
This is a repository copy of Highly strained III-V-V coaxial nanowire quantum wells with 
strong carrier confinement.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/149017/

Version: Published Version

Article:

Zhang, Y., Davis, G., Fonseka, H.A. et al. (11 more authors) (2019) Highly strained III-V-V 
coaxial nanowire quantum wells with strong carrier confinement. ACS Nano, 13 (5). pp. 
5931-5938. ISSN 1936-0851 

https://doi.org/10.1021/acsnano.9b01775

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Highly Strained III−V−V Coaxial Nanowire
Quantum Wells with Strong Carrier
Confinement
Yunyan Zhang,*,† George Davis,‡ H. Aruni Fonseka,# Anton Velichko,‡ Anders Gustafsson,§

Tillmann Godde,‡ Dhruv Saxena,¶ Martin Aagesen,∥ Patrick W. Parkinson,⊥ James A. Gott,#

Suguo Huo,▽ Ana M. Sanchez,# David J. Mowbray,‡ and Huiyun Liu†

†Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
‡Department of Physics and Astronomy and the Photon Science Institute, University of Sheffield, Sheffield S3 7RH, United
Kingdom
#Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
§Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
¶The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
∥Danish Defence Research Center, Lautrupbjerg 1-5, 2750 Ballerup, Denmark
⊥School of Physics and Astronomy and the Photon Science Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
▽London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom

*S Supporting Information

ABSTRACT: Coaxial quantum wells (QWs) are ideal candidates for nanowire (NW) lasers, providing strong carrier
confinement and allowing close matching of the cavity mode and gain medium. We report a detailed structural and optical
study and the observation of lasing for a mixed group-V GaAsP NW with GaAs QWs. This system offers a number of
potential advantages in comparison to previously studied common group-V structures (e.g., AlGaAs/GaAs) including
highly strained binary GaAs QWs, the absence of a lower band gap core region, and deep carrier potential wells. Despite
the large lattice mismatch (∼1.7%), it is possible to grow defect-free GaAs coaxial QWs with high optical quality. The
large band gap difference results in strong carrier confinement, and the ability to apply a high degree of compressive strain
to the GaAs QWs is also expected to be beneficial for laser performance. For a non-fully optimized structure containing
three QWs, we achieve low-temperature lasing with a low external (internal) threshold of 20 (0.9) μJ/cm2/pulse. In
addition, a very narrow lasing line width of ∼0.15 nm is observed. These results extend the NW laser structure to coaxial
III−V−V QWs, which are highly suitable as the platform for NW emitters.
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S emiconductor nanowires (NW) lasers provide strong

optical mode confinement in a very small volume,

allowing laser diameters on the order of a few hundred
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nanometers and length of a few micrometers.1−3 They hence
provide small-size, low-power devices with a wide range of
applications. Moreover, III−V NW structures can be grown on
a Si platform,4−6 thus enabling fabrication of high-quality
photonic light sources for low-cost, ultra-high-density integra-
tion, solving one of the major challenges currently limiting the
exploitation of Si photonics.7−11

While optically pumped NW lasers have been demon-
strated,7,12−15 further reducing the threshold is critical for
many applications as well as realizing electrically injected
devices.16,17 Threshold reduction can be achieved by confining
carriers within a nanostructure to benefit from the enhanced
gain and improved temperature stability;18,19 both quantum
dots (QDs)15 and coaxial quantum wells (QWs)20 have been
used as the gain medium. The use of coaxial QWs is
particularly attractive, as it allows a much larger effective
volume of gain material to be incorporated into the NWs, and
the position of the QWs can be easily tailored to strongly
overlap with the cavity mode.
There have been relatively few demonstrations of the use of

coaxial QWs to reduce the threshold of NW lasers,21−23 with
all reports using III−III−V, common group-V material systems
(e.g., AlGaAs/GaAs),24−30 which have some disadvantages
associated with the challenges of growing III−III−V core
NWs. During the NW growth, the vast majority of the group-
III atoms diffuse from the substrate and NW sidewalls to the
growth front.31 Different group-III elements have very different
diffusion lengths, which are also highly temperature sensitive.
Therefore, there are large differences in the optimal growth
conditions for each species, especially in the growth temper-
ature.32,33 This makes the growth of III−III−V NWs difficult,
especially for the self-catalyzed growth mode.32,34 As a result,
III−III−V NWs with QWs are commonly built on binary core

