
This is a repository copy of Referenced compressed sensing for accurate and fast 
spatio-temporal signal reconstruction.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/149000/

Version: Published Version

Article:

Hotrakool, W. and Abhayaratne, C. orcid.org/0000-0002-2799-7395 (2019) Referenced 
compressed sensing for accurate and fast spatio-temporal signal reconstruction. Journal of
Electronic Imaging, 28 (4). 043010. ISSN 1017-9909 

https://doi.org/10.1117/1.jei.28.4.043010

Copyright 2019 Society of Photo Optical Instrumentation Engineers (SPIE). One print or 
electronic copy may be made for personal use only. Systematic reproduction and 
distribution, duplication of any material in this publication for a fee or for commercial 
purposes, or modification of the contents of the publication are prohibited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Referenced compressed sensing for
accurate and fast spatio-temporal
signal reconstruction

Wattanit Hotrakool
Charith Abhayaratne

Wattanit Hotrakool, Charith Abhayaratne, “Referenced compressed sensing for
accurate and fast spatio-temporal signal reconstruction,” J. Electron. Imaging 28(4),
043010 (2019), doi: 10.1117/1.JEI.28.4.043010.



Referenced compressed sensing for accurate and
fast spatio-temporal signal reconstruction
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Abstract. We address two challenges of applying compressed sensing in a practical application, namely, its
poor reconstruction quality and its high computational complexity. Since most signals are not fully sparse in
practice, the reconstructed signals from conventional reconstruction methods often suffer from reconstruction
artifacts due to the distortion of small coefficients. To improve the reconstruction quality, we introduce referenced
compressed sensing (RefCS), a reconstruction method that exploits the spatial and/or temporal redundancy
between a pair of signals. We show that using a correlated reference—an arbitrary signal close to the com-
pressed signal—there exists the bound of reconstruction error that depends on the distance between the refer-
ence and the signal. By exploiting the correlated reference, RefCS can improve the reconstruction quality by up
to 90% in terms of peak signal-to-noise ratio. Moreover, it is possible to reduce the computational complexity of
the proposed RefCS using the least squares method. The least squares reconstruction results can be obtained
with quality comparable to that of iterative algorithms by employing the correlated reference. Using the least
squares method improves the reconstruction time by a factor in the range of 9 to 5.4 × 104 according to our
experiments. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.4.043010]
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1 Introduction

Compressed sensing (CS) is a signal acquisition paradigm
that allows acquisition of full-length signals from under-
sampled measurements. Since it was introduced by Candès
et al.1 and Donoho,2 compressed sensing has become of
interest in many fields of research. The main promise of
compressed sensing is the ability to perform sub-Nyquist
sampling by exploiting the sparsity of compressible signals.
In compressed sensing, the essential information to recon-
struct a sparse signal is contained in a small set of significant
elements, whereas the other elements are zero or have
very small magnitudes. The aim of compressed sensing is
to acquire these significant elements directly using a fewer
number of measurements than those stated by the Shannon/
Nyquist theorem.3

Compressed sensing consists of two major operations:
the sensing operation S and the reconstruction operation R.
Let u ∈ R

n be an n-dimensional nonsparse signal that can
be represented as an n-dimensional sparse signal, x ∈ R

n,
via x ¼ Ψu transformation using a sparse dictionary Ψ.
The sensing operation SðxÞ acquires the compressive mea-
surements y ∈ R

m, where m ≪ n, as follows:

EQ-TARGET;temp:intralink-;e001;63;211y ¼ Φx; (1)

where Φ ∈ R
m×n is the incoherent under-sampling matrix.

Generally, SðxÞ is a linear equation. The incoherence of Φ
to the signal x—more specifically the incoherence between
Φ and Ψ—is guaranteed by many properties including the
null space property4 and the restricted isometry property,5,6

to name a few. As shown by Kim and Shevlyakov,7 random
sampling matrices are largely incoherent to every dictionary

Ψ, thus the random matrices are a widely used sampling
operator.

The counterpart of the sensing operation is the reconstruc-
tion operation RðyÞ. The reconstruction operation recovers
a full-length signal x̂ ∈ R

n from the measurements y.
Because Eq. (1) is under-determined, the reconstruction can-
not be done linearly. Instead, the reconstruction operation is
an optimization problem aims to minimize a specific objec-
tive function. Conventionally, the CS reconstruction is done
by minimizing the l1-norm objective function, i.e.,

EQ-TARGET;temp:intralink-;e002;326;346min
x̂
kx̂k1 subject to Φx̂ ¼ y: (2)

This reconstruction method is commonly known as the
l1-norm minimization (l1-min for short). It is shown by
Donoho2 that when the sparsity of a signal is promoted by
minimizing the l1-norm objective function, the reconstructed
signal can be obtained accurately with high probability.
Finally, the original signal is reconstructed using the inverse

transformation û ¼ Ψ
−1x̂.

Conventionally, compressed sensing reconstructs a full-
length signal from highly under-sampled measurements by
solving the l1-norm minimization problem. However, this
has a couple of limitations. First, the l1-norm minimization
problem has to be solved using iterative optimization algo-
rithms, which have high computational complexity. This
complexity makes the time required for full-length signal
reconstruction is too large to be desirable in most practical
applications. The problem worsens with the increase of
the signal length, preventing compressed sensing to be appli-
cable to most data-intensive, next-generation content. Second,
the reconstructed signal x̂ obtained by minimizing the signal
sparsity using the l1-norm minimization tends to lose small
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magnitude components in the sparse signal representation
domain x. As most of these smaller magnitude components
are highly likely to be in high frequencies according to
transform coefficients’ characteristics, the final reconstructed
signal û may be distorted with losing details, thus resulting in
noise-like reconstruction artifacts in the reconstructed signal.
Figure 1(a) shows such artifacts, which are clearly visible in
a video sequence reconstructed using the l1-norm minimiza-
tion. This poses a challenge in many real-world applications,
such as medical imaging, in which the high-frequency details
are important and cannot be discarded.

