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Abstract

Despite advances in technology, there are still constraints on the use of some tracking

devices for small species when gathering high temporal and spatial resolution data on

movement and resource use. For small species, weight limits imposed on GPS loggers

and the consequent impacts on battery life, restrict the volume of data that can be collected.

Research on home range and habitat selection for these species should therefore incorpo-

rate a consideration of how different sampling parameters and methods may affect the

structure of the data and the conclusions drawn. However, factors such as these are seldom

explicitly considered. We applied two commonly-used methods of home range estimation,

Movement-based Kernel Density Estimation (MKDE) and Kernel Density Estimation (KDE)

to investigate the influence of fix rate, tracking duration and method on home range size and

habitat selection, using GPS tracking data collected at two different fix rates from a small,

aerially-insectivorous bird, the European nightjar Caprimulgus europaeus. Effects of track-

ing parameters varied with home range estimation method. Fix rate and tracking duration

most strongly explained change in MKDE and KDE home range size respectively. Total

number of fixes and tracking duration had the strongest impact on habitat selection. High

between- and within-individual variation strongly influenced outcomes and was most evident

when exploring the effects of varying tracking duration. To reduce skew and bias in home

range size estimation and especially habitat selection caused by individual variation and

estimation method, we recommend tracking animals for the longest period possible even

if this results in a reduced fix rate. If accurate movement properties, (e.g. trajectory length

and turning angle) and biologically-representative movement occurrence ranges are more

important, then a higher fix rate should be used, but priority habitats can still be identified

with an infrequent sampling strategy.

Introduction

Effective species conservation management requires detailed knowledge of a species’ ecology

[1], including but not limited to, an understanding of movement and resource use to make
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appropriate management decisions that will help conserve populations [2,3]. For certain

groups of species, such as small, nocturnal or range-limited species, gathering this information

can be logistically challenging. As such, researchers are mostly reliant on indirect observation

methods, such as animal-attached devices, including Very High Frequency (VHF) tags, geolo-

cators and Global Positioning System (GPS) units [4] to make an assessment of what habitats

are being used [5–7].

The rapid advancement of tracking technology has allowed us to remotely gather informa-

tion on a wide variety of species [8,9], which can be used to answer questions about how the

animal interacts with the landscape, how it moves in relation to habitat type and structure

[5,10], its territoriality and interactions with conspecifics [11], and its foraging strategy [12].

GPS units in particular are associated with the ability to collect data from more locations,

including previously inaccessible areas, at a higher level of accuracy than before [13,14].

Researchers attaching GPS devices are reliant on the assumption that the data are producing

accurate, consistent representations of the animal’s spatial and temporal activities [15–17].

However, studies have shown that movements and habitat usage patterns may be represented

differently at different temporal and spatial scales [18,19] and use different methods of home

range and habitat selection estimation [20–23], which may or may not take into account the

autocorrelation structure of the data [24]. Previous studies addressing these issues recommend

obtaining data from multiple temporal and spatial scales for comparison [19,25], and have

focused on large mammals [25,26] that are able to be followed year-round. For small mammal

and bird species however, it is often only viable to collect data for a limited, fixed, single-season

period as a small battery size is necessary to avoid exceeding maximum percentage bodyweight

threshold [27].

Trade-offs resulting from the incompatibility of low weight and long battery life may

affect which individuals can be tracked [17,27] and may limit how much data can be collected.

Movement patterns recorded may therefore be influenced by the parameters used when col-

lecting tracking data [20], fix-acquisition bias [18,28], or method of analysis. The impact of

variation in fix rate or duration of tracking period on resulting home ranges and habitat selec-

tion estimates is seldom explicitly considered or taken into account (but see [25,26]). However,

it is important to ensure that data are collected at the most appropriate temporal scale in order

to acquire data of a certain quality or quantity necessary to answer the questions posed.

Studies that report the implications of varying fix rate and duration of tracking period,

often address these issues with simulated, rather than empirical data [20,29]. They also do

so largely in the context of GPS fix failure [18], movement distance [30,31] or home range

estimation often with VHF not GPS tags [25,29], rather than effects on estimates of habitat

selection [18,19,25,26]. A small number of in-depth studies on estimating home range with

conventional estimators, conclude that changing fix rate and duration of tracking can alter

estimates of home range and consequently inferences about movement and behaviour

[25,28,32], in part due to the effect these parameter changes have on the autocorrelation

within the data [22]. Borger [25] identified tracking duration (number of days) as the key

parameter influencing home range estimation, whilst Huck [20], Walter [33] and Byer [34]

identified method of estimation as the most important factor for both home range size and

proportion of habitats available. Stark et al. [21] found that movement-based home range

estimation methods, such as the biased random bridge, handled missing GPS points of up to

75% of the total dataset better than conventional kernel density estimates and similarly Wal-

ter et al. [35] found that incorporating the temporal aspect of the data produced more reli-

able estimates.

Tracking data are inherently autocorrelated [24,36,37], although if fixes are taken infre-

quently enough so as to be longer than the autocorrelation timescale of the data, data can be

Trade-offs between tracking parameters for home range and habitat selection estimation
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considered independent [22,24]. The autocorrelation timescale is often interpreted as

the time it takes for an animal to cross its home range [22,24]; the number of points that

satisfy this assumption, equating to the number of home range crossings, are referred to as

‘effective sample size’ [22]. Not accounting for autocorrelation in the data can lead to bias

and variation using traditional estimators, such as the KDE [24,37], whereas movement-

based methods of range estimation such as the MKDE [38] and BBMM [39] do account for

autocorrelation, but do not estimate ‘true’ home range, but rather the animal’s occurrence

range [22,37]; a picture of where it has been, rather than what it necessarily needs long term.

