

expensive production and evaluation of a series of physical prototypes. Co-

simulation enables users to focus on testing different models of CPS el-

ements in a virtual setting, gaining early assessment of CPS-level conse-

quences of design decisions.

5. Enabling traceability for all project artefacts: In both documenting the

coverage and quality of analysis and in managing the consequences of de-

sign change, there is a need to support the maintenance of traceable links

between the many diverse artifacts produced during CPS development. We

have sought to provide a basis for delivering levels of design traceability.

Tools as described in Section 3 will not, on their own, deliver these fea-

tures. Methods guidance is needed to ensure that users get the greatest benefit

from integrating co-modelling in their own development contexts. Firm seman-

tic foundations are required in order to build confidence in the analyses that

they deliver. To these ends, we have worked on methodological and semantic

integration, discussed in Sections 4 and Section 5, respectively.

3 The INTO-CPS Tool Chain

We have developed an open integrated tool chain to allow n-ary co-simulation

of a wider range of model types. In order to facilitate this, we have developed an

extensible semantic foundation using UTP. Figure 1 gives a graphic overview of

the tool chain, which has been developed in the INTO-CPS project.

In the INTO-CPS tool chain, requirements and CPS architectures may be

expressed using SysML. We have defined a special CPS SysML profile that al-

lows cyber and physical system elements to be identified such that each of these

elements corresponds to a constituent model [3,1]. From each element, we gen-

erate an interface following the Functional Mockup Interface (FMI) standard4.

In our approach the tools in which the constituent models are developed can then

import these interfaces and export conformant executable Functional Mockup

Units (FMUs) following version 2.0 of the FMI standard for co-simulation.

4 FMI essentially defines a standardised interface to be used in computer simulators to develop

complex CPSs.
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Heterogeneous system models can be built around the FMI interfaces, per-

mitting these heterogeneous multi-models to be co-simulated, and to allow static

analysis, including model checking (of appropriate abstractions). A Co-simula-

tion Orchestration Engine (COE) manages the co-simulation of multi-models

and is built by combining existing co-simulation solutions. The COE has also

been used with FMUs produced with other tools including Modelon5, Dymola6,

4diac7 and SimulationX8. In addition a special 3D FMU capability has been

enabled using the Unity game engine9. This also enables incorporation of 3D

glasses such as Oculus Rift enabling a special experience with new CPSs in a

virtual setting, before the CPSs are implemented10. The COE permits hardware-

in-the-loop and software-in-the-loop analysis [19] and it is possible to use it in

a distributed fashion. Thus, interoperability in relation to simulation of com-

plex models of CPSs divided up in constituent models expressed using different

formalisms and different tools is ensured. This is an important part of USP 1.

Results of multiple co-simulations can be collated, permitting systematic

Design Space Exploration (DSE), and allowing test automation based on test

cases generated from the SysML requirement diagrams [39]. The ability of both

carrying out exploratory experiments as well as systematic testing a combination

of constituent models leads to USP 3 since these features enable exploration

of very large candidate design spaces. In particular the ability of visualising

the results of co-simulations using the 3D FMU described above with the DSE

capability (described further in Section 4.3) leads to USP 4 limiting the number

of physical tests that needs to be carried out, which in particular is important

whenever these are expensive to carry out or difficult to monitor the results of.

CPS SysML profile has been demonstrated in Modelio11. FMI-conformant

constituent models have been produced in Overture from VDM-RT, and the

Continuous-Time (CT) formalisms 20-sim and OpenModelica [23]12. A graphi-

cal front-end for the entire INTO-CPS tool chain called the INTO-CPS Applica-

tion has been developed based on the cross-platform Electron technology [14].

This is developed as a desktop application, but using web technologies to enable

a smoother transition to delivering this as an on-line web service should this be

desirable in the future.

5 http://www.modelon.com/.
6 https://www.3ds.com/products-services/catia/products/dymola.
7 https://eclipse.org/4diac/.
8 https://www.simulationx.com/.
9 https://unity3d.com/.

