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ABSTRACT
Previously, we introduced two versions of the Multiconfigurational Ehrenfest (MCE) approach to high dimensional quantum dynam-
ics. It has been shown that the first version, MCEv1, converges well to the existing benchmarks for high dimensional model sys-
tems. At the same time, it was found that the second version, MCEv2, had more difficulty converging in some regimes. As MCEv2
is particularly suited for direct dynamics, it is important to facilitate its convergence. This paper investigates an efficient method
of basis set sampling, called Quantum Superposition Sampling (QSS), which dramatically improves the performance of the MCEv2
approach. QSS is tested on the spin-boson model, often used for modeling of open quantum systems. It is also shown that the
quantum subsystem in the spin-boson model can be conveniently treated with the help of two level system coherent states. Gen-
eralized coherent states, which combine two level system coherent states for the description of the system and Gaussian coherent
states for description of the bath, are introduced. Various forms of quantum equations of motion in the basis of generalized coher-
ent states can be developed by analogy with known quantum dynamics equations in the basis of Gaussian coherent states; in par-
ticular, the multiconfigurational Ehrenfest method becomes a version of coupled generalized coherent states, and QSS can then be
viewed as a generalization of a sampling method known for the existing coupled coherent states method which uses Gaussian coherent
states.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100145., s

I. INTRODUCTION

The most straightforward way of simulating open systems
would be to model them by a small quantum subsystem coupled
with a large number of bath modes describing the environment and
to solve the time dependent Schrödinger equation for all degrees of
freedom, both those of the main system and the bath. The spin-
boson model, comprised of a two level system (or perhaps several
coupled two level systems) and a bath of harmonic modes, is a pop-
ular example of a system-bath problem. Although much progress
has been made in the development of methods of high dimen-
sional quantum mechanics, treating large numbers of bath modes

exactly still remains a difficult task. For example, hierarchical meth-
ods, such as Hierarchy of Equations of Motion (HEOM)1–3 and
Hierarchy of Pure States (HOPS),4,5 allow simulations of system
bath problems, but they are efficient only for certain spectral den-
sities of the bath. Time evolving density matrix using Orthogonal
Polynomials algorithm (TEDOPA)6,7 is efficient in the low temper-
ature/short time regime,8 although some efforts have been made
to extend it to longer times.8 Multiconfigurational time dependent
Hartree (MCTDH)9 is a basis set technique which can treat quantum
system-bath problems with a high level of accuracy. In MCTDH, the
bath is discretized and a large number of bath modes are combined
in groups so that a small number of very flexible time dependent
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basis functions per group are sufficient for adequate description of
the dynamics. This mode combination is crucial for MCTDH, and
hence, if the mode combination is not right, MCTDH can be hard to
converge.10

In recent years, we have developed the Multiconfigurational
Ehrenfest (MCE) approach,11–13 which uses trajectory guided basis
sets of Gaussian coherent states to perform formally exact multidi-
mensional quantum simulations. Several other techniques have been
developed,14–18 all using basis sets of Gaussian coherent states which
follow the quantum wave function, thus economizing the basis set
size, with these methods only differing in the way they guide the
trajectories of the CS basis set. Among these techniques are vari-
ational Multiconfigurational Gaussians (vMCG)15,16 and Davydov
Ansatz17,18 (DA), both of which rely on accurate but complicated
and often numerically unstable variational trajectories. The num-
ber of degrees of freedom, which can be treated by vMCG and DA,
is limited, and only the cases of spin-boson model for which the
bath can be discretized with a limited number of modes can be
treated. Multiple Spawning14 (MS) in which the trajectories of Gaus-
sians are purely classical and therefore are not always well suited
for quantum dynamics, is another member of the same family of
methods. MCE sits between these techniques using Ehrenfest tra-
jectories to guide the basis. Ehrenfest trajectories guided by quan-
tum averaged Hamiltonian are nonclassical enough to incorporate
some quantum effects and to reach classically forbidden regions, but
at the same time they are simple and stable. Technicalities of the
MCE method, however, such as basis set initial conditions sampling,
turn out to be extremely important for the convergence of MCE
calculations.

