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A severe dependence of numerical simulations on themesh

density is usually attributed to the presence of strain soft-

ening in the constitutive relation. However, other mate-

rial instabilities, like non-associated plastic flow, can also

cause mesh sensitivity. Indeed, loss of ellipticity in quasi-

static analyses is the fundamental cause of the observed

mesh dependence. It has been known since long that non-

associated plastic flow can cause loss of ellipticity, but the

consequence for mesh sensitivity, and subsequently, for the

difficulty of the equilibrium-finding iterative procedure to

converge, have remained largely unnoticed. We first demon-

strate at the hand of a biaxial test structural softening and

amarkedmesh dependence for an ideally-plastic material

equippedwith a non-associated flow rule. The phenomena

are then analysed in depthusing an infinitely long shear layer.

Finally, it is shown that the mesh effect disappears when

the standard continuum model is replaced by a Cosserat

continuum, a well-known regularisationmethod for strain-

softening constitutive relations.
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1 | INTRODUCTION

In the 1980s it was observed that the introduction of strain softening in constitutive relations caused a phenomenon

now known asmesh dependence or mesh sensitivity. While it is normal that, upon refinement of the discretisation, the

numerical solution approaches the correct solution of the initial value problem, the connotationsmesh dependence

or mesh sensitivity are typically reserved for a phenomenon where the solution does not seem to converge to the

correct solution, or at least, a solution is foundwhich does not seem physically realistic. This is most simply shown at the

hand of a one-dimensional bar loaded in tension and composed of a strain softeningmaterial. Upon refinement of the

discretisation, the post-peak descending branch runs steeper and steeper, giving amore andmore brittle structural

response. Beyond a certain number of elements a snap-back phenomenon is observed, and the overall displacement

decreases after passing the peak load. In the limit of an infinitely densemesh the post-peak load-displacement curve

doubles back on its original (elastic) loading branch, resulting in the physically unrealistic case of failure without energy

dissipation [1].

While this phenomenon has originally been ascribed to shortcomings of the finite element formulation, the true

reason appeared to be the loss of well-posedness of the initial or boundary-value problem, and thus emerges for any

discretisationmethod [2, 3]. Indeed, for quasi-static problems ellipticity ceases to hold at a certain stage of the loading

process and failure takes place at a discrete, characteristic plane, where the governing equations have turned hyperbolic.

The observed mesh dependence is then just a manifestation of the inability of the discretisation method to exactly

capture a discrete plane. Various regularisationmethods have been proposed to locally avoid losing ellipticity, including

non-local or gradient continua, micromorphic (Cosserat) continua, and the inclusion of viscosity and rate effects [4].

It has been recognised that strain softening is not the only material instability which can lead to loss of ellipticity.

Indeed, it has also been demonstrated for strain-rate softening [5], while seminal analyses byMandel [6], Rudnicki and

Rice [7], Needleman [8] and others [9, 10] have shown that non-associated flow also has a materially destabilising effect

and can lead to a local loss of ellipticity, thus causing the boundary-value problem to become ill-posed. In principle,

non-associated flow can therefore also induce structural softening and mesh sensitivity, but with some exceptions

[11, 12], little attention has been given in the literature to the possibility of this phenomenon to occur.

Herein, wewill first recall that the introduction of a non-associated flow in plasticity can induce structural softening.

Wewill do this at the hand of shear banding in a biaxial test. To focus on non-associated flow as the sole destabilising

effect, strain softening and possible geometrical destabilising effects have been excluded from the analysis. This example

will also serve to illustrate howmesh dependence typically manifests itself in non-associated plasticity, which is often

different from how it appears in simulations which involve strain softening. However, the underlying mathematical

reason, namely the loss of ellipticity, is the same for both instability phenomena, and it will be briefly recalled how

non-associated flow can cause loss of ellipticity. Next, the case of a shear layer in pure shear will be examined in

detail, analytically and numerically, regarding the occurrence of mesh dependence and structural softening caused

by non-associated plastic flow. The ill-posedness of the boundary-value problem induced by the loss of ellipticity is

normally remedied by the introduction of a localisation limiter, or regularisationmethod. As stated above, a number of

methods exist, and the Cosserat continuum [13, 14, 15, 16] has been suggested as an approach that can be physically

wellmotivated for granularmaterials. After a succinct summary of the elasto-plastic Cosserat continuum, the shear layer

is reanalysedwith this enriched continuummodel, and the results are shown to bemesh objective, yet still exhibiting

structural softening.
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F IGURE 1 Biaxial test with boundary conditions and imperfection

2 | MESH DEPENDENCE IN NON-ASSOCIATED PLASTICITY

To demonstrate that in the absence of strain softening and geometrically destabilising effects, non-associated plastic

flow can lead to structural softening andmesh dependence we study shear banding in a biaxial test. AMohr-Coulomb

yield surface has been adopted and the analyses have been carried out under plane-strain conditions.