This paper has two major contributions. The first contri-
bution is the proposal of an approach for reconstruction in
Sec. 3 in order to improve the CS reconstruction quality
of the full-length signal by exploiting the redundancy
between the signal x and a correlated reference r. Thus
herein we call the proposed method referenced compressed
sensing (RefCS). In this paper, we propose the theoretical
foundations of RefCS and demonstrate it experimentally
on how to exploit intersample redundancy for improving
reconstruction quality. Let x ∈ R

n, be a sparse n-dimen-
sional signal, which is acquired using compressive measure-
ments y ∈ R

m, where m ≪ n and y ¼ Φx, where Φ ∈ R
m×n

is the incoherent under-sampling matrix. Suppose there is an
a priori correlated reference signal r close to x in the sense
that δ, the distance between r and x, i.e., δ ¼ kr − xk2, is
very small. RefCS proposes that the reconstructed signal
x̂ is the solution of

EQ-TARGET;temp:intralink-;e003;63;293min
x̂
kx̂ − rk1 subject to Φx̂ ¼ y (3)

and it obeys the constraint

EQ-TARGET;temp:intralink-;e004;63;247kx̂ − xk2 ≤ 2δ: (4)

There is no other assumption about the relationship between
r and x apart from the distance. Exploiting the redundancy
between r and x leads to a much higher reconstruction
quality [Fig. 1(b)]. Using the correlated reference r, the
reconstructed data using the proposed RefCS are shown to
have higher peak signal-to-noise ratio (PSNR) values than
the those for the traditional l1-norm minimization recon-
struction. In this work, the performance of RefCS is demon-
strated in three different applications: multiscale image
reconstruction, video reconstruction, and functional mag-
netic resonance imaging (fMRI) data with PSNR improve-
ments of 5.43%, 40%, and 90%, respectively, as shown in
Sec. 5. For video reconstruction, unless motion compensated,
it is usually difficult to find a highly correlated reference from

the previously decoded data. As shown in Sec. 5, the perfor-
mance improvement for sequences with high-motion content
is not as high as for those with less motion content.

The second contribution of this paper is a solution for
the issue of high-reconstruction complexity of compressed
sensing as presented in Sec. 4. We show that it is possible
to reconstruct the full-length signal using the l2-norm objec-
tive function with the least squares method by incorporating
the correlated reference r. Provided Φ is a full rank matrix,
the reconstructed signal x̂ can be obtained as

EQ-TARGET;temp:intralink-;e005;326;492x̂ ¼ rþΦ
TðΦΦ

TÞ−1ðy −ΦrÞ: (5)

Thus hereinafter, we call the proposed solution in Sec. 4
referenced CS with the least squares (RefCSLS). The recon-
structed data from RefCSLS approach have resulted in qual-
ity comparable to that of regular RefCS reconstruction that
uses l1-norm [Fig. 1(c)], but with low computational times.
As shown in Sec. 5, it yields PSNR improvements of 5.83%
in multiscale image reconstruction, 18% in video reconstruc-
tion, and 89% in fMRI data with great reductions of compu-
tational time compared to the iterative algorithms used in
l1-norm minimization.

The remainder of this paper is organized as follows: the
related work is discussed in Sec. 2. The proposed RefCS is
introduced in Sec. 3, followed by the low-complexity variant
RefCSLS in Sec. 4. The experimental results, including all
three example application scenarios, are presented in Sec. 5
followed by concluding remarks in Sec. 6.

2 Related Work

A priori side-information regarding the structure of signals
has been explored within the CS sensing and reconstruction
operations in the literature. The main motivation of CS
reconstruction methods employing side-information is the
fact that the characteristics and structure of a signal are
shared between its neighbors. This observation can be seen
clearly in applications, such as, in magnetic resonance imag-
ing (MRI),8,9 sensor network,10 multiview imaging,11 and
surveillance camera,12 etc. Since Miosso et al.13 showed
that the use of side information can reduce the number of
measurements required, various side-information types have
been studied and incorporated into the CS reconstruction
operation.14 Examples include sparsity patterns (including
these variants: sparse support estimation,15 model-based CS,16

and Kalman-filtered CS17), upper and lower bounds,18 and
joint/group reconstruction.11

Video data contain a high level of temporal redundancy
between frames that can be employed as side information.

Fig. 1 Illustration of improvements due to the proposed methods RefCS and RefCS/LS: (a) l1-min,
(b) RefCS, and (c) RefCSLS.
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The interframe redundancy is at the heart of video compres-
sion techniques. It is also exploited in distributed video
coding (DVC) to achieve coding gains.19–21 DVC views con-
secutive frames as a corrupted version of a key frame and
uses the key frame as the base for reconstructing the cor-
rupted frame. Previous works in the literature show improve-
ments in distributed compressive video sensing (DCVS) over
the traditional CS reconstruction.22–24 There also presents the
attempt to incorporate the intraframe redundancy (which is
the spatial redundancy) into the reconstruction method.25

The generalized version of DCVS leads to the development
of a more dynamic approach to video sequence reconstruc-
tion, known as temporal compressed sensing (TCS).26–29

TCS reconstructs a signal by maximizing the sparsity as
well as exploiting the redundancy between two consecutive
reconstructed frames in a spatio-temporal signal. In other
words, TCS solves the following problem:

EQ-TARGET;temp:intralink-;e006;63;565min
x̂
ðkx̂tk1þkΨ−1x̂t −Ψ

−1x̂t−1k1Þ subject to Φx̂t ¼ y; (6)

corresponding to the two consecutive frames ut and ut−1,
where xt ¼ Ψut and xt−1 ¼ Ψut−1, respectively. Unlike
DCVS, TCS does not restrict the use of a key frame as a
base for reconstruction. Instead, the most recent recon-
structed frame is used directly as a base for the next frame.