NWs. For example, AlGaAs/GaAs QWs use a GaAs core NW.
Due to the lower band gap of bulk GaAs compared to AlGaAs
and the GaAs QW, the core NW forms a lower potential
region, which may trap a large number of carriers (Supporting
Information Figure 1a). Strong core emission has been
observed in this type of QWs, lowering the optical efficiency
of the active region.35 Although GaAs NWs with InGaAs QWs
do not have a lower band gap core, and lasing from this system
has been reported,36 it appears to be difficult to obtain deep
electrons and wells, even for high In compositions and hence
significant strain. In contrast, group-V elements do not have
the diffusion-length issue and III−V−V NWs can easily be
grown with a large composition range.37 Therefore, III−V−V
NWs with QWs can easily circumvent carrier trapping issues
(Supporting Information Figure 1b). However, III−V−V-type
NWs containing coaxial QWs have not been studied in any
detail, and little is known about their basic structural,
electronic, and optical properties. To the best of our
knowledge, there have been no reports of lasers based on
this type of structure.
Strong carrier confinement by deep QWs is expected to be

very important given the high surface-to-volume ratio of the
NWs and the close proximity of the active material to the
surface, which can have a high density of carrier traps.38

Achieving deep confinement potentials for both electrons and
holes requires semiconductor pairs with large band gap
differences, but this can result in a high level of strain. The
small NW size may allow the accommodation of high strain
without the formation of dislocations, but there has been no
study to date of highly strained NWs containing QWs and
their application to lasers. A systematic and detailed study is
thus needed, in particular of the relationship between the QW
depth, carrier confinement, and lasing performance. If strained

Figure 1. Crystalline properties of GaAsP nanowires with a single coaxial GaAs QW. (a) Low-magnification bright field scanning
transmission electron microscopy (BF-STEM) image showing one entire NW. The blue, yellow, and green rectangles indicate the twin-free,
slightly twinned, and defect-containing regions, respectively. (b) Annular dark field STEM (ADF-STEM) image showing a cross-section from
the stacking-fault-free end of the NW. The white region is the GaAs QW. The inset is a schematic of the structure. (c) Atomic-resolution
ADF-STEM image of the QW region. (d) Energy dispersive X-ray spectroscopy (EDX) line profile of the As concentration across the QW.
The sharpness of the two interfaces is more easily seen from the first derivative of the As concentration, the orange data with the black line
being a fit. (e) Low-resolution STEM image from the stacking-fault-free section of the NW, imaged along the ⟨112⟩ zone axis. The two pale
lines represent the GaAs QW. (f) Atomic-resolution STEM image of the region delimited by the red box in (e).
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deep QWs can demonstrate their suitability for NW lasers, this
will greatly expand material choice, providing more freedom in
device design.
The ternary III−V−V material, GaAsP, has a band gap that

covers wavelengths ranging from green (550 nm) to near-
infrared (860 nm) at room temperature.39 Consequently, it is
one of the most promising III−V compound semiconductors
for visible emitters. In this paper, we report a detailed
structural and optical study of strained GaAsP-based deep
coaxial GaAs QWs and demonstrate their suitability for NW
lasers.

