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Abstract 

Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from 

cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by 

conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identifica-

tion. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker 

Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimi-

nation to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate 

between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK 

MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA 

sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicro-

bial therapy.
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Background
Burkholderia cepacia is generally an environmental plant 

pathogen, second common to ESKAPE pathogens in 

humans. hey were uncovered due to natural calamities 

and construction activities due to lack of infrastructure in 

developing nations. Diferentiation of species within the 

B. cepacia complex (Bcc) can be particularly problematic, 

even with an extended panel of biochemical tests [1], as 

they are phenotypically very similar and most commer-

cial bacterial identiication systems cannot reliably dis-

tinguish between them. Further, reliable diferentiation 

of these species from other related taxa, such as Ralsto-

nia, Cupriavidus, Pandoraea, Achromobacter, Brevundi-

monas, Comamonas and Delftia species is challenging.

In most cases from developing nations, BCC has been 

misidentiied as non-fermentative Gram-negative bacilli 

(NFGNB) especially Pseudomonas spp. [2, 3]. Due to 

which, reports on Bcc infections are rare in India [4].

Selection of literature for review

he articles were searched using PubMed (https ://www.

ncbi.nlm.nih.gov/pubme d/) and Google Scholar. Multiple 

keywords were used for the literature search in combina-

tion or in alone. Some of the important keywords used 

for literature search were Burkholderia cepacia complex 

(Bcc), hospital acquired infections, phenotypic identiica-

tion of Bcc, molecular identiication of Bcc. B. cepacia, 

B. cenocepacia, phoenix, VITEK2, VITEK MS, Bruker 

biotyper, recA, hisA, rspU, 16S rRNA and WGS of B. 

cepacia/Bcc.

Main text
Classiication of Burkholderia cepacia complex

Basic taxonomy

Walter H. Burkholder described a phytopathogenic 

bacterium causing onion rot in New York State in the 

mid-1940s and named the species ‘cepacia’ [5]. his was 

initially known as Pseudomonas cepacia, later in 1992 

included in the Betaproteobacteria class, with Burk-

holderiales order and Burkholderiaceae family as Burk-

holderia cepacia [6]. Burkholderia includes former rRNA 
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group II pseudomonads (Pseudomonas gladioli, Pseu-

domonas mallei, Pseudomonas pseudomallei, and Pseu-

domonas caryophylli), except Pseudomonas pickettii and 

Pseudomonas solanacearum, which were later grouped 

under the genus Ralstonia [7]. Burkholderia species were 

known as plant pathogens and soil bacteria, except B. 

mallei and B. pseudomallei, which are humans and ani-

mal pathogens [8].

he genus now includes 22 validly described species: 

B. cepacia (the type species), Burkholderia caryophylli, 

Burkholderia mallei, Burkholderia pseudomallei, Bur-

kholderia gladioli, Burkholderia plantarii, Burkholde-

ria glumae, Burkholderia vietnamiensis, Burkholderia 

andropogonis, Burkholderia multivorans, Burkholderia 

glathei, Burkholderia pyrrocinia, Burkholderia thailan-

densis, Burkholderia graminis, Burkholderia phenazin-

ium, Burkholderia caribensis, Burkholderia kururiensis, 

Burkholderia ubonensis, Burkholderia caledonica, Burk-

holderia fungorum, Burkholderia stabilis, and Burkholde-

ria ambifaria [9].

Since the mid-1990s, heterogeneity was noted among 

the B. cepacia strains isolated from diferent ecological 

niches. his caused problems in accurate identiication of 

B. cepacia isolates, and evaluation of the techniques used 

showed that they were either not very sensitive, not very 

speciic, or neither sensitive nor speciic [10–13].

Further, Vandamme et  al. [14] evaluated a polyphasic 

taxonomic approach to demonstrate that presumed “B. 

cepacia” from CF patients and other sources were difer-

ent and belonged to ive distinct genomovars (phenotypi-

cally similar genomic species). his includes, B. cepacia 

genomovar I, B. multivorans genomovar II, genomo-

var III, B. stabilis genomovar IV and B. vietnamiensis 

genomovar V. Initially these ive genomic species were 

collectively referred to as the  B. cepacia  complex (Bcc). 