The concept of reconstruction based on redundancy is
applicable not only to video sequence reconstruction30

but also to many similar applications, such as block-based
image processing31 and phase-based remote sensing.32 These
involve measurements of a large signal as a collection of
several smaller subsignals, i.e., each individual block in the
image processing, each frame in the video reconstruction,
and each phase-component in remote sensing. These smaller
subsignals have a high degree of redundancy and are highly
correlated to each other, which is exploited in the reconstruc-
tion or processing stage.

In all above work, interpixel redundancy has been
exploited by considering special application scenarios to
improve the quality of the reconstructed data. In the pro-
posed RefCS, a generalized and application-independent
approach to exploit interpixel redundancy by means of
a correlated reference is formulated. The early findings of
our work were reported in two conference publications.33,34

In this work, we propose the mathematical formulation of
RefCS and its extension into the least square reconstruction
(RefCSLS), analyze the effect of the correlated reference and
sampling rate on reconstruction errors, and experimentally
evaluate the proposed method considering three example
application scenarios: image, video, and fMRI data recon-
struction. More detailed analysis, experimental evaluation,
and other applications of our work can be found in the PhD
thesis of the first author.35

3 Referenced Compressed Sensing

3.1 Proposed Reconstruction Operation

A large signal, such as, an image or a video sequence can be
viewed as a collection C consisting of several smaller sub-
signals. Concretely, a subsignal xt ∈ R

n; t ¼ 1;2; : : : ; k is
a member of the collection Cx, where n is the length of
each signal xt and k is the total number of xt in Cx. In RefCS,
the correlated reference r is not required to be from the same

collection as x, i.e., the condition r ∈ Cx is not required.
In RefCS, a correlated reference r is an arbitrary signal close
to x, as defined in Definition 3.1.

Definition 3.1. For any signal x ∈ R
n, a correlated refer-

ence r of x is a signal such that r ∈ R
n and

EQ-TARGET;temp:intralink-;e007;326;691kr − xk2 ≤ ϵ; (7)

for a small 0 < ϵ ≪ kxk2.

The reference distance δ ¼ kr − xk2 has a very important
role in RefCS. Though the correlated reference r is arbitrary,
it is possible to find an orthogonal projection of r on the

feasible set X̂Φ;y given by the constraints of Eq. (1).

Proposition 1. Given a sensing matrix Φ ∈ R
m×n, a

compressive measurement y ∈ R
m, y ¼ Φx, and a correlated

reference r ∈ R
n, an orthogonal projection x̂P from r onto

the feasible subspace X̂Φ;y ¼ fx̂jy ¼ Fxg satisfies

EQ-TARGET;temp:intralink-;e008;326;543sup
x̂P

kx̂P − xk2 ≤ δ: (8)

Proof. Consider the case of x ∈ R
2 in Fig. 2. Let a refer-

ence r be a member of a set of references R, such that
R ¼ fr∶kr − xk2 ≤ δg. Also, define an orthogonal projec-
tion x̂P, which is the projection of the reference r ∈ R onto

the feasible subspace X̂Φ;y. ▯

Let L ¼ kx̂P − rk2 be the length of the projection. One
finds that

EQ-TARGET;temp:intralink-;e009;326;417L ≤ δ sin θ; (9)

where θ is the angle between r − x and xP − x. Because of
the relationship

EQ-TARGET;temp:intralink-;e010;326;364kx̂P − xk22 ¼ δ2 − L2; (10)

Fig. 2 Geometric example of Proposition 1, where x ∈ R
n .

Journal of Electronic Imaging 043010-3 Jul∕Aug 2019 • Vol. 28(4)

Hotrakool and Abhayaratne: Referenced compressed sensing for accurate and fast spatio-temporal signal reconstruction



we can see that kx̂P − xk2 is maximized when L ¼ 0,
i.e., θ ¼ 0. This implies that, for any r ∈ R,

EQ-TARGET;temp:intralink-;e011;63;730sup
x̂P

kx̂P − xk2 ≤ δ: (11)

In the proposed RefCS, instead of using the orthogonal
projection as in Proposition 1, the solution x̂1 can be
obtained using the l1-norm minimization. In this case, the
sparsity of x̂1 is promoted.

Proposition 2 Given a sensing matrix Φ ∈ R
m×n, a com-

pressive measurements y ∈ R
m, y ¼ Φx, and a correlated

reference r ∈ R
n, a least l1-norm reconstruction x̂1, which

is the solution of

EQ-TARGET;temp:intralink-;e012;63;596min
x̂
kx̂ − rk1 subject to Φx̂ ¼ y; (12)

satisfies

EQ-TARGET;temp:intralink-;e013;63;549kx̂1 − xk2 ≤ 2δ: (13)

Proof. Consider the case of x ∈ R
2 in Fig. 3. Let a

reference r be a member of a set of references R such that,
R ¼ frjkr − xk2 ≤ δg. The least l1-norm solution x̂1 is a

point on the feasible subspace X̂Φ;y ¼ fx̂jy ¼ Fxg, such that,
the norm kx̂1 − rk is minimized. Define the angle between
the vectors x̂1 − r and x̂P − r as ρ. Both x̂1 and x̂P are on the

feasible subspace X̂Φ;y, because x̂P is an orthogonal projec-

tion, it is clear that

EQ-TARGET;temp:intralink-;e014;63;418kx̂P − rk2 ≤ kx̂1 − rk2: (14)