The recently introduced AKDE (‘Autocorrelated Kernel Density Estimator’) attempts to

combine both the autocorrelation structure of the data and estimation of a traditional home

range, estimating area used on the effective sample size which better represents the longer-

term distribution of points [24].

The use and incorporation of autocorrelated data also relates to how the smoothing param-

eter of kernel home range analyses functions [36]. The smoothing parameter, or bandwidth,

(commonly: ‘h’) influences the weight of each data point within the probability distribution

function that creates the home range [40–42]. There is no consensus as to which bandwidth

parameter to use, however it should aim to minimize variation in the size of the home range

estimate between sampling frequencies and individuals [40,41] and should strike a balance

between assigning an overly high influence to outer points, possibly resulting in disjointed

home ranges where this may not make sense (under-smoothing) and averaging over outer

points, thus disguising details of the foraging range (over-smoothing) [41,43].

Home ranges are also linked to the estimation of habitat selection by providing an individ-

ual measure of habitat availability [20,44]. As shape and size of the home range may depend on

the configuration of the tracking schedule [32], as well as estimation method and bandwidth

parameter [41], it can then influence the strength of habitat selection estimates [20,45]. How-

ever, the extent to which a decrease in fix rate and number of days tracked can directly affect

these estimates, is largely unstudied. Few studies discuss the effects of tracking parameters

on habitat selection and those that do mostly discuss habitat-related biases in fix collection

[18,28], rather than decisions made regarding the fix rate and how this might influence dura-

tion and therefore the results obtained. Girard et al. [45] found, using empirical GPS data and

simulated changes in fix rate with moose (Alces alces), that decreasing rate did not significantly

alter habitat selection conclusions and that preferences for specific habitat types were clear

even at low fix rates (e.g. 1 fix every 7 days). It should be noted however, that this research was

conducted on a large, slow-moving mammal, with the ability to conduct a tracking study for

multiple months, which is not the case for many small species such as bats and birds, which

present a very different system to larger mammals [46]. The scale and timing of movement

undertaken by large herbivores (deer, bison) [47] or carnivores could be orders of magnitude

higher [48,49], causing positional autocorrelation to last for a number of days [50]. Not only

that but small insectivores have higher energy requirements [51] and are exploiting a more

spatially- and temporally-variable resource which will influence the time they spend moving

and the configuration of their movements [52].

Given the increasingly widespread use of relatively cheap, miniature GPS units, it is perti-

nent that the influence of tracking parameters and data analysis methods are studied in the

context of habitat use by species [53,54]. As such, this study is framed particularly in the con-

text of the increased use of high-temporal resolution GPS units as opposed to VHF tags, on a

small mobile central place forager. We concentrate particularly on how decisions made by

researchers before deployment can influence analysis and results, as well as the use of a move-

ment-based method of estimating home range, which has not been studied in the context of

manipulation of these parameters.

Trade-offs between tracking parameters for home range and habitat selection estimation
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Study scenario

Our study focused on a migratory, insectivorous bird of conservation concern [55,56], the

European nightjar Caprimulgus europaeus (hereafter referred to solely as ‘nightjar’). Nightjars

are mostly single-brooded [57], nesting traditionally in dry heathland habitats with scrubland

[58], mature trees and heather supporting good moth and beetle populations [55,59]. Their

numbers fell significantly throughout Great Britain in the early part of the 20th century due to

afforestation, and loss of habitat [60]. Nationally, the population size has now stabilised [56],

but threats such as climate change, urban development and agricultural intensification that

remove both nesting and foraging resources, still continue [61,62]. Although nightjars are

mobile and thought to be adaptable to land use change [63], they are also site-faithful [64] and

there is little evidence in the literature to demonstrate their resilience to significant habitat

transformation, particularly with smaller populations on atypical sites. Summer residency in

northern Europe, including Great Britain, is short, lasting fromMay until September, with

some females only arriving in mid-June [65]. This provides a limited window in which to track

this species.

In this study, we tracked a number of individuals from a relatively stable breeding popula-

tion of nightjars [66,67] on one of the more northerly breeding sites in Great Britain [68]. We

aimed to determine the effect of fix rate and tracking duration from GPS data, on estimates of

home range size and habitat selection and to assess the trade-off between fix rate and tracking

duration in terms of the information gained about an animal’s area of use.

We had the following research questions:

1. How sensitive are estimates of home range size and shape to changes in fix rate and tracking

duration?

2. How sensitive are estimates of habitat selection to any changes in tracking parameters and

method of home range estimation and are the conclusions equivalent across all rates, dura-

tions and methods?

Materials andmethods

This work was carried out on the Humberhead Peatlands National Nature Reserve, South

Yorkshire, which consists of Thorne Moors (53.636, -0.89682) and Hatfield Moors (53.545,

-0.93493). The project was developed as part of an EU-funded LIFE+ project to monitor beha-

vioural responses of European nightjars to habitat restoration. All fieldwork was subject to eth-

ical approval through the University of York and was conducted with appropriate licences to

capture and deploy tags onto birds through the British Trust for Ornithology.