Subsequent polyphasic taxonomic studies identiied 

genomovar VI and B. ambifaria genomovars VII which 

added to Bcc [15, 16]. In addition, B. pyrrocinia  was 

added to Bcc [17].

Ralstonia, Cupriavidus, Pandoraea, Achromobacter, 

Brevundimonas, Comamonas and Delftia are the most 

common genus those are closely related to the Burk-

holderia and cause problems in accurate identiication 

of Bcc. hese are hitherto referred as non-Burkholderia 

spp. in this manuscript. Similarly, Burkholderia spp. (B. 

humptydooensis and B. pseudomallei complex) which 

interferes in correct identiication of Bcc are referred as 

non-Bcc.

Molecular phylogeny

Previously, diferent species within the B. cepacia com-

plex had shown to have DNA–DNA hybridisation val-

ues between 30 and 60%, while strains of same species 

showed values > 70%. Whereas, values obtained with 

non-Bcc Burkholderia were below 30% [14–16, 18–20]. 

he DNA relatedness is rated as high (> 70%) in strains 

of same species, low (30–60%) but signiicant below the 

species level, and non-signiicant (< 30%).

Coenye et  al. [15], has compared the 16S rDNA 

sequences of B. cepacia complex and related species, 

where, the similarities of strains within B. cepacia com-

plex were higher (> 97.7%) compared to other Burkholde-

ria species (< 97.0%).

Biochemical reactions

Diferent media composition were in use for years to 

selectively isolate B. cepacia complex from samples of 

CF patients. his includes, P. cepacia medium (PC agar) 

(300 U of polymyxin B/ml and 100 µg of ticarcilline/ml) 

[21]; Oxidation-fermentation agar with lactose and pol-

ymyxin B (OFPBL agar) (300  U of polymyxin B/ml and 

0.2 U of bacitracin/ml) [22], and B. cepacia selective agar 

(BCSA) (1% lactose and 1% sucrose in an enriched base 

of casein and yeast extract with 600  U of polymyxin B/

ml, 10  µg of gentamicin/ml, and 2.5  µg of vancomycin/

ml) [23]. BCSA was proven efective than the other two 

in recovering B. cepacia complex from CF respiratory 

specimens by inhibiting growth of other organisms [24]. 

hough, B. gladioli and Ralstonia spp. are exceptions 

which could grow on BCSA. On isolation, few biochemi-

cal reactions used to diferentiate B. cepacia complex, B. 

gladioli, Pandoraea spp., R. pickettii, A. xylosoxidans, and 

S. maltophilia are enlisted in Table 1.

Recent developments had led to invention of auto-

mated/commercial test systems for pathogen identii-

cation. However, there are several reports pertaining to 

inability of these commercial systems to identify or dif-

ferentiate B. cepacia complex isolates from other Burk-

holderia spp. [25].

Bcc in cystic ibrosis

Most often, cases with fulminating pneumonic infection 

along with fever and respiratory failure, occasional asso-

ciation with septicaemia, is known as “cepacia syndrome” 

[26]. he overwhelming B. cepacia complex infections in 

cystic ibrosis patients have prompted an unusual num-

ber of studies and variety of data. B. cepacia was also 

frequently encountered in nosocomial outbreaks due to 

contaminated disinfectants, nebulizer solutions, mouth 

wash, medical devices and intravenous solutions due to 

contamination of lipid emulsion stoppers [27]. hough, 

B. multivorans and B. cenocepacia were reported pre-

dominant amongst CF patients than non-CF patients as 

reported from United States, Canada, Italy and Australia 

[16, 28, 29].
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Table 1 Biochemical characteristics to diferentiate B. cepacia complex, B. gladioli, Pandoraea spp., R. pickettii, A. xylosoxidans, and S. maltophilia 