2.1 | Non-associatedMohr-Coulomb plasticity

We consider a linear elastic-perfectly plasticMohr-Coulombmodel. Ordering the principal stress such that σ1 is the

smallest and σ3 is the largest principal stress, theMohr-Coulomb yield function is given by:

f =
1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sinφ − c cosφ (1)

with c andφ the cohesion and the angle of internal friction, respectively. For non-associated flow the yield function f is

augmented by a plastic potential function

g =
1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sinψ (2)

withψ ≤ φ being the dilatancy angle, fromwhich the plastic strain rates can be derived:

ÛǫÛǫÛǫp = Ûλ ∂g
∂σσσ

(3)
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(a) Coarsemesh (b) Mediummesh (c) Finemesh

F IGURE 2 Deformed contours for the biaxial test

For the implementation of the non-associatedMohr-Coulombmodel, reference is made to the literature [1], including

the construction of a consistent tangent operator, which has been used in the analysis, and a proper treatment of

stresses near the apex of the yield cone.

2.2 | Shear banding in a biaxial test: mesh dependence

Calculations have been carried out with the elastic-ideally plasticMohr-Coulombmodel for the geometry of Figure

1. Three different meshes have been used, depicted in Figure 2with 6-noded triangular elements in a crossed lay-out.

The dimensions of the specimen are L = 2mandW = 1m. The Young’s modulus is E = 1000 Pa, Poisson’s ratio ν = 0.2,

cohesion c = 1 Pa, angle of internal frictionφ = 20
o and dilatancy angleψ = 10

o. At the left boundary one element, just

above the centre, has been given a 5% reduction in cohesive strength. The nodes at the bottom are rollers with the

exception of the left-bottom corner node, which is also fixed in the horizontal direction. Uniform displacements are

prescribed at the top to give a compressive stress field.

Figure 2 shows that localised shear bands develop and that uponmesh refinement the localisation bands become

narrower and narrower. This points to a vanishing width in the limit of an infinitely dense mesh, which is associated

with loss of ellipticity. Mesh dependence is also shown in the load-displacement diagram of Figure 3, in particular

whenwe consider the zoom. However, different from themesh dependence encountered when using strain-softening

constitutive relations, themesh dependence only shows up in the first part after the peak load has been reached, and

levels out to reach the same residual load. Importantly, the results confirm earlier analyses that non-associated flow

rules can induce structural softening, even though the constitutive relation does not feature strain softening [11, 12].
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F IGURE 3 Load vs displacement for the biaxial test

3 | THE UNDERLYING CAUSE: LOSS OF ELLIPTICITY

Considering quasi-static loading conditions, the governing differential equations – equilibrium equations, kinematic

equations and constitutive equations – normally have an elliptic character. Mathematically, this implies that disconti-

nuities in the solution are not possible. Now suppose that within the given context of quasi-static loading conditions,

a (possibly curved) plane emerges, say Γd , across which the solution is possibly discontinuous. The difference in the

traction rate Ûtd across this plane reads:

[[Ûtd ]] = nΓd · [[ Ûσσσ]] (4)

with nΓd the normal vector to the discontinuity Γd , or using the constitutive relation Ûσσσ = D : Ûǫǫǫ, withD the tangential
stiffness tensor

[[Ûtd ]] = nΓd · D : [[Ûǫǫǫ]] (5)

where the assumption of a linear comparison solid [17] has been introduced, i.e. D is assumed to have the same value at

both sides of the discontinuity Γd .