RESULTS AND DISCUSSION

All NW samples were grown directly on p-type Si(111)
substrates by solid-source III−V molecular beam epitaxy
(MBE). NW growth was initiated via Ga droplets deposited
on the Si substrate. Core−shell GaAsP NWs containing a
single GaAs coaxial QW were grown for initial structural and
optical studies. Scanning transmission electron microscope
(STEM) images show that the first third of the NW length has
a pure zinc-blende (ZB) structure without stacking faults, the
middle third is lightly twinned, and the final third, toward the
tip, is more defective (Figure 1a, Supporting Information S2).
The diameter is relatively uniform but increases slightly toward
the tip, where the presence of stacking faults creates new facets
with higher surface energy, allowing faster shell growth.40

These stacking faults can be fully eliminated by our recently
developed modified growth, which produces defect-free
NWs.41 The GaAs0.62P0.38 NW core has a diameter of ∼50
nm (Figure 1b), and the GaAs QW is 3.5−10 nm thick,
confined by ∼18 nm GaAs0.54P0.46 barriers. The QW width
asymmetry is due to a shadowing effect during growth, caused
by the random positioning of neighboring NWs. This
nonuniformity can be seen in the emission spectra of some
NWs, where multiple QW emission peaks are observed. This
nonuniformity, which is likely to influence lasing performance,
can be eliminated using patterned substrates to give uniformly
spaced NWs.4 Both QW interfaces have a transition width of
∼1 nm (Figure 1c and d), which is much sharper than typical
AlGaAs/GaAs NW interfaces.30,42 Despite a large compressive
GaAs QW strain of ∼1.7%, no strain-induced line- or loop-type
dislocations are seen in the cross-section and side views

(Figure 1c and f).43,44 This absence of dislocations is further
confirmed by the fast Fourier transform filtered images and
strain mapping shown in the Supporting Information, Figures
S3 and S4.
These studies demonstrate that it is possible to grow highly

strained coaxial QWs with excellent crystalline quality. The
ability to apply high levels of compressive strain to the GaAs
QW should be advantageous for lasing action due to the
increased heavy-hole−light-hole separation and the modifica-
tion of the in-plane hole mass, which allows a given gain to be
produced by a lower carrier density.45 Reduced threshold
currents for compressively strained planar QW lasers have
been demonstrated for a number of material systems, but
require the use of an alloy QW to achieve the desired strain.46

The current NW system allows the application of large
compressive strains to potentially higher quality binary GaAs
QWs; this is not possible for planar growth on a GaAs
substrate.
The initial ∼2/3 of the NW has a uniform composition

(Figure 2a), and this is reflected in the excellent spatial QW
homogeneity (emission intensity, line width, and central
wavelength), as demonstrated by the highly uniform
cathodoluminescence (CL) emission (Figure 2b, c, and d).
Within the first half of the NW the QW emission is constant to
within 3 nm (≡ 7 meV), followed by a small initial blue shift of
the CL emission beyond the midpoint of the NW, suggesting a
slight reduction of the QW width. No dark spots are visible in
the CL image (Figure 2d), consistent with the absence of
dislocations in the shell and QW. Comparison of CL and PL
emission wavelengths with NextNano simulations47 suggests a
QW width of ∼6.5−9 nm (Supporting Information S4), with
the blue shift with respect to bulk GaAs arising from a
combination of quantum confinement and the 1.7%
compressive strain of the GaAs well. The energy separation
between the lowest QW states and the barriers is calculated to
be ∼115 and ∼300 meV for electrons and holes, respectively.
The tip of the NW has a lower phosphorus composition
(Figure 2a) and emits at a longer wavelength of >750 nm,
consistent with the previous observation (Figure 1a) that the
defective tip region has a faster growth rate and hence a larger
GaAs QW width. In addition, the emission at the tip is much

Figure 2. Structural and optical properties of the single QW NW. (a) EDX line profiles of Ga, As, and P compositions along the length of the
NW, as shown in the inset. (b) Normalized cathodoluminescence (CL) spectra recorded at 8 K along the NW length with constant spatial
increments. (c) Scanning electron microscope image and (d) CL intensity mapping of the QW emission at 744 nm.
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weaker, with the broad emission extending below the bulk
GaAs band gap, in accordance with the presence of defects.48