From Fig. 3, it can be seen that

EQ-TARGET;temp:intralink-;e015;63;376kx̂1 − x̂Pk ¼ kx̂P − rk2 tan ρ: (15)

From Proposition 1, we know that kx̂P − rk2 ≤ δ. Also from
Fig. 3, it can be seen that ρ ≤ π

4
for x̂1 to be the smallest

l1-norm solution, thus

EQ-TARGET;temp:intralink-;e016;326;718kx̂1 − x̂Pk2 ≤ δ: (16)

This implies that

EQ-TARGET;temp:intralink-;e017;326;677sup
x̂1

kx̂1 − xk2 ¼ kx̂1 − x̂Pk2 þ kx̂P − rk2; (17)

EQ-TARGET;temp:intralink-;e018;326;630 ¼ 2δ: (18)

Both Proposition 1 and Proposition 2 show that the error
of RefCS depends on the distance δ between the reference r
and the signal x.

3.2 Relationship Between Correlated Reference,
Sampling Rate, and Reconstruction Error

As shown in Proposition 2, the performance of RefCS is
governed by the reference distance δ ¼ kr − xk2 between
the correlated reference r and the signal x. The goal is to
minimize the reconstruction error Eðx̂; xÞ ¼ kx̂ − xk2.

First, let us consider the relationship between the distance
δ and Eðx̂; xÞ. To study this relationship, the Monte Carlo
method is employed to a pool of signal P ¼ fx∶x ∈ R

256g
containing 1000 linearly independent random vectors. Each
vector xi ∈ P has the number of nonzero elements fixed to
50, each element has the value between 0 and 255.

A set of 50 randomly chosen vectors PI ⊂ P is used as
input signals. The sensing operation S and reconstruction
operation R, using RefCS, are applied to each signal x ∈ PI

repeatedly, each time using a different reference vector
r ∈ P; r ∈= PI . Figure 4 shows the scatter plot of each recon-
structed signal between δ against Eðx̂; xÞ, along with their
linear regression trend. Figure 4 clearly shows that the
smaller reference distance δ indeed leads to the lower recon-
struction error in general. Moreover, it can be seen that the
reconstruction error is far lower than the limit imposed by
Proposition 2. The reference distance δ in this experiment is
unusually high compared to typical setting because vectors
in each signal-reference pair (x, r) are independent of each

Fig. 3 Geometric example of Proposition 2, where x ∈ R
n .

Fig. 4 Scatter plot showing the relationship between the reference
distance δ and the reconstruction error Eðx̂;xÞ of RefCS.
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other and share no redundancy. This is intentional in order to
study the case where the reference is completely arbitrary.
This scenario is of course not optimal, but, despite this
extremity, the relationship between the reference distance
and the reconstruction error is clear.

The next step is to study the relationship of the sampling
rate s to the reconstruction error Eðx̂; xÞ, given the references
with fixed distance. Again, Monte Carlo method is employed
onto the same pool of random vectors P. This time, the
sensing operation S and the reconstruction operation R are
applied to each vector x ∈ P repeatedly, each time using a
different sampling rate s, where 10% ≤ s ≤ 90%. The refer-
ence r is created by adding random noise to x. Specifically,
for each x, we create a reference signal

EQ-TARGET;temp:intralink-;e019;63;598r ¼ xþ kn; (19)

where n is a uniform white noise such that,

EQ-TARGET;temp:intralink-;e020;63;560kr − xk2 ¼ kkxk2: (20)

In this experiment, three values of k are chosen to create
references at three distances: δL ¼ 0.25kxk2, δM ¼ 0.5kxk2,
and δH ¼ 0.75kxk2.

Figure 5 shows the average plot between the sampling
rate s and the error Eðx̂; xÞ. As one would expect, the error
goes up as the sampling rate decreases. However, the error
also reduces as the distance δ decreases. Given the same
sampling rate, it is clear that the results obtained using the
smaller δ have a much lower error. In addition, the difference
between the reconstruction error of low- and high-sampling
rate is narrower with the smaller δ. Let Es denote the recon-
struction error at the sampling rate s. As shown in Fig. 5, the
error difference is E10–escaped;E90 ¼ 880.18 when using
the references with δH. On the other hand, the error differ-
ence reduces to 175.58 when reconstructed using the refer-
ences with δL. In order words, the effect of the sampling
rate to the reconstruction error is smaller when the reference
distance is small.

Figure 5 also shows lines indicating the value twice the
reference distance, i.e., 2δ, showing the limit imposed by
Proposition 2. It shows that the RefCS results strictly obey
Proposition 2.

4 Reduction of Reconstruction Complexity:
Referenced Compressed Sensing with
the Least Squares

One of the major issues that prevents a practical deployment
of compressed sensing is the high computational complexity
of iterative reconstruction operation. High complexity makes
the reconstruction of large data a time-consuming task. Here
we propose a method that greatly reduces the complexity
of CS reconstruction by relaxing the objective function of
RefCS from l1-norm to l2-norm, thus allowing the recon-
struction to be done using the least squares approximation.

This claim might come as a surprise as the l2-norm objec-
tive is known to not promote the signal sparsity. However,
one of the main promises of RefCS is the fact that it moves
away from the notion of sparsity. Recall the same symbols
from Sec. 3. As shown in Proposition 2, the reconstruction
error Eðx̂; xÞ depends only on the distance δ ¼ kr − xk2
between the reference r and the signal x. This proposition
is valid for any lp-norm, 0 < p ≤ ∞. As the sparsity is no
longer needed to be maximized, it is desirable to relax the
optimization problem back to use the l2-norm objective
function to take advantage of its lower complexity.