B. cepacia B. gladioli Pandoraea 
species

R. pickettii A. 
xylosoxidans

S. maltophilia

Genomovar I Genomovar II Genomovar 
III

Genomovar 
IV

Genomovar V Genomovar 
VI

Genomovar 
VII

Oxidase + + + + + + + ‒ v + + ‒

Oxidation of:

 Sucrose v ‒ v ‒ + ‒ + ‒ ‒ ‒ ‒ v

 Adonitol v + v v – + + + – – – –

 Lactose v + v + + + + ‒ ‒ ‒ ‒ +

Lysine decarboxy-
lase

+ v + + + ‒ + ‒ ‒ ‒ ‒ +

Ornithinie decar-
boxylase

v ‒ v + ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒

Gelatine liquefac-
tion

v ‒ v + ‒ ‒ + v ‒ ‒ ‒ +

Aesculine hydrolysis v ‒ v ‒ ‒ ‒ v v ‒ v ‒ +

β-Galactosidase 
activity

+ + + ‒ + + + + ‒ ‒ ‒ +

Growth at 42 °C v + v ‒ + + v ‒ v v NK v

β-Hemolysis ‒ ‒ ‒ ‒ v ‒ v ‒ ‒ ‒ NK NK
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Problems in accurate identiication of Burkholderia spp.

Phenotypic tests either manual or automated commer-

cial systems were in use to identify Bcc in routine clini-

cal laboratories. hough, species level identiication is 

not achieved due to high similarity of biochemical results 

between species. Automated identiication systems 

including Phoenix, VITEK 2, VITEK MS and Bruker 

identiies Bcc, non-Bcc and non-Burkholderia spp. at dif-

ferent speciicities (Table 2) [30–33].

here is considerable interest in recent days on the reli-

ability of MALDI-TOF MS for accurate bacterial identi-

ication. It is based on the spectral analysis of bacterial 

proteins, mainly ribosomal proteins, ionized by laser 

irradiation of the bacterial cell. Fehlberg et  al. [25] has 

evaluated the performance of MALDI-TOF MS for spe-

cies identiication of Bcc clinical isolates in comparison 

to recA sequencing. MALDI-TOF MS results were 100% 

in concordant with recA sequencing for genus level iden-

tiication (n = 91), while 76.9% (n = 70) concordance was 

seen for species level identiication. Another study by 

Gautam et al. [34], has compared MALDI-TOF MS with 

an expanded MLST and recA sequencing for Bcc identi-

ication. MALDI-TOF MS exhibited 100% concordance 

for genus identiication and 82% for species level 

identiication.

he accuracy in the identiication and diferentiation 

of Burkholderia spp. in clinical specimens with the close 

neighbours Pandoraea, Cupriavidus and Ralstonia is 

essential for the treatment of patients. hese three are the 

most prevalent genera identiied outside Burkholderia 

genus. Most of the time these are phenotypically misi-

dentiied as Bcc.

Pandoraea species have been reported from both cystic 

ibrosis (CF) and non-CF patients. he invasive potential 

of this genus can be understood through various reported 

cases of Pandoraea bacteraemia caused by P. pnomenusa, 

P. apista, P. pulmonicola and P. sputorum [35–40], where 

identiication was a major setback when conventional 

biochemical methods were used.

he Ralstonia genus includes R. pickettii and R. sola-

nacearum (formerly Burkholderia pickettii and B. sola-

nacearum), R. insidiosa, and R. mannitolilytica, where 

R. pickettii is still regarded as the main pathogenic spe-

cies [41]. hough R. pickettii, is considered with minor 

clinical signiicance, many instances of infections 

are reported in the literature. Due to high similarity 

Table 2 Biochemical and molecular identiication of Burkholderia cepacia complex in hospital acquired infections

Methods Target Identiication Remarks

Phenotypic methods Conventional 
biochemical 
method

Catalase, Gluconate, Malate, Phe-
nylacetate, leucine arylamidase 
activity

Overlapping biochemical profiles 
for Bcc, Ralstonia spp. and 
Pandoraea spp.