Micro-photoluminescence (μ-PL) spectra are excited by a
515 nm diode laser which is absorbed by the QW and also
both the core and barrier GaAsP. The NWs are mechanically
transferred to a new Si wafer and are studied normal to their
length. The 300 K spectra of a single NW (Figure 3a) are
dominated by the QW emission, with the barrier emission only
weakly visible. No NW core emission is observed, despite this
region forming a potential carrier reservoir due to a lower P
composition and constituting ∼20% of the total NW volume
(Figure 1b and c). This indicates very efficient carrier transfer
from the GaAsP regions to the QW. At 6 K the photoexcited
carriers are much less mobile,49 and a very broad but weak
emission is observed in the range 590−680 nm (Figure 3b)
due to the QW barriers and NW core. The QW emission has a
narrow full width at half maximum (fwhm) of 6.9 nm (≡ 16
meV) and is ∼103 more intense than that of the GaAsP. The
ratio of the integrated QW emission (691−808 nm) to that of
the barrier and core emission (591−680 nm) exceeds 200 over
the temperature range 6−300 K for low excitation power
(Figure 3c); this ratio increases rapidly with excitation power
(Figure 3d). The lifetime of the QW-confined carriers
increases with increasing wavelength (decreasing energy)
(Figure 3e, Supporting Information S5), reflecting state filling
and the transfer of carriers from high to low energy states

within the QW. The carrier lifetime at the emission peak is ∼1
ns. An analysis of the temperature dependence of the QW PL
intensity, measured from an ensemble of NWs (Figure 3f),
indicates a large barrier of 125 ± 12 meV against carrier loss
(Supporting Information S6), which is consistent with the
calculated electron localization energy of 115 meV discussed
above. It is also found that carrier loss due to surface
nonradiative recombination is greatly reduced in the present
structure (Supporting Information S6).
Our results demonstrate that the deep coaxial QWs act to

efficiently capture photoexcited carriers, because the NW
diameter (<200 nm) is much smaller than the carrier diffusion
length (in the micrometer range).50,51 Captured carriers are
strongly confined by the deep QWs, resulting in extremely
weak barrier emission at all temperatures. In addition, the
strong confinement inhibits carrier loss to surface states
(Supporting Information S6). As a result, the QW NW has a
much stronger PL emission (∼150×) compared to NWs with
comparable morphology and density but without a QW
(Supporting Information S7 and Figure S8).
NWs with three coaxial QWs were grown in order to

provide the gain required for lasing. The average composition
of the NW core is GaAs0.38P0.62, and the barriers are
GaAs0.53P0.47 (Figure 4a). The diameter of the NWs is ∼400
nm. Finite-difference time-domain (FDTD) simulations shown
in Figure 4b show incomplete overlap between the QWs and

Figure 3. Carrier collection and confinement properties of the GaAs−GaAsP NW QW. (a) 300 K and (b) 6 K micro-photoluminescence (μ-
PL) spectra from a stacking-fault-free segment of a single NW. The discontinuity in (a) at ∼720 nm results from the stitching together of two
spectra. (c) Temperature-dependent and (d) power-dependent ratio of the integrated QW emission (691−808 nm) to the barrier and core
emission (591−680 nm). (e) PL spectrum (blue) and carrier lifetimes (red) measured from a stacking-fault-free segment of the NW. (f)
Integrated and normalized ensemble PL intensity as a function of inverse temperature.
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cavity mode. A pulsed laser, with a focused elliptical spot of 30
× 1.4 μm2, was used to excite the NW at 6 K. The excitation
wavelength of 635 nm is only absorbed by the QW and not the
NW core or barriers. With increasing pulse energy, the broad
spontaneous emission shifts toward higher energy due to QW
state filling (Figure 4c). Fabry−Peŕot cavity modes at almost
constant wavelengths are observed, superimposed on the
spontaneous emission. At high pump energies, a small number
of modes increase superlinearly with energy, consistent with
the onset of lasing (Figure 4d) at a threshold of ∼20 μJ/cm2/
pulse. FDTD simulations indicate that only 4.4% of the
incident laser power is absorbed by the NW, which further
reduces the absorbed threshold flux to ∼0.9 μJ/cm2/pulse.
The inset to Figure 4c shows the dominant laser mode,