Here we assert that the least squares method should per-
form reasonably well with the incorporation of the correlated
reference since it is bounded by Proposition 2. As such,
we propose to use the least squares method to solve for
the solution of the relaxed RefCS, referred to as RefCS with
the least squares (RefCSLS), following the Proposition 3.

Proposition 3. Given r ∈ R
n, a correlated reference of

a signal x ∈ R
n, the reconstructed signal x̂ ∈ R

n can be
obtained from the compressive measurements y ∈ R

m,
where y ¼ Φx and providedΦ is full rank matrix, as follows:

EQ-TARGET;temp:intralink-;e021;326;391x̂ ¼ rþΦ
TðΦΦ

TÞ−1ðy −ΦrÞ (21)

Proof. Following Eq. (12), we define a RefCS l2-norm

minimization problem as

EQ-TARGET;temp:intralink-;e022;326;338min
x
kx̂ − rk2 subject to Φx̂ ¼ y: (22)

Define a Lagrangian function as

EQ-TARGET;temp:intralink-;e023;326;294Lðx̂Þ ¼ kx̂ − rk22 þ λTðΦx̂ − yÞ; (23)

where λ is the Lagrange multipliers for the constraint set in
a diagonal matrix in R

m and T represents the transpose.
Setting the derivative of Lðx̂Þ with respect to x̂ to zero:

EQ-TARGET;temp:intralink-;e024;326;229

∂

∂x̂
Lðx̂Þ ¼ 2x̂ − 2rþ λTΦ ¼ 0; (24)

and considering the fact that Φ ∈ R
m×n, we can rewrite

Eq. (24) as

EQ-TARGET;temp:intralink-;e025;326;1682x̂ − 2rþΦ
Tλ ¼ 0; (25)

to obtain the condition

EQ-TARGET;temp:intralink-;e026;326;128x̂ ¼ r −
1

2
Φ

Tλ: (26)

To solve for the Lagrange multipliers λ, substitute Eq. (26)
into y ¼ Φx̂ to obtain

Fig. 5. Relationship between the sampling rate s, the reference dis-
tance δ, and the reconstruction error Eðx̂; xÞ of RefCS.
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EQ-TARGET;temp:intralink-;e027;63;752y ¼ Φr −
1

2
ΦΦ

Tλ: (27)

From Eq. (27), we get

EQ-TARGET;temp:intralink-;e028;63;709ΦΦ
Tλ ¼ −2ðy −ΦrÞ; (28)

and, finally,

EQ-TARGET;temp:intralink-;e029;63;668λ ¼ −2ðΦΦ
TÞ−1ðy −ΦrÞ: (29)

With the assumption of Φ as full rank, the matrix ΦΦ
T is

positive-definite and thus invertible. Substitute Eq. (29) back
into Eq. (26) to obtain the expression in Eq. (21), i.e.,

EQ-TARGET;temp:intralink-;e030;326;719x̂ ¼ rþΦ
TðΦΦ

TÞ−1ðy −ΦrÞ: (30)

▯

Therefore, with the least square minimization approach,
the reconstruction process reduces to the expression in
Eq. (21). The experiments in terms of three case studies and

Fig. 6 Reconstructed images from 50% compressive measurements using (a) l1-norm minimization,
(b) RefCS using low-resolution (25%) references, (c) RefCS using low-resolution (6.25%) references,
(d) RefCSLS using low-resolution (25%) references, and (e) RefCSLS using low-resolution (6.25%)
references.
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discussion of the reconstruction quality and running times
of RefCSLS method are presented in Sec. 5.

5 Experimental Results

In this section, three case studies where RefCS and RefCSLS
can be employed are presented. They are multiresolution
image reconstruction, video sequence reconstruction, and
fMRI data reconstruction. Throughout these experiments,
the infeasible-point subgradient algorithm,36 which is one of
the most efficient reconstruction methods available,37 is used
as the optimization algorithm for both the l1-norm minimi-
zation and the regular RefCS.

5.1 Image Reconstruction

This section demonstrates the performance of the proposed
RefCS and RefCSLS in a proof-of-concept scenario of
multiscale image reconstruction. Let an image I consisting
of n pixels be measured compressively using the sensing
operation S. As discussed, the images reconstructed using
l1-norm minimization method have a significant amount of
reconstruction artifacts, as shown in column (b) of Fig. 6.

In the image reconstruction scenario, the reference signal
can come from a previously reconstructed neighboring group
of pixels in a line considering line by line acquisition or
from a previously acquired ultralow resolution version of
the image. For this case study, the latter is considered for
demonstrating the performance of proposed RefCS and
RefCSLS. Suppose there is an ultralow resolution sensor
that can capture a small reference image R, where the size
of R is much smaller than I. Instead of measuring the
entirety ofm samples compressively as y, the samples in this
scenario contain two vectors: the reference image R and the
random sample y (while keeping the total amount of samples
at m). In this scenario, RefCS can employ the reference
vector r, where r is the sparse representation of the super-
resolution version of R, i.e., given that x ¼ ΨI,

EQ-TARGET;temp:intralink-;e031;63;127y ¼ ΦΨI; (31)

and the reference vector r is

EQ-TARGET;temp:intralink-;e032;63;85r ¼ ΨSðRÞ; (32)

where SðRÞ is the super-resolution operation. The recon-
struction operation R is employed to reconstruct the

image Î by

EQ-TARGET;temp:intralink-;e033;326;493x̂ ¼ Rðy; rÞ; (33)