Bcc and non-Bcc cannot be distin-
guished

Phoenix Biochemicals—automated Cannot identify Ralstonia pickettii Misidentification rate for Bcc is 23%

VITEK 2 Biochemicals—automated Can identify Ralstonia pickettii 
(83%)

Misidentification rate for Bcc is 12%

Protein signature VITEK MS Mass spectrogram of the protein Genus level identification of B. 
cepacia—55–63%

R. pickettii identifica-
tion—85–100%

Pandoraea spp.—87%

Species within Bcc cannot be 
distinguished

Bruker Biotyper Mass spectrogram of the protein Agreement between Bruker Bio-
typer and recA sequencing

Genus level—100%
Species level—76.9%
B. cenocepacia—95.8–100%
B. multivorans—78.5%
B. contaminans—0%
B. vietnamiensis—100%
B. cepacia—30–33.3%

Can identify and discriminate Bcc 
from non-Burkholderia spp.

Few species within Bcc cannot be 
distinguished

Molecular targets recA DNA recombinase enzyme for 
DNA repair

Promising for differentiation of 
Burkholderia species including 
Bcc

Non-Bcc cannot be distinguished

hisA Encodes for an enzyme involved 
in histidine biosynthesis

Could discriminate among the 
Bcc species

Non-Bcc cannot be distinguished

rspU Coding for a ribosomal protein 
S21

Burkholderia spp. and non-Bur-
kholderia spp. can be distin-
guished

Species within Bcc cannot be 
distinguished

16S rRNA Component of the 30S small 
subunit of a prokaryotic ribo-
some

Burkholderia spp. and non-Bur-
kholderia spp. can be distin-
guished

Unacceptable for discrimination of 
Bcc intra-species



Page 5 of 10Devanga Ragupathi and Veeraraghavan  Ann Clin Microbiol Antimicrob            (2019) 18:7 

between R. pickettii and Bcc, many of the Bcc cases 

might have been misidentiied which are actually R. 

pickettii [42]. Contaminated solutions including water 

for injection, saline solutions made with puriied water, 

and sterile drug solutions were regarded as the cause 

of R. pickettii infections in many of the cases. Major 

conditions associated with R. pickettii infection are 

bacteraemia/septicaemia and respiratory infections/

pneumonia [41, 43, 44].

Very often, Ralstonia and Pandaroeae are misidenti-

ied as Bcc. hese genus are very closely related to Bur-

kholderia spp., such that they cannot be distinguished 

by standard biochemical method [35]. he species 

include Bcc (B.  cepacia, B.  multivorans, B.  cenocepa-

cia, B. vietnamiensis, B. stabilis, B. ambifaria, B. dolosa, 

B.  anthina, B.  pyrrocinia and B.  ubonensis), B. hump-

tydooensis, Cupriavidus spp., Pandoraea spp., and B. 

pseudomallei.

Bcc and non-Burkholderia spp. could not be distin-

guished by conventional biochemical methods. Due 

to problem with identiication, clonal typing of Burk-

holderia is questionable. Molecular targets such as 16S 

rRNA, recA, hisA and rpsU were reported to increase 

the discrimination of Bcc. Representation of various 

techniques and its ability to accurately identify Bcc is 

given in Fig. 1.