Two versions of MCE, referred to as MCEv1 and MCEv2, have
been developed. Both methods represent the propagating wave func-
tion as a superposition of Ehrenfest configurations guided by Ehren-
fest trajectories, but MCEv1 and MCEv2 differ in the way quantum
coupling between the configurations works. As a result of this differ-
ence, the trajectories which guide Ehrenfest configurations differ in
the two versions of MCE. In MCEv1, the trajectories are not inde-
pendent and they “push” each other so that the whole ensemble
of such trajectories has to be run simultaneously. In MCEv2, the
trajectories are independent and can be run one by one if desired,
which makes MCEv2 suitable for direct dynamics. Both MCEv1
and MCEv2 have been tested on the spin-boson model. MCEv1
was found to converge well for a broad range of parameters of the
model;11 at the same time MCEv2 was found to be much harder
to converge for some cases of the spin-boson model and special
methods improving the convergence had to be developed.19 Given
the use of MCEv2 in direct dynamics simulations of nonadiabatic
photochemical reactions (see, for example, our recent works 20 and
21), it is important to find new ways to facilitate the convergence of
MCEv2.

In this paper, we show that a very simple sampling technique,
termed Quantum Superposition Sampling (QSS), greatly improves
convergence for MCEv2. We also show how this technique arises
naturally if the quantum subsystem is treated with a basis of so
called SU(2) coherent states so that MCEv2 can be viewed as a
version of the recently introduced Coupled Generalized Coherent
States (CGCS) approach.22 In the supplementary material, we also
derive various forms of equations for treating quantum system-bath
models with CGCS.

II. THEORY
A. Two versions of the multiconfigurational Ehrenfest
method: MCEv1 and MCEv2

Two versions of the multiconfigurational Ehrenfest method
have been developed, dubbed MCEv1[3] and MCEv2[4]. The main
building block of both versions is the Ehrenfest configuration which
for a two level system takes the form

∣ψ(t)⟩ = ∣ψsstm(t)⟩∣zbth(t)⟩ = (a1(t)∣1⟩ + a0(t)∣0⟩)∣zbth(t)⟩, (1)

where the Gaussian coherent state |zbth(t)⟩ = |pbth(t), qbth(t)⟩
describes the bath coupled with a superposition of the system states
∣1⟩ = ∣ϕsstm1 ⟩ and ∣0⟩ = ∣ϕsstm0 ⟩. These system states could denote
electron donor and acceptor states or electronic excited and ground
states, for example, and the bath often represents the vibrations of
nuclei or phonons.

For simplicity, we assume that the quantum subsystem is
described by a single two-level system, but generalization to a more
generic case of many coupled two level systems or systems with
more than two levels is not difficult. The multidimensional Gaus-
sian coherent state |z(t)⟩ = |p(t), q(t)⟩ is a product of 1D coherent
states,

∣zbth(t)⟩ = ∣z1(t)⟩∣z2(t)⟩⋯∣zM(t)⟩. (2)

Each 1D CS is a Gaussian wavepacket

⟨x∣ z⟩ = ( γ
π
)

1/4
exp(−γ

2
(x − q)2 +

ip(x − q)
h̵

+
ipq
2h̵
), (3)

and the center of the CS wavepacket (3) is described by a single com-
plex number z = γ1/2q+iγ−1/2̵h−1p

21/2 relating to a point (q, p) in phase space
of the bath.

Both MCEv1 and MCEv2 use similar wave function Ansätze
with a combination of Ehrenfest configurations, taking the form

∣Ψ(t)⟩ = ∑
k=1,N
∣ψ(k)(t)⟩ = ∑

k=1,N
(a1
(k)(t)∣1⟩ + a0

(k)(t)∣0⟩)∣z(k)(t)⟩

(4)

for MCEv1 and

∣Ψ(t)⟩ = ∑
k=1,N

A(k)(t)∣ψ(k)(t)⟩

= ∑
k=1,N

A(k)(t)(a1
(k)(t)∣1⟩ + a0

(k)(t)∣0⟩)∣z(k)(t)⟩ (5)

for MCEv2. The difference is in the additional coefficient A(k)(t)
in the MCEv2 Ansatz (5), which is used to provide the coupling
between the Ehrenfest configurations |ψ(k)(t)⟩. In the MCEv2Ansatz
(5), configurations are normalized,

⟨ψ(k)∣ψ(k)⟩ = ⟨z(k)∣z(k)⟩(∣a1
(k)∣

2
+ ∣a0

(k)∣
2
) = ∣a1

(k)∣
2

+ ∣a0
(k)∣

2
= 1.

(6)
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Unlike MCEv2, the MCEv1 Ansatz (4) does not require normaliza-
tion of individual Ehrenfest configurations; normalization is carried
out on the level of the entire wave function (4), i.e., only for the whole
wave functions ⟨Ψ(t)|Ψ(t)⟩ = 1.