EQ-TARGET;temp:intralink-;e034;326;452Î ¼ Ψ
−1x̂: (34)

Figure 6 shows the reconstructed images using the RefCS
and the RefCSLS usingR. In columns of Figs. 6(b) and 6(d),
the total samples m ¼ 0.5n consist of 0.25n from the low-
resolution reference image R and 0.25n from the compres-
sive measurements y, where as in columns of Figs. 6(c) and
6(e), the samples m ¼ 0.5n consist of 0.0625n from the
reference image R and 0.4375n from y. It is clear in these
examples that by employing the low-resolution reference,
the reconstruction artifacts are reduced greatly. In this figure,
the reconstructed images are far noisier compared to those
in Fig. 6(b). However, Table 1 shows that both the recon-
structed images in Figs. 6(b) and 6(c) have higher PSNR than
the images obtained using the conventional l1-norm minimi-
zation. When using a large reference image R (0.25n), the
RefCS and RefCSLS results show the average improvement

Table 2 Average reconstruction time per image (s) of each recon-
struction method.

Image l1-min RefCS RefCSLS

Aerial 11.63 11.58 1.22

Baboon 12.00 11.91 1.35

Barbara 11.88 11.83 1.23

Boat 11.69 11.79 1.24

Cameraman 11.92 12.24 1.26

Gold hill 12.13 11.99 1.27

Peppers 11.61 11.73 1.28

Table 1 Average PSNR in decibels of reconstructed multiscale images using the proposed reconstruction methods at the sampling rate
of 10%, 30%, and 50%. The reference image R is at 25% and 6.25% of the original image.

Image

l1-min RefCS (large R) RefCS (small R) RefCSLS (large R) RefCSLS (small R)

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

Aerial 28.22 28.53 28.92 29.06 29.08 29.27 28.66 28.78 28.94 29.11 29.17 29.30 28.74 28.85 28.99

Baboon 29.73 29.89 30.22 30.56 30.71 31.01 29.79 30.00 30.54 30.71 30.83 30.98 29.84 30.08 30.45

Barbara 28.48 28.93 30.02 30.76 31.02 31.61 29.34 29.66 30.56 30.98 31.25 31.53 29.49 29.60 29.89

Boat 29.06 29.38 30.05 30.97 31.14 31.35 29.74 29.85 30.45 31.01 31.11 31.32 30.07 30.10 30.13

Cameraman 29.50 29.68 29.75 31.23 31.49 31.57 29.95 29.98 30.27 31.63 31.77 31.84 30.17 30.28 30.52

Gold hill 29.19 29.78 30.55 31.10 31.30 31.72 29.87 30.16 30.83 31.14 31.39 31.72 29.97 30.17 30.58

Peppers 28.00 28.61 29.30 30.57 30.68 31.23 29.07 29.48 29.93 30.86 30.89 31.40 29.26 29.37 29.69
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of 5.43% and 5.83%, respectively, compared to the l1-norm
minimization. When using a smallR (0.0625n), the improve-
ments are 1.71% and 1.76%, respectively. The reason that
the RefCSLS results have better PSNR than the results of
the regular RefCS, in this experiment, is because the lower
reconstruction accuracy of RefCSLS—which results in blur-
ring instead of the reconstruction artifacts—acts as a low-
pass filter for the images that filter out the artifacts. While
this outcome is not particularly desirable, Table 2 shows that
RefCSLS, despite yielding the results comparable in recon-
struction quality, is faster than both l1-norm minimization
and RefCS by a factor of 9.35 on average.

5.2 Video Sequence Reconstruction

In this section, we explore the use of RefCS and RefCSLS in
a case study of video sequence reconstruction. Consider
a video sequence V as a collection of frames. Each frame
It ∈ V, t ¼ 1;2; : : : , is a frame of V at time t. Each frame is
compressively sampled using the sensing operation

EQ-TARGET;temp:intralink-;e035;326;683yt ¼ ΦΨIt: (35)

The reconstruction operation R is employed to recon-
struct the full frame Ît, obtained by

Fig. 7 Examples frames from (a) original sequences and sequences reconstructed from the 50%
compressive measurements using (b) l1-norm minimization method, (c) RefCS, and (d) RefCSLS.
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EQ-TARGET;temp:intralink-;e036;63;752x̂t ¼ Rðyt; rtÞ; (36)

EQ-TARGET;temp:intralink-;e037;63;719Ît ¼ Ψ
−1x̂t: (37)

In this experiment, r ¼ x̂t−1, with r0 being a vector of all
zero with the same length as x is considered. The reconstruc-
tion operation is done using the conventional l1-norm min-
imization and the proposed methods: RefCS and RefCSLS.

The example sequences used in this experiment are a set
of 14 test video sequences. A few examples are displayed in
Fig. 7(a). These sequences can be grouped into three catego-
ries based on the amount of activity they contain. These
categories are low-, medium-, and high-activity sequences.
Figure 7(b) shows the examples of the sequences recon-
structed using the l1-norm minimization, whereas Fig. 7(c)
shows the sequences reconstructed using RefCS. The
improvement of visual quality is obvious in the RefCS
results compared to the results of conventional l1-norm
method. In particular, the RefCS results show the reduction
of the noise-like reconstruction artifacts, which can be noticed
easily in the l1-norm minimization results. Figure 7(d) shows
the examples reconstructed using RefCSLS. Even though
RefCSLS does not promote the sparsity of the reconstruction

results and using a much less complex reconstruction method,
it can be seen that the results of RefCSLS have the visual
quality comparable to that of the regular RefCS results.
These proposed methods clearly outperform the conventional
l1-norm minimization method in terms of visual quality.