Need for molecular identiication of Bcc

Isolates from CF patients with persistent pathogenic 

colonization often lose their characteristic phenotypes 

or growth conditions which leads to diiculty in accurate 

identiication of Bcc. To overcome this, molecular identi-

ication is required to distinguish species within Bcc and 

from the related genus/species. hough molecular tar-

gets for identiication are not reliable when used individ-

ually, a multi-target approach is essential to improve the 

identiication of Bcc and non-Bcc organisms. Some of the 

reported molecular targets are hisA, rpsU, recA and 16S 

rRNA. Discriminating ability on genus/complex/species 

level using these targets were listed in Table 2.

hisA and rpsU gene sequencing

Sequencing of hisA gene, encodes for an enzyme involved 

in histidine biosynthesis was reported to distinguish spe-

cies within Bcc [45]. Neighbour-joining method analysis 

of 134 Bcc organisms revealed high degree of sequence 

similarity between strains of same species. Meanwhile, 

each species was clearly separated from each other. he 

Fig. 1 Algorithm depicting the methods for accurate identification of Burkholderia at genus level (near neighbouring genus), cepacia complex level 

(Bcc) and species level (within Bcc)
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hisA based analysis separated 17 Bcc species in diferent 

clusters (including 4 lineage divisions of B. cenocepacia) 

with high bootstrap values (> 75%) [45]. Burkholderia 

strains used for hisA based analysis were previously iden-

tiied using a polyphasic taxonomy or recA sequencing 

[46, 47].

Similarly, rpsU was recognized to identify diferent spe-

cies among the Burkholderia genus [48]. Frickmann et al. 

[48] has employed rpsU sequencing method to com-

pare Burkholderia strains of known identity from ATCC 

(American Type Culture Collection, Manassas, Virginia, 

USA), DSMZ (German Collection of Microorganisms 

and Cell Cultures, Braunschweig, Germany), JCM (Japan 

Collection of Microorganisms, Tsukuba, Ibaraki Prefec-

ture, Japan), BCCM/LMG (Bacteria Collection, Ghent, 

Belgium), and NCTC (National Collection of Type Cul-

tures, Porton Down, UK). Also few clinical strains were 

included in the analysis for comparison, after ensuring 

their identity using recA sequencing. rpsU sequences 

formed four clusters including B. plantarii, B. glumae, B. 

cocovenenans and B. gladioli in cluster I, the Burkholderia 

pseudomallei complex (B. mallei, B. pseudomallei, and B. 

thailandensis) in cluster II, B. caryophylli, B. multivorans, 

P. norimbergensis, B. ubonensis, B. stabilis, B. cenocepa-

cia, B. cepacia, B. pyrrocinia, B. ambifaria, B. anthina, B. 

vietnamiensis and B. dolosa in cluster III, and B. sacchari, 

B. graminis, B. fungorum, B. phytofirmans, B. xenovorans, 

B. phenoliruptrix, B. phenazinium, B. caribensis, B. hos-

pita and B. phymatum in cluster IV. B. glathei, B. cale-

donica and B. kururensis were observed as outliers.

Moreover, the rpsU sequence homology for Burkholde-

ria and Pandorea was > 86%. Most of the clinical patho-

gens of Bcc belongs to cluster III of rpsU sequencing, 

where B. caryophylli, B. multivorans, and P. norimbergen-

sis had identical sequences and B. cenocepacia clustered 

with B. cepacia. Limitation of rpsU sequencing is it could 

not reliably discriminate Burkholderia spp. at the species 

level as single target.

recA gene sequencing

recA is another well-known target promising for difer-

entiation of Burkholderia species [46]. recA can difer-

entiate the following 19 species of Burkholderia namely, 

B. pseudomallei, B. mallei, B. thailandensis, B. humpty-

dooensis, B. oklahomensis, B. oklahomensis-like, B. ubon-

ensis, B. ambifaria, B. multivorans, B. vietnamiensis, B. 

fungorum, B. glumae, B. cepacia, B. xenovorans, B. dolosa, 

B. gladioli and Bcc [49]. However, non-Burkholderia spp. 

cannot be distinguished by recA sequencing. Burkholde-

ria strains used for evaluation of recA sequencing were 

characterised using whole-cell protein proile analysis 

and a polyphasic approach [47, 50].

16S rRNA sequencing
16S rRNA sequencing is one important option for difer-

entiating non-Burkholderia spp. from Burkholderia spp. 