which has a low line width of ∼0.15 nm (≡ 0.34 meV). This is
narrower than the majority of previously reported values for
III−V NW lasers (typically >0.7 nm)7,14,15,20,52−57 and
comparable to the lowest reported (resolution limited) value
of ∼0.25 meV.58 This suggests relatively low levels of chirp in
the current laser.
Three approaches should further improve the performance

of the current coaxial QW lasers. The first is eliminating the
defects, which form at the tip of the NW and which may
consume carriers by nonradiative recombination, particularly at
high temperatures. This should improve the temperature
performance, which, for the current structure, limits lasing to
below ∼100 K under our measurement conditions. Second,
due to unoptimized droplet consumption, the top facet has a
low quality (Figure 1a and inset of Figure 2a). Improving this
will provide a higher quality optical cavity. Third, improving
the QW width homogeneity by growing the NWs on
prepatterned substrates will narrow the spectral distribution

of the gain, allowing the threshold gain to be reached for lower
carrier injection.

CONCLUSIONS

In summary, the properties of deep and highly strained
GaAsP/GaAs coaxial NW QWs have been studied. The QW is
highly uniform along the NW length for the region where the
NW is defect free. Despite the large compressive strain, no
strain-induced dislocations are observed in the QW region.
The QW exhibits very efficient carrier collection and strong
carrier confinement, resulting in the PL being dominated by
the QW emission at all temperatures. In addition, carrier
localization in the QW appears to reduce the influence of
surface states, further contributing to the high radiative
efficiency. A NW laser structure containing three coaxial
QWs demonstrates a very low external (internal) threshold of
20 (0.9) μJ/cm2/pulse and a very small lasing line width of
∼0.15 nm. The current system offers a number of significant
advantages compared to previously studied systems, including
deep electron and hole wells, a high compressively strained
binary QW, and the absence of a low band gap core, which can
act as a carrier sink. These initial results demonstrate that
highly strained III−V−V coaxial QWs are suitable for the
fabrication of low-threshold NW lasers, with a number of
advantages compared to more commonly studied systems.

EXPERIMENTAL METHODS

NW Growth. The self-catalyzed GaAsP NWs were grown directly
on p-type Si(111) substrates by solid-source III−V MBE.59 For the
single QW NWs, the core GaAs0.62P0.38 NW was grown with a Ga
beam equivalent pressure, V/III flux ratio, P/(As + P) flux ratio,
substrate temperature, and growth duration of 8.41 × 10−8 Torr, ∼40,
25%, ∼640 °C, and 1.5 h, respectively. After the growth of the core,

Figure 4. Structural and lasing characteristics of a single NW with three coaxial QWs at 6 K. (a) EDX mapping of the phosphorus content
across the NW clearly showing the three QWs. (b) FDTD-simulated electric field intensity distribution in the cross-section of the nanowire
when illuminated with a Gaussian beam (λ = 635 nm). (c) Pulsed-excited emission spectra for a sample temperature of 6 K. The inset shows
a lasing mode for excitation of 49 μJ/cm2/pulse. (d) Double-logarithmic integrated output-power intensity of the lasing mode versus incident
pump pulse energy density.
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the Ga droplets were consumed by closing the Ga flux and keeping
the As and P fluxes open. Two GaAs0.54P0.46 shells were then grown
with a Ga beam equivalent pressure, V/III flux ratio, P/(As + P) flux
ratio, substrate temperature, and growth duration of 8.41 × 10−8 Torr,
50, 50%, ∼550 °C, and 30 min, respectively. A ∼10 nm GaAs QW
was grown between the two GaAsP shells, with a Ga beam equivalent
pressure, V/III flux ratio, substrate temperature, and growth duration
of 8.41 × 10−8 Torr, 60, ∼550 °C, and 10 min, respectively. For the
three-QW sample, the core GaAs0.38P0.62 NW was grown with a Ga
beam equivalent pressure, V/III flux ratio, P/(As + P) flux ratio,
substrate temperature, and growth duration of 8.41 × 10−8 Torr, ∼30,
41%, ∼640 °C, and 1.5 h, respectively. After the droplet consumption,
the three GaAs QWs and three GaAs0.53P0.47 barriers were grown with
same condition as that of the single QW sample, except that the
growth time was 1 h for each barrier. Finally, shells of
Al0.5Ga0.5As0.53P0.47 (30 min) and GaAs0.53P0.47 (20 min) were
deposited. The final NWs have a diameter of ∼400 nm and an as-
grown length of 9.4 μm. During growth, the substrate temperature
was measured by a pyrometer.
Transmission Electron Microscopy (TEM). Simple mechanical