Table 3 shows the objective comparison of the reconstruc-
tion quality of each reconstruction method using PSNR.
Table 3 shows that the RefCS results have at least 40%
higher in PSNR than the L1-norm minimization. The use
of the correlated reference contributes to the suppression
of reconstruction artifacts Table 3 also shows the PSNR
of the RefCSLS reconstructed video sequences. It shows that
the quality of the RefCSLS reconstructed video sequences
varies much greater than other methods. At the low sampling
rate (such as 10%), the results of RefCSLS have poor
PSNR compared to the conventional l1-norm minimization.
However, after the sampling rate increases beyond the cross-
over rate—empirically found to be 34% in this experiment—
the quality of the RefCSLS reconstructed video outperforms
that of the l1-norm minimization reconstruction rapidly.
At the sampling rate of 50%, the results from RefCSLS
have on average 18% higher PSNR than the results of the
l1-norm minimization.

Table 3 Average PSNR in decibels of reconstructed sequences using the proposed reconstruction methods at the sampling rate of 10%, 30%,
and 50%.

Methods

l1-min RefCS RefCSLS

10% 30% 50% 10% 30% 50% 10% 30% 50%

Low-activity sequences

Akiyo (01) 19.90 24.89 28.29 45.24 46.27 48.28 13.31 23.23 37.38

Claire (03) 18.07 24.25 28.37 30.97 34.30 38.60 12.45 22.82 35.06

Container (05) 18.47 22.59 25.94 37.87 40.39 43.57 9.76 20.12 34.35

Road (08) 21.87 27.26 31.32 32.87 34.76 37.78 8.59 18.77 31.87

Miss USA (10) 22.76 28.53 32.42 35.68 38.37 41.98 16.71 26.46 39.56

Medium-activity sequences

Car (02) 16.94 22.17 26.13 26.85 28.74 31.93 12.10 21.12 28.82

Coastguard (04) 21.23 25.18 28.74 28.89 30.74 33.93 11.47 20.97 32.14

Office (07) 18.33 22.06 25.59 42.44 43.11 44.83 10.01 19.72 34.11

Mother (11) 20.32 26.09 29.73 41.14 41.91 44.30 11.75 22.20 35.86

News (12) 17.27 21.47 24.49 30.39 33.13 36.58 14.37 24.03 35.09

Salesman (13) 20.29 24.24 27.63 35.43 37.29 39.99 15.50 24.57 32.34

High-activity sequences

Foreman (06) 17.17 21.89 26.04 23.93 24.04 31.23 8.88 18.22 28.14

Skates (09) 15.71 20.51 24.14 15.47 19.15 23.28 9.55 15.90 20.25

Silence (14) 19.04 23.52 27.28 39.97 41.41 44.11 10.66 20.69 33.29
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It can be noticed in Table 3 that the performance of
RefCS is inversely proportional to the amount of activity
in the sequences. The reason for this is the larger reference
distance δ in the high-activity sequences that consist of lots
of movements. The amount of activity does not affect the
performance of the l1-norm minimization, though, as each
frame is reconstructed independently from each other. As the
reconstruction error of RefCS is bounded by Proposition 2,
RefCS is guaranteed to outperform the l1-norm minimization
when the reference distance δ is closer to the signal than the
l1-norm solution by a factor of two. A sequence containing
lots of movement could lead to a reference that is too distant
to the signal, thus, reducing the performance of RefCS.
Also since the reconstructed preceding frame is used as the
reference, the errors are propagated to successive frame
reconstructions leading to more artifacts in later frames.
One can avoid this by introducing an l1-norm minimization-
based reconstructed frame for every group of frames in a
similar manner to introducing an intraframe in conventional
video coding algorithms.

Finally, Table 4 shows the average reconstruction time per
frame for each sequence using each method. As discussed in
Sec. 4, because RefCSLS does not use an iterative algorithm,
it results in a shorter reconstruction time by the factor of at
least 1200 compared to that of RefCS and l1-min.

5.3 Functional Magnetic Resonance Imaging Data
Reconstruction

In this section, we explore another case study of RefCS and
RefCSLS in fMRI data reconstruction. Unlike conventional
MRI, fMRI requires a series of several three-dimensional
tomographic volumes in order to extract the region of brain
activity of a subject. The use of compressed sensing in fMRI
offers the benefit of a better trade-off between the image qual-
ity and the acquisition time, i.e., higher resolution data can be
obtained as fast as the current high-speed low-resolution scan.

The spatio-temporal nature of fMRI data fits perfectly
with the proposed paradigm. The aim of this section is to
reconstruct a series S consisting of full three-dimensional
volumes. Each volume Vt ∈ S, t ¼ 1;2; : : : , is to be recon-
structed from its compressive measurements yt ¼ SðxtÞ,
where xt is the complete K-space of Vt. Suppose that the
sensing operationSðxtÞ ¼ Φxt is built into the scanning pro-
cedure, the reconstructed volume V̂t can be obtained from

EQ-TARGET;temp:intralink-;e038;326;551V̂t ¼ Ψ
−1x̂t; (38)

where

EQ-TARGET;temp:intralink-;e039;326;512x̂t ¼ Rðyt; rÞ; (39)

r ¼ x̂t−1, and Ψ
−1 is the inverse Fourier transform.

To demonstrate this, a set of fMRI data is reconstructed
from the simulated compressive measurements of their
K-space. The fMRI data used in this experiment are from
the following datasets:

1. attention to visual motion dataset38 (DS1),

2. auditory fMRI dataset38 (DS2),

3. mixed-gambles task fMRI dataset (obtained from
the OpenfMRI database with accession number
ds00000539) (DS3), and

4. visual object recognition dataset (obtained from
the OpenfMRI database with accession number
ds00010540) (DS4).