[49]. he 16S rRNA similarity between Burkholderia spp. 

and non-Burkholderia spp. is given in Table 3. In a study 

from environmental sample, the diferent species of Bur-

kholderia including non-Burkholderia spp. were found in 

the same consortium suggesting that same environmen-

tal niche hosts the sharing of genes through lateral gene 

transfer [51]. Due to these challenges in identiication, 

the clonality of these species is also diicult to investi-

gate, as the MLST housekeeping genes are species spe-

ciic. As of now, MLST database is available only for Bcc 

and B. pseudomallei. HAI outbreaks caused due to non-

Burkholderia spp. could not be typed.

Whole genome sequences of B. cepacia

Due to recent developments in the molecular genetics 

of bacteria, usage of whole genome sequences (WGS) of 

the bacterial pathogens is gaining interest among clini-

cal microbiologists. he WGS data helps in typing of the 

pathogens and in identifying the evolutionary pattern of 

the organism based on whole genome single nucleotide 

polymorphisms (SNPs). Till date 102 genome sequences 

have been deposited in NCBI for B. cepacia. his includes 

complete genomes and shotgun genome sequences. Fur-

ther baseline data on B. cepacia WGS will help to identify 

region speciic clones, which will be handy in identifying 

an outbreak situation.

Antimicrobial resistance mechanisms and therapy of Bcc

he mechanisms of antibiotic resistance of Bcc species 

have been intensively studied. Major resistance mecha-

nism in Bcc is due to elux pump overexpression mostly 

by members of the resistance-nodulation-division (RND) 

family [52–54]. B. cenocepacia strain J2315 was reported 

to encode 16 RND elux systems [55, 56].

Ceftazidime and other extended-spectrum cephalo-

sporins are the reliable treatment options for Bcc due 

to intrinsic resistance to many other classes of antimi-

crobials. Bcc were reported with class A β-lactamases 

conferring resistance to β-lactam antibiotics such as 

ceftazidime. his was irst described in B. cepacia as the 

PenA-PenR system [57], which were later known as PenB 

and PenR (AmpR) [58]. Due to their complex role in acti-

vation of penB and ampC targets in the presence of an 

antibiotic susceptibilities to ceftazidime, cefotaxime, and 

meropenem were greatly reduced [58, 59].

Class A PenA β-lactamase was also reported in B. ceno-

cepacia which is located on chromosome 2 and their 

genetic environment are similar to that of B. pseudomal-

lei [60]. However, the B. cenocepacia enzyme has not yet 

been shown to be involved in β-lactam resistance. In a 
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Table 3 Similarity of 16S rRNA sequences between Burkholderia and non-Burkholderia spp.

% 

Similarity 

of 16S 

rRNA

Pandoraea B. 

stabilis

B. 

cenocepacia

B. 

cepacia

B. multivorans B. pyrrocinia B. 

vietnamiensis

B. ambifaria B. 

anthina

B. 

humptydooensis

B. 

pseudomallei

B. 

mallei

B. cupriavidus Ralstonia

1: Pando-

raea

100

2: B. stabilis 95.16 100

3: B. cenoce-

pacia

94.02 98.32 100

4: B. cepacia 95.1 98.38 98.32 100

5: B. multi-

vorans

95.28 98.46 97.43 99.79 100

6: B. pyrro-

cinia

95.72 99.09 97.91 99.02 99.1 100

7: B. viet-

namiensis

95.48 98.67 97.92 99.44 99.4 99.17 100

8: B. ambi-

faria

95.76 99.23 97.92 99.02 99.12 99.45 99.32 100

9: B. anthina 95.85 99.33 99.7 99.11 99.19 99.41 99.56 99.7 100

10: B. 