The data consist of GPS fixes collected from 32 adult birds from 2015–2018, tracked over

6 or more days at two different rates. Birds were tracked from 21:00 to 05:00 hrs, but points

spent at the roost in the first and last 30-minute periods (i.e. 21:00–21:30 and 04:30–05:00)

were removed to avoid bias [69,70]. Data were collected using miniature nanofix GPS tags

(Pathtrack, Otley, UK), at rates of 20 fixes per hour (n = 15), totalling 160 per 8-hour tracking

session in 2015 and 2016, and 12 per hour (n = 17), totalling 96 per 8 hour tracking session

in 2017 and 2018. This was equivalent to setting a 3-minute and 5-minute fix interval respec-

tively, in the pre-programmed tag parameters. The tags weighed approximately 1.75g (equiva-

lent to 3% or less of the bird’s bodyweight). In order to achieve such a small size, the battery

and memory chip inside the GPS tags were necessarily small and their use requires a decision

to be made on the trade-off made between fix rate and tracking duration. In 2017, the interval

between fixes was increased from three to five minutes, thus decreasing the fix rate from 160

Trade-offs between tracking parameters for home range and habitat selection estimation
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to 96 per session, in order to obtain an increased number of days of data, rather than collecting

more fixes over fewer days.

Habitat mapping

Habitat types across the study site were primarily mapped using supervised classification of

Unmanned Aerial Vehicle (UAV) photographs within ArcMap (v. 10.5). We created a five-

metre resolution habitat map, which was then updated in subsequent breeding seasons using

hand-held GPS units on site, to incorporate annual habitat management activities. Thirteen

habitats were classified, taking into account both vegetation type and structure, both thought

to be important to nightjars.

GPS data processing

The data were processed and analysed in R (v.3.5.1). In order to explore the effect of fix rate on

estimates of home range and habitat selection, the original data were subsampled. Firstly, fix

rate was halved according to the initial rate (i.e. 6 or 10 fixes per hour, totalling 48 or 80 fixes

per 8 hour session, equivalent to a 6- or 10-minute fix interval); secondly the data were sub-

sampled to give a rate of four fixes per hour (i.e. 32 per session or a fix interval of 15 minutes).

To investigate the effect of tracking duration on home range and habitat selection, the full

datasets for each bird were subsampled into the first 3- and 6-day periods.

These data were then used to estimate individual home ranges using both the Biased Ran-

dom Bridge method for movement-based kernel density estimation (MKDE) [71,72] and

static kernel density estimation (KDE), using package ‘adehabitatHR’ [73]. These represent

one of the most commonly used methods of range estimation and a more recently developed

occurrence estimator, or movement-based home range, that explicitly uses the connections

between tracking data fixes to identify heavily-used areas and corridors [38]. For the MKDE,

specific movement information gathered from the tracking data was used to parameterise a

more descriptive, movement-based home range [74], compared with the KDE method. Each

GPS fix is associated with a timestamp (date and time combined), meaning the exact time

between fixes is calculated. Specific calculations include: a diffusion parameter comprised of

the maximum time permitted between fixes (‘Tmax’; here, we have used 3 x fix frequency,

i.e. either 9 or 15 minutes [38]) and the minimum distance that represents movement (10

metres) [38]. The inclusion of the ‘Tmax’ value therefore excludes the 16 hour gap present in

the schedule that occurs while the units are switched off during the day. As a central place

forager, the nightjar is constrained to its nest or roost during the day when it is unable to

feed, thus, the inclusion of this area would likely bias the home range unfairly downwards, as

with seabirds constained to nesting on land [75]. Constructive home ranges for such con-

strained foragers is difficult, but this decision likens the nightjar MKDE to an ‘active’ home

range as in [76]. These parameter values are used in conjunction with a variable smoothing

parameter applied to different parts of the track, which is calculated from values chosen by

the user. These values are ‘hmin’, a value in the units of the GPS locations, chosen to balance

the GPS-related error and the mean distance moved between points (here, 60 metres);

becomes ‘hmax’ at the interpolated point furthest from two known locations[38,72,77]);

‘Tmax’ and the grid size (here, this was the underlying 5 x 5 metre habitat map). The smooth-

ing parameter used within the KDE analysis was ‘href’, also referred to as the reference band-

width [41,78], which is estimated using the standard deviation of the x and y coordinates

[78]. This was used in preference to the ‘LSCV’ method, which tends to undersmooth [42]

and may less accurately account for the possible distance travelled between points, especially

by such a mobile bird that can cross its home range very quickly [24]. We used the variable

Trade-offs between tracking parameters for home range and habitat selection estimation
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smoothing parameter and href throughout the analysis for all full- and subdivided samples,

to avoid adding variance and bias into the study related to this parameter. We anticipated

that as the MKDE has been found to cope better with missing points, it should also maintain

an accurate representation of animal space use even with a decreased fix rate [21]. Home

range sizes using both MKDE and KDE were calculated only for the 95% level as this is the

most commonly used level in the literature.