Both MCEv1 and MCEv2 methods use Ehrenfest trajectories

i
⋅

z(k) = −
∂⟨H(k)⟩
∂z(k)∗

(7)

to guide the bath basis set, which are equivalent to Hamilton’s equations of motion in a coherent states context. In Eq. (7),

⟨H(k)⟩ =
⟨ψ(k)∣Ĥ∣ψ(k)⟩

⟨ψ(k)∣ψ(k)⟩
=
⟨1, z(k)∣Ĥ∣1, z(k)⟩a1

(k)∗a1
(k) + ⟨0, z(k)∣Ĥ∣0, z(k)⟩a0

(k)∗a0
(k) + 2 Re(a1

(k)∗a0
(k)⟨1, z(k)∣Ĥ∣0, z(k)⟩)

a1(k)∗a1(k) + a0(k)∗a0(k)
(8)

is the Ehrenfest average Hamiltonian for an individual configura-
tion. In MCEv1, the amplitudes a1

(k)(t) and a0
(k)(t) are all coupled

with each other [see Eq. (28) in Ref. 11 and supplementary material
to this article]. This is in contrast to MCEv2 where Ehrenfest con-
figurations are independent from each other, and hence for MCEv2,
the amplitudes a1

(k)(t) and a0
(k)(t) of quantum states |1⟩ and |0⟩

are coupled only within an individual configuration,

●a1
(k) = i

⎡⎢⎢⎢⎢⎣
i
∙
z
(k)

z(k)∗ − ∙
z
(k)
∗z(k)

2
− ⟨1, z(k)∣H∣1, z(k)⟩

⎤⎥⎥⎥⎥⎦
a1
(k)

− i⟨1, z(k)∣H∣0, z(k)⟩a0
(k)

●a0
(k) = i

⎡⎢⎢⎢⎢⎣
i
∙
z
(k)

z(k)∗ − ∙
z
(k)
∗z(k)

2
− ⟨0, z(k)∣H∣0, z(k)⟩

⎤⎥⎥⎥⎥⎦
a0
(k)

− i⟨0, z(k)∣H∣1, z(k)⟩a1
(k).

(9)

Equations (7)–(9) are simply those for the standard Ehrenfest tra-
jectory, which yields the best wave function described by a single
Ehrenfest configuration (see Sec. 3 of the supplementary material).
To provide the coupling between configurations in MCEv2, there
is additional set of coupled equations for the amplitudes A(k)(t)
derived from the time dependent Schrödinger equation (see Ref.
12 and Sec. 4 of the supplementary material for more details). The

equations for A(k)(t),

i ∑
k=1,N
⟨ψ(n)∣ψ(k)⟩Ȧ(k)(t)+i ∑

k=1,N
⟨ψ(n)∣ ψ̇(k)⟩A(k)(t)

= ∑
k=1,N
⟨ψ(n)∣Ĥ∣ψ(k)⟩A(k)(t), (10)

are simply those for the amplitudes of time dependent basis func-
tions |ψ(k)(t)⟩ in the wave function Ansatz (5). The time dependence
of |ψ(k)⟩ is given by Eqs. (7)–(9).

The coupling between amplitudes in MCEv2 is illustrated in
Fig. 1 where it is also compared with coupling between the ampli-
tudes in the MCEv1 approach. As one can see from the diagram as
well as from Eq. (9) in MCEv2, the amplitudes a1

(k)(t) and a0
(k)(t)

are only coupled within configurations, but not across them.
MCEv2 was developed for use with direct dynamics, where

running independent trajectories is more convenient. An enhance-
ment of MCEv2, which models wavepacket splitting better, referred
to as Ab initio Multiple Cloning (AIMC), has been successfully
used in direct dynamics calculations to simulate ultrafast photo-
dynamics20,21 and energy transfer in conjugated molecules “on the
fly.”23,24

In principle, both MCEv1 and MCEv2 are exact quantum tech-
niques, and must converge to the exact quantum result with a suffi-
ciently large number of basis set configurations, but the convergence
properties are different for the two techniques. Well converged