Each data point is reconstructed from the compressive
measurements of 10%, 30%, and 50%. Figure 8(a) shows
the example slices from each dataset.

First, Figs. 8(b)–8(d) present the examples slices of the
reconstructed data employing different reconstruction meth-
ods for the purpose of subjective evaluation of the visual
quality. It is clear that, at the sampling rate of 50%, both
RefCS [Fig. 8(c)] and RefCSLS [Fig. 8(d)] outperform the
conventional l1-norm minimization method. Even though the
l1-norm minimization fails to reconstruct the small details,
particularly in the DS2 and DS4, these details, however,
are clearly preserved using the proposed methods.

To evaluate the visual quality objectively, Table 5 shows
the average PSNR of the reconstructed fMRI data. Table 5
confirms the observation made in the subjective evaluation
that the RefCS outperforms the conventional l1-norm minimi-
zation, resulting in 90% higher PSNR on average. More inter-
esting results are the reconstructed data using RefCSLS.
Table 5 shows that the performance of RefCSLS in recon-
structing fMRI data is comparable to the regular RefCS,
despite having much less computational complexity. In con-
trast to the results of video reconstruction, shown in Sec. 5.2,
here the performance of RefCSLS does not drop below that

Table 4 Average reconstruction time per frame (s) of each recon-
struction method.

Methods

Reconstruction time per frame (s)

l1-min RefCS RefCSLS

Low-activity sequences

Akiyo 2.3 2.24 1.7 × 10−3

Claire 2.17 2.18 1.8 × 10−3

Container 2.11 2.29 1.9 × 10−3

Road 2.18 2.19 1.7 × 10−3

Miss USA 2.16 2.18 1.8 × 10−3

Medium-activity sequences

Car 2.22 2.21 1.8 × 10−3

Coastguard 2.17 2.22 1.8 × 10−3

Office 2.17 2.30 2.0 × 10−3

Mother 2.23 2.20 1.8 × 10−3

News 2.13 2.17 1.8 × 10−3

Salesman 2.15 2.14 1.8 × 10−3

High-activity sequences

Foreman 2.16 2.26 1.7 × 10−3

Skates 2.15 2.15 1.8 × 10−3

Silence 2.17 2.18 1.7 × 10−3
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of the l1-norm minimization at low sampling rate. The reason
for this dramatic improvement lies in the characteristic of the
fMRI data. Unlike in natural video sequences, the difference
between two consecutive volumes is largely due to the changes
of the intensity of each voxel rather than movements. This

results in a much smaller reference distance δ in fMRI data,
thus, improving the performance of the proposed methods dra-
matically. On average, the data reconstructed using RefCSLS
results in 89% higher PSNR, and the reconstruction time is
shortened by the factor of 5.4 × 104, as shown in Table 6.

Fig. 8 Examples of the reconstructed data using different reconstruction methods from the compressive
measurements with the sampling rate of 50%: (a) original lossless data, (b) l1-norm minimization,
(c) RefCS, and (d) RefCSLS.

Table 5 Average PSNR of data reconstructed using different recon-
struction methods.

Method
Sampling
rate (%) DS1 DS2 DS3 DS4

l1-min 10 24.97 16.22 26.35 21.79

30 25.56 24.94 34.86 26.03

50 32.87 25.24 36.17 30.21

RefCS 10 56.35 41.19 50.86 44.69

30 60.14 42.85 52.25 46.11

50 65.23 44.78 54.63 48.01

RefCSLS 10 56.05 41.27 51.03 44.92

30 57.60 42.86 52.60 46.48

50 59.59 44.84 53.75 48.45

Table 6 Average reconstruction time per volume (s) using different
reconstruction methods.

Method
Sampling
rate (%) DS1 DS2 DS3 DS4

l1-min 10 218.91 374.28 206.66 194.34

30 391.42 602.31 380.46 310.78

50 641.68 874.00 662.47 513.71

RefCS 10 214.32 373.63 208.13 194.93

30 383.95 579.32 385.86 310.87

50 636.43 872.67 660.37 496.87

RefCSLS 10 0.41 0.53 0.35 0.27

30 0.92 1.22 0.77 0.72

50 1.21 1.71 1.15 1.08
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6 Conclusions

In this paper, we have presented a framework for using
a reference signal for compressed sensing reconstruction.
The proposed algorithm, RefCS, improves the reconstruction
quality of the compressed sensed signals by exploiting the
spatial- or temporal-redundancy of the correlated reference.
We have shown that RefCS outperforms the conventional
l1-norm minimization method in terms of PSNR in three
different scenarios, i.e., the multiscale image reconstruction,
video sequence reconstruction, and fMRI data reconstruc-
tion. By exploiting the correlated reference, RefCS can
improve the reconstruction quality by up to 90% in terms of
PSNR in the experiments. For video sequences, the proposed
method is more efficient when the amount of motion is
low, as there is no motion compensation is utilized in the
proposed paradigm.

We also demonstrated that by using a correlated reference
it was possible to reconstruct the signals using the least
squares method. The results using RefCSLS are comparable
to those from the regular RefCS in terms of PSNR, while
being able to obtain the results much faster than the conven-
tional iterative reconstruction algorithms, for example,
improving the reconstruction time by a factor ranging from
9 to 5.4 × 104 in our experiments. With the proposed meth-
ods, this paper has successfully addressed two challenges
of applying compressed sensing in a practical application,
namely, its poor reconstruction quality and its high computa-
tional complexity.
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