10 https://www.oculus.com/rift/.
11 http://www.modelio.org/
12 https://www.openmodelica.org/
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Fig. 1. The INTO-CPS Tool Chain

Multidisciplinary co-modelling and co-simulation naturally generate many

design artifacts, including co-models, co-simulation inputs and outputs, require-

ments, code, etc. Such large design sets are expected to evolve as smart sys-

tems are developed by gradual integration of existing elements, and as elements

change. The interrelationships between them are vital for allowing validation

and third-party assurance. We have used the PROV13 model to record the tem-

poral relations between activities, entities and agents within a process (which

we term provenance), and traceability has been supplied based on the Open Ser-

vices for Lifecycle Collaboration (OSLC) standard14. In INTO-CPS, we have

regarded it as a priority to lay foundations for provenance and traceability sup-

port in the tool chain; all the baseline tools have been extended with such OSLC

support [32]. The openness resulting from the combination of FMI and OSLC

contributes significantly to USP 2, giving freedom to choose the tools that best

fit the purpose of each individual aspect of a CPS.

4 The INTO-CPS Methodology

Our work on methods aims to develop concrete guidelines, frameworks, and

patterns for co-modelling and co-simulation that can be adapted to existing de-

velopment processes, rather than defining a single workflow. Specifically, we

focus on model-based CPS requirements engineering, architectural modelling

in SysML, traceability and provenance, and DSE.

13 http://www.w3.org/TR/prov-overview/
14 http://open-services.net/
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We support model-based systems engineering approaches because of their

potential to enable early detection of potential bottlenecks and defects before

commitment is made to physical prototypes (USPs 1 and 4). We advocate the

use of architectural models that define the major elements of a system, their

relationships and interactions. The bulk of our architectural modelling work uses

SysML, which allows us to describe both digital interfaces between components

in terms of the properties or functionality provided or required, and physical

interfaces in terms of physical flows (e.g. material) between components.

An architecture diagram is a symbolic representation of part of an archi-

tectural model. An architectural view is typically an architecture diagram that

includes specific system facets. An architectural framework is a set of architec-

tural views defined to support a task, role, or industry [26]. A SysML profile is

a collection of extensions to SysML that support a particular domain. We have

developed a SysML profile consisting of diagrams for defining cyber, physical

components, as well as components representing environment and visualisation

elements (the delivering graphical presentation of co-simulation outputs).

4.1 Requirements Engineering

CPSs share important characteristics with Systems-of-Systems (SoSs) [35]. Cy-

ber and physical elements can be independently owned and managed, evolve

over time, and are distributed [40]. CPSs add the challenge of differing do-

main contexts [47]. In developing model-based requirements engineering ap-

proaches for CPSs, we have therefore extended a systematic approach to SoS

requirements engineering, the SoS Approach to Context-based Requirements

Engineering(SoS-ACRE) [27]. SoS-ACRE provides several views that encour-

age the systematic consideration of requirement context, sources and stakehold-

ers.

A survey of our industry collaborators showed that a wide range of tools

were used for requirements management and modelling, ranging from Microsoft

Word to IBM Rational DOORS. It was therefore important to develop an ap-

proach that, while it could be supported by specialist notations like SysML,

could also be adopted using document-based tools. This is a key facet of pro-

viding an open tool chain (USP 2). For example, SoS-ACRE can be adapted to

these CPS needs as follows:

Source Element View (SEV) which identifies the sources from which require-

ments are derived. This could be represented as a SysML block definition di-

agram, an Excel table or a Word document, or by simply referring to source

documents using OSLC traces.

Requirement Description View (RDV) defines the requirements. This could

be a SysML requirements diagram, or in tabular form, or in DOORS.
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Context Definition View (CDV) identifies interested stakeholders and points

of context, including customers, suppliers and system engineers themselves.

These could be SysML block definition diagrams, Excel tables or Word doc-

uments, and can be used to identify the CT/DE elements of a system.

Requirement Context View (RCV) defined for each constituent system con-

text identified in CDVs. A Context Interaction View (CIV) is then defined

to understand the overlap of contexts and any common/conflicted views on

requirements. In SoS-ACRE, RCVs and CIVs are both defined with SysML

use case diagrams. Excel could be used if unique identifiers are defined for

contexts and requirements as described earlier.