FIG. 1. The coupling between amplitudes of Ehrenfest configurations in MCEv1 and MCEv2. In MCEv1, all amplitudes a are coupled with each other. In MCEv2 they are
coupled within each configuration only. To provide quantum coupling between Ehrenfest configurations, they are weighted with additional amplitudes A, which are coupled
with each other. The exact form of coupled equations can be found in Refs. 11 and 12 and in the supplementary material. For simplicity, only two Ehrenfest configurations are
shown.
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results have been obtained with MCEv1 for the spin-boson model11

with a broad range of parameters and for a system of qubits coupled
with environment.25 MCEv2 was shown to converge well for short
time dynamics and for “more classical” cases of spin-boson model.
However, in some regimes of the spin-boson model, MCEv2 had
difficulty converging.19 Facilitating convergence of MCEv2 is impor-
tant because it is used in our AIMC direct on the fly dynamics.23

In AIMC, electronic structure theory is used to calculate potential
energy surfaces ab initio and the trajectories of Ehrenfest configu-
rations are run independently from each other. Running Ehrenfest
trajectories on the fly is very expensive computationally and may
take years of CPU time, but eventually they are saved on the hard
drive, providing the time dependent basis set for MCEv2. Then,
coupled equations (10) for the amplitudesA(k)(t) are solved as “post-
processing.” To improve the convergence of MCEv2, special basis set
sampling methods were developed. They were tested on the spin-
boson problem and used in AIMC.19,23 These sampling methods,
however, are not trivial, and finding new and better techniques to
improve convergence of MCEv2 is of great importance for the future
use in AIMC direct dynamics. The spin-boson model provides a very
convenient testing ground, and in this paper, we use it to test a sim-
ple, yet very effective, sampling technique which greatly improves
convergence on MCEv2.

B. Enhancing initial sampling with quantum
superposition sampling (QSS)

Seemingly, the most natural way of choosing basis Ehren-
fest configurations is to define the amplitudes as being 1 for the
populated electronic state and zero for the unoccupied electronic
state |ψ(k)(t)⟩=(1|1⟩ + 0|0⟩)|z(k)(t)⟩, so that the initial MCEv2 wave
function becomes

∣Ψ⟩ = ∑
k=1,N

A(k)∣ψ(k)(0)⟩ = ∑
k=1,N

A(k)(1∣1⟩ + 0∣0⟩)∣z(k)(0)⟩, (11)

where for all configurations, the initial Ehrenfest amplitudes
a1
(k)(0) and a0

(k)(0) are the same. In most of our previous cal-
culations, the initial bath CSs zk(0) were selected randomly using
sampling techniques suggested in Ref. 26. It is, however, not nec-
essary to set the initial configuration amplitudes in (11) entirely on
one state; only the wavefunction as a whole must have initial pop-
ulation wholly on the initial state |1⟩. QSS differs in its approach to
selecting initial conditions of the Ehrenfest configurations by tak-
ing randomly not only z(k)(0) but also a1

(k)(0) and a0
(k)(0) so

that

∣Ψ⟩ = (1∣1⟩ + 0∣0⟩)∣zinit⟩ = ∑
k
A(k)∣ψ(k)(0)⟩

= ∑
k
A(k)(a1

(k)(0)∣1⟩ + a0
(k)(0)∣0⟩)∣z(k)(0)⟩, (12)

where zinit is the initial condition for the propagating wavepacket,
which in Eq. (12) is assumed to be a coherent state itself. The
wave function (12) can then be propagated in exactly the same
way as before. This is somewhat counterintuitive as each basis
Ehrenfest configuration includes a contribution of the unpopulated
state.

In practice, the construction of this wavefunction can be car-
ried out by generating the Gaussian CSs |zk(0)⟩ from a compressed
normal distribution around the initial wavefunction coherent state
|zinit⟩ as was done in previous applications of MCE, but then instead
of defining the amplitudes a1

(k)(0) and a0
(k)(0) to be equal to 1

and 0, a pair of random numbers, φ and Δφ are generated between
the limits of 0 and 2π. These random numbers can then be used to
generate the amplitudes such that

a1
(k)(0) = cos(φ),

a2
(k)(0) = sin(φ)eiΔφ.

(13)

Randomly selecting the single configuration amplitudes has a nec-
essary effect on the calculations to find the initial values for the
interconfiguration amplitude A(k), and so this process must be mod-
ified from the process used previously for MCEv2. With QSS, the
calculation for the initial A(k) amplitudes uses the identity operator
for a basis set of nonorthogonal basis functions

I = ∑
k,l
∣ψ(k)⟩ Ω(ψψ)−1

kl ⟨ψ(l)∣, (14)

which includes the elements Ω(ψψ)−1
kl of the matrix Ω(ψψ )−1 inverse

of the overlap matrix Ω(ψψ ) with the elements

Ω(ψψ)kl = ⟨ψ(k)∣ψ(l)⟩ = (a1
(k)∗a1

(l) + a0
(k)∗a0

(l))⟨z(k)∣z(l)⟩.