humpty-

dooensis

94.86 97.54 96.38 97.55 97.59 97.86 98.02 98.23 98.22 100

11: B. pseu-

domallei

95.05 97.47 96.52 97.83 97.83 97.99 98.25 98.29 98.08 98.92 100

12: B. mallei 95.07 97.4 96.45 97.76 97.79 97.93 98.22 98.23 98 98.89 99.87 100

13: B. cupri-

avidus

91.5 90.99 91.29 91.29 91.21 91.14 91.14 91.21 91.56 91.49 91.63 91.63 100

14: Ralstonia 92.39 90.53 89.58 90.97 91.03 91.16 91.37 91.23 91.49 91.56 91.63 91.63 94.66 100
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study by Hwang and Kim [58], a B. cenocepacia  strain 

J2315 PenB β-lactamase had shown a Ser72Tyr substitu-

tion, due to which B. cenocepacia has intrinsic clavula-

nate resistance [58].

In addition, B. multivorans  was reported to have a 

PenA enzyme (Bmul_3689 in  B. multivorans  ATCC 

17616), that is closely related to PenB reported in Bcc [58, 

61]. his PenB is also similar to KPC-2 a signiicant car-

bapenemase [62]. However, the B. multivorans enzyme is 

an inhibitor-resistant carbapenemase, unlike in  B. pseu-

domallei  which is an extended spectrum β-lactamase. 

hough the active role of PenA in clinical B. multivorans 

is it yet established. here were also reports on diference 

in elux pump and outer membrane protein mediated 

resistance especially for colistin in Bcc and B. pseudomal-

lei complex (Bpc) [63]. Due to these multiple difer-

ence in their resistance mechanisms, it is imperative to 

accurately identify Bcc from other Burkholderia spp for 

appropriate therapy.

he choice for antimicrobial therapy is usually chosen 

based on in vitro susceptibility, while duration of therapy 

be based upon clinical and microbiologic response. Use 

of combination regimen is commonly reported for Bcc 

[64]. However, it is still uncertain as the evidences were 

mostly limited to in vitro studies or small clinical expe-

riences. For serious infection with susceptible strains, a 

two-drug combination of parenteral trimethoprim-sul-

famethoxazole (5 mg/kg trimethoprim component every 

6–12  h) plus a  β-lactam (e.g., ceftazidime, piperacillin, 

meropenem) or a luoroquinolone should be utilized [65]. 

For serious infection with trimethoprim-sulfamethoxa-

zole-resistant strains or sulfa drug allergy, combination 

therapy guided by in vitro susceptibility results should be 

administered [66]. In a study by Blumer et al. [67], in 102 

CF patients, meropenem/tobramycin and ceftazidime/

tobramycin improved clinical status and reduced bacte-

rial burden in 96 and 92% of treated patients, respectively.

Bonacorsi et  al. had proven enhanced bactericidal 

activity of ciproloxacin in combination with other agents 

[68]. Further, triple antimicrobial combination based on 

meropenem was suggested useful than double or single 

agents [69].

Macrolides in combination with other antimicrobials 

had shown moderate synergism [70], while speciic com-

binations including fosfomycin/tobramycin exhibited 

poor activity against Bcc [71].

Conclusions
Conventional phenotypic methods could not discrimi-

nate Bcc and related genus, as there is an overlap in the 

biochemical characteristics. A single molecular tar-

get for diferentiation of Bcc from non-Bcc and non-

Burkholderia spp. is not reliable, while two or more 

molecular targets signiicantly improves the species level 

discrimination in Bcc. rpsU and/or 16S rRNA sequenc-

ing, VITEK2, VITEK MS and Bruker Biotyper could 

discriminate between Burkholderia spp. and non-Bur-

kholderia spp. Whereas, Bcc complex level identiica-

tion can be given by VITEK MS, Bruker Biotyper, 16S 

rRNA/rpsU/recA/hisA sequencing. For species level 

identiication within Bcc hisA or recA sequencing are 

reliable. Recent advancements in genome sequencing 

using SNP phylogeny might help to accurately identify 

the clone of Bcc from non-Bcc and non-Burkholderia 

spp. Such identiication is necessary to help in timely 

diagnosis of hospital acquired infections and to provide 

appropriate antimicrobial therapy.
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