Given that we aim to support the integration of co-simulation into estab-

lished development processes, we realise the SoS-ACRE views using a range of

combinations of SysML with other tools. For example, a single SysML model

for both requirements engineering and architectural modelling will contain all

SoS-ACRE views (SEV, RDV, CDV, RCV and CIV), in addition to diagrams

defined using the INTO-CPS profile for the CPS composition and connections.

Modelling in this way enables trace links to be defined inside a single SysML

model, using <<trace>> relationships (e.g., Figure 2). By contrast, one might

combine URIs for the source elements with an Excel document for the RDV,

CDV, RCV and CIV. As above, SysML can be used to define the architecture

in a single model. Trace links using OSLC may then be used to link source ele-

ments, rows of Excel documents (with internal tracing using unique identifiers

referenced between sheets), and architectural elements of the SysML architec-

tural model. Figure 3 presents an example with URI, Excel and SysML models

and OSLC links between the artifacts.

4.2 Traceability and Provenance

USP 5 deals with the need to support engineers navigating the complexities of

CPS design sets. INTO-CPS considers two tool-supported methods for record-

ing design rationale. Traceability associates one model element (e.g. require-

ments, design artifacts, activities, software code or hardware) to another. Re-

quirements traceability “refers to the ability to describe and follow the life of a

requirement, in both a forwards and backwards direction” [24]. Provenance “is

information about entities, activities, and people involved in producing a piece

of data or thing, which can be used to form assessments about its quality, relia-

bility or trustworthiness” [33].
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Line Follow Robot SysML Requirement and Architectural Model

ASD Robot Composition

Robot

Sensor

Body and 

Motor
Controller

RDV Robot Requirements

<<requirement>>

R1

id = R1

description = The 
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id = R2
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robot must move 

faster than 5cm/sec

<<trace>>
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document

<<trace>>
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Fig. 2. Single SysML model – model overview
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Fig. 3. URI, Excel and SysML – model overview
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4.3 Design Space Exploration

USP 3 is the ability to sweep over the design space to identify optimal combi-

nations of parameters with respect to evaluation criteria. A design parameter is

a property of a model that varies the behaviour described, but remains constant

during a simulation; a variable is a property that may change during a simula-

tion. Where two or more models represent different solutions to the same prob-

lem, these are considered design alternatives. In INTO-CPS, design alternatives

are defined using either a range of parameter values or different multi-models.

Designing DSE experiments can be complex and depends closely on the

multi-model being analysed. Engineers need, therefore, to be able to model at

an early stage of design how the experiments relate to the model architecture,

and where possible trace from requirements to the analysis experiments. We

have defined a SysML profile for modelling DSE experiments in a consistent

and traceable way. The profile comprises five diagrams for defining parameters,

objectives and rankings. Based on a requirements analysis (e.g. an RDV coming

out of the processes described in Section 4.1), we identify objectives, and use

the SysML profile for DSE to define the parameters, objectives and ranking

function, traced to the requirements.

We use the INTO-CPS tool chain to simulate each design alternative. Whilst

exhaustively seaching the design space, evaluating and ranking each design is

acceptable on small-scale studies, it quickly becomes infeasible as the design

space grows. For example, varying n parameters with m alternative values pro-

duces a design space of mn alternatives. We have therefore implemented genetic

approaches [15].

5 The Underlying Unified Semantic Approach

Since CPSs are networks of computational devices interacting with the world

through their sensors and actuators, CPS models must combine discrete com-

putational models with continuous physical environmental models. CPS en-

gineering necessarily involves a wide range of modelling and programming

paradigms [13], including concurrency, real-time, mobility, continuous vari-

ables, differential equations, object orientation, and diagrammatic languages.

Practical CPS engineering uses a variety of domain-specific and general-purpose

languages, such as Simulink, Modelica, SysML, Java, and C, and engineering

trustworthy CPS requires that semantic models for these languages are inte-

grated in a consistent way, which then enables reasoning about an entire CPS15.

15 For SysML we have only formalised the subset we need in a co-simulation setting [1].
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In practice, semantic integration is often achieved using the FMI standard [6],

mentioned above, which describes a CPS using a network of FMUs to simulate

components and their solvers and simulators. Each FMU has observable dis-

crete and continuous variables that can be observed and modified, as well as

an interface to drive the simulation engine in various ways. In a co-simulation

a master algorithm manages stepping the individual FMUs forward, and dis-

tributing information in between time steps. In this way, FMI describes hetero-

geneous multi-models in different notations with different underlying semantics

integrated through a common operational interface16.