transfer of the NWs onto a lacey carbon support was used to prepare
TEM specimens. The cross-section samples were prepared by
embedding the NWs in a low-viscosity resin and slicing using a
microtome. The TEM measurements were performed with JEOL
2100 and doubly corrected ARM200F microscopes, both operating at
200 kV.
Cathodoluminescence. Imaging was performed on both NWs

still attached to the substrates and also broken off and transferred to a
Si substrate. The studies were carried out in a dedicated SEM at a
temperature of 8 K, using an acceleration voltage of 5 kV and a probe
current of 25 pA. The detector was a Si-CCD. CL measurements
shown in Figure 2c were performed using a Gatan MonoCL3 system
within a Zeiss Supra 55VP SEM operating at 3 kV.
Photoluminescence. Large-area PL measurements (Figure 2b)

probe a high number of NWs and is relatively insensitive to
movement of the laser spot, which tends to occur as the temperature
is varied. Excitation is by a 532 nm diode-pumped solid-state laser,
with a 0.25 m monochromator used to disperse the PL, which is
detected by a TE-cooled Si detector. μ-PL spectra were obtained from
single NWs, which had been removed from the original substrate and
transferred to a new Si wafer. μ-PL spectra of single NWs were excited
by a cw 515 nm diode laser. The time-resolved PL of the single QW
sample and the pumping of the MQW laser sample was performed
using a pulsed 635 nm diode laser with a repetition frequency of 80
MHz and 80 ps pulse width. The samples were measured under
vacuum inside a continuous flow cryostat (base temperature 6 K).
The incident laser was focused with a 20× long working distance
microscope objective to a spot size of ∼1 μm diameter. The resultant
PL was collected by the same microscope objective and focused into a
0.75 m spectrometer, where the spectral components were resolved
and detected using a 300 l/mm grating and a nitrogen-cooled CCD.
The spectral resolution was ∼0.5 meV, and higher resolution
measurements were recorded using an 1800 lines/mm grating with
a resolution of 0.09 meV. The time-resolved PL was detected by a
silicon APD and a photon counting card. The resolution of this
system was ∼100 ps.
FDTD Simulations. FDTD simulations were performed using

Lumerical FDTD Solutions, with a custom source (free-space
wavelength of 635 nm, elliptical Gaussian beam with an fwhm of
1.3 and 30 μm along orthogonal directions). The source was injected
perpendicular to the nanowire and substrate (200 nm SiO2 covered
Si). The nanowire structure was modeled from the cross-sectional
TEM image, with a complex refractive index value for the GaAs QW
(3.85 + 0.192i) and no absorption for the GaxAsP1−x barriers (3.6 +
0i). A fine mesh (2 nm resolution) was used to resolve the multiple
QW heterostructure. Field monitors were used to record the field in
the nanowire cross-section, and the fraction of pump power absorbed
was calculated from the net power transmission through a box of
monitors surrounding the nanowire.
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