(15)

Through this identity operator, the amplitudes A(k) can then be
given as

A(k) = ∑
l
Ω(ψψ)−1

kl ⟨ψ(l)∣Ψ⟩, (16)

where |Ψ⟩ = (1|1⟩ + 0|0⟩)|zinit⟩. In practice, a set of linear equa-
tions C = Ω(ψψ )A for the vector of the amplitudes A(k) is solved
instead of inverting the matrix Ω(ψψ ). Here, C is the vector with the
components

C(k) = ⟨ψ(k)∣Ψ⟩ = (a1
(l)∗ × 1 + a0

(l)∗ × 0)⟨z(l)∣zinit⟩. (17)

Through this, the amplitudes A(k) can be calculated in such a way
that the population of the resulting wave function will be entirely
on the state |1⟩ without need to force the single configuration
amplitudes to be wholly on this state.

This sampling, while seemingly counterintuitive, is similar in
spirit to techniques that have been used previously in the Coupled
Coherent States (CCS) method.24,26 It is also well known that conver-
gence of the Gaussian CSs based methods of nonadiabatic dynamics
improves if some basis Gaussian coherent states in (1) are put on
the unpopulated electronic state with zero amplitude A (see Refs. 12
and 13, for instance). The idea of randomness has also been used in
recent MCEv2 calculations carried out by the group of Burghardt.27

Here, we will look at random sampling of the quantum subsystem
more systematically. An important consideration is that using this
sampling technique does not add any significant computational cost
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to the simulation but, as we will show below, quantum superposi-
tion sampling is very useful and significantly facilitates convergence
of MCEv2.

III. TRAINS AND CLONING
Previously, we found that two sampling tricks improved the

performance of MCEv2. First, it was shown that trains or time dis-
placed basis sets of CSs of Ehrenfest configurations, which follow
the same guiding trajectory but with time delay, enhance the con-
vergence. A second very important sampling technique in MCEv2
and related methods is cloning, which allows resampling of the basis
set during propagation.19 The idea of cloning is to create adaptive
basis sets by splitting Ehrenfest configurations into two after pass-
ing through regions of nonadiabatic coupling so as to avoid the
possibility of configurations propagating along an average potential
energy surface which is unphysical in nature. Currently, in MCEv2
an Ehrenfest configuration can be “cloned” to the states |1⟩ and |0⟩
as follows:

∣ψ(k)(t)⟩ = (a1
(k)∣1⟩ + a0

(k)∣0⟩)∣z(k)(t)⟩

= a1
(k)(1∣1⟩ + 0∣0⟩)∣z(k)(t)⟩ + a0

(k)(0∣1⟩ + 1∣0⟩)∣z(k)(t)⟩.

(18)

Cloning of a configuration is performed when two criteria are met:
first when the population of both states is not small, which is reg-
ulated by the cloning threshold ∣a1

(k)a0
(k)∣, and second when the

gradients of their potential energies differ significantly (see Ref. 19).
This way of cloning is largely inspired by spawning in the multi-
ple spawning approach14,28 to quantum nonadiabatic dynamics. In
Sec. IV, we will show that using together with QSS trains and cloning
improves the performance of MCEv2 even further.

IV. TEST OF THE QSS
Following the work of Symonds et al.,19 here we also use the

spin-boson model to provide the first test of the QSS sampling tech-
niques in MCEv2. In the introductory work for the MCE method,11

MCEv1 was found to converge well in all major regimes of the
spin-boson model, for which MCTDH benchmark data existed that
time. At the same time, MCEv2 had difficulty converging in more
“quantum” cases. In the previous studies of MCE with the spin-
boson model,11,19 an Ohmic spectral density with an exponential
cutoff was used, and this spectral density is also used in this paper.
The discretization scheme was exactly the same as in Refs. 11 and
19 where more details can be found. Here, we will only mention
that the parameters of the model ωc, αk, Δ, ε and β = 1

T describe
the shape of the spectral density of the bath (ωc, αk), the coupling
between two states of system (Δ), energy shift between two quantum
states of the system (ε), and the temperature. Following the previ-
ous work,11,19,29 the units are chosen such that the energy is scaled
to the parameter Δ. In addition, similarly to the previous work, a
thermally averaged population difference between the two states of
the system was calculated. A set Nrpt of bath initial conditions |zinit⟩
is generated from quantum Boltzmann distribution and initial wave
function |Ψ⟩ = |1⟩|zinit⟩ is propagated Nrpt times using the MCEv2