FMI provides a way of experimenting with the combined operational inter-

faces to heterogeneous models, and so it is useful for validation; but it does not

provide the basis for verifying CPS properties. To do that, we need to be able to

verify properties, both at the model level and at the multi-model level. One way

of doing this is to explore the links between the different semantics. To do this,

we use Hoare and He’s Unifying Theories of Programming (UTP) [25,48,10] to

describe different computing paradigms and their formal connections. We treat

the various semantic aspects of a heterogeneous multi-model as individual theo-

ries that characterise a particular abstract modelling paradigm. Hoare & He [25]

show how the mathematics of the alphabetised relational calculus can be used

to construct a hierarchy of such theories, including an assertional approach to

hybrid imperative parallel programming and control of continuous physical phe-

nomena. Within this hierarchy, there are theories of real-time programming [45],

object-oriented programming [43], security and confidentiality [4], mobile pro-

cesses [44], probabilistic modelling [7], and hybrid systems [20]. The FMI API

itself has been given a UTP-based semantics [11,49] that can be used as an in-

terface to the semantic model of individual FMUs.

Our approach to practical CPS verification in the meta-tools is based on the

theorem prover for UTP built on Isabelle/HOL [36], which we call Isabelle/UTP

[22,21]. Isabelle is a powerful automated proof assistant that was used, for ex-

ample, in the seL4 microkernel verification project [29]. Isabelle include recent

work on formalising the integral and differential calculus, real analysis, and

Ordinary Differential Equations (ODEs) [28], work that we are applying to ver-

ification of hybrid systems17.

Crucial to all of these developments is the ability to integrate external tools

into Isabelle that can provide decision procedures for specific classes of prob-

lems. Isabelle is well suited to such integrations due to its architecture based

on the ML and Scala programming languages, both of which can be used to

16 FMI-based co-simulation with a black-box approach does have limitations [8,9] and we do not

claim to repair those issues in any way in this work.
17 This library can be viewed at github.com/isabelle-utp/utp-main.
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implement plugins. Isabelle is sometimes referred to as the Eclipse of theorem

provers [46]. The sledgehammer tool [5], for example, integrates a host of

first-order automated theorem provers and SMT solvers, which often shoulder

the burden of proof effort. Sledgehammer has been used both at the theory

engineering level, for constructing an algebraic hierarchy of verification logics

(Kleene algebras), and also at the verification level, where it is used to dis-

charge first-order proof obligations [2]. For verification of hybrid systems, it is

necessary to integrate Isabelle with computer algebra systems like Mathemat-

ica, MATLAB, and SageMath, to provide solutions to differential equations, an

approach that has been previously well used by the KeYmaera tool [41,42].

Our vision is the use of Isabelle and UTP to provide the basis for CPS verifi-

cation through formalisation of the fundamental building-block theories of CPS

multi-modelling, and the integration of tools that implement these theories for

coordinated verification.

6 Concluding Remarks

Integrated modelling such as that presented in this paper is essential to efficient

engineering of CPSs. We believe that openness of the tool chain using different

standards, the methodology supporting it and the underlying unified semantic

approach jointly enable stakeholders with different disciplinary backgrounds to

collaborate in the development of CPSs. This is by no means the only scientific

approach by which such systems can be developed, but we think that it is a

promising candidate that has future extension possibilities as well.

In the current version of the FMI standard there are a number of limitations.

This includes that it is not able to cope with the modelling of the network com-

munication in a natural manner and it is incapable of modelling dynamic recon-

figurations. Thus, in a future extension it would be ideal if it would be possible

to enable such capabilities for example to be able to appropriately model and

develop constituents with their own independent behaviour. This could mean

integration of machine learning capabilities as well as software agents includ-

ing potentially incorporation of human-in-the-loop. Initial work with humans

included have already started [37] but it is easy to imagine that it would be ad-

vantageous to combine this further in the future with human centered design

ideas. We envisage great capabilities for the future that would bring additional

USPs to the table.
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