Habitat availability within individual 95% home range estimates was identified using the

‘over’ function in sp [79]. Home range habitat availability was combined with used points,

identified using the ‘join’ function in adehabitatMA [73], excluding points outside of the

home range boundary, to estimate Manly Selection Ratios [80]. These were estimated using

the ‘widesIII’ function in adehabitatHS [73], where use and availability differ between indi-

vidual animals and as such, a selection ratio is produced for each habitat type along with an

overall selectivity measure of an individual bird across all habitats [73,80]. Here we use the

latter, termed within the adehabitatHS package as Khi2Lj, that incorporates all single-habitat

selection ratios within each individual, into a combined measure of habitat selection (from

here-on we will refer to this as the selection statistic). These selection values are a special case

of the more-commonly used Resource Selection Function (RSF; [3,80]) and estimating habi-

tat selection in this way provides a simple, easily-interpreted statistic, that makes better use

of a single variable containing multiple categories, such as the habitat type variable in our

study [80,81].

Autocorrelation assessment

To further understand the results from the MKDE and KDE home range estimation, it is

important that the underlying structure of the data is assessed [37]. We visualised data from all

individuals, using variograms and correlograms in package ‘ctmm’ [23], to gather information

relevant to home range estimation such as positional- and temporal-time-to-independence.

We then ran AKDE home range estimation analyses, which incorporate an underlying move-

ment model into the estimation of a ‘true’ home range [24], using Ornstein-Uhlenbeck forag-

ing (OUF) model-estimated variance and bandwidth parameters model [23,82] that brings in

both positional and velocity autocorrelation. The values produced for these were then com-

pared to those produced from the KDE and MKDE to observe any differences cause explicitly

by the autocorrelation structure of the data.

Variograms displayed immediately strong autocorrelation, followed by a rapid but individ-

ually-variable asymptote (S1 Appendix). The data possessed strong positional and velocity

autocorrelation within the first 30 minutes of tracking, which equates to 10–12 or 6–8 fixes at

the two sample rates (160 or 96 per day), demonstrating that to achieve true independence the

data would need to be subsampled to a 30 minute fix interval (approximately 16 per day), far

less frequently than currently taken. However, the relationship between the size of the area tra-

versed by the individuals, meant that effective sample size was still high. This highlights that

although there is autocorrelation in such frequently acquired data, for a central place forager

holding a small home range relative to the tracking duration, this is not as significant as it

would be for an animal traversing a larger area, relative to the fix rate [22,24]. This resulted in

no significant difference between KDE and AKDE home range sizes (ANOVA, F2,536: 19.93,

p< 0.0001; Tukey post-hoc tests: MKDE:KDE p< 0.0001; MKDE:AKDE p< 0.0001; KDE:

AKDE p = 0.57; S4 Appendix).

Consequently, we have analysed the data for habitat selection with the KDE and MKDE, to

demonstrate the use of both a range and an occurrence estimator with data that is initially

strongly autocorrelated but asymptotes quickly, relative to the total length of tracking.

Trade-offs between tracking parameters for home range and habitat selection estimation
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Modelling

Estimates of home range size and habitat selection, for all home range estimation methods,

were then brought into linear mixed effects models using the ‘lmer’ function in lme4 [83].

These mixed effects models were able to identify the influence of both spatial and temporal

variables using fixed effects, as well as identifying individual variation in these variables, using

random effects. Methods such as this to deal with individual variance, i.e. mixed-effects mod-

els, are being used more widely [84,85] and prior exploratory analysis in this study showed

clear influence of the individual bird on the strength of the response to change in the tracking

duration and fix rate. Both response variables, home range size and selection statistic, for both

methods were log transformed for normality [25,53].

Four separate models were created (Table 1). Variables were subject to prior exploratory

analysis related to a priori hypotheses. Sex of the bird did not have an influence on the result

and was thus not included. Two models were run for the two different home range estimation

methods, in order to test the sensitivity of the home range estimates to variation in tracking

parameters, followed by two habitat selection models, to test the sensitivity of the habitat selec-

tion estimates to variation to the same tracking parameters.

Fixed effects in all starting models were:

1. Tracking Duration: number of days, ranging from 3 to 17.

2. Fix Rate: expressed as the number of fixes per session; one of 32, 48, 80, 96 or 160 (corre-

sponding to 4, 6, 10, 12 or 16 fixes per hour).

3. Number of fixes; the total number of fixes in a bird’s full, or subset dataset.

4. Year; either 2015, 2016, 2017, 2018.

5. Site; Hatfield or Thorne.

Dominant habitat, representing the habitat type within a bird’s home range (derived from

the MKDE or KDE polygon and overlaid on a five-metre resolution habitat raster) with the

highest number of pixels (i.e. largest availability) was included as a fixed-effect only in the

home range models. Random effects to account for variation in the coefficient values, were the

same for all models and included Individual and tracking duration as the random intercept

and slope respectively (Table 1). Including tracking duration as both a fixed effect and a ran-

dom slope [86] aimed to improve the fit of the model by recognising individual variation in

response to changing tracking duration, something that was uncovered during the prior

exploratory analysis. Week of the breeding season in which the bird was tracked was also

included as a random effect.

To directly compare the impact of the parameters on the data originally collected at two dif-

ferent fix rates, we subsampled all data to a 15-minute interval. We again ran four models with

the same starting dependent variables of home range size and habitat selection statistics, which

Table 1. Outline of the four linear mixed models used in analysis. Response variable is modelled against the corre-
sponding fixed and random effects listed in each row.