A velocity field Ûu that is crossed by a single discontinuity can be represented as:

Ûu = Û̄u + HΓd
Û̃u (6)

with the Heaviside functionHΓd
separating the continuous velocity fields Û̄u and Û̃u. The strain rate field is obtained by

straightforward differentiation:

ÛǫÛǫÛǫ = +
sym Û̄u + HΓd

+
sym Û̃u + δΓd ( Û̃u ⊗ nΓd )

sym (7)

where the superscript ’sym’ denotes the symmetrised part of the operator and δΓd is the Dirac function at Γd . The
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difference in strain rate fields at Γd is proportional to the unbounded term at the interface:

[[Ûǫǫǫ]] = ζ
(
Û̃u ⊗ nΓd

)sym
(8)

with ζ a non-zero scalar. Substitution into Equation (5) gives:

[[Ûtd ]] = ζ
(
nΓd · D · nΓd

)
· Û̃u (9)

where theminor symmetry of the tangential stiffness tensor has been exploited. A non-trivial solution can exist if and

only if the determinant of the acoustic tensor vanishes:

det
(
nΓd · D · nΓd

)
= 0 (10)

If this condition, Eq. (10), is met, discontinuous solutions can emerge and loss of ellipticity of the governing differential

equations occurs. It is noted that Eq. (10) is coincident with Hill’s condition for the propagation of plane acceleration

waves in solids [18].

For a Mohr-Coulomb plasticity model with a non-associated flow rule used in the previous section, it has been

shown that the criterion of Eq. (10) results in a critical hardening modulus hcrit at which ellipticity is lost, and hence

shear bands can develop [6, 10]:

hcrit

µ
=

(sinφ − sinψ)2
8(1 − ν) (11)

with µ and ν the shearmodulus and Poisson’s ratio, respectively. Since µ > 0 and ν ≤ 1/2, loss of ellipticity already occurs
for positive values of the hardeningmodulus h in the case of non-associated flow, i.e. whenψ < φ. For non-hardening

plasticity h = 0, and consequently, h < hcrit, implying that the governing equations are not elliptic, and that mesh

sensitive solutions can emerge.

4 | A CLOSER LOOK: ANALYSIS OF A SHEAR LAYER

To investigate the structural softening andmesh dependence encountered in the shear-band simulation of the biaxial

test in more detail, we consider the simpler case of a shear layer under plane-strain conditions, which is infinitely long in

the horizontal x -direction. The discretised shear layer is amenable to an analytical solution, which wewill compare with

a numerical simulation for different mesh densities.

4.1 | Analytical solution

We assume that the shear layer is sub-divided intom elements (constant strain). One element has amarginally lower

shear strength than the otherm − 1 elements andwill therefore plasticise, while the remaining elements unload. For

this element, the shear strain can be decomposed as:

γ = γe + γp (12)
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F IGURE 4 An infinitely long shear layer

With τ the shear stress and µ the shear modulus, so that γe = τ/µ, we can rewrite Eq. (12) as:

γ =
τ

µ
+ γp (13)

We adopt a Drucker-Prager yield function,

f =

√
3J2 + α

∗p − k ∗ (14)

with the material parameters α∗ and k ∗ related to the cohesion c and the angle of internal friction, φ. Considering

plane-strain conditions, Eq. (14) reduces to:

f = τ + αp − k (15)

under pure shear loading, where

α =
2
√
3 sinφ

3 − sinφ , k =
2
√
3c cosφ

3 − sinφ (16)

In a standardmanner, a plastic potential function is introduced:

g = τ + βp (17)

where β is related to the dilatancy angleψ similar to the relation between α andφ in Eq. (16). The plastic shear and

volumetric strain rates then directly follow as:





Ûγp = Ûλ ∂g
∂τ

= Ûλ

Ûǫpv = Ûλ ∂g
∂p

= Ûλβ
(18)

which results in the dilatancy relation:

Ûγp =
Ûǫpv
β

(19)
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and for proportional loading:

γp =
ǫ
p
v

β
(20)

With the additive decomposition for the volumetric strain:

ǫv = ǫev + ǫ
p
v (21)

Eq. (19) becomes:

γp =
ǫv − ǫev
β

(22)

Since ǫev = p/κ , with κ the bulk modulus, we can rewrite Eq. (22) as:

γp =
ǫv

β
− p

βκ
(23)

and Eq. (13) becomes:

γ =
τ

µ
− p

βκ
+
ǫv

β
(24)

Since the yield conditionmust hold during progressive yielding, i.e. f = 0, we have from Eq. (15):

p =
k − τ
α

(25)

and Eq. (24) becomes:

γ =
τ

µ
+
τ − k
αβκ

+
ǫv

β
(26)

We assume that allm elements have an equal length, h. For the total height of the layer we thus haveH = mh. There are

two possible assumptions for ǫv .