Ansatz (5) with quantum superposition sampling of the initial coef-
ficients a1

(k)(0) and a0
(k)(0) until the average population difference

converges.
We do not consider the cases of the spin-boson model for

which MCEv2 converged previously, and instead focus on the cases
where MCEv2 had more difficulty converging in order to demon-
strate the efficacy of the QSS method. The initial test case con-
sidered for QSS was that of a pair of asymmetric wells, drawing
on the previous work14 where a large disparity between the results
of MCEv2 and benchmark has been demonstrated for this case.14

At the same time, MCEv1 achieved a very good agreement with
MCTDH.11 Figure 2 shows the original MCEv2 result for Nbf = 200
basis Ehrenfest configurations which without QSS was quite far away
from MCTDH benchmark. Increasing the basis set size in MCEv2 to
1000 led to almost no improvement. A direct comparison between
the population difference calculated using MCEv2 with the origi-
nal sampling methodology and MCEv2 with quantum superposition
sampling immediately demonstrates the improved convergence of
this enhancement. Figure 2 shows that with a basis set as small
as 100 basis functions, there is a noticeable improvement in con-
vergence towards the benchmark MCTDH29 or MCEv111 results.
When the number of basis functions is increased to 1000, describ-
ing a larger area of phase space, the agreement is almost perfect
within the first few oscillations and significantly closer afterward.
Consequently, increasing the number of basis functions alone is
clearly not sufficient for complete convergence. Following on the
success of MCEv2 with cloning,14 cloning was applied to the simu-
lation of MCEv2 with QSS. Because of the relatively good agreement
between the MCTDH benchmark and MCEv2 using QSS and a rela-
tively small basis sets, it was now possible to increase the maximum

FIG. 2. Comparison of the population difference for original MCEv2 simulation
with those for MCEv2 using quantum superposition sampling both using swarm-
type basis set generation and the spin-boson parameters, ωc/∆ = 7.5, αK = 0.1,
β∆ = 5.0, and ε/∆ = 1.0 with M = 50 degrees of freedom. Simulation with no QSS
used Nbf = 200 basis functions (dashed), and with QSS used Nbf = 100 (dashed-
dotted-dotted), and Nbf = 1000 (solid) basis functions. For all simulations, the
number of repetitions Nrpt = 128. These population differences are also compared
against those from MCTDH simulations (dashed-dotted).29,30
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number of clones from four as used by Symonds et al.19 to 14 with-
out risking inflating the basis set to an unmanageable size. It can be
seen in Fig. 3 that with a relatively small initial basis set and a large
number of cloning events, convergence with the benchmark data is
greatly improved from when no cloning is used, with a deviation
between the two population differences visible only after the fourth
oscillation.

The result for a model decoherent system is shown in Fig. 4.
When used on its own, MCEv2 gives oscillations of the decaying
population difference, which are much too large in magnitude in
comparison to the benchmark result. Again, an increase of the basis
set size does not produce any visible improvement of MCEv2 with-
out QSS. The use of QSS dampens these oscillations so they align
more closely with the MCTDH benchmark data, which can be seen
in Fig. 4.

We have also considered the case of localized wavefunctions,
where the wavefunction remains in the initial electronic state. Unlike
MCEv1, which was able to reproduce benchmark successfully, local-
ization proved to be a very difficult case for the MCEv2 method
in the previous simulations.14 These wavefunctions are character-
ized by very high dimensionality (i.e., very many bath modes are
needed to discretize the bath properly), high cut-off frequencies of
the bath spectrum, strong system/bath coupling, and very low tem-
peratures, making them highly nontrivial to simulate. The MCEv2
result displays high frequency oscillations that are not seen in the
benchmark MCTDH30 and MCEv111 data. While the wavefunction
remains localized and wholly on the initial electronic state, the aver-
age population difference is higher than is seen in the benchmark
data. As can be seen in Fig. 5, however, quantum superposition sam-
pling vastly improves the agreement with the MCTDH benchmark
and lowers the average population difference to closer to the correct

FIG. 3. Comparison of the population difference for MCEv2 swarm-type basis set
simulation without QSS with those for cloned MCEv2 using quantum superposi-
tion sampling using swarm-type basis set generation for the spin-boson model
with the parameters ωc/∆ = 7.5, αK = 0.1, β∆ = 5.0, and ε/∆ = 1.0 with M = 50
bath degrees of freedom. Simulation with no QSS used Nbf = 200 basis functions
(dashed), and with QSS used Nbf = 100 basis functions and Ncln = 14 clones
(solid). The number of repetitions is Nrpt = 128 for both simulations. These are also
compared against those from MCTDH simulations (dashed-dotted).29,30