Response variable Fixed effects Random effects

1. MKDE/KDE/AKDE Home Range
size (hectares)

Number of days + Fix rate + Number of fixes
+ Year + Site + Dominant habitat

1. Individual (intercept) /
Days (slope)
2. Week number

2. Habitat selection statistic (derived
fromMKDE Home Range)

Number of days + Fix rate + Number of fixes
+ Year + Site

1. Individual (intercept) /
Days (slope)
2. Week number

https://doi.org/10.1371/journal.pone.0219357.t001
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did not include fix rate as a fixed effect, but did include tracking duration, temperature, year,

habitat and site, to attempt to unpick underlying variation. AICc (AIC corrected for small

sample size) was used to judge the most appropriate model for all analyses. We followed a step-

wise selection procedure, whereby dropping single terms from the model resulted either in a

decrease or increase in AICc value. The final model was determined when no further decrease

could be achieved by removing single terms. Single terms were added back into the final

model, in a random order and a secondary model selection procedure was employed using

MuMin (v. 1.42.1; [87]) in R, to check the validity of the reduced model. Fit of the final models

was assessed through normality of the residuals using the plot function in package ‘lme4’ (v.

1.1–17) and by simulating residuals and testing for uniformity in package ‘DHARMa’ (v. 0.2.0;

[88]). Where model selection did not achieve delta AIC> 2, i.e. there was no ‘best’ model, we

used the ‘model.avg’ function in MuMin and produced model-averaged parameters. Final

model coefficients for both fixed and random effects are presented in the results. As response

variables were log-transformed, the values are presented accordingly as percentage increase in

y, with a 1-unit increase in x.

Results

Home range information

Across the whole dataset of 32 birds, the mean (+/- SD) home range sizes were 204.04 ha (+/-

229.42; MKDE) and 115.1 ha (+/- 153.62; KDE; Table 2; S2 Appendix). All estimators varied

between and within fix rate and day subsets; MKDE range sizes were at their highest at the

lowest fix rate of 32 fixes per day (342.88 ha +/- 327.61), whereas KDE range sizes were largest

in the 5-minute fix interval category (125.25 ha +/- 182.61; see S2 Appendix). Mean values for

the shortest tracking duration subset of 3 days were 138.57 ha (+/- 167.11) for MKDE; 109.84

ha (+/- 184.89) for KDE (Table 2). Large standard deviations represent high individual varia-

tion, addressed in much more detail in the following sections (and see S2 Appendix).

Modelling results

Home range. To test the influence of multiple tracking parameters on estimates of home

range size, we ran three models with MKDE and KDE sizes as the dependent variable. For

both estimators, tracking parameters were influential (Fig 1, Table 3). MKDE home range

size was most strongly influenced by fix rate and tracking duration (Table A in S3 Appendix).

Dominant habitat type within the individual’s area was also influential, whilst number of fixes,

site and temperature had a negligible influence and were removed. The final model indicates

that every one-unit decrease in the fix rate results in a -0.59% change in home range size, i.e.

the lower the fix rate, the fewer fixes collected per day and the larger the home range (Table 4).

Table 2. Mean values (+/- S.D.) for MKDE and KDE estimated home range sizes (hectares) for each fix rate subset and two shorter duration subsets within the data-
set (mean value across all subsets per year). Sample sizes vary between subsets; 16 and 10 fixes per hour, n = 9; 12 and 6 fixes per hour, n = 23; 4 fixes per hour, n = 32; 3
days, n = 64; 6 days, n = 32.

At a fix rate of: At a subset of:

16/ hour 12/ hour 10/ hour 6/ hour 4/ hour All 3 days 6 days

Mean MKDE (ha) 94.74 179.87 158.04 260.89 342.88 204.04 138.57 163.42

(+/- S.D.) 92.13 187.94 195.18 235.4 327.61 229.42 167.11 162.98

Mean KDE (ha) 80.81 125.36 104.5 118.96 119.17 115.1 109.84 91.53

(+/- S.D.) 91.49 182.61 140.76 117.54 133.08 153.62 184.89 118.92

https://doi.org/10.1371/journal.pone.0219357.t002
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A one-day increase in tracking duration equated to a 4% increase in home range (Table 4,

Fig 2). This final model containing just Fix rate, tracking duration and habitat held most of the

model weight (0.63; Table A in S3 Appendix). Individual as a random effect accounted for the

majority of the variation in MKDE home range size (Table 3). Number of days (included as a

random slope) explained only a small amount of extra variation (0.004; Fig 2).

Tracking duration and dominant habitat were the most influential parameters when estimat-

ing KDE home range size (Table B in S3 Appendix). Also, contradictory to the estimates from

the MKDE, fix rate had minimal impact (Fig 1). An increase of one day resulted in a 3.46%

increase in the KDE home range size (Table 4, Fig 2). However, several of the reduced models

held similar AICc values, resulting in model-averaged parameters from the best 2 models

(Table 3; Table B in S3 Appendix), the second of which also included site. These two models

combined held an Akaike weight of 0.7 (Table B in S3 Appendix). Variance attributed to individ-

uals was higher than for MKDE home range (Table 3); further to individual random variation,

tracking duration also provided some explanation of the variance along with residual variation.