Case I: We assume that ǫv = 0 on a pointwise basis, in this case for each (constant strain) element. Numerically, this

can be realised by preventing each element from displacing vertically. Eq. (26) then reduces to:

γ =
τ

µ
+
τ − k
αβκ

(27)

Noting that only in the weakened element we have elasto-plastic deformations, and the remaining m − 1 elements

feature only elastic strains, the horizontal displacement at the top of the layer reads:

u = γh + (m − 1)h τ
µ

(28)
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or using Eq. (27):

u = mh
τ

µ
+ h

τ − k
αβκ

(29)

Hence, the average shear strain over the layer becomes:

γ̄ =
u

H
=
τ

µ
+
τ − k
mαβκ

(30)

Eq. (30) shows that there is a clear mesh dependence since, when increasingm , the response becomesmore brittle.

When τ ↓ 0, we have an inverse dependence on the numbers of elements:

lim
τ→0

γ̄ = − k

mαβκ
(31)

We note that α ≥ 0 and κ > 0, but that for plastic contraction β < 0. For τ ↓ 0, we therefore have γ̄ > 0.

Case II: The condition of incompressibility ǫv = 0 is not imposed pointwise, but over the entire shear layer. This

implies that part of the plastic expansion/contraction in the failing element can be compensated by elastic volumetric

strains in the other elements. Numerically, this condition can be simulated by only prescribing roller boundary conditions

at the top of the layer together with linear dependence (master-slave) relations to ensure that nodes on the same

horizontal line displace the same amount. It is noted that when imposing this condition, the other (m − 1) elements may
satisfy the yield condition at some point.

Let the additional shear strain be denoted by∆γ. Then, the additional horizontal displacements at the top of the

layer is

∆ = ∆γwh + (m − 1)∆γ l h (32)

where the superscriptsw and l denote the weak element and the remainder of the layer, respectively. Substitution of

Eq.(13) then gives:

∆u

h
=

∆τ

µ
+ (∆γp )w + (m − 1)

(
∆τ

µ
+ (∆γp )l

)
(33)

Use of the dilatancy relation, Eq. (20), subsequently gives:

∆u

h
= m

∆τ

µ
+

1

β

(
(∆ǫpv )w + (m − 1)(∆ǫpv )l

)
(34)

Exploiting the additive decomposition of the strain into an elastic and a plastic component, and considering that the

shear layer deforms isochorically, we obtain:

∆u

h
= m

∆τ

µ
− 1

β

(
(∆ǫev )w + (m − 1)(∆ǫev )l

)
(35)

Since the stresses are on the yield surface, the consistency condition holds holds for a finite increment:

∆p = −∆τ

α
(36)
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so that:

(∆ǫev )w = (∆ǫev )l =
∆p

κ
= −∆τ

ακ
(37)

Substitution into Eq. (35) then yields:

∆γ̄ =
∆u

H
=

∆τ

µ
+

∆τ

αβκ
(38)

giving a slope:

d γ̄

dτ
=

1

µ
+

1

αβκ
(39)

Physically, α , µ and κ must be positive. However, β < 0 for plastic contraction, and, depending on the precise values

of α , β , µ and κ , we have d γ̄
dτ
< 0, leading to structural softening. However, sincem has dropped out of the expression,

there is nomesh dependence under the current assumption.
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F IGURE 5 Load-displacement curves for Case I of the infinitely long shear layer

4.2 | Numerical solutions

Wefirst consider Case I, and analyse a layer with a heightH = 100mm. Thematerial parameters have been taken as

Young’s modulus E = 10000MPa and Poisson’s ratio ν = 0.25, while for the plasticity the following values have been

used: α = 0.2, β = −0.2 and k = 100MPa, with the latter parameter reduced by 20% for the weaker element. Three

mesh densities have been used, with 20, 30 and 40 elements, respectively. The load-displacement curves have been

plotted in Figure 5 alongwith the corresponding analytical solutions, cf. Eq. (30). The numerical results fully coincide

with the analytical solution.

For all discretisations a clear structural softening is observed, which is in keeping with the numerical solutions
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F IGURE 6 Deformedmodel for Case I, at τ = 20MPa, using a standard Drucker-Prager model

obtained for the biaxial test just after reaching the peak load, Figure 3. Moreover, themesh dependence observed in the

biaxial test, i.e. for finer meshes the descending branch of the post-peak load-displacement curve becomes steeper, is

also corroborated by the numerical and analytical results for the shear layer. Evenmore visible than in the biaxial test,

see Figure 2, it is now apparent that localisation is confined to a single element (layer), see Figure 6, which shows the

deformed contours of the shear layer beyond peak load at τ = 20MPa.