FIG. 4. Comparison of the population differences for a decoherent system using
MCEv2 with and without QSS (solid and dashed lines, respectively). These are
compared to a MCTDH benchmark calculation (dashed-dotted).29 The spin-boson
parameters, ωc/∆ = 7.5, αK = 0.1, β∆ = 5.0, and ε/∆ = 0, are used to characterize
the model, with M = 60 degrees of freedom in the bath. The QSS simulation uses
Nbf = 500, and the unmodified MCEv2 simulation uses Nbf = 200. All simulations
used Nrpt = 128.

level although the unwanted oscillations still exist, albeit in a much
dampened form.

To improve the performance of MCEv2 with QSS further,
we employed train basis sets, with encouraging result shown in
Fig. 6.

Increasing the number of trains and their length and at the
same time keeping the distance between the “carriages” of the train

FIG. 5. Comparison of MCEv2 with and without quantum superposition sampling
(solid and dashed lines, respectively) against a benchmark MCTDH calculation for
the case of the spin-boson model with the parameters αK = 1.5, β∆ = 1000.0 (to
estimate β∆→∞), ωc/∆ = 10.0, and ε/∆ = 0 with M = 500 frequencies used to
discretize the bath. Nbf = 200 basis functions and Nrpt = 50 repeats were used for
all simulations.
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FIG. 6. Comparison of MCEv2 with and without quantum superposition sampling
against a benchmark MCTDH calculation for the case of the spin-boson model
with the parameters αK = 1.5, β∆ = 1000.0 (to estimate β∆→∞), ωc/∆ = 10.0,
and ε/∆ = 0 with M = 500 frequencies used to discretize the bath. The simulation
with no QSS (dashed line) used the basis set of Nbf = 200. The QSS basis set
(solid line) uses Nbf = 400 basis functions arranged into 20 trains, each 20 basis
functions separated by 18 time steps. The number of repetitions is Nrpt = 50.

as small as possible systematically improves the agreement with the
benchmark.

The case of tunneling between symmetric wells at low temper-
ature with reasonably strong system/bath coupling also converged

FIG. 7. Comparison of the population differences for tunneling between a pair
of low temperature symmetric wells with fairly strong system/bath coupling using
MCEv2 with and without QSS, and these are then compared to a MCTDH bench-
mark calculation (dashed-dotted).29 The parameters of the spin-boson model are
ωc/∆ = 7.5, αK = 0.6, β∆ = 5.0, and ε/∆ = 0 with M = 60 frequencies used to
discretize the bath. For the simulation with no QSS used Nbf = 200 basis func-
tions (dashed), and the simulations with QSS used Nbf = 200 (short dash) and
Nbf = 1000 (solid) basis functions. The number of repetitions is Nrpt = 128 for all
simulations.

FIG. 8. Comparison of the population differences for tunneling between a pair
of low temperature symmetric wells with fairly strong system/bath coupling for
MCEv2 (dashed) and MCEv2 using QSS and swarm clones (solid), compared
to a MCTDH benchmark calculation (dashed-dotted).29 The parameters of the
spin-boson model are ωc/∆ = 7.5, αK = 0.6, β∆ = 5.0, and ε/∆ = 0 with M = 60
frequencies used to discretize the bath. Both simulations used or initially had Nbf =
200 basis functions, with the QSS simulation allowing Ncln = 14 cloning events per
basis function with cloning threshold |a1ka0k | > 0.1. Nrpt = 128 repetitions for both
simulations.

with MCEv111 but proved to be a limiting case for MCEv2,19 with a
“blind cloning” process needed to place empty configurations on the
acceptor state on the other side of the potential barrier. QSS pre-
vents the unwanted localization in the initial electronic state that
occurs with MCEv2 without QSS, by randomly placing some basis
functions in the other electronic state. This can be seen in Fig. 7,
where quantum superposition sampling dramatically decreases the
disagreement with the benchmark data. As expected, increasing the
size of the basis set improves convergence, as shown in Fig. 7. It
is clearly necessary, however, to use other techniques to encourage
greater agreement to the benchmark. Figure 8 demonstrates how
cloning can be used to fit the simulation closer to the MCTDH, the
result being a simulation that decays to the correct magnitude even
if the rate of the decay has not fully converged. Like in the localized
case, QSS places basis functions in the classically disallowed elec-
tronic state, which then allows the simulation to better model the
tunneling between the two states.