Fig 1. Example of MKDE and KDE home ranges calculated at three different fix rates. Estimates of MKDE (A) and KDE (B) were calculated at the standard rate
(12 fixes per hour or 96 per 8-hour tracking session, equivalent to a 5 minute fix interval) and the two subsampled rates of 6 fixes per hour (48 per session, equivalent
to a 10 minute fix interval) and 4 per hour (32 fixes per session, equivalent to a 15-minute fix interval), as identified in the key. GPS fixes outside of the home range
polygons have been excluded from the habitat selection calculations.

https://doi.org/10.1371/journal.pone.0219357.g001
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Habitat selection. To assess the sensitivity of habitat selection estimates to changes in

tracking parameters, variation in the estimated habitat selection statistic [80], derived from

both home range estimators was modelled against tracking parameters, and weather and tem-

poral covariates. For the MKDE-derived habitat selection, fix rate, the number of fixes, track-

ing duration and site (Table 3; Table C in S3 Appendix) were significant, but the top model

was within ΔAIC 2 of the second ranked model, therefore these have been averaged. The

removal of the total number of fixes resulted in an increase in AICc of>20 and its inclusion

provided the most weight to the final model selection table (Table C in S3 Appendix). An

increase of one fix resulted in a 0.1% increase in selection strength (Table 4), which although

small was significant. An increase in fix rate by one unit resulted in an increase of 0.3% in the

selection estimate, whilst an increase in tracking duration caused an increase in the selection

estimate of 4.9% per day. Unlike the home range models, site on which the birds were tracked

Table 3. Final model coefficient estimates and random effect variance parameters for each of the four models run to explore factors affecting home range and habi-
tat selection. 95% confidence intervals are presented in brackets, following fixed effect coefficients. Standard deviation is presented in brackets following random effect
coefficients.

Coefficient estimates

Predictors MKDE Home Range KDE Home Range MKDE Habitat Selection KDE Habitat Selection

Intercept 7.049 4.234 4.65 4.179

(5.871–8.228) (2.56–5.909) (4.187–5.113) (3.763–4.594)

Fix Rate -0.006 0.001

(-0.007–-0.004) (-0.0005–0.006)

Tracking Duration 0.039 0.034 0.048 0.03

(0.007–0.071) (0.002–0.066) (0.009–0.087) (0.012–0.049)

Number of fixes 0.001 0.001

(0.0006–0.002) (0.001–0.002)

Site 0.184 -0.408 -0.245

(-0.256–1.165) (-0.814–-0.002) (-0.941–0.036)

Dominant habitat + +

Random effects

Intercept/Individual 0.343 1.234–1.244 0.261–0.269 0.62–0.752

(+/- SD) (+/- 0.585) (+/- 1.111–1.115) (+/- 0.511–0.518) (+/- 0.788–0.862)

Days/Individual 0.004 0.005 0.0004–0.0005 0.001

(+/- SD) (+/- 0.062) (+/- 0.072) (+/- 0.019–0.022) (+/- 0.028–0.031)

Intercept/Date 0 0.00–0.098 0.013–0.03 0.04–0.089

(+/- SD) (+/- 0.000) (+/- 0.314) (+/- 0.112–0.174) (+/- 0.20–0.299)

Sigma (Resid. var.) 0.091 0.101 0.118–0.121 0.09

(+/- SD) (+/- 0.302) (+/- 0.318) (+/- 0.343–0.348) (+/- 0.30)

https://doi.org/10.1371/journal.pone.0219357.t003

Table 4. Influence of tracking parameters on MKDE and KDE home range and habitat selection. For every one-unit increase in the variables in the left-hand column,
there was a change in the corresponding home range or habitat selection estimate, given in percentage increase or decrease.

MKDE KDE

Increase per unit in: Home Range Selection statistic Home Range Selection statistic

Fix Rate (Fixes per session) " 0.59% " 0.3% 1NA NA

Tracking Duration (Days) " 4% " 4.92% " 3.46% " 3.01%

Number of fixes NA " 0.1% NA " 0.1%

1NA where variable did not appear in final model.

https://doi.org/10.1371/journal.pone.0219357.t004
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was heavily influential, with a 98% decrease in selectivity from Hatfield Moor to Thorne Moor

(Table 3). Individual differences accounted for a considerable amount of the random variation,

along with tracking duration (Table 3). Date-related variation was negligible, but higher resid-

ual variation was present (Table 3).

For the KDE-derived selection statistic the number of fixes had the most weight, and

increased AICc by>100 if dropped from the model (Table D in S3 Appendix). Tracking

duration was also important, with site less important but still relevant to the model. As with

MKDE-derived habitat selection, the top model was within ΔAIC 2 of the second best, so these

were model averaged. An increase of one fix, resulted in a 0.1% increase in KDE-derived selec-

tion (Table 4).

Likewise, an increase in tracking duration of one day, caused a 3% increase in SR (Table 4).

Again, site influence was clear, although varied between individuals, with a decrease in selec-

tivity when moving from Hatfield Moor to Thorne Moor (Table 3). The magnitude of the

Fig 2. Outputs from the linear mixed models showing variation in individual response to altered tracking duration in home range size or habitat selection,
for both home range estimation methods. Panels a and b display results of the home range and habitat selection analysis using the MKDE; panels c and d display
results using the KDE. Predictive regression lines are displayed for each individual (n = 33). NB: different y-axis scales on each plot.

https://doi.org/10.1371/journal.pone.0219357.g002

Trade-offs between tracking parameters for home range and habitat selection estimation

PLOSONE | https://doi.org/10.1371/journal.pone.0219357 July 10, 2019 11 / 20

https://doi.org/10.1371/journal.pone.0219357.g002
https://doi.org/10.1371/journal.pone.0219357


individual variation was stronger than when estimating MKDE selection (Table 3). Both the

intercept and slope of the home range and habitat selection models vary between individuals

(Fig 2). Home range both increases and decreases with an increased tracking duration,

depending on the individual. The relationship is clearer for habitat selection, where an

increased tracking duration leads to an increased habitat selection statistic, indicating higher

selection strength (Fig 2).