We next consider case II, with again three different discretisations, but nowwith 20, 40 and 80 elements, respec-

tively. As with Case I, there is a clear structural softening, see Figure 7. However, the numerical and analytical solutions

only match after progressive deformations, and then indeed do not exhibit anymesh dependence, as predicted by the

analytical solution of Eq. (39). The discrepancy between the analytical solution and the numerical results is due to

the fact that the assumption is violated that there are no plastic strains outside the weaker element. Because of the

occurrence of plastic straining outside the weak element right after the peak load the numerical results there also

become slightly mesh dependent, as shown in the zoom. At progressive overall displacements the plastic zone again

becomes confined to the weaker element and the assumption underlying the analytical solution is satisfied. Figure

8 shows the deformed contours at a residual shear stress level τ = 43MPa. As with the previous case, localisation is

confined to a single element, irrespective of the number of elements used tomodel the shear layer.

5 | COSSERAT ELASTO-PLASTICITY

The structural softening andmesh dependencewhich have been encountered in the preceding examples is due to a local

loss of ellipticity of the governing set of partial differential equations. As has been stated in the Introduction, this can

be prevented by using a non-Boltzmann continuummodel or by introducing rate dependence. Herein we investigate
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F IGURE 7 Load vs displacement for Case II of the infinitely long shear layer

whether the use of a Cosserat continuummodel, which has been popular for describing geomaterials [13] and has been

shown to be effective in removingmesh dependence due to strain softening [14, 15, 16], can be an effective localisation

limiter for non-associated flow as well.

5.1 | Model formulation

Neglecting inertia terms and body forces linear and rotational equilibrium of a Cosserat continuum can be formulated

as [19, 20]:

divσσσT = 0 (40)

and

divmT + eee : σσσ = 0 (41)

respectively, where σσσ is the Cauchy stress tensor, m is the couple-stress tensor, and eee is the permutation tensor.

Conjugate to the Cauchy stress tensor and the couple-stress tensor are the strain tensor ǫǫǫ and themicro-curvature

tensor κκκ , which are derived from the usual displacement vector u and amicro-rotation vectorωωω, as follows:

ǫǫǫ = +u − eee ·ωωω (42)

and

κκκ = +ωωω (43)

For a small-strain elasto-plastic Cosserat continuum the usual additive decomposition of the strain tensor into an
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F IGURE 8 Deformed contours for Case II, at τ = 43MPa using a standard Drucker-Prager model

elastic and a plastic part is assumed,

ǫǫǫ = ǫǫǫe + ǫǫǫp (44)

augmentedwith a similar relation for themicro-curvatures:

κκκ = κκκe + κκκp (45)

The elastic parts of the strain and the micro-curvature tensors are linearly related to the stress and couple-stress

tensors, as follows

σσσ =
2ν µ tr(ǫǫǫe)
1 − 2ν

I + (µ + µc )ǫǫǫe + µ
(
ǫǫǫe

)T (46)

and

m = µ
(
ℓ2
1
κκκe + ℓ2

2
(κκκe )T + ℓ2

3
tr(κκκe ) I

)
(47)

where I is the second-order unit tensor, and µc , ℓ1 , ℓ2 and ℓ3 are additionalmaterial parameters. For planar deformations,

the last two terms in the expression form cancel, and we have the reduced expression

m = µℓ2 κκκe (48)
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with ℓ1 = ℓ introducing an internal length in the enhanced continuummodel, which sets the width of the localisation

zone.

A non-associated Drucker-Prager type perfect-plasticity model is considered which is appropriate for geomaterials

showing friction. The yield criterion is as in Eq. (14), but with the second invariant of deviatoric stresses generalised as

[13]:

J2 = a1 s
T : s + a2 s : s + a3m

T : m/ℓ2 (49)

where si j are the components of the deviatoric stress tensor, and a1 + a2 =
1

2
. In this paper the values of a1 =

1

4
, a2 =

1

4

and a3 =
1

2
are adopted as this will lead to a particularly simple numerical algorithm [14, 16]. The plastic potential takes

a similar form as the yield function, cf. Eq. (14), but with a dilatancy factor, β ∗, replacing the friction coefficient α∗:

g =

√
3J2 + β

∗p (50)

As in classical plasticity, the flow rule is derived from the plastic potential, cf. Eq. (3), and sets the plastic strain rate.