V. MCEv2 AS A VERSION OF COUPLED GENERALISED
COHERENT STATES

The idea to use random initial conditions for the amplitudes
a1
(k)(0) and a0

(k)(0) in the Ehrenfest configurations seems coun-
terintuitive, but it leads to a big improvement in the convergence of
MCEv2 calculations. The idea becomes very natural, however, if one
thinks of the subsystem [a1(t)|1⟩ + a0(t)|0⟩] of the Ehrenfest con-
figuration (1) as a two level system coherent state, also called SU(2)
coherent state31 which can be written as

∣ζ(a1, a0)⟩ = a1∣1⟩ + a0∣0⟩. (19)
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Usually, the SU(2) coherent state is written as

∣ζSU(2)(θ,φ)⟩ = cos(θ)eiφ∣1⟩ + sin(θ)∣0⟩, (20)

where one of the coefficients is assumed to be real. Having both a1
and a0 as complex would introduce an insignificant phase factor, but
the advantage is that now the amplitudes are treated on an equal
footing. A multidimensional SU(2)-CS representing M two-level
systems as simply the Hartree product of several 1D CSs,

∣ζ⟩ = ∣ζ1, ζ2, . . . , ζM⟩ = Π
m=1,M

(a1m∣1m⟩ + a0m∣0m⟩). (21)

In these notations, the MCEv2 Ansatz becomes

∣Ψ(t)⟩ = ∑
n
A(n)(t)∣ζ(n)(t), z(n)(t)⟩

= ∑
n
A(n)(t)∣ζ(n)(t)⟩∣z(n)(t)⟩, (22)

where the wave function is a superposition of generalized coher-
ent states |ζ(n)(t), z(n)(t)⟩, a mixture of SU(2) |ζ(n)(t)⟩ and Gaussian
|z(n)(t)⟩ CSs.

While the difference between Eq. (22) and the MCEv2 Ansatz
(5) is only in the notations, the new notations help to rationalize the
new QSS sampling in the context of established theory. Recently, it
has been shown that the machinery developed for Gaussian CSs in
the Coupled Coherent States (CCS) method24 can be adopted for the
use with generalized CSs.22 From this prospective, MCEv2 is equiva-
lent to Coupled Generalized Coherent States (CGCS). The details of
working equations of Coupled Generalized Coherent States (CGCS)
are given in the supplementary material. Sampling techniques devel-
oped for standard coupled coherent states in Refs. 24 and 26 can
therefore be used in the CGCS approach. One of the ideas suggested
in Ref. 26 for the CCS approach was to sample the most important
and the most quantum degrees of freedom of Gaussian coherent
states from a broad and random distribution and to sample less
important degrees of freedom from a random but very narrow dis-
tribution, creating a “pancake” in a multidimensional phase space.26

When applied to CGCS, this idea of a “pancake” distribution gives
the grounds for quantum superposition sampling if the degrees of
freedom associated with two level system are regarded as the most
important ones.

Thus, the idea of coupled generalized coherent states suggested
in Ref. 22 can be extended and numerous methods of quantum
propagation developed for the basis sets of Gaussian coherent states
can also be used for generalized CSs. In addition, various forms
of quantum coupled equations suggested previously for Gaussian
coherent states can be written for the generalized coherent states.
In the supplementary material, we use the language of general-
ized coherent states to derive and to generalize the equations of
MCEv1 and MCEv2 as well as fully variational generalized coherent
states.

VI. SUMMARY AND CONCLUSIONS
In this paper, we demonstrated that the new quantum super-

position sampling significantly improves the performance of the
MCEv2 method. We have tested QSS on several cases of the
spin-boson model where MCEv2 failed previously and observed

a significant improvement. Even when QSS still disagrees with the
benchmark, it brings the result closer to it and therefore represents
a better starting point for using other sampling methods, such as
cloning and trains. QSS is a natural extension of important sam-
pling technique known in the CCS method to the coupled gener-
alized coherent states approach. It greatly improves the efficiency of
MCEv2, and now, the hope is that it should be useful in the future
for simulations of system-bath quantum problems and in direct
dynamics “on-the-fly” simulations.

SUPPLEMENTARY MATERIAL

The supplementary material provides more details on the defi-
nition of generalized coherent states and derivations of various types
of quantum equations of motions for the wave functions in the basis
of GCSs.
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