Direct data comparison. We carried out additional analysis of the tracking data at a

15-minute fix interval where direct comparison among years was possible, in an attempt to

understand if changes in fix rate over the course of the study might have masked other

changes. For each dependent variable, a different set of parameters were most influential

(Table A in S4 Appendix). Only within the MKDE home range analysis was there a clear effect

of year, with home range size increasing from 2015 linearly through to 2018 but decreasing

with temperature (Table 5). In comparison, KDE home range size was influenced most

strongly by the tracking duration and number of fixes. Neither habitat selection model dis-

played an effect of year; habitat selection derived from the MKDE home range was influenced

by tracking duration, but also temperature, whereas that derived from KDE home range was

only influenced by site (Table 5; Table A in S4 Appendix).

Discussion

Manipulation of tracking parameters influenced all aspects of our study results in some form.

All the factors presented here have relevance for researchers looking to plan their own tracking

study and should at least be considered, as they may mask other elements. All parameter values

should be reported to allow for full understanding of the results. We have provided informa-

tion on the magnitude of the change in home range and habitat selection where possible, to

aid understanding of the strength of the relationships between variables should researchers

need to make this trade-off when studying a small species for which ‘unlimited’ tracking is not

possible. Below we discuss these factors in the context of our original research questions and

in the context of movement research overall.

How sensitive are estimates of home range size and shape to changes in fix
rate and tracking duration?

Both methods of home range estimation were sensitive to tracking duration, but only the

MKDE was sensitive to fix rate. The influence of fix rate on MKDE, is a reflection of the

autocorrelation assumptions within the method and the underlying structure of the data

[22,37,72]. For the MKDE, the density of, and the space between, consecutive points is

weighted, which means that if fix rate were decreased in order to extend tracking duration,

this would increase the area in which there is a probability of finding the animal (creating

more uncertainty), producing a larger MKDE.

Sensitivity to tracking duration of both methods identifies this as a key variable. A longer

tracking duration means that extra information is gained, producing a larger sample size [22].

For species that have previously only been tracked for short periods, the information gained

from extra days of tracking could be very valuable, because what animals do for a few days is

not necessarily representative of what they do longer term. Where the relationship between

home range crossing time and frequency of fixes gives rise to strongly autocorrelated data (i.e.

crossing time exceeds the interval between fixes), longer tracking enables the effective sample

size to increase, making the results more interpretable [16]. We identified strong bias in the

estimation of home range size if data are collected for only a few days for both estimators, due

to a substantial amount of both between- and within-individual variation in foraging locations.

Trade-offs between tracking parameters for home range and habitat selection estimation
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Within- individual variation in movement behaviours is also identified by Fleming and

Calabrese [22] as a constraint to standardisation across different tracking durations. Therefore

we recommend that researchers acquire tracking data over a longer duration not only to pro-

vide a more balanced understanding of where the animal is going in the presence of strong

individual variation, but to increase effective sample size [24]. This contrasts with recent infor-

mation from a study of the large mammal literature by Hofman et al. [54], who recommend

more regular tracking than is thought necessary in order to counteract issues with retained

ephemeris data and fix acquisition (see also [89]).

In our study, the MKDE provided an accurate representation of used areas and is therefore

suitable for habitat selection and resource use analyses, particularly when observing year to

year changes, due to its position as an occurrence rather than a range estimator [37]. However,

the influence of tracking parameters on this method means this might not be true for larger,

slower moving animals, such as deer [35,90], compared with small, mobile species such as the

nightjar. The spatial and temporal scales over which species of different sizes and traits operate,

will influence appropriate data collection schedule (and thus autocorrelation). Large herbi-

vores such as deer or moose [91] track resources that may only vary over a weekly- or monthly

timescale, and therefore may only necessitate daily fixes. Nightjars and other small, insectivo-

rous aerial foragers [92] track mobile resources that may vary on shorter timescales related to

daily weather conditions and small-scale spatial changes in temperature [62,93,94], the effects

of which may be amplified by habitat type and structure in their home range, differing by

metres rather than kilometres [95,96]. Nightjars are visual predators that feed on-the-wing,

making the connections between points and not just stationary locations, more important.

Therefore, to quantify changes on this scale requires shorter tracking intervals. The increase in

MKDE home range size with a longer tracking duration, along with strong individual variation

signals the need for tracking data to be analysed with a method appropriate for its structure.

Consequently, we suggest that researchers undertaking any movement-based kernel analysis,

Table 5. Model coefficients from four models testing the effects of tracking-parameter-related, temporal and weather covariates. Data were subsampled to a 15 min-
ute fix interval (32 fixes per day, n = 32). Models tested the influence of parameters on MKDE and KDE home range and habitat selection estimates. 95% Confidence inter-
vals in brackets.