5.2 | Numerical solution for the shear layer

Thematerial parameters used for the Cosserat Drucker-Pragermodel have been kept the same as those used in the

classical Drucker-Pragermodel. Regarding the two additional parameters needed for planar deformations, we have

assumed that µc = 2000MPa, while two values have been adopted for the characteristic length, namely ℓ = 2mmand

ℓ = 5mm. The results of an analysis of the shear layer for Case I, but now using the Cosserat continuum, are discussed

below.

The load-displacement curves in Figures 9(a) and 9(b) show that the results are now mesh independent, in the

sense that they converge to a unique, physically realistic solution uponmesh refinement, which is different from the

computations for the standard Drucker-Prager non-associated plasticity model. We emphasise that the introduction of

the internal length scale ℓ , however, does not remove structural softening. Indeed, the internal length scale not only

controls the width of the localisation zone, cf. Figures 10 and 11, but also the slope of the load-deformation curve. For a

lower value of ℓ amore brittle post-peak behaviour occurs.

Case II was also reanalysed using the Cosserat continuum, and showed similar results as the computations for Case

I.While the analysis of mesh dependence is not relevant now, the results continue to exhibit structural softening for the

chosen set of material parameters. And like for Case I, but different from the results for the classical continuum, a width

of the localisation zone appears which is independent of the discretisation for sufficiently densemeshes.

6 | CONCLUDING REMARKS

Numerical simulations using plasticity models with a non-associated flow rule embedded in a classical (Boltzmann)

continuum show that structural softening can occur in spite of the fact that no explicit strain softening is applied to

the cohesion or to the angle of internal friction [11, 12]. Moreover, a dependence of the solution on the fineness of

the discretisation emerges, but the extent depends on the precise boundary value problem. In most cases the mesh

dependence onlymanifests itself for a limited deformation range beyond the peak load, andmesh effects level out on

progressive deformation, and a unique residual load is usually attained, independent of the discretisation.
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F IGURE 9 Load-displacement curves for Case I, using a Cosserat Drucker-Prager model

The underlying reason of themesh sensitivity is the loss of ellipticity, which occurs at a certain stage of the loading

process when using a non-associated flow rule, and occurs even though strain softening is not included explicitly in the

constitutivemodel, with the displacement gradients remaining infinitesimal [6, 7, 8, 10].

The Cosserat continuum can be exploited to remedy this deficiency [13, 19, 20], as it introduces an internal length

scale. Indeed, numerical simulations show that the localisation zone then remains finite, and that load-displacements

curves converge to a unique solution uponmesh refinement. The slope of the post-peak load-displacement curve and

the width of the localisation zone are then set by the internal length scale. It is emphasised though, that structural

softening is not removed by the regularisation, as has been demonstrated numerically.

The use of an enhanced continuum to prevent loss of ellipticity of quasi-static calculations (or loss of hyperbolicity

in dynamic calculations) not only has implications for mesh sensitivity. It also has consequences for computability as the

global convergence behaviour of the non-linear solver can be improved dramatically. Computationswith non-associated

flow rules are known to exhibit poor convergence, especially when the difference between the angle of internal friction



16 SEPIDEH ALIZADEH SABET AND RENÉ DE BORST

(a) 20 (b) 40 (c) 80 (d) 160 (e) 240

F IGURE 10 Deformed contours for Case I, with ℓ = 2mm, at u = 3.1mm, using Cosserat Drucker-Prager model

and the dilatancy angle become bigger. This has often been attributed to the non-symmetry of the tangential stiffness

matrix and the ensuing possible ill-conditioning. However, the computations herein suggest, and this has come out

strongly in recent large-scale computations where viscoplasticity was used as regularisationmethod in non-associated

plasticity [21], that it is actually the loss of ellipticity, and the ensuing ill-posedness of the initial value problemwhich

causes the convergence issues in the iterative solver for the non-linear problem, rather than the non-symmetry of the

tangential stiffness matrix. The use of a regularisationmethod in non-associated plasticity therefore not only improves

themesh sensitivity, but is also hugely beneficial for computability.

Evidently, the two issues are related. Indeed, strains are now no longer localised in a single element, but are

distributed over a finite width. Increasing the resolution therefore does not lead to an increase of the strains locally,

which can cause serious numerical issues. Examples are local snap-backs in the elasto-plastic returnmapping procedure

and the occurrence of multiple, non-physical equilibrium states, which can cause divergence of the global equilibrium-

finding iterative procedure.
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