Coefficient estimates from models testing effects on:

Predictors MKDE Home Range KDE Home Range MKDE Habitat Selection KDE Habitat Selection

Intercept 7.499 3.75 6.443 4.887

(4.36–11.363) (2.688–4.865) (4.666–8.211) (4.581–5.192)

Tracking Duration 0.249 0.068

(-0.077–0.586) (-0.005–0.141)

Number of fixes -0.007

(-0.019–0.004)

Site -0.385

(-0.864–0.095)

Year +

Temperature -0.183 -0.112

(-0.346–0.01) (-0.219–-0.004)

Random effects

Week number 0.033 0.059 0.089 0

(+/- S.D.) (+/- 0.182) (+/- 0.526) (+/- 0.299) (+/- 0.000)

Sigma (Residual var) 0.642 0.99 0.315 0.435

(+/- S.D.) (+/- 0.801) (+/- 0.995) (+/- 0.562) (+/- 0.66)

https://doi.org/10.1371/journal.pone.0219357.t005
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to do so at a standardised rate across individuals, or to use analysis methods that incorporate

varying autocorrelation structures, such as the AKDE.

How sensitive are estimates of habitat selection to any changes in the
tracking parameters and method of home range estimation and are the
conclusions equivalent across all rates, durations and methods?

The strong influence of number of fixes for both MKDE and KDE-derived habitat selection is

partly explained by Manly selection statistic calculation methods, as this method considers

how many points are selected in each different habitat and compares this to the respective rela-

tive availabilities, and collates this information over all habitat types used and available per

individual [80]. Each extra fix collected adds weight to the use of each habitat, compared to its

availability, and the relationship becomes stronger if availability does not change. Whilst we

recognise the limitations of the selection ratio method, we believe it is an intuitive method

with which to observe habitat selection and preferences of animals when faced with a simple

habitat-type metric, that would struggle to be modelled in a linear format [3,80].

Fix rate and tracking duration influenced habitat selection estimates derived from the

MKDE and KDE home ranges respectively. Decreasing the fix rate could decrease the level of

habitat selection as calculated with the MKDE home range. Firstly, because there are simply

fewer fixes in total, but also due to the longer interval between fixes, the autocorrelation has

reduced and the animal is potentially less likely to be in the same place, particularly for a very

mobile aerial feeder such as the nightjar, which can cross its home range in less than the time

between consecutive fixes. If the decrease in fix rate results in an increased tracking duration

due to battery life and/or memory space, a similar level of selectivity may be reached during

the extra tracking time, particularly if individuals are consistent in their foraging. We achieved

the same number of fixes over a 10-day tracking period at a lower fix rate, as we did over only

6 days at the original, higher rate, providing us with an almost 50% increase in the number of

days of data, with a reduction of only 8 fixes per hour, or 64 per tracking session.

It is also important to note that habitat selection estimates from both the MKDE and KDE

were sensitive to the site studied, which concurs with Borger et al.[19] and Byer [34]. This sug-

gests that selection estimates could be sensitive to habitat configuration as well as method.

Bearing in mind that home range size dictates the individual availability of habitat to calculate

the habitat selection, change in the home range size with method could result in inclusion of

different habitat types, ultimately influencing the resulting habitat selection ratios. Animals

could appear to be much more selective if they use habitats that are sparsely distributed, neces-

sitating some commuting behaviour across large areas of unsuitable habitat, which if modelled

with the MKDE, rather than the KDE, may lead to much larger, contiguous areas of available,

but unused, habitat being included.

Strong individual variation in the habitat selection estimates were particularly related to

tracking duration. Week number only explained some of the variation in habitat selection

estimates, not those of home range, which is likely to reflect changes in food availability and

weather conditions. Ultimately in this study, although the selection estimate changed with

number of fixes, the primary conclusions (i.e. the most selected habitat) did not change, (in

accordance with Girard [45]), although occasionally the precise order in which habitats were

selected did.

Models run with subsampled data, therefore making the results directly comparable across

the individuals in the population, show that external factors (temperature, site, year) not dic-

tated by the tracking parameters are influential. This clarifies the need to track individuals at

the same rate and for the same duration, to allow the effects of these parameters to be more

Trade-offs between tracking parameters for home range and habitat selection estimation
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evident. In particular, variation in home range estimates and habitat selection due to site and

year, could reflect differences in vegetation type and structure and may indicate the potential

for there to be underlying differences in fitness, survival or breeding success [97]. These

models also highlight the difference between the range and occurrence estimators; the latter

(MKDE) uses movement parameters within the data and here has highlighted a decrease in

home range with temperature and year, external influences not picked up by the range estima-

tor (KDE).

Conclusions

Fix rate and tracking duration acquired from miniature GPS units influenced the results of

our tracking and habitat selection study, where the size of the species restricted the type of tag

and consequently a trade-off was made between fix rate and tracking duration. We concur

with recent literature on autocorrelation; changing fix rate alters data structure. We recom-

mend that data are analysed in accordance with autocorrelation structure and the ecology

of the species; an understanding of scale in temporal and spatial movement is necessary to

achieve a high effective sample size. For a small, mobile central place forager such as the night-

jar, which can travel rapidly across its home range and is exploiting localised, temporary

resources, it is important to maintain the data collection at a sufficient schedule so to balance

small-spatial scale movements with longer-term changes in prey distribution that can provide

information about their needs for productivity and survival. Overall, we recommend tracking

animals for as long as possible, to reduce the skew and bias that can arise from individual

variation in movement patterns, so as not to make conservation recommendations based on

potentially unusual behaviour. The overall conclusions from our habitat selection analyses

however, did not change, despite the estimate of habitat selection strength changing by some

magnitude. Therefore, for species where the main concern is to identify priority habitat type

for conservation, more infrequent fixes over a longer time will